8.B.5 Nuclear Physics B15 (1970) 397-412. North-Holland Publ. Comp., Amsterdam

8.B.6

ON THE ANALYSIS OF VECTOR-MESON PRODUCTION
BY POLARIZED PHOTONS#

K.SCHILLING *
California Institute of Technology, Pasadena, California

P.SEYBOTH ** and G. WOLF ***
Stanford Linear Accelerator Center, Stanford University,
Stanford, California 94305

Received 18 November 1969

Abstract: The formalism necessary to analyze production of vector mesons with
polarized photons (yp —pV) is.presented in detail. The decay angular distribution
of the vector mesons is parameterized by the density matrices p%, @=10,1,2, 3.
Restrictions on the numerical values of the density matrix elements are derived.
From the symmetry propertles of the helicity amplitudes, it is shown that at high
energies the combinations pM\, F (1) 4p- A to leading order in energy receive

only contributions from natural (unnatural) parity exchange in the {-channel. It is
shown that this is true in any coordinate system which can be reached from the
vector-meson helicity system by a rotation around the normal to the production
plane. The values of the density matrices as predicted by various models: ele-
mentary 0 exchange, spin independence, helicity conservation, are given.

1. INTRODUCTION

In view of current experiments at DESY [1] and SLAC [2] on the produc-
tion of vector mesons by polarized photons

YN —-VN, e

we investigate what information on the production amplitudes can be ob-
tained from the decay distributions of the vector mesons. Our aim is to
provide the theoretical tools necessary for a maximal exploitation of ex-
periments with polarized photons, where the target nucleon is unpolarized
and the polarization of the recoiling nucleon is not detected. Part of the
material presented here can be found in the literature [3-7] and to some ex-
tent is an application of the general work on high-energy exchange processes
by Cohen-Tannoudji et al. [8].
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After a rather pedestrian excursion into the spin problem of reaction (1),
we shall write the decay angular distribution of the vector mesons in terms
of their spin density matrices. This will show explicitly that experiments
of the type discussed here yield at most 18 real and independent bilinear
forms of the 12 complex helicity amplitudes. From the common decay
modes (p — 27, w — 37 and ¢ —KK), however only 12 of these bilinears can
be measured. The range of their values is not unlimited but restricted by a
set of inequalities.

With linearly polarized photons, at high energies 8 out of 12 measurable
bilinears can be separated into contributions from natural and unnatural
parity exchange in the f{-channel. Experiments with circularly polarized
‘photons do not yield any information on the nature of the £-channel exchanges.
To leading order in energy no interference terms between natural and un-
natural parity exchanges in the #-channel can be observed in these experi-
ments.

Finally, the predictions of various models (JP = 0% exchange, spin in-
dependence, helicity conservation) for the spin density matrix of the vector
meson are given.

2. FORMALISM

In this section the formalism for describing the polarization of the pho-
ton y and the vector meson V in reaction (1) is developed. It will be as-
sumed that the target nucleon is unpolarized and that the polarization of the
recoiling nucleon is not observed.

2.1. Notations

The four-momenta of the incoming photon and the outgoing vector meson
in the c.m. will be denoted by 2 and g. We use the corresponding three-
momentum vectors k and g to define a right-handed coordinate system

K kxq oy (kxq)xk
Z2=7k]0 YT kxq|’ ((kxq) < K| *

The polarization states of the photon and the vector meson are expressed
in terms of their spin space density matrices p(y) and p(V). These density
matrices are connected by the production amplitudes T

pV) =Tpm) T, @)

which we write in the c.m. helicity representation of Jacob and Wick [9]

E ' T 3
p(V))‘VKV N .A AN x )‘VAN A ANP(Y)A A )‘VAN" yAN ®

The X's denote the helicities of the respective particles of reaction (1); N is
the normalization factor:
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2

1

=3 X 'TJ\VA A ANI 4)
AVAN.A AN

The normalization of the amplitudes 7 can be chosen such that the produc-

tion cross section for unpolarized photons is given by

(217) 2 [Ty ‘2 (5)

" N
)\VAN,A )\N V N’ Y

N

d o unpol

The decay distribution of the vec¢tor meson will be discussed in its hel-
icity system: The z direction is chosen opposite to the direction of the out-
going nucleon in the V rest system (i.e., equal to the direction of flight of
the vector meson in the overall c.m. system). The y direction is the normal
to the production plane, defined by the cross product k X q of the three-
momenta of the vector meson and the photon. The x direction is given by
X =y X zZ. The decay angles 6,¢ are defined as the polar and azimuthal
angles of the unit vector sz, which, in case of a two-particle decay of the
vector meson, denotes the direction of flight of one of the decay particles
in the V rest frame. (For a three-particle decay, 77 is equal to the normal
to the decay plane in the V rest frame.)

Yy (zx7) X- (zxJT)

cosf =7z, csdu—ﬁ»v Y sing = -

|z x| |z %ot

The Gottfried-Jackson system and the Adair system which will be used
in connection with the predictions of various models differ from the helicity
system only in the choice of the z axis. In the Gottfried-Jackson system,
the z axis is equal to the direction of flight of the incoming photon in the V
rest frame. In the Adair system the z axis is equal to the direction of flight
of the incoming photon in the c¢.m. system.

2.2. General decay angular distribution of V — 2 pseudoscalay mesons and
V — 3 pseudoscalar mesons
The decay angular distribution of the vector meson in its rest frame
reads:

Toontdp = Wicoss,0) = Mp(M'
- E (8,6 M2 VeV o oy mte,e),  ©
V V
where M is the decay amplitude and
@61 Mry) = C [ D] 4(6,6,-6) ™

Note that we consider V-decays into spinless particles only. The quantity
| C|“ is proportional to the V decay width [10]. Due to rotation invariance



400 K.SCHILLING et al.
C is independent of Ay;. Because we consider a normalized decay angular

distribution, we set C equal to one. The Wigner rotation functions D are
given by (sign convention of Rose [11]):

1 . -4
b}y (®,0,-9) = - 5 sinde i
Dy (@6, -¢)=cos9,
pl. (¢,0, ip
s10(®,0,-9¢) = /3 sing e . (8)
With the help of eq. (7), the decay distribution (6) can be written

3 *
W (cos 6 Z) D ,0, - . DI, 6, - 9
(cos 6, ¢) )\V v V0(¢ d))p(V)A'VA'V )\Vo(¢ ¢) . (9)

Using the fact that p(V) is hermitian (p(V)AVA%/_ = p*(V)A{,AV, see eq. (3)

and eq. (12) below) one obtains from (8) and (9):

2

3 .
W{cos 6, ¢,p(V)) = i (% (P11 +p_-1_1) sin2 6 + poo cos” 0

1 . 1 . .
+ 75 (-Repyg + Rep_1q) sin26 cos ¢ + 73 (Impqg + Imp_qg) sin26 sin ¢

- Repy g sin 6 cos 2¢ +Impy_y sin2 @ sin 2¢>) , (10)

where on the rhs the label V has been omitted from the p(V),;. This gene-
ral form of W will be simplified in subsect. 2.5 by using the symmetries of
p(V) which follow from the properties of p{y) and 7T'.

2.3. Density matrix of the photon
The density matrix pPUT€(;) of pure photon states can be constructed
from the photon wave function |y) in the helicity basis

|y)=a+|)\y=+1>+a_|)\.},=—1>, (11)
where
Iy =«0(2=1, e ?+a|?=1
The result is:
|a,|? a,ar
pPUTeR) = [y){y| = 0 (12)
aal |a|
In the case of circular polarization and 7\7 = +1 and -1, one obtains
10 (0 0)
pure - . 13
p o) 0 0 0 1 (13)
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For linearly polarized photons eq. (11) reads:
__ Loy iy
|y>—-ﬁ(e ]A,y_+1>-e I, =-1), (14)

where ® is the angle between the polarization vector of the photon, € =
(cos @, sin®, 0), and the production plane (x,z plane) (note: our definition
of ® differs by a sign from that of ref. [4]). The density matrix is

1 - e-2id

pure

PP ) = 2 (15)

_Q2i®

For elliptically polarized photons, eq. (11) reads:
1 -i® i®
|'y)= {-(a+d)e ‘A =+1)+ (a-b)e ‘)\ =-D}, (16)
V22 + %) 4 4

where a and b are the lengths of the principal axes of the ellipse and @ is
the azimuthal angle of the principle axis a. The corresponding density ma-
trix is given by: o
pure, « 1 |1+2aV1-a% &2 (1-24%)
P W)=z . ) 17)
20 (1-2a2) 1-2a/1-2

with a, & normalized to a® + b2 = 1. Obviously the cases of circularly or
linearly polarized photons can be obtained by specializing eq. (17) to a =
+1/V2 or a = 1 respectively.

On the other hand, it follows from egs. (13), (15) and (17) that pPUT€(y)
for elliptically polarized photons can be written as a linear combination of
the density matrices for photons of linear and circular polarization. There-
fore, experiments with elliptical polarization do not yield more informa-
tion on the helicity amplitudes than a set of experiments with linear and cir-
cular polarization. The elliptical case will not be pursued any further.

We generalize these results to the case of partially polarized photons
and put them into a standard form by writing p(y) as a linear combination of
the matrices I, o; (¢=1,2,3), which from a complete set in the space of
2 X 2 hermitian matrices

p6) =31+ P, 0, (18)
where /is the 2 X 2 unit matrix, o; are the three Pauli matrices. The
length P., of the three-vector P, is equal to the degree of polarization. The
direction of Ry depends on the kind of polarization, e.g. {from eqs. (13)
and (15)):

P,}, = ?,(0, 0,+1)

P, = P (-cos2®, -sin2%, 0) (19)

for circular polarization with A, =11 and for linear polarization respec-
tively with 0 < P, < 1.
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2.4. Symmetry properties of the helicity amplitudes

The symmetry properties of the helicity amplitudes imply symmetry
relations for the density matrix p(V). With our choice of coordinate system
parity conservation leads for reaction (1) to [9]

- (AN -0y AN e

T(0%) %) ,

20)
Ay ANt Ay, AN (
with ©* being the c.m. productlon angle. If only natural (P = (- l)J ) or only
unnatural parity (P = -(-1)J) exchanges in the ¢-channel contribute, one has
to leading order in the energy of the incoming photon the additional symme-
try [8]

TO") 5 ar any = DV TEM,

VN"'yN VN"'}'N

v
#(-1)"V T(0* )"v"N""y"N
where the upger (lower) sign applies to natural (unnatural) parity exchanges.
Let TN(TU) pe that part of the helicity amplitude which receives contri-
butions only from natural (unnatural) parity exchanges in the #-channel

(1)

T=TN4+7U, (22)

Using eq. (20) one can project out TN and 7V:

N

= £ (10", , R T(e*)-/\vx

Ay VAN AN

—)\,}/AN) (

N"’ 23)

2.5. Standavd decomposition of p(V)
The density matrix p(V) can be written in a form showing explicitly the
dependence on the polarization vector Py Defining 1

(°, 0% = TG, 3e 1T, @=1,2,3, 24)
we find from eqs. (2) and (18)
a o
p(v) = p+EPp- (25)
i=1 7
The four hermitian matrices p%, a = 0,1, 2, 3 read explicitly:
0

p T* (26a)
AN T 2N, AN VANOMAN VAN AN

1 1 *

Y AN AN T MY

MR
T 2N
I our pa are essentlall 1_,t 2_
y the pTh of Thews (ref. [4]) with p = pTh’ PT =Py P =
ipy, Im p° = iy
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2 i

Py \' =a Z) T _ T (26c)
Ay T2, ‘*NAY At A TR

3 1

Py v =i E AT TS, (26d)
WA 2N, Y NN Y AN

v NN

Parity conservation (eq. (20)) reduces the number of independent matrix
elements

p%.:(n“\p“\, a=01, @7
o
Py = - (DA% e =23, (28)

From these equations and the hermiticity of the p%(@ =0,...3) follows that
pl 1 p{ are real and r1 purely imaginary. Because the decay
distribution W in eq. (10) 1s]hnear in p(V), the representation eq. (25) may
be used to decompose W as well:

Wi(cos 0,¢,p) =W (cos9 o) + Z; P w (cos 8, ¢) , (29)
a=1

where W% (@ =0, ...3) is defined by eq. (10) with p replaced by p%:
W %cos 6, ¢) = W(cos 8, ,p%) , @=0,...3. (30)
Because of the symmetries of the p® (egs. (27) and (28)), the W & reduce to:

wO(cos 8, ¢) = 47T (3(1-p3y) + 3300 - 1) cos?6

- x/Z_Repgo sin 26 cos ¢ - p?_l sin? 6 cos2¢) ,

2 1

wlcos s, ¢) = ‘f—ﬂ(p%1 sin?6 + pl, cos?0 - V2pl) sin26 cos

1

.2
-Ppy.q sin 6 cos29) ,

W2(cos0,6) = = (+V2 Impl sin26 sin® +Imp?_; sin? 0 sin29) ,

w3(cos 6, ¢) =3—(+ﬁlm A, sin26 sin ¢ +Imp3_, sin®06 sin2¢) . (31)
Because p2 p have the same symmetries the structures of W2 W3 are the
same. WO w1l giffer only insofar as for our choice of normahzatlon tr pO— 1,
whereas there is no trace condition for p~. For easy reference we list here
the explicit forms of the decay angular distributions for the various photon
polarizations by inserting P;, of eq. (19) into eq. (31):



404 K.SCHILLING et al.
(i) Unpolarized photons. From Py = 0, one has
Wunp°1(cos 6, ¢) = Wo(cos 9, ¢) . (32)
(ii) Circular polarization of helicity A, = +1:
W(cos 6, 9) = W(cos 6, ¢) + B, W (cos 6, ¢) . (33)
(iii) Linear polarization:
WL(cos 6,0,®) = Wo(cos 8, ¢) - PY cos 2® Wl(cos 6, d)
- PY sin2® Wz(cos 8, ¢) . (34)
The eqs. (27) and (28) hold in any coordinate system that can be reached
from the helicity system by a rotation R around the normal to the produc-

tion plane, due to the symmetry properties of the rotation matrices d-(R).
We sketch the proof, e.g., for p°. In the rotated system, p° is given by:

~0  _ 1 0 1 -1
pmml = IJ'E“V dmu.(R)pﬂlJ«'dIJ:‘m' (R ) .

The following calculation shows the symmetry property eq. (27) to hold in
the rotated coordinate system:

1
~0 _
p_m_m‘ - ’J’Zli' d_mu(R)puu'd 'IJ'(R)
_ m-i 4 M-m!
-ﬁ (D" Han R0y (B (1)
_ m-m'
= (-1ymm' o g.e.d.

mm'

Hence, the structures of the decay angular distributions given by egs. (32),
(33) and (34) remain unchanged under such a rotation.

2.6. Restrictions on the values of the density matvix elements

When extracting the density matrix elements from experimental data by
means of fits, one should keep in mind that their numerical values are re-
stricted by the following inequalities:

2
|3 17 < Py 00 a=0,1,2,3, (35)
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3
detpv) =[] n; >0, (36)

i=1

3
TrpW)=Z31ui>0, 37

1=
20 detR(V),, = kg + kg + Moug > 0, (38)

1

where the p;, ¢ =1,2,3, are the eigenvalues of p(V), and R(V);;, denotes
the adjoint of p(V);3 (the matrix obtained by deleting the ith row and the kth
column of p(V)). The eqs. (36)-(38) lead to the conditions

PV, 20 (39)

Equation (35) is obtained by applying the Schwarz inequality to the bilinear
expression in the helicity amplitudes for the p® (eq. (26)). The eqs. (36)-(38)
are the necessary and sufficient conditions for positive definiteness of p(V)
which is a consequence of the defining eq. (3). The inequalities following
from eqgs. (35) and (36) for the set of measurable parameters are given in
table 2. The results for p° have been obtained before [12].

3. SEPARATION OF NATURAL AND UNNATURAL PARITY-EXCHANGE
CONTRIBUTIONS

How much information can we gain on reaction (1) from experiments
with polarized photons, unpolarized target and recoil polarization not be-
ing detected? This question can now be answered by simple parameter
counting: The results of these experiments can be described in terms of
p(V) and do"POL the production cross section with unpolarized photons.
From the standard decomposition of p(V) into p%, we find that p(V) is de-
scribed by 17 independent functions, of which eleven can actually be meas-
ured from the common decay modes p — 27, w — 37 and ¢ — KK (see table
1). Hence one measures altogether 12 independent quantities (one for
do¥POly. On the other hand, reaction (1) is described by 12 independent
complex amplitudes, i.e., 23 real functions. Nevertheless experiments
with linearly polarized photons provide an important new insight into the
production process of reaction (1) because they allow to measure the con-
tributions of natural and unnatural parity exchange in the f-channel to the
matrix elements of Re pO, Re pl, as will be shown in the following. How-
ever, experiments with circularly polarized photons do not yield any infor-
mation on the parity of the £-channel exchanges when the polarization of the
recoiling nucleon is not measured.

At high energies the density matrix elements of p®(V), (@ = 0,1,2, 3)
can be written as a sum of two terms which receive contributions from
natural or unnatural parity exchanges in the /-channel. These two terms
are themselves linear combinations of the p& (the label V will be omitted
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o frabjel;
The form of the density matrices p~, p~, p°, p°, making use of hermiticity and parity
conservation.

1 -py) Repdy+impl;  Repd

0_ 0 0 _ir 0
p = poo _(Re plo ZIm plo) >
b -p))
1 1 .. 1 1
P11 Repjy+iImpy, Repy
1 1 1 _i1m ol
p - pOO _(Re PlO tIm plO) ’
Py
2 2 .2 9
P11 Repygttimpy,  ilmpy
2 2 .. 2
p = 0 (Re plo tIm p].O) s
-}
P} Repdy +ilmp3,  immpd
3 )
p = 0 Re p:fO lImp:f0
3
“P11

The underlined density matrix elements are measurable from the decay angular dis-
tributions. The lower half of the matrices is obtained by hermitian conjugation.

from now on). The separation is achieved by using the symmetry property
(23). As an example we outline the proof for p°. Inserting eq. (22) into the
definition of p° (eq. (26)) one finds:

U N* u*
+ T T 1 + T t ] .
N “‘N""y?‘N][ MANMAN T AN AN

(40)

1
p;\))tl = o T 2 [Tg

2N AN N A

The interference term between natural and unnatural parity exchanges
vanishes in the limit of high energies:
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1> N u* U N*
= (T T + T T )
2N AA 1A A AT AN 1, A A AA A A
A ANAN! NN N' 'y AN NN N"%"N
1 A
= —— (T - (-1) T_ - )
8N A Xy Mgoh Ay Mgt =h Ay
X(Ti aoae = CON Ao 5 )+ Ty oy + (D T g, -A A
N AN N TAMAN N AN N AN
Y A-A' O _
X (T AN - (DT T, Y )\N)] 2[5 - (D2, Li1=0.
N N (41)
Here egs. (23) and (27) were used. For p® one obtains therefore:
p° = oM ooV (42)
where N N Nox
LU L » ) ) 43)
[ 1 .
MY 2N A A MN"xykN by ,,Any
Table 2
Restrictions on the density matrix elements.
1. 0= Poo £1,
2 0 | <a-
: loy 1] < 30 -0y
3. (Re pP)? < 1002 - PGy - Rep) ) |
4, lmp? | < sa -pgo) ,
5. [tmpdy | < ‘/épgo(l -0y
1 0
6. 50| < £5o -
8. lplal = 40 -0%y
9. |Re pT4| < VipJo1 -pdy
10. lmp? ;| < ta -pdy
11. [m oy < VipJ,a -0%)
2
12.  (Rep) +Repl %< 1[{4+4 Poo ¥R - ) =pt )}

2
73 a0 L1 1 .0 1 1
{2000 xPgoFP1y 0] 1 207 1 -3} 1.

13. it would be too tedious to write down this inequality.
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For the contributions pO(N) and po(U) of natural and unnatural parity ex-
changes to the density matrix p®, one gets by a calculation similar to that
of eq. (41)

po(g) = 1(p° ¥ (-npl ) (44)
YUY YL
NOINPYE e ol
Defining p , 0 ,P analogous to p (eq. (43)) one can show that:
g
&
pl=plM . pl0) - LT 3ol = (%%, (45)
3_ 3(N) . 3(U) 5@ ., 3
p =p +p , p)\)\v = E(px)‘v + Z( 1) p )\)\v) (46)
&
p2 =M 20 22 w30 @

Like the symmetries following from parity conservation the relations (43)-
(4'7) hold in all coordinate systems that can be reached from the helicity
system by a rotation around the normal of the production plane.

From table 1 it is evident that all elements of p~ and p* which are meas-
urable in the type of experiments discussed here can be split into their
natural and unnatural parltg contrlbutlons as listed in table 3. This sepa-
ration is not possible for 52) and p because relations (46) and (47) connect
measurable elements of p“ with unmeasurable elements of p¥ and vice
versa. It is worth noting that the (Lorentz-invariant) eigenvalue ( pO
of p0 [13] can be directly decomposed into its two f-channel rE)arlty parts lby
an experiment with linearly polarized photons measuring W (eq. (34) at
the angles 6 = 37, ¢ = 37, ® = 0, 37 (see ref. [1])

Table 3
Separation of natural and unnatural parity exchanges in the {-channel.
oD _ 0 Lol 1 _ 1 .0
oo~ Poo TPoo - Poo” = Pgo *Poo »
Re pO(U) = Rep? #Rep! Re pl(U) = Repl #Re 0
10 10 10° 10 10°
N
@ _ o 1 1@ _
Py =Pyy*Pyy> 11 " P FPi
N N
ol _ 0 1 (o) i1 0
pll - 2(1 _pOO) ipl—l ’ pl 1 - pl 1 2(1 _poo) .

The expressions with the upper (lower) sign give the measurable natural (unnatural)
parity contributions to the density matrix.
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9Py =)W, 3m,3m) + P, + 1) W0, 4,0)

N @y )WL, 31, 3m) + (2, - 1) WL, 47, 0)
0U) . o)
P11 P

C o), O(MN)
Pii TP

(48)

The asymmetry P (parity asymmetry) in the contributions oN and oV ot
natural and unnatural parity exchanges to the total cross section is given
by (eq. (44)):
N U
o -C 1 1
P = =207 1 - Pop - (49)
o N, U 1-1 00

For completeness we also give the quantity 2 of ref. [1] in terms of the
density matrix elements '

L
_ 0'Il —O-L 1 WL(Oy é—ﬂ, é—'ﬂ) -w (O, %Tf, 0)

Oy toy P'y WL(O,%TI,%‘II)+WL(0, %TT,O)

pl1+p11

1 -

—~0—+ 0 - (50)
P11 ¥P11

4. MODEL PREDICTIONS FOR THE DENSITY MATRIX ELEMENTS

In this section we review the predictions of various models for reaction
(1). Roughly speaking, these models may be divided into two classes:

(i) £-channel exchange models of elementary or reggeized particles;

(ii) Models inspired by the idea that vector-meson photoproduction pro-
ceeds via diffraction: the spin independence model (SIM of ref. [14] and the
helicity conserving model (HCM).
The JP = 0* exchange models and SIM and HCM have in common that in a
reference frame characteristic to the particular model, they predict that
(a) the matrices po pl,pz,p are independent of photon energy and produc-
tion angle and (b) pb, p3 are diagonal, pl, p2 antidiagonal. These properties
are a consequence of the simple spin structure of the c.m. production am-
plitudes in these models:

T =t o 6 .
P g T g g, Sy S,

The m's are the spin projections in a reference system appropriate to the
models: (i) for elementary- or reggeized-particle exchange the #-channel
c.m. helicity system; the vector-meson decay is analyzed in its Gottfried-
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Jackson system (GJ); (ii) for SIM the s-channel c.m. system with quantiza-
tion axis along the direction of the photon. The vector-meson decay is anal-
yzed in its Adair system (A); for HCM the s-channel c.m. helicity system.
The vector meson decay is analyzed in its helicity system (H). The density
matrices in these coordinate systems read:

300 0 0
=100 0], p3=10 0 o],
00 3 0 0 -2
0 0 a 0 -ia
ol=10 0 of, p2=10 0 o). 1)
a 00 ia 0 O
For JF = 0*(0") exchange one has a = % (a = - ) (ref. [15] ) and for SIM one

has a = 3. In the spirit of the diffraction idea we assume only natural-
parity exchange contributions for HCM and therefore set a = 3.

The density matrices given above in the characteristic systems of the
models can be transformed into the other systems by rotations around the
normal to the production plane:

A_ 21 B 1 T
p=d (aA—'B)p d (OZA_,AB) . (52)
The rotation angles @y _, g are:
_ B -cos®*
ozH_,GJ = arcos <m) s
ag_p=0", (53)

where ©* is the production angle and B the velocity of the vector meson
both evaluated in the c.m.

With the simple form of the density matrices (eq. (51)) in mind, one can
ask for conditions under which the density matrix p© can be diagonalized by
a rotation through some angle @ around the normal to the production plane:

Pant = dyy (- @)af 8, 0d (@) (54)

Evaluating eq. (54) one finds that such an angle o exists if

o - O (0] (o]
109, = Vo3 1 @e§y+00 4 -1, (552)

1

Pl +P S E, (55b)

¥ Absorptive corrections to the elements of p0 and p1 have been given by refs. [3]
and [15].
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———— < 1.
0< 3 0 1 (55¢)

The val o
e values of ¢ and auu are

0
1 P11

V2 0’
Rep10

tga = -

o __O - n0 o
211 =%.1-17 P11 P11
o _ o ¢}
250 = 1- 2(p11+p1_1) . (56)

In order that p1 can be antidiagonalized by the same rotation Ry(oe), the
following conditions have to be satisfied in addition:

1 11
1 _Poo+*3P11+P1-1 0

P10 = Pip > (57a)
1-3(p3;+P7_4)
1 11
11 1 0 Poo *3P11+P1-1
P1-1=P11 *P11 " P11 (57b)

1- 3(p?1 +p(;_1)

The elements aiu 1 of p1 in its antidiagonalized form are
1 _ 1 _ 1 1 1 _ 1 1
@.1=%11=P11*P11, %0 = Poo * 2P11 - (58)

To antidiagonalize p2 by the same rotation requires

(59)

In order to diagonalize at the same time p
matrix elements to be zero:

requires the two measurable

Imp?_1 = Imp?0 =0.
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