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1. Introduction 
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1.1. Duality in strong interaction 

The purpose of this report is to discuss duality in strong interaction physics from the 

phenomenological view point. 
Since the success of finite-energy sum rules (FESR) in two-body reactions the belief has been 

gaining ground that there exists a certain relation between two ways of describing scattering 
amplitude: the Regge-pole exchange at high energy and resonance dominance at low energy. The 
two descriptions appear to be quite different. Namely, the former corresponds to t-channel poles, 
while the latter corresponds to s-channel poles. The FESR tells us that these two descriptions are 
not independent but alternative expressions for the same amplitude. This leads to an interlocking of 
two descriptions generally called duality. 

Duality can be regarded as a kind of bootstrap scheme for hadrons. This bootstrap is manageable 
due to its linear character, in contrast to the non-linear bootstrap dynamics (the N/D method) based 
on analyticity and unitarity. The old N/D method relies much on elastic unitarity which becomes 
useless with increasing energies, and it requires many-channel calculations inevitably. The new 
bootstrap scheme, however, closes within a single reaction by relating its direct and crossed channels. 

The duality scheme produces very fruitful results when it is combined with the internal symmetry 
of hadron dynamics. One of the most important among them is the exchange degeneracy of Regge 
poles, which leads to qualitative understanding of hadron spectra as well as of high-energy phenomena. 
The exchange degeneracy correlates several multiple& of the internal symmetry. It leads, in par- 
ticular, to the nonet scheme of the quark model when applied to mesons. Moreover, the scattering 
amplitude exhibiting duality can be expressed in terms of the rearrangement of quarks (duality 
diagram). 

A solution of the duality bootstrap can be obtained in a compact form for meson-meson scatter- 
ing within a certain approximation and it is known as the Veneziano model. The statement of 
duality is most explicit therein; an infinite sum of s-channel poles is equivalent to an infinite sum of 
t-channel poles. 

Through the extension of the Veneziano model to an amplitude with any number of external 
lines (dual resonance model) the mathematical structure of such dual models could be clarified in 
great detail. In particular it turned out that a dual model has a spectrum such as that produced by 
an infinite number of harmonic oscillators. An operator formulation of the model then enabled us 
to decompose the amplitude into propagators and vertices and to calculate the dual amplitude 
perturbatively. Here the duality diagram appears in a new light as a “Feynman diagram” in the dual 
resonance model, although a line in the diagram has lost its meaning as a quark. Since the spectrum 
of the dual resonance model is realized by the oscillation of a finite string, people have reformulated 
the dual resonance model based on a string picture. In this picture the line of the duality diagram 
acquires a meaning as the end of the string. 

From the phenomenological point of view, the Veneziano model itself is too idealized and it may 
not be suited to practical applications. The simple Veneziano model for meson systems, however, 
possesses many attractive properties, and it gives us many hints as to the properties of meson- 
baryon scattering, for which the construction of such a simple model meets difficulties due to the 
spin complexity (e.g., parity-doubling problem). Thus the Veneziano model furnishes a guide to our 
understanding of hadronic reactions. 
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Phenomenologically, duality is an approximate concept, based on a simple Regge expression at 
high energies and resonance saturation at low energies. The t-channel description in terms of several 
Regge poles often fails in explaining high-energy phenomena for t < 0, implying the necessity of 
Regge cuts for t < 0. Nevertheless the interlocking of the s-channel and the t-channel poles may 
persist to hold for t > 0 where the contributions of poles are expected to dominate. For t < 0, we 
can still see remnants of the pole-pole interlocking even in the presence of Regge cuts. 

Furthermore duality enables us to take an alternative approach to give high-energy amplitudes in 
the circumstance of our ignorance of the prescription of Regge cuts: We can obtain a satisfactory 
description by employing the knowledge obtained in the direct channel, i.e., by replacing the Regge 
amplitude with the empirical s-channel (resonant) amplitude. 

In this article we attempt to clarify the nature of the strong interaction in the framework of 
duality in the hope that it provides a coherent view of the hadron physics. 

1.2. Outline of this article 

As first discussed, the two assumptions of analyticity and asymptotic Regge behaviour for the 
scattering amplitude has led to finite-energy sum rules (FESR) of the form 

1 N 
IV 

I Im ,f(v,t) dv = 1 6 s, 
0 i I 

(1.1) 

pi and /3i being Regge parameters. This equation connects low energy amplitudes to high energy 
parameters (sections 2.1 and 2.2). 

If one supplements the FESR with the assumption that the low energy side (left-hand side) of the 
FESR is saturated by the resonance contribution, eq. (1.1) implies 

(Im f (Res.)),,, = 1 Im f(Regge pole), (1.2) 

showing that the description of the amplitude in terms of a sum of direct-channel resonances is 
equivalent to its description in terms of a sum of Regge exchanges in the crossed channel. This 
relationship is called duality (section 3.1). 

When one considers an elastic process, however, one finds a substantial contribution to the low 
energy side besides that from resonances. This non-resonating background component is assumed to 
correspond to the pomeron at high energy, 

(Im f(non-res. B. G.)),,, = Im f(pomeron). (1.3) 

This two-component hypothesis -- eqs. (1.2) and (1.3) - will allow us to treat the resonant and 
diffractive (non-resonating) components separately (section 3.2). In this article we shall concentrate 
upon the resonant or ordinary-Regge component. 

The two-component hypothesis states that if there are no resonances in a certain reaction (e.g., 
r+?r+--+ 7r+7r+ K+p --+ K+p; this condition is expected to be satisfied when the direct channel has exotic 
quantum numbers which cannot be associated with a three quark system if a baryon, or a quark- 
antiquark system if a meson), the imaginary part of the non-diffractive amplitude should vanish. We 
are then led to relations among Regge poles exchanged in the crossed channel (exchange degeneracy) 
(section 3.4), 

Im 12 ,f(Regge poles)] = 0. (1.4) 
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In the case when we have two Regge poles with opposite signatures, we obtain 
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,(+I = a(-), pC+) = pc-) (1.9 

where the superscript (+> or (-> refers to the signatures of the Regge poles. The Regge residue 
function is also restricted by eq. (1 .S), which leads to the form P(t) - oc(a + l)(cu + 2) . . With 
exchange degeneracy one can now understand several important systematics of two-borly scattering 
at high energy. 

In particular, in O-O- scattering, eq. (1.5) reads 

ol(l_) = a(2+), P(l_) = P(2+). (1.6) 

This exchange degeneracy between vector and tensor mesons requires that they follow a nonet 
scheme with the ideal mixing (sections 3.4 and 3.5). 

As for baryons, the simplest solutions of eq. (1.4) are given by the degeneracy of a L@ 8 with one 
signature and an S with the opposite signature, and the degeneracy of an S @ 10 and an 8. Although 
the realistic baryon spectrum is more complicated, these simple solutions lead us to a qualitative 
understanding of the SU(3) coupling patterns of observed parent baryon resonances (section 3.5). 
Furthermore it can be shown that the non-relativistic quark model (spectrum SU(6) X O(3),: 
coupling SU(6),) is a solution of exchange degeneracy (sections 5.3 and 5.4). Exchange degeneracy 
in O-1/2+ scattering also predicts that the t-channel Reggeon couplings have nonet coupling with a 
common F/D value for vector and tensor trajectories. The F/D value itself is fixed by the s-channel 
resonance through eq. (1.2). 

One can then understand transparently the duality and symmetry structure of the scattering 
amplitude by representing a particle in terms of quark lines on the world sheet (duality diagram) 

(section 3.6). Exchange degeneracy allows only connected diagrams, since it leads to Reggeon 
couplings in which disconnected diagrams are forbidden (Okubo--Zweig-Iizuka rule). When a 
planar duality diagram is written for a certain two body reaction (we consider here meson-meson 
or meson-baryon scattering), the two non-exotic channels of the diagram are dual with respect to 
each other. Figure 1 shows an example of the s-t dual diagram. 

On the other hand, it is impossible to draw a planar duality diagram for baryon-antibaryon 
scattering with only qq intermediate state in each channel; one must have qqqq in either channel. 
Namely, one should introduce exotic states to maintain duality for baryon-antibaryon scattering 
(section 3.7). 

If one considers a reaction in which two channels are identical, the FESR gives a linear bootstrap 
equation. The Veneziano amplitude which we consider next is a crossing symmetric solution of the 
equation in the narrow-resonance approximation (section 3.8). It has the form 

I/ = U-4s) r(-4t)) 
IT-or(s) - a(t)) ’ (1.7) 

with (x(s) = c~ + a’s, corresponding to the diagram in fig. 1. Here a’ is an important parameter of the 
model and sets the energy scale for Regge pole asymptotics. This model provides us with an explicit 
manifestation of the pole-pole duality in its simplest form, viz., 

I/= 2 K(t) = 2 R?(s) 
n - a(s) n - a(t)’ 

(1.8) 

exhibiting that the amplitude can be written either as a sum of s-channel poles or as a sum of 
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+ 
S Fig. 2. 

Fig. 1. 

r-channel poles (fig. 2). This property clearly differs from conventional field theory, in which the 
t-channel poles should be added to the s-channel poles. The situation in the case of the dual model 
originates from the fact that the sum (1.8) is an infinite sum, i.e., a t-channel pole comes from the 
divergence of the infinite sum of s-channel poles and vice versa (section 3.8). 

It is to be noted in eq. (1.7) that the double pole at the convergence of the two poles at (Y(S) = n 
and a(t) = m is avoided by the zero at 0((s) + ar(t> = y1 + m. This zero propagates into the physical 
region and produces dips in the angular distribution of cross-sections (section 5.1) which are 
characteristic of the dual model. 

The Veneziano model is still plagued with several difficulties and it is far from a realistic theory of 

strong interactions. However, it is endowed with many desirable features in addition to its 

mathematical simplicity. 
One of the fascinating properties of the Veneziano model is that it can readily be generalized to 

the N-point dual amplitude. The factorization property of multi-particle dual amplitude requires 
that pole--pole duality should hold not only for particle-particle scattering but also for particle- 
Reggeon or Reggeon-Reggeon scattering. Inclusive reactions have opened up the possibility of 
examining such duality properties through studies in a specific kinematical region (section 3.9). One 
can also study duality for scattering with pomeron as external lines. It presents us with an interest- 
ing problem on the nature of the pomeron and the role of twisted dual loops. 

Regge-pole resonance duality, in the form we have presented it, is an idealized approximation of 
nature. Although the scheme enables us to grasp the global characteristics of two-body reactions, 
analyses of high energy data reveal that in some cases the high energy amplitude with a few Regge 
poles does not necessarily give a satisfactory description for t < 0 and that other J-plane singularities 
- possibly Regge cuts are necessary (section 4.1). In the presence of Regge cuts eq. ( 1.2) should be 
modified to 

(Im f(Res.)) = 2 Im f(Regge pole + possible cut). (1.9) 

Although we have no correct prescription for the Regge cuts yet,t eq. (1.9) gives an important con- 
straint on the scattering amplitude. Assuming eq. (1.9) in a semi-local form, one can construct a 
resonance model at high energies as an alternative to the t-channel description. We know empirically 
in O-1/2+ scattering that the imaginary part of the non-diffractive amplitude is dominated by 
peripheral partial waves centred at the impact parameter b = 1 fm (section 4.2). One can then 
readily understand this peripherality in the s-channel language by assuming that resonances with 
spin In = mR dominate, not only at low energy, but also at high energy (section 4.3). If the Regge 
pole amplitude has an imaginary part with dominant peripheral partial waves, Regge cut corrections 

TThe prescriptions of the Regge cut, proposed so far, have turned out to be inadequate (section 4.2). 
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should be small. But it does not always have a peripheral imaginary part and then it has to be 
corrected by a possible Regge cut. In such cases it is more convenient to use the s-channel picture to 

describe high energy phenomena (sections 4.3-4.5). Furthermore, the resonance model throws light 
on the mechanism of the reaction with an exotic crossed channel (section 4.6). 

Duality does not say much directly about the diffractive component, the pomeron. The pomeron 
is usually understood as an inelastic shadow effect of multiparticle reactions. The duality idea, 
however, tells us what summation of the multiparticle states in the unitarity equation leads to the 
pomeron. In this article we only refer to the basic ideas of such attempts (section 5.6). 

We have as yet no theory of the strong interactions, even at the level of weak-interaction theory. 
In this circumstance the present duality idea, although it is still underdeveloped and incomplete as a 
theoretical framework, provides us with a guide to future theories and at the same time gives us a 
grasp on the systematics of the enormous accumulation of experimental data. 

2. Finite-energy sum rules (FESR) 

2. I. Motiwtion jbr FESR 

The idea of Regge pole was introduced to particle physics to systematize the description of high 
energy scattering as well as of hadron spectra in terms of Regge trajectories [ 113, 114, 115, 74, 203, 

2331. 
The Regge pole hypothesis predicts that differential cross-sections have forward (backward) peaks 

at high energy if the t- (L[-) channel of the reaction can communicate with observed resonances. A 

number of two-body scattering phenomena have been explained successfully in terms of several 
Regge poles [ 334, 407; see 40 and 299 for reviews]. 

Conventional Regge fits, however, were far from reliable, even if they explained the high energy 
do/dt data. There were some ambiguities in the Regge-residue function due to the following facts: 
(i) The sign of the residue function cannot often be determined. 
(ii) Two independent amplitudes are involved due to the baryon spin and each amplitude has often 
more than one Regge-pole contribution. In order that the Regge fit obtains a full credit, additional 
restrictions on the amplitude were needed to resolve the ambiguities. 

One of the powerful constraints on high-energy analyses is a sum rule which restricts Regge 
parameters in terms of low energy data by the use of fixed-momentum transfer dispersion relations 
and Regge asymptotic behaviours [275]. A motivation to obtain the sum rule was to check if there 
exists additional J-plane singularities with the vacuum quantum number except for the Pomeranchuk 
Regge pole, P. Under the assumption that there are no singularities with a real part between 1 and 0 
in the J plane except for the P, we were led to the following sum rule for crossing-even amplitude of 
nN scattering, 

(1 + ~lM)a(+) = -f 1 __ (:lzrll)z + $ f dk’ [ &;(k’) - a$@)] 
i, 

namely, 

(2.1) 
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Here a (+) is the s-wave scattering length of  the crossing-even amplitude and o~ is a hypothetical  
secondary Regge trajectory (o~ < 0) with residue/3. This is the sum rule which correlates high-energy 
parameters with low-energy quantities, a kind of  the so-called finite-energy sum rule (FESR).  The 
consistency test of  eq. (2.1) led us to the prediction of  the second Pomeranchuk pole, P' with 
o~F,(0) ~ 0.5. (Later the f meson was found on the P' trajectory.) Therefore, it was recognized that 
the FESR gives a powerful constraint on the Regge parameters in terms of  low energy data. 

We do not mention details of  the Regge pole theory in the present report. We refer the reader to 
the other review articles [e.g., 67, 131, 130 ,241] .  

2. 2. S t a n d a r d  f o r m u l a  f o r  F E S R  

The FESR can now be derived in the following way [280 ,335 ,  163, 164]. Let us consider two- 
body scattering amplitude as a function of  u = (s - u ) / 4 M  and t. 

S u p e r c o n v e r g e n t  re la t ions  
De Alfaro, Fubini, Rossetti  and Furlan [ 148] observed that if an amplitude F(u,t) satisfies a 

dispersion relation 

1 ~ du' im F(u' , t)  (2.2) 
F(u,t)  n _ u ' -  u 

and moreover, if F(v,t) falls of f  faster than 1/u as u ~ 0% then it must be true that 

f du Im F(u,t) = 0.  ( 2 . 3 )  

This is called the superconvergent relation (SCR). If F(u,t) is crossing odd in u, eq. (2.3) reduces to 

f du Im F(u, t )  = 0. (2.4) 
o 

F E S R  
As an illustration to derive FESR, let us consider a crossing-odd amplitude f (u , t ) .  Suppose that 

f(u,t) is not  superconvergent by itself, but  we know its asymptotic  form which is given by a sum of 
Regge poles, 

f ( u , t )  ~- ~ ~.(t) 1 - exp (-irro~i(t)} u~g 0 (2.5) 
i sin rrc~i(t) 

for u > N (N is sufficiently large). We can always define a superconvergent amplitude by subtracting 
the Regge poles as, F(v , t )  =- f (u , t )  - F. i (Regge poles with ot i ~> - 1 ) t .  Then we have 

0 0 a i > - 1  

] I f  t h e r e  is a po le  a t  ot i = - 1 ,  o n e  can  de f ine  t h e m  b y  t a k i n g  the  l imit  ai--, - 1  a f t e r  i n t e g r a t i o n .  
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N 

= of du[  Im flu, t)-~,~>1. - 13i(t)u~i(t)] + N ~ du ~i <~'-1 t3i(t)u~i(t)" 

Notice that all integrals are now convergent. After  the integration we obtain the FESR: 

(2.6) 

N N~i ( t )  +1 

f du Im flu,t) = ~ ~i(t) ozi(t) 4- 1" (2.7) 
0 all i 

(Note that all Regge terms enter in the same form, regardless of  whether u happens to be above or 
below -1  .) Similarly we can derive higher moment  FESR as, 

N JN "'xr°~i(t)+n+l 

f du v n Im flu, t) = ~ Hi(t) ~i(t) + n + 1 (2.8) 
o i 

for even positive integer n, since unf(u,t) is also crossing odd. 
When the amplitude flu,t) is crossing even, eq. (2.8) also holds for odd positive integer n. One 

should work with the even- and the odd-moment  sum rules according to whether the amplitude is 
crossing odd or even. 

We can also derive negative-integer-moment FESR. However, the only significant FESR is a one 
for f(+)(u)/u corresponding to n = -1 .  All other cases reduce to conventional dispersion relations with 
subtractions. Given the crossing-even amplitude f(+) for rrN scattering, let us define F (+) by F(+)(v) 
-f(+)(u)  - Zi (Regge poles with the vacuum quantum number  with ai />0,  say, P and P'). Then 
F(+)(u)/v is crossing odd and superconvergent, and we obtain 

0 = F(+)(0) gr 2 1 2 ( dv Im F(+)(u) (2.9) 
47rM 7r ~, u 

This relation is the sum rule [275] mentioned in section 2.1, which was used for deducing the P' 
pole. 

There is another derivation [464] of  the FESR which starts from the Froissart-Gribov repre- 
sentation of  the t-channel partial waves, 

( - 1 )  _ . .  Fz( t ) -  1 + ( - 1 )  l + . .  1 - t 
al(t) + ~ a l (t), (2.10) 

a~(t) = -~ dztA+-(zt,t)Qt(zt) (2.1 1) 
Zo 

with A -+ = ImsF+ ImuF. Here we have assumed F(s,t) < O(1/sN). Then a~(t) has fixed poles at 
l = - 1 , - 2  . . . .  arising from Q1(z) "~ lr cot rrlP_t_l(z) in eq. (2.11), unless the residues vanish. Such 
poles must not be present in a~(t) at right-signature points, since otherwise they would conflict with 
the unitarity condition analytically continued in the angular-momentum plane. By equating to zero 
the corresponding residues, we get the SCR 

vnA+-(p,t) d~ = 0 (2.12) 
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for n = 0,1,2 . . . . .  (N - 1), where the sign takes (+) for n odd and ( - )  for n even. This leads to the 
FESR eq. (2.8), following the previous procedure. 

On the other hand, at the wrong-signature points a[ could have fixed poles, so that the right- 
hand side of  eq. (2.12) could include residues of  wrong-signature fixed poles. When this wrong- 
signature fixed poles could be neglected,t eq. (2.12) holds for arbitrary positive integers. Then we 
have eq. (2.8) for any arbitrary positive integer [464].  

FESR with continuous moment 
The FESR can be generalized in the following way [333 ,393 ] .  Let us define F(v,t) 

- f ( v , t )  (v g - u2) ~/2 where 3  ̀is a continuous real parameter (here Uo is a threshold value of  u). Then 
F(u,t) is crossing odd in u iff(v,t)  is. The factor (vg v2) ~/2 is even in v, and is real and positive for 
-Vo < v < v0, and has the phase exp (-i7r7/2) just above the cut for lul > u0. Using the same 
technique as before, we obtain a continuous family of  sum rules, dropping terms of O(vo/N) 2, 

N 

[ cos ~-rr7 I m f ( v , t ) - s i n  -27r7 f(v,t) ] f dv  (v 2 - v o) Re 
o 

N a i ( t ) + 7 + l [ T r  7r ] (2.13) 
= Y. t3i(t) cos  + 7 ) / c o s - f  . 

i 

This is often called the cont inuous-moment  sum rule (CMSR). 
When 3' is equal to an odd integer, the integral on the left-hand side involves the real part of  

amplitude f(u,t) and the right-hand side includes Ref(N,t),  while when 3' is an even integer we 
recover the integer-moment FESR. The use of  FESR with continuous moment  makes a full use of 
informations of  low-energy data in principle. 

If we replace ( r E -  u2) v/2 by an appropriate analytic function, we can obtain a FESR which 
emphasizes such specific energy regions that have reliable informations of  low-energy data. This is 
called an optimized FESR [1801. 

2. 3. Application of  FESR 

The FESR relates the low-energy data to the high-energy parameters expressed in terms of  Regge 
poles. Thus the FESR gives fruitful constraints on Regge parameters. 

A straightforward application of  FESR is made at t -- 0. One can use the total cross-section Otot to 
estimate the integrand on the left-hand side and choose the value N sufficiently large such as e.g., 
PN = 5 GeV/c at which energy Otot already shows the Regge behaviour (PN is a laboratory momentum 
corresponding to the value N).  The FESR can be used as a quantitative restriction to determine 
precise Regge parameters [280, 335 ]. 

More fruitful results are obtained when FESR is applied to t < 0, [ 163, 164; for a review, see 299 ]. 
A big advantage of  FESR is that it relates directly to a particular amplitude itself (helicity-flip or 
-nonflip) rather than to a quadratic function of  amplitudes, as in the case of  scattering data.* There- 
fore, the FESR gives a powerful constraint to the Regge-pole analysis. In order to estimate Im f on 

tThe  dip at the  wrong-signature point  of  tire 0 trajectory (t -~ - 0 . 6  (GeV/c) 2) in nN charge-exchange scattering is regarded as an 
evidence for the  absence of  the wrong-signature fixed pole. 

:~Using only the differential cross-section and polarization data, we cannot  determine the ampli tude even if we assume the Regge 
phase [ 144 ]. 
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the left-hand side of  FESR, one must rely either on the resonance-dominance approximation or on 
phase-shift solutions. We cannot take the cut-off  N at sufficiently large value in this case. The 
resonance-dominance approximation is valid only when the value PN does not  exceed 2 GeV/c. In 
the case of  phase-shift solutions, the value P:v is also limited to at most 2 GeV/c. Although the 
FESR, evaluated using such a low cut-off  value, is less reliable, it gives qualitative or even semi- 
quantitative restriction on high-energy amplitudes. It is an important question where the Regge 
behaviour begins. The exotic reaction such as K+p seems to be Regge behaved down to PI~-~ 1 GeV/c. 
The amplitudes such as B(-)(zrN) or A'(+)(TrN), where all prominent resonances enter with the same 
sign adding up constructively, show fairly regular behaviours already for PL = 1 ~ 1.5 GeV/c 
particularly as the t-dependence is concerned. 

In such a case, one can safely take low values for PN t On the contrary, for amplitudes like 
A'(-)(zrN) or B(+)(rrN), where resonances contribute with alternating signs and tend to cancel, we have 
to take a high cut-off  value because of  large fluctuation. Otherwise, the results could include large 
errors.~ One must pay much attention in the estimation of  errors due to the cut-off  value N (or PN) 
in the FESR analysis. 

Let us consider the application to zrN charge-exchange scattering. Using the low-energy data 
(phase shifts) on the left-hand side of  FESR, one obtains the Regge parameters which can reproduce 
the qualitative feature of  high-energy amplitude. Furthermore,  one can determine the sign of  Regge 
residue as well as the t-dependence of  the residue function which were not  uniquely determined 
from the high-energy data alone (fig. 3) [ 163 ]. The main results are: 
(i) [vB(-)/A'(-)]t=o ~ +10.  This explains the dip at t = 0 in the forward peak of  7rN charge-exchange 
scattering. High-energy analysis gives us 

[vB(-)/A'(-)]t=o 

- 9.5 (Arbab and Chiu [15]: p-Regge pole) 
-~ 10.8 (H6hler, Baacke and Eisenbeiss [262]:  p-Regge pole) 
~- + l  1.5 (Halzen and Michael [239]:  amplitude analysis) 
--- +14 (Cozzika et al. [134]:  amplitude analysis). 

(ii) Im A '(-) has a zero* at t - - 0 . 2  (GeV/c) 2. This is the so-called cross-over zero which has been 
expected from the cross-over phenomenon in zr-p and zr+p elastic scattering. 

(iii) Im B (-) has a nonsense zero* at t -~ - 0 . 5  (GeV/c) 2. This zero together with the proper ty  (i) ex- 
plains the famous dip at t -~ - 0 . 5  (GeV/c):  observed in the angular distribution of  zrN charge- 
exchange. Im B (-) ~ - I r a  A(-)/v has also zeros at t -~ - 1 . 5  and - 2 . 5  (GeV/c): ,  [178] .§ This supports 
the residue function to be of  the form, ~ "~ a (a  + l) (a + 2 ) . . .  "~l /F(a) .¶  

One can also determine a t-channel trajectory,  using the FESR with two different moments  as 

am N n pn Im f(v,t)  d vm Im f(v,t)  dv o~(t) + n + 1 " (2.14) 
o 

t i n  a kind of  resonance model such as the Veneziano (B4) model, the left-hand-side integral with low cut-off value (including only 
one or two resonances) predicts a high-energy amplitude in a good approximation (see section 3.8). Nature appears to satisfy this 
property. 

~In an extreme case of the B4 model, the integral with low cut-off would give an appreciable contribution on the left-hand side of 
integral even when the imaginary part of high-energy amplitude is to vanish on the right-hand side (see section 3.8). 

* This zero has been verified by the amplitude analysis a tPL = 6 GeV/c [239, 134]. 
§ A structure at the second wrong-signature point (t ~- -2 .5  (GeV/c) 2) seems to be seen in the r r -p~  n°n angular distributions [85, 86]. 
¶ Dips at t ~- - 1.5 (GeV/c) 2 (~ = - 1) and t -~ - 3.5 (GeV/c) 2 (c~ = - 3) in the ir-p -* r~n angular distributions also support this type of 

residue function [252, 315]. 
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Fig. 3. Regge-residue functions of  the P exchange from the FESR under the one-pole assumption (a O = 0.57 + 0.96t) compared 
with those from high-energy fits (from Dolen, Horn and Schmid [ 163]). 

The FESR with a continuous moment  turns out the most effective method for this purpose. We list 
the p trajectory obtained by various methods in table 1. 

An important  result, in the analysis of  crossing-even amplitude (where the P and the f are 
exchanged), is v B  (+) ~- A'(+)t [53]. This implies that that the P and f exchanges are decoupled from 
A (+) amplitude, as was originally suggested by the dispersion-relation analysis [266]. Actually, the 
analysis of  the A (+) amplitude in terms of  CMSR indicates O~efr(0) ~ -0 .5 ,  [389,481 ], which implies 
the s-channel helicity conservation of the pomeron and f [226, 251,418,  215, 43]. We also list the 
P and the f trajectories obtained by various methods in table 2. 

Thus, the FESR is used as a fruitful constraint on Regge parameters for high-energy Regge-pole 
analysis. The analysis of  rrN scattering amplitude by Barger and Phillips [54] is a good example 
which employs the FESR most extensively. Their results have been verified by the later amplitude 
analysis, and have a great advantage as a model amplitude of  rrN scattering [239, 44]. The Barger-  
Phillips solution showed a predictive power also from fairly low energy region [e.g., 90, 258] to the 
Se rpukhov-FNAL energy regions. 

Applications of  FESR to KN and KN scattering so far have not been so fruitful like the rrN case. 
The reason is mainly due to the difficulties in estimating low-energy parameters below threshold 
such as Y~'(1385), Y~(1405) as well as the Born terms, and also due to the lack of reliable phase- 
shift data for K+N (I = 0). Moreover, systematic uncertainties appearing, when one constructs the 

tAmpl i tude  analysis a t p  L = 6 GeV/c gives us vB(+)/A '(+) ~- 0.8 (Halzen and Michael [239]) ~0.9 (Cozzika et al. [134]). 
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Table 1 

The o trajectory 

a(O) c~' (GeV/c) -2 

H~Shler et al. [263] 0.575 ± 0.01 0.91 ± 0.06 
H6hler et  al. [ 262] 0.57 0.96 
Arbab, Chiu [15] 0.56 +- 0.03 0.81 +- 0.08 
Barge, r et al. [51] 0.54 _+ 0.01 
Barger [33] 0.53 0.83 

Dolen et al. [164] 
Olsson [393] 
Della Selva et al. [150] 
Ferro Fontfin et al. [191] 

0.4 +-0.2 
0.57 +- 0.01 
0.550 +- 0.015 
0.58 

C h e w - F r a u t s c h i  plot 0.500 
C h e w - F r a u t s c h i  plot  0.468 
Lovelace [337] 0.483 

Barger, Phillips [54] 0.55 

Lyberg [342] 0.6 

0.9 

0.96 

0.895 
0.897 
0.885 

1.0 

1.0 

high energy analysis 
high energy analysis 
high energy analysis 
high energy analysis 
high energy analysis 
(up to PL "~ 100GeV/c) 

FESR 
CMSR 
CMSR 
CMSR 

o, f andg 
O a n d g  
a ( m ~ )  = 1 and ~(m~r) = I /2  

CMSR + high energy 
fit (0 + O' fit) 
CMSR + high energy 
fit (0 + P' fit) 
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Table 2 

The pomeron  (P) and the f trajectories 

otp cef 

von Dardel et al. [501 ] 1. 0.7 total cross section 
Foley et al. [197] 1. 0;31 +_ 0.1 total cross section 
Barger et al. [51 ] 1. 0.51 +- 0.03 total cross section 

Olsson [394] 1. 0.49 +- 0.02 CMSR 
Della Selva et al. [151] 1. 0.60 CMSR 
Ferro Font~.n et al. [190] 1.00 ± 0.02 0.62 ± 0.05 CMSR 

Restignoli et al. [419] 1. 0.66 +- 0.03 FESR + total cross section 
+ 0.11 

Miyamura,  Takagi [372, 373] 1. 0.61 _ 0.15 FESR + total cross section 

Barger, Phillips [54] 1. + 0.36t  0.56 + 0.86t  CMSR + high energy 
fit (5-pole fit) 

Lyberg [342] 0.98 + 0.4t 0.54 + 0.90t  CMSR + high energy 
fit (5-pole fit) 

amplitude from K+p (and K+N, I = 0) phase-shift data, make the obtained results unreliable. This is 
caused by the ambiguity among various phase-shift solutions, which give the same d o / d t  ~ if++]2 
+ if+_[2 and P" d o / d t  ~ [f++ × f+_],  but give the quite different f++'f+_ ~ /~" d a / d t  (here f+± 
= (Re f+±, Im f+±), see eq. (A. 10)). (On the contrary a gross feature of  the amplitude in non-exotic 
channel is well determined by dominating parent resonances and is not so much affected by un- 
reliable daughter resonances. It should be noted that the first application o f  FESR to 7rN charge 
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exchange gave correct results, though it was based on the phase-shift solutions at the preliminary 
stage.) 

Table 3 contains a list of  most of  the FESR analyses which have been made. 
The FESR for t > 0 provides another interesting example [ 163, 164, 445 ]. Let us observe how 

the t-channel pole is built in the FESR. Though the discontinuity of  the Regge-pole amplitude in 
2 like, the direct channel, ImsfRegge(S,t), is regular at t = rnres 

{3(t)P~(t)(-zt ) i m s / 3 ( t ) ( u )  ~(t) 
l m s f R e g g e ( S , t )  ~ Ims m2es - t sin rro~(t) fl(t)u~(t)' 

the t-channel pole off(s, t)  is built through the divergence of  the fixed-t dispersion integral in the 
s-channel. In the FESR, once a discontinuity function, Im~f(s,t), is known for u ~< N, the t-channel 

Table 3 

Summary of FESR analyses 

7rTr scattering 
Schmid [445] 
Schmid, Yellin [458] 
Kaiser [307] 
Ukawa et al. [489] 
Pennington [519] 

~rN scattering 
Igi [275, 276] 
Restignoli et al. [419] 
Scanio [442] 
Logunov et al. [335] 
Igi, Matsuda [280] 
lgi, Matsuda [281 ] 
Dolen et al. [163, 164] 
Gatto [219] 
Liu, Okubo [333] 
Della Selva et al. [150] 
Della Selva et al. [151] 
Olsson [393] 
Olsson [394] 
Ferro Font~al et al. [191] 
Gilman, Harari, Zarmi [224] 
Miyamura, Takagi [372] 
Miyamura, Takagi [373] 
Barger, Phillips [53, 54] 
Ferrari, Violini [188] 
Phillips, Ringland [409] 
Elvekjaer, Pietarinen [ 180] 
Worden [508] 
Lyberg [342] 
Gabarro, Pajares [ 218] 
Elvekjaer et al. [178] 

KN scattering 
Matsuda, Igi [360] 
Dass, Michael [ 143] 
Di Vecchia et al. [161 ] 
Ferro Font~n et al. [190] 
Elvekjaer, Martin [179] 
Lyberg [343] 

KN ~ 7rA(~), lrN ~ KA(~) 
Field, Jackson [ 194 ] 
Hirshfeld [260] 
Devenish et al. [157] 
Vanryckeghem [490] 

7rN --, ~rA 
Froggatt, Parsons [208] 

baryon exchange 
Chiu, der Sarkissian [122] 
Barger et al. [49] 
Liu, McGee [332] 
Kayser [310] 
Peterson, Sollin [404] 

photoproduction 
Chu, Roy [ 126 ] 
Vasavada, Raman [491] 
Di Vecchia et al. [162] 
Jackson, Quigg [301 ] 
Worden [507] 
Barker et al. [57] 

dec troproduc tion 
Creutz etal. [136] 
Damashek, Gilman [ 138 ] 
Dominguez et aL [ 165] 
Matsumoto et al. [361[ 
Biyajima [73] 
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Fig. 4. Determinat ion of  the meson  trajectory, c~ = ap = aA2 = c~co =cff, from the Y* resonances (1/2 ÷, 3 / 2 ,  5/2*) through the 
FESR (see eq. (2.14)), (from Schmid [449] ). 

pole is produced through the assumption that the asymptot ic  behaviours are controlled by the 
2 of  t-channel pole by the s-channel Regge pole. Equation (2.14) is essentially a formula to obtain rnres 
2 discontinuity. The residue function, when extrapolated to t = rares, is directly connected to the 

coupling strength of  t-channel pole to the external particles. Fig. 4 is an example of  the output  
t-channel meson trajectory (assuming % = o~a2 = c~f = ~o)using the Y~ resonances as the s-channel 
inputs [449 ]. If  one considers the reaction where the s- and t-channels are identical and employs the 
resonance approximation to evaluate the s-channel discontinuity for v ~< N, one obtains linear 
boots t rap equations which are called, the FESR boots t rap [347, 236, 4 4 5 , 3 5 9 ] .  This FESR 
bootstrap gave us an important  key to find the Veneziano model [2 ,492 ] .  

3. Duality and exchange degeneracy 

3.1. F E S R  d u a l i t y  

As was explained in the preceding section, the assumption of  analyticity as well as Regge 
asymptotic  behaviours for two-body scattering amplitudes immediately leads to the FESR. If we 
further assume that the low-energy amplitude is dominated by s-channel resonances, we are led to 
the concept  of  duality. 

As a simple illustration of  duality, let us consider the FESR with n = 0 for the crossing-odd 
amplitude o f  rrN scattering at t = 0. Equation (2.8) can be re-written as, 

N 

f dv Im [f(v,O) - L . R e g g e ( V , O ) ]  = O.  
0 

(3.1) 

Here 

1 2 Im f(v,O) = ~ (v - ~2)'/2(O~-p(V) - %+p(V)} 
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and 

Im L _ R e g g e ( P , 0 )  = fJo(O)PaO (0). 

Fig. 5 shows that the p-Regge-pole amplitude extended all the way down to elastic threshold, far 
below the energy where we think of  asymptotic behaviours as setting in, provides a good average 
description of  the imaginary part of  low-energy scattering amplitude. On the other hand, the 
imaginary part of  low-energy amplitude is known to be well approximatedt by a sum of  direct- 
channel resonances in such a combination of  scattering amplitudes without pomeron. The success 
of the FESR as is illustrated in fig. 5 implies that the imaginary part of  s-channel resonances are, in 
an average sense, equivalent to that of  t-channel Regge-pole exchanges, i.e., 

(ReS.)Ave. = Regge pole. (3.2) 

This is the so-called duality [ 111 ] between direct-channel and crossed-channel descriptions, in the 
weakest form. It is often called the global duality or FESR duality. This hypothesis has been 
explicitly stated by Dolen, Horn and Schmid [ 163, 164] through detailed studies of the t-dependence 
of the p-Regge residues and of  the properties of the dominant  s-channel resonances in 7rN charge- 
exchange scattering in terms of  the FESR. 

3.2. The two-component hypothesis 

When the scattering amplitude includes the contribution from pomeron exchange (diffraction), 
the imaginary part of  low-energy amplitude cannot be approximated by a sum of  resonances alone 
but includes a large non-resonating background. Freund [2041 and Harari [2441 made a conjecture 
that the ordinary Regge trajectories are built by the direct-channel resonances alone in the sense of  
FESR, while the pomeron is associated with the non-resonating background,* i.e., 

50 

40  

30  

2O 

c9 I0 

- I 0  

- 2 0  

-3 0 

- 4 0  

I I I , I  I I 

/~ Zmf(v ,O)  

I ! I I I [ 
I 2 3 4 5 6 

v(GeV) 

Fig. 5. The integrands for the FESR, eq. (3.1), for the crossing-odd ampli tude in ~rN scattering at t = 0 (from Igi and Matsuda 

[2801 ). 

"LThe resonance-dominance assumpt ion  cannot  be justified for the real part of  scattering ampli tude since the real part at a given 
energy may show substantial  contr ibut ions  f rom distant  resonances which has long-range tails as ~ 1Is. However, the resonances do 
dominate the imaginary part in a local way. 

*This hypothes is  explicitly claims that  the  imaginary part of  the inelastic ampli tude is given by a sum of resonances alone and does 

not  include the non-resonat ing background. 
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(ReS.)Ave = ordinary Regge pole 
" ( 3 . 3 )  

(Non-resonating background)Ave. = pomeron.  

This enables us to construct  the P and the f exchange amplitudes separately through the FESRt  
[224]. This hypothesis has been supported by the analysis of  rrN scattering [250] and KN 
scattering (see fig. 6) [217 ,325] .  

The idea of  duality runs counter  to the assumption of  the interference model [34] which assumes 
that the amplitud e is given by the sum of s-channel resonance contribution and t- or u-channel 
Regge-pole contribution, i.e., 

f = fRes.  + fRegge • (3.4) 

Here, it is assumed that fRegge include the pomeron term as well as ordinary Regge term. Then the 
use of  FESR 

N 

f 
o 

dv Im [ f -  f i legge]  = 0 

together with eq. (3.4) should give 

(3.5) 

N 

f d .  Im fRes. = 0. (3.6) 
0 

For forward elastic scattering, eq. (3.6) essentially m e a n s  ~-,ig~ = 0 ,  which cannot be satisfied unless 
each resonance coupling gi vanishes. This is a contradiction of the interference model. 

3. 3. Schrnid circle 

In the previous section, we have seen that the direct-channel resonances build the ordinary Regge 
trajectories through FESR. Let us consider here the behaviour of  partial waves of  the Regge-pole 
amplitude [446 [. 

4.0 

2.0 

0 

1.0 

I (b)qlm{ .G. • (o)  qlm~!.+G ' _ _ i t = O  _ 

:. , . o  - , . 2  - 

"-~----------~": ~ , 2  . . . .  - - - 4  

I I [ [ 
0 -0.5 -I.0 0 -0.5 -I.0 

t (G eV/c) 2 ! (GeV/c) 2 

Fig. 6. Imaginary parts o f  the background part of  I~N scattering amplitude at PL = 1.0 and 1.2GeV/c. A diffractionqike 
t-dependence can be seen in the I t = 0 amplitudes, especially in Im f.+, whereas the I t = l amplitudes are quite small (from 
Fukugita, Inami and Kimura [ 217 ] ). 

~-Thus it is found that (i) #f has a zero at t ~ - 0 . 2 5  (GeV/c) 2 for tile A '(÷) amplitude and (ii) ~ f - a ( t )  for the B (÷) amplitude, 
resembling to the o-Regge residues [224; see also 217]. 
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We take the typical  residue funct ion/3 to be of  a form X/l"(o0 (X is a constant) .  Then,  we have 

_ X ¥1-e-i~(~o)~__ =--X['(l c ~ ) ( T - l - e - i ~ ) ( ~ }  ~. (3.7) 
fRegge(S't) l~(~) sln 7ro~ 7r 

The fac tor  I /P(~)  kills the poles which could otherwise appear at right-signature points  (ghost-killing 
factor) and produces zeros in Jitegge at wrong-signature points. The lat ter  zeros are observed as dips 
in do~dr as was seen in section 2.3. Here let us make a partial-wave analysis offRegge(S,t) in the direct 
channel as, 

1 

1 )'~(s) = 5 f dz P/(Z)JRegge(S,f ). (3.8) 
--1 

In order to see qualitative behaviours o f  Ji(s), we approximate  fRegge(S,t) a s  ~ ( 1  - -  e-i'°~)(S/So) °~, 
since F(1 - o0 is a smooth  funct ion in the above integrand.  The partial-wave project ion of  the 
second term is then 

(e - i ~  s)%-2~'q2eiTr'/2j,[_2q2c~'(lnS--irf)] (3.9) 
g SO " 

In the region for s >> l, eq. (3.9) involves a factor  ~ e x p  [iTr(c~'s -- % + / ) ] ,  rotat ing counterclockwise 
as s increases. This implies that  J'i describes circles on the Argand diagram. Such circles are identif ied 

1 r 
with direct-channel resonances [446].  If we define the resonance mass by 61 ~ 5(o~s % + l) 
= n + rr/2, we have resonances every As' = 2/og for each l, [436, 171 ]. 

We make a partial-wave analysis o f  the p-Regge ampl i tude  for 7rN charge-exchange scattering with 
helicity-flip, B(-)(s,t), of  the form of  eq. (3.7) which fits the exper iments .  Then its partial wave 
draws a circle as in fig. 7a, and the predicted leading resonances lie approximate ly  linearly on the 
C h e w - F r a u t s c h i  plot (fig. 7b), though  they  are slightly deviated f rom the observed N* trajectories 
[446; see also 467] .  

Whether  these circles really correspond to resonance circles is in suspect,  since eqs. (3.7) and (3.8) 
are regular at s = rn~2s - i(mP)res and do not  conta in  s-channel poles. The Veneziano model  gives us 
a guide to clarify this si tuation.  The Veneziano ampl i tude itself contains poles at o4s) = n, but  its 
asympto t ic  form (Regge-pole expression) does not  conta in  s-channel poles. We note  here that  the 
asymptot ic  form is a good approximat ion  only outside a wedge I arg(s)l > e, and it breaks down if 
we penetrate  into the wedge. ( l t  is known empirically that  the Schmid circle of  this asympto t ic  
expression gives the resonance at mass near the original pole posit ion.)  

We expect  similar s i tuat ion for JRcgg~: The Regge asympto t ic  form )'R~gge is a good approx imat ion  
to the full ampli tude f for real s. Both ampli tudes  contain the resonance circles. But if we go below 
the physical axis, especially for Im s ~ - (rn[')~e~, the approximat ion  breaks down.  

2 i(mP)~s),  we have to know In order  to discuss second-sheet poles ( the poles of  ft(s) at s = rGe s - 
the behaviour off(s,t) for t -+ oo, since the pole o f  ft(s) (s = rn~s2 i(mP)~es, l = integer) arises from 
the divergence o f  the integral 

f/(s) =1:7/" t" 2q 2 d - f - t Q t ( l + ~ q  2)Imtf(s't)" 

Thus the Regge expression for f ,  which is valid only  for s ~ ~ with t fixed, becomes useless when we 
deal with the resonance pole itself, but  it may  give useful approximat ion  to s tudy  the behaviour  of f  
the pole [448].  
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Fig. 7. (a) A typical partial wave of  the Regge-pole amplitude 

B(_)= 3 1--ed~a ( v ~ a-I 

with c~ = 0.57 + 1.08t, ~ = const. = 60.3rob and p 0 = 0.7GeV, which fits the forward peak of n-p charge exchange. The numbers 
along the circle are the values of PL. (b) ghew-Frautschi plot of leading N* resonances from the partial-wave analysis of the 
p Regge exchange (B), compared with that of observed ones (A) (after Schmid [446]). 

3.4. Exchange degeneracy (I) 

As is well known in potential  scattering, there are two kinds of  forces, i.e., the ordinary and the 
Majorana forces. Since the latter changes the sign according as l is even or odd, the presence of  the 
two kinds of  the forces gives two distinct families of  bound states or resonances. This was the 
origin of  signature in the Regge pole model. The absence of  the Majorana force implies that states 
with even and odd l values belong to the same family. 

In particle physics the mechanism is essentially the same. Consider two-particle scattering with 
exotic s channelt (e.g., K+p -+ K+p). In exotic channels no resonance is observed. According to the 
two-component  hypothesis o f  duality, the imaginary part of  the non-diffractive amplitude (we 
denote it merely as f(u,t)) should vanish: 

Im f(u,t) ~-- ~even( t)P aeven(t) - -  ~ o d d (  t ) P  °t°dd(t)  "~ O. (3.1 0) 

Therefore we obtain 

a e v e n ( t  ) = O~odd(t ) = o~(t) 

¢ even(t) = ¢ oaa(t) = (3 .1  l )  

?By "exot ic"  we mean the following. All resonances so far known can be considered to be composed of  qq for mesons and qqq for 
baryons. This corresponds to SU (3) multiplets 1 and 8 for mesons and 1, 8 and ]._00 for baryons. All other sets of  quantum numbers 
are called "exotic" .  There is also another kind of  exoticity in connection with charge conjugation. Particles with abnormal C-parity 
states that cannot come from q~ model (e.g., j P C  = 0 - - ;  0÷% 1 -+, 2*% ... ) are called "exotics of the second kind".  
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This is the exchange degeneracy (EXD), t which was first proposed by Arnold [ 17]. In this case, 
therefore, the amplitude f ( u , t )  at high energy becomes real as, 

f ( p , t )  ~ - f i(t)  1 uS(t). (3.12) 
sinrrc~(t) 

The absence of  e -~'~s(t) is evident if one remembers that the first term of the signature factor 
1 - e -ins(t) comes from the left-hand cut and the second from the right-hand cut. In the line- 
reversed reaction (e.g., K-p ~ K-p), the amplitude takes the form (rotating phase) 

e - i n s ( t )  
f ( - v , t )  ~ - {3( t) uS(t) .  (3.13) 

sinTro~(t) 
Thus, the differential cross section of  line-reversed reaction should be equal to that of  the original 
o n e .  

It is important  to notice that the exchange degeneracy gives a further restriction to the form of  
residue function. The positive- and negative-signature-residue functions should vanish at their 
right-signature points, i.e., o~(t) = 0, --2, - 4 ,  ... and o~(t) = - 1 ,  - 3 ,  - 5 ,  ... respectively, to avoid 
poles in the scattering region. The exchange degeneracy tells us 13even(t) = flodd(t), SO that both  
residue functions should vanish at also wrong-signature points, without  any further assumption of  
particular mechanism such as wrong-signature-nonsense zeros. Thus, the residue function/3(t) must 
vanish at o~(t) = 0, - l ,  - 2 ,  . . . ,  the simplest form being/3(t) ~ 1/F(~(t)). 

E x a m p l e s  o f  the e x c h a n g e  degeneracy  
(1) m e s o n - m e s o n  scattering. Consider 7r+Tr + scattering. The s-channel is exotic and hence has no 

resonances. Since we have the Regge poles p and f in the t-channel, we get 

Im f"+"+(u,t)  ~-  ~ f n + n - ( t ) t ;  s f ( t )  - f io . . . - ( t )vSo( t )  ~-- O. 

Thus it follows that 

af( t)  = ao( t ) ,  / 3 f T r + n - ( t )  = ~o.+.-( t ) .  (3.14) 

Similarly, we obtain the o - f  and K * - K * *  exchange degeneracy in K+Tr + ~  K+Tr +, and the p - A 2 ,  
e o - f  and ~ - f '  exchange degeneracy in K+K + -~ K+K+. ~ Hence we have 

t i n  order to derive the exchange degeneracy we shall have to go a little bit beyond  FESR duality. Assuming the absence of  wrong- 
signature fixed pole, we have the n th  m o m e n t  FESR 

N 
1 f N seven( t )  

Nn+l dv unlm feven(u,t) = 13even(t) Seven(t) + n + 1 
o 
N 

1 f N °~add(t) 
Nn+l du unlm f°dd(v,t) = ~odd(t)  Sodd(t)  + n + 1 

o 
for both  even and odd positive integers n. (One of  the above FESR is the Schwarz sum rule.) Thus,  for an ampli tude f ~  feven(v,t) - 
f°dd(v,t), we obtain 

N N a o d d ( t )  1 ~" N %yen(t)  
N n+l a dv vnIm f(v,t) = ~even(t) Seven(t) + n + 1 /3°dd(t) Sodd(t)  + n + 1 

0 

If we take an exotic ampli tude for f,  the vanishing of the left-hand side gives eq. (3.11). It should be noted  that  we have not  
invoked local form of eq. (3.10). 

~The absence of second-kind exotics leads to ano ther  kind of  exchange degeneracy. Consider  n %  scattering. The combina t ion  
f(s,t) - f(s,u) involves only the partial waves of the second-kind exotic states (jPC = 1-÷, 3-+, 5-+, ... ). The absence of  these 
exotic resonances gives the f - A  2 exchange degeneracy [466]. 
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(3.15) 

]~K+K-o -----]~K*K-A2 , ~K*K-~b = ~ K + K - f ,  (3.16) 

and so on.* Equation (3.15) implies the mass degeneracy o f o  and co and of  f and A2, which was 
first proposed by Okubo [390]. 

(2) Kaon-nuc l eon  scattering. Both K÷p and K+n channels are exotic and no prominent  resonances 
are observed. The Regge poles are f, co, 0 and A2 in the t-channel, and Y*'s and Y*'s in the 
u-channel. Thus, exchange degeneracy is required for the following pairs: o-A2,  f - w ,  Y* pair 
( A ~ - A  v) and Y* pair (~;~-~;~). 

We mention here how the exchange degeneracy is supported by experiments. The C h e w -  
Frautschi plot gives an evidence for the o - A 2  and for the f - w  exchange degeneracies in the region 
for t > 0. The fact that Otot(K+p) = Otot(K+n) = constant for wide range ofs  also supports the exchange 
degeneracies at t = 0. For t -< 0, we have the following evidences for the p - A 2  exchange degeneracy. 

(i) Forward amplitude of  K-p ~ K°n is predominantly imaginary, while that of  K+n -+ K°p is 
almost purely real [e.g., 20, 195]. 

(ii) The dip observed in the forward direction of  rr-p -~ r/n implies [vB/A'] A~ ~ 10, [408]. The 
agreement of  this value with [vB/A'] o -~ 10 for rr-p ~ 7r°n indicates that A2NN vertex and pNN 
vertex have the same helicity structure in accord with the exchange-degeneracy requirement. 
(A simultaneous analysis of  the rr-p -+ rr°n and r/n gives [vB/A'I  o ~ 11.2 and [uB/A'IA2 ~- 10.2, 
and that of  K-p  and K+n charge exchanges gives[vB/A']p ~ 11.0 and [vB/A']A2 ~- 9.8, [336]. 

(iii) The approximate equality do /d t (K-p  ~ K°n) = do/dt(K+n -+ K°p) holds for PL ~> 5GeV/c 
[128, 159; see also 20, 195,238] .  Especially at t = 0, the agreement is extremely good. This seems 
to hold true also at fairly low energy (such as PL ~ 1GeV/c) [128]. 

(iv) The trajectories determined from the s dependences of  differential cross sections (up to 
100GeV/c) for 7r-p -+ rr°n and rr-p ~ ~n indicate that the exchange degeneracy holds to an extent  
of  %(t) - otis(t) ~ 0.1, [33 ,520,  521 ]. The slightly higher p trajectory implies do/dt(K÷n ~ K°p) 
>~ d o / d t ( K - p  ~ K°n) as is actually observed in low energy regions. 

(v) Assume the pomeron amplitude to be purely imaginary and to conserve the s-channel helicity 
(i.e., Apomero n ~ 0). Since it has a structure smooth in t, the polarization of elastic scattering shows 
qualitative features of  Re Ameson,  o r  equivalently - R e  Bmeson when vB/A'  >> 1. The phases of the 
Bmeson, - e - i ~  for K-p and - 1  for K+p, lead to 

P(K+P -~ K+P) ~ x ~  × (smooth function) 

P ( K - p ~  K-p) "~x/~-t cosrra X (smooth function). 

This correctly predicts the elastic polarization of K-+p (see fig. 8), [ 12, 81 ]. This structure remains 
unchanged qualitatively down to the resonance region such as PL ~ 1GeV [5,60]. (In the non- 
exchange-degenerate cases, ~ Re B o ~ x / Z t ( 1  - cos 7rot), giving a well-known double zeros for 
Pdo/d t ( rr -p)  - Pdo/dtOr+p) at o~ = 0 [ 183, 80] .) 

On the other  hand, evidence for the f - w  exchange degeneracy is poor for t < 0. We only know 
the helicity conservation of  co together with that of  f, i.e., [vB/A']~o ~ [vB/A']r  ~ 1, [389]. 

tThese  equations are not  satisfied simultaneously, if bo th  vector and tensor mesons belong to octet;  since the vector coupling has 
to be of  pure F type while the tensor coupling should be of pure D type. Mixing with (at least) a singlet tensor is required [457].  
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Fig. 8. Polarization of  K i p  elastic scattering at 2.74 GeV/c (Andersson et al. [ 12]). The curve expected from the exchange 
degeneracy of  p and A 2 is drawn to guide the eye. 

As for baryon Regge poles, fig. 9 shows the exchange degeneracy of Y*'s and of  Y*'s for t > 0, 
[447]. It should be noted that not  only the trajectories but the couplings of  resonances exhibit 
clear exchange-degenerate pattern for leading A~-A.  r and I;8-I;~ resonances. 

The exchange degeneracy of  I;8-~2~ implies that of  the decuplet 6 and the octet/3 series, 
i.e., 1 0 8 - ~ - 1 0 8 - . . . ,  for the 2;8 belongs to 1_9_0 and the 2;~ to 8. Thus, in order to hold the 
exchange-degeneracy condition for the Iu = 0 combination of  the KN amplitude (u-channel: KN), 
the A n should decouple from KN system, since decuplet Reggeon cannot couple to the Iu = 0 
channel. This implies the ~ to have F/D = -1 /3 .  (Experimentally A~ (183 0) couples to KN only 
weakly.) As for the A~-A~ series, A s belongs to--8 and A. r to dominantly 1; we have thus the 
exchange degeneracy _8~-1~-_8~ . . . .  (We ignore 8_~ here for simplicity.) The exchange degeneracy 
condition for the I, = 1 combination of  the K.N amplitudes leads to 2;~ ~ KN, since !~ does not  
couple to I, = 1, i.e., we have [F/D]8,~ = 1. What we argued here is only qualitative, and it is 
necessary to take into account more multiplets in order to satisfy the exchange-degeneracy 
conditions imposed by the exoticity in the t-channel as well as those in the u-channel. This will be 
discussed in more detail in the next section. 
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Fig. 9. (a) The exchange-degeneracy sequence A a - A ,  Y. (b) The cont r ibut ion  of  Y* resonances to Im B at t = m~. The figure shows 
that  those resonances which do not  fit into the exchange-degeneracy pat tern give very small contr ibut ions  while those included in 
(a) have no t  only exchange-degenerate masses bu t  also exchange-degenerate couplings (from Schmid [447]).  
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On the other hand, resonances coupled only weakly to the KN system as well as low-partial-wave 
resonances do not appear to fit in the exchange-degenerate pattern so welt. The exchange-degeneracy 
condition, in general, imposes strong restrictions to peripheral-partial-wave resonances, but not too 
strong to low-partial-wave resonances. The stronger the resonance couplings are, the more severe 
the restrictions become (see [447]). 

The exchange degeneracy of  Y*'s in the scattering region makes the phase of K+p backward 
scattering amplitude to be real. In fact, the polarization of  K+p backward scattering which is 
consistent with zero [60, 399] is regarded as an evidence for the Y* exchange degeneracy in the 
region for u < 0. 

In summarizing, we have the following systematics in the presence of the exchange degeneracy. 

KN KN 

no resonance in rapid decrease of  
the s-channel ' ' the 180 ° cross section 

real phase in the Y~, Y~ exchange degeneracy 
backward region in s-channel 

real phase in the rotating (e -i~r~) phase in 
forward region the forward region 

(3) Wrong-signature sense zeros. One of  the interesting predictions of the exchange degeneracy is 
a wrong-signature-sense zero of A n (or 2;a) trajectory at o~(u) = ½ [48]. This was originally introduced 
[282] so that the extrapolation to oe = a 2 of  the Regge residue function in rr-p backward scattering 
should give the correct elastic width for A~(3/2+). 

In the reaction K-p -+ £-rr + which is exotic in the t-channel, the N~ and the An should be exchange 
degenerate. (Note that the No and the N~ are decoupled from ~;K systems if [F/D]8~, = 1.) Since the 
Nt3 is missing at oe = ½, the A n Regge residue should have a zero at cffu) = 1. This exchange degeneracy 
holds also in rr+p -+ prr + scattering through factorization of  the reactions K-p ~ ~;-rr +, K-N- -+ Z-K- 
and rr+p -+ prr +. Then the vanishing o fA  6 residue at oe = ½ leads to the zero of  the rr-p -+ prr- amplitude 
at that point. "Phenomenological arguments will be presented in section 4.7. 

3. 5. Exchange degeneracy (1I) 

Algebraic solutions of exchange degeneracy 
Most fruitful results are obtained when the exchange-degeneracy arguments are combined with 

internal symmetry.  Using the SU (3) crossing matrices Xst and Xut [154, 417], eq. (3.10) can be 
rewritten as, 

7~. [Xst] ab ~ ( t )  u~(t) = 0 (3.17a) 
b i 

for the exotic s-channel and 
b 

Y Ix ,] <'> = o 
b i 

(3.17b) 

for the exotic u-channel. Here a and b denote SU (3) quantum numbers in each channel. The non- 
trivial way for eq. (3.17) to be satisfied is to have 
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a~(t) -= ~ ( t )  for all (i,b) 
E[Xst]~aEfl~(t)=O, E[xut]~Er,flf(t)=o. 
b i b i 

(3 .18)  

(1) In 0 - - 0 -  scattering [ 1 2 3 , 3 5 2 ] ,  taking the 8 X 8 -+ 8 X 8 crossing matrix for Xst and Xut 
(eqs. (B.3) and (B.4) in Appendix B), we have eq. (3 .17)  fora  = 10, 10" and 27. (In this case the 
t-channel and u-channel constraints give the same equations.) Denoting couplings of  0 -  mesons to 
the octet vector, octet tensor and singlet tensor trajectories as ")'v~, "/T~ and ~'T, respectively (3,~--~3i)t 
(the vector singlet does not couple at all), we obtain 

no 10, 100"; 7 ~ , -  7~r~ = 0 

1 2 3 2 no 27 ; 7~r, + 77T~ - 77v~ = 0 (3 .19)  

o r  

7~8 = 3'~r, = q'T~. (3 .20)  

This implies the exchange degeneracy between octet vector and nonet tensor trajectories. 
The exchange degeneracy still holds even if there are mass breakings as in the actual world. In 

this case, we have the ideally mixed nonet,  i.e., If) = If1) cos0 + ifs) sin0 with tan0 = 1/V/-'/, so that 
q,r,÷,- = %.÷~- and q'f',*~- = 0. Similarly, ideal mixing (tan0 = 1/x/-2) is required also for the vector 
nonet (Ico) = {coa)cos0 + icob)sin0). These results are just the eqs. ( 3 . 1 4 ) - ( 3 . 1 6 )  and they imply 
co, f ~ (pp + nn)/x/-2Zand ~b, f' ~ - XX in terms of  the quarks. 

Similar arguments for 0 - - 1 -  scattering [353,  142] lead to the analogous conclusion not only for 
the vector and tensor mesons, but also for all other meson multiplets, whereas the 0-  seems to be 
much more like an octet (tan0 ~ -0 .2 ) . *  Table 4 is a summary of  the patterns o f  the meson 
exchange degeneracies. 

(2) 0 - - 1 / 2  + scattering [352,  48]:  Let us consider baryon-Regge-pole  exchanges in the s-channel. 
We then have the following set of  duality constraints for the rP = +(o~-3, series) and - ( f i - 6  series) 
Regge sequences separately, 

Table 4 

The patterns of  the exchange degeneracies for m e s o n - m e s o n  scattering 

reactions exchange-degeneracy pattern quark model  

0 - - 0 -  8 ( 1 - - ) - 9 ( 2  ÷÷ ) 
9 ( 1 - - ) - 8 ( 2  ÷+) 

0 - -1  - 8 ( 1  *÷)-9 (2 -D  
_8 (0-+)-_9 (i ÷ ) 

1 - - 1 -  9(i÷*)---8 (2--) 
9(0-*)-_8(1 +-) 

SLL+I -a (L  + 1)L+2 
SLL+I -S (L  + 1)i ,+ 2 

S(L + 1 ) L + I - ~ ( L  + 2)L+2 
" L L - ' ( L  + I )L+  1 

S(L + 1 ) L + I - 3 ( L  + 2) / ,+2 
' L L - ' ( L  + 1)L+I  

tThese  couplings are so normalized as I'VM M ~ -i~/vsfo~.~c~O/3Vs.r, PTM M ~ ~'Fsdc~/3~ax~/3Ts- ~, + 3'T 1 do43oCaOt3T,, so that they 
are related to the reduced matrix elements ('r,, 78F, "~sD) of  the Wigner-Eckart  formula for SU (3) [ 153] as, ( l /x /3)  "rsF = 3'V8, 

~ ' ~  ")'sD = "YTs'- (x/~/4) ")', = "YT," 
*One must remember here that the validity of  these equations depend upon the compatibil ity of  the two different approximations,  

Regge-pole dominance and resonance saturation. Presumably resonance saturation is not so good an approximation for the 0 - - 1 -  
case because of  the high threshold. Thus the results obtained there may not be so reliable as in the 0 - - 0 - c a s e ,  
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~ r X  ]abg'~-bt~'O = 0 f o r a  = 10, 10", 27, t ts ~.~t°z 

~,[XJab~r,(3~u @= 0 for a = 10", 27, (3.21) 

since Regge-exchange contr ibutions are separable according to rP as t or u -+ ~,. 
These equations cannot  be satisfied with fewer than three trajectories. The simplest solutions 

satisfying the positivity of  residues are, 

( i )  8 1  ' ~, l e 81 

( i i )  8 - 1 / 3  , , 8 - ~ / 3  * 1 0  

( i i i )  8 ~  , , 1 • 8o 

(iv) 8o , , 8 =  * 10 . (3.22) 

Here suffixes to the octets denote their F/D ratios and the double arrow means that multiplets in 
both sides form an exchange-degenerate pair with opposite signatures. These solutions except  for 
(iii) satisfy factorization of  MB ~ MB, MB -+ MA and MA -* MA. The solutions (i) and (ii) are the 
particular cases of  a four-trajectory solution (1 * 8) ,~ (8' * 10). In this more general solution, one 
F/D ratio (e.g., that of  8) is arbitrary and the relative couplings are determined in terms of  it 
(e.g., the F/D ratio of  another octet  8' is given as F'/D' = (D/F + 2)/3). Specific choices of  F/D 
(F/D = 1 a n d  - 1 / 3 )  decouple the decuplet  and singlet and reduce the solution to (i) and (ii), 
respectively. The other  four-trajectory solutions are (1 * 8) *-" (1' * 8") with F/D • F' /D'  = 1 and 
(8 • 10) ~ (8' * 10') with F/D • F' /D'  = 1/9, which contain the solutions (iii) and (iv) as the special 
case. Many solutions exist when more than four trajectories are included. 

Exchange degeneracy for baryons 
Some of  the solutions of  exchange degeneracy, eq. (3.22), gives us a qualitative understanding of  

the SU(3) coupling patterns of  the observed leading baryon resonances. 
The natural parity resonances (rP = +, the oe- 7 series) can be associated with the solution (i). 

A good example of  an exchange degeneracy for the oe- 7 series is 

A~(1/2 +) - Av(3/2-, 1520) - A~(5/2 +, 1815) - A.y(7/2-, 2100) - ... 

where the As are octet  and A~ dominantly singlet. Here the A.y(3/2-, 1520) accompanies the 
dominantly octet  A.y(3/2-, 1690) which couples rather weakly to K.N. (Another  Av(7/2-), belonging 
to the dominantly octet,  might have a mass too high to have been observed.) For  the Y. the 
exchange degeneracy 

E~(1/2 +) - E~(3 /2- ,  1670) - E~(5/2 +, 1 9 1 5 ) -  E,y(7/2-,  2 1 0 0 ) -  . . .  

holds within Ao~ ~ 0.25. The expected pattern 

N~(1/2 +) - Nv(3/2-, 1520) - N~(5/2 +, 1688) - Nv(7/2-, 2190) - ... 

holds only within Aoe "" 0.4. It is to be noted, however, that this exchange degeneracy is not required 
directly from the condition of  no exotics but  only through the SU (3) symmetry.  The F/D ratios in 
the solution (i), [F/D] 8~ = [F/D] 8v = 1 (which implies Z -/, KN), corresponds to our observation 
that the A~-A.~ couples more strongly to g.N than the Y.,~-Zv (e.g., g2N~ ~ g2NA, 2 g.NN [e.g., 413, 
410] ;  F [A(5 /2  +, 1815)-+ K.N]/F[Z(5/2  ÷, 1915)-+ KN] --~ 5, [397]).  
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It is of  interest to compare the F/D values with those obtained by the SU (3) fittings to the 
decay widths of octet baryons [486,328,  411,364,  166, 32,440,  317] some of which are listed in 
table 5. This table shows that the F/D ratios of the octets, 1/2 +, 3/2-, 5/2 +, . . . ,  alternate around 
one (see also fig. 10). 

The unnatural-parity resonances (~-P = - ,  the 6-/3 series) can be associated with the solution (ii). 
The exchange degeneracies 

~;6(3/2 +, 1385) - ~;~(5/2-, 1765) - Z~(7/2 +, 2030) - . . . ,  

A6(3/2 +, 1232)--N~(5/2-,  1670) -- A~ (7/2 +, 1 9 5 0 ) -  . . . ,  

hold within Acx ~ 0.1. These are the degeneracies required only by the condition of  no exotics. The 
Z6 and the A 6 belong to I_Q0, while the Z~ and the N~ to 8. At J -- 7/2 + the A~ accompanies the 
wanted 8, N6(7/2 +, 1990), and there is also a candidate for the A~, A6(7/2 +, 2020).(An octet 2;6 has 
not been found yet, however.) The exchange degeneracy requires the Regge residue of 106 to have a 
zero at a = 1/2 corresponding to the absence of  1/2- octet. The solution, (8-~/3)~ "~ (8- w e 10)6, 
correctly predicts that the Z6 and the E¢.dominate over the A n in the KN channel (F/D = - 1/3 
implies A -~Pd'q; experimentally we have F[E~(5/2-, 1765) ~ KNI/F[A~(5/2-,  1830) -+ KN] ~- 5) 
[397]. The F/D ratio of  8_(5/2-) = - 0.1 ~ - 0.2 in table 5 is near to the predicted value F/D = - 1/3. 
(Note that F/D = -- 1/3 is also the quark model value.) 

There has been, however, a trouble with the solution (ii): One had to introduce an unobserved 
3/2 + octet. -To overcome this difficulty, one should rely on a particular mechanism [350, 427] (in 
which one can eliminate the 8--(3/2 + ) without  breaking the duality; see section 5.4 for details), or 
one must break duality either (a) by neglecting the constraints imposed by exoticity in the t-channel 
[ 93 ,353 ,354 ]  or (b) by fulfilling all constraints only approximately [451 ]. (ln the case (a), we 
have solutions, 8-~/3 "-" 1_0 and 1 ~ 8~. These are the exchange degeneracy in example (2) in the 
preceding section.) We mention here that the unwanted 3/2 + octet of the exact solution couples 
only weakly; an expected contribution of  N(3/2 +) is only 1/32 of  that of A6(3/2 +) in the A(+-)(nN) 
or B(±)(rrN) amplitude. 

Table 5 

The F/D ratios for the  coupling of parent  baryon octets to 0-1/2 ~ 

1/2 ÷ 3 /2-  5/2+ 7 /2-  5/2- 

(1) Plane et al. [411] 2.33+_0.56 0 . 8 2 ± 0 . 1 0  4 . 0 ± 5 . 5  
Meyer and Plane [364] a 

(2) EbenhiSh et al. [166] b 0.58 +- 0.03 
(3) Barbaro-Galtieri [32] a 1.99 +- 0.28 0.61 ± 0,09 

(4) Samios et al. [440] a 0.43 - 0,67 t 2.57 + 4.1 1.17 + 0.30~ 4.88 ± 0.70 
- 1 . 2 5  

( 5 )  Kleinknecht  [317 ] b 0.52 -+ 0.06 

- 0 . 1 9  ± 0.04 

-0 .11  ± 0.04 

- 0 . 1 4  ± 0.01 

SU (6) w value 2/3 5/3 2/3 5/3 - 1 / 3  

aFit  to the  baryon decay widths (or partial-wave ampli tudes) .  (In these analyses (1) and (4) use the barrier factor o f  type  
p21, and (3) uses that  of  Blatt and Weisskopf [75].) 
bThe value obtained f rom hyperon  leptonic decay using the  PCAC [91 ]. 
t T h e  value f rom g~rNN, g k N A  and g ~ N ~ -  
:~This value (F/D > 1) contradicts  with the observed sign of I(N ~ E ~ hA. 
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Fig. 10. Typical values o f g  F and gD (F/D = x/5gF/3g D) for the decay of the baryon octets ( 3 / 2 . 5 / 2  ÷, 5 /2 - / i n to  0 - 1 / 2  ÷. The 
data are taken from Plane et al. [411] (from Schmid [451]). 

In this way the coupling patterns of  the parent baryon resonances can be understood by exchange- 
degeneracy arguments. The stronger the resonance couplings to the external particles are, the 
bet ter  the exchange degeneracy between the two trajectories is. On the other  hand, larger deviations 
are observed for the trajectories with weaker couplings, particularly when the exchange degeneracy 
is required only through the symmetry.  Conversely, even a large deviation from exchange 
degeneracy in such a case will not  break the duality constraints so much. The exchange-degeneracy 
patterns for baryons are summarized in table 6. 

The t-channel Reggeon couplings 
Equation (3.21) together with eq. (3.20) gives the following relation for the t-channel Reggeon 

couplings [430] ; 

7~,B~ = 7~Bg = 7~, Br3; [F/DlvBg = [F/DITBf3. (3.23) 

If there are mass breakings in the t-channel Reggeons, we have the ideal-mixing nonet,  and the 
q~(f') decouples from NN [480].  This decoupling is supported by the Regge-pole analysis at t = 0 
[52], as well as by the absence of  backward peaks in the reaction KN ~ (A, l~)q~ [e.g., 152 ,444 ,  
149]. 

The F/D ratio of  the t-channel Reggeon coupling is, however, left arbitrary since the relative 
contributions from rP = + and rP = - baryon resonances are still left to be free. Experimentally it 
has different values for the s-channel helicity nonflip and flip amplitudes. We list in table 7 the 
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Table 6 

Observed pat terns of  baryon exchange degeneracies. Horizontal: exchange degeneracy. Vertical: SU (3) multiplets.  

rP  = + series 

JP 1/2 + 312 512 + 7•2- 9/2 + 

8, 1~8, ~ L~8_, 8, 

A Ac~ IA~(1690) I  . . . .  

X X~ ~ £3'(1670) ~ Xc~(1915) ~ £3,(2100) '-, ~ . . . .  ~c~ ~ 0.25 
N No~ ~ N3,(1520) ,--, Na(1688)  ~-, N7(2190 ) +-, No~(2220 ) . . . .  Aot "=-- 0.4 

F/D 0.5 ~ 0.6 ~2 0.6 ~ 0.8 ~4 

rP = - series 

JP 312+ 5/2- 7/2 + 9/2-  

I0  (~8_,13) 8_,p I 0  • _8_,i~ _8_113 

X 1~a(1385) ~- :~t3(1765) o [ 2 I[Xa(.~030)j. ~ Xt3(2250)? . . . .  Aa --~ 0.1 

IAa(2050)~  ~ 9 . . . .  Aa--~0.1 
A ,N  Na(1232  ) ~ N#(1670) "-, [Na(1990)  l 

A A/3(1830) ~ A8 (2020)? ~ ? . . . .  

F/D - 0 . 1  ~ - 0 . 2  ? 

Table 7 

F/D values of  the  t-channel  Reggeon coupling for the  s-channel  helicity ampli tudes 

[F/D ] ++ [F/D ] +_ 

photon  coupling (J = 1, t = 0) 0o ~0.31 

Oto t Regge-pole fit 
Michael [366] (using B e rge r -F ox  fit [63])  ~ - 5  
Barger, Phillips [55] - 3  ~ - 4  
Barger [33] (FNAL data) IF/DI > 10 

s-channel helicity conservation of f and  to 1/3 

n-p  --" nOn and K~p ~ K~p 

+1.3 
Johnson  et al. [306] - 6 . 8  

- 2 . 0  
Loos, Matthews [336] - 5 . 3  0.32 

K * - K * *  exchange reactions 
Irving et al. [297] - 2 . 8  0.38 
Martin et al. [357] - 3 . 3  - - 3 . 5  0.28 - 0.49 
Ward et al. [504] - 3 . 2 5  0.49 

pho toproduc t ion  
Irving, Vanryckeghem [298] (n ° ,  r~) - 3  0.38 
Michael, Odorico [367] (KA, K£)  - 2  0.27 _+ 0.03 

tensor-meson dominance  (Renner  [418]) 1/3 
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values of  [F/D]++ for the respective s-channel amplitudes. We can see from this table that D / F  
- 0 . 2  for the nonflip amplitudet (~A') and F/D ~ 1/3 for the flip amplitude (~A).  Using 

[vB/A'] o ~ 10, we get F/D ~ 0.5 for the t-channel helicity-flip amplitude (~B).* (See also [366, 
367, 451 ] for reviews.) 

265 

Crossing invariance 
The s-, t.- and u-channels are identical in 0 - - 0 -  scattering, so that the spectrum of  the t-channel 

Reggeons must go into the same spectrum in the s- and u-channels under (s,t) and (u,t) crossing. 
Actually, the SU (3) vector ~ [ 1 ]  + ~[SD] + 318v] of  the solution (1 ~ 8 )  ~ 8 (eq. (3.20)) is an 
even eigenvector of  the SU (3) crossing matrix, thus ensuring the crossing invariance. 

Similarly in 0 - - 1 / 2  + scattering, the s- and u-channels are identical. Therefore, the s(u)-channel 
baryon spectrum must go into the same spectrum in the u(s)-channel under the (s,u) crossing. 
Since we have both  crossing-even and -odd amplitudes in this case, we must find even and odd 
eigenvectors of  the (s,t) crossing matrix by suitable linear combinations of  the natural- and 
unnatural-parity exchange-degenerate pairs. This requirement of  crossing invariance would fix the 
relative strength of  the couplings of  the natural and unnatural baryon trajectories. Hence it 
determines the F/D ratios of  the t-channel Reggeon. 

In such an attempt,  an (s,t) crossing even vector can be made by an appropriate combinat ion of  
exchange-degenerate pairs of  eq. (3.22); it can be given by the difference of  the SU (3) vectors 
corresponding to (i) and (ii) [340, 2 3 , 4 2 1 ] .  However, no crossing-odd vectors can be constructed 
from any combination of  eq. (3.22). 

The task is to find a pair o f  SU (3) vectors (I, II) being interchanged with each other under the 
(s,u) crossing operation out  o f  exchange-degenerate solutions. Then the combinations I + II form 
even and odd or odd and even eigenvectors according to I ~ + II. Here the two solutions I and II 
correspond to those with natural and unnatural parities. To see the structure of  scattering 
amplitudes, we begin by noting that the imaginary part of  s-channel helicity amplitude f+_+ is 
expressed as the sum and difference of  the resonance sequences with unnatural and natural 
parities, i.e., Im f++ ~ II + I and Im f + -  ~ II - I. These amplitudes are also described in terms of  
the bivariate dual terms as f++ "" B(s,u) and f+_ ~ A '(s,u) for  s ~ o% u fixed (see Appendix A). 
Therefore, Im B(s,u) ~ II + I is odd and Im A'(s,u) ~ II - I is even under (s,u) crossing if I ~- - II.§ 
(The full amplitudes are obtained by multiplying the appropriate signature factors [167, 212].)  

This problem can be solved by making use of  a pair of  four-trajectory solutions (1 • 8) ~ (8 • 10). 
We find the baryon spectrum [167, 212]. 

EXD Xsu EXD 
I: ( l ~ 8 L )  ~ ~- (8ii ~10)~  Z II:(_l ~8~)~  ~ (8r; • 10)8 (3.24) 

with f l  + 3fir2 + f2 = 1. Here fl' and f2' are given by fl  and f2 respectively, so that we have one free 
parameter in this solution. (If we choose this parameter so as to give fl' -- [F/D] 84 = 2/3 the lt~ 
decouples from the external meson-baryon system.) The t-channel Reggeon F/D ratios in this 

t T h e  J o h n s o n - T r e i m a n  relations, ~o(K~p) = 2~a(KTn)  = 2Lxo(~p),  implying D/F = 0, [305] are satisfied at FNAL energies [33], 
better than at lower energies. 

1:With the aid of  the vector-dominance model, the ampli tudes (A + vB, A) are related to the Dirac-Paul i  form factors (F~, -F~) ,  
while ((1 - t]4M ~) • A', vB) correspond to the Sachs form factors (GE, GM). The SU (6) leads to D/F = 0 for A' and F/D = 2/3 for 
B. See Michael [366].  

§Theinterchange I ~ - lI under  the (s,u) crossing implies that  the natural-parity trajectory in the s-channel goes into the  unnatural-  
parity trajectory in the u-channel  and vice versa. 
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solution are [F/D] v = [F/D] T = 1/3 for the amplitude A(s,t) ~ f+_ ~ II - I and in addition the 
singlet tensor is decoupled from this amplitude, which leads to the decoupling of  the f and co 
from this amplitude. For the amplitude A'(s,t)  ~ f++ ~ II + 1, the t-channel F/D ratios become 
[F/D]v = [F/D]T ~ - 1 in agreement with experiments if we choose the above parameter so as to 
reproduce the actual baryon-resonance couplings. (For  [b]D]8~ = 2/3, we have [F/D]v = [F/D]v 
= - 7 / 3 . )  We list typical F/D ratios in table 8, which should be compared with experimental values 
in tables 5 and 7. It should also be noted that the choice of  2/3 < [F/D]8~ < 1 correctly predicts 
the alternation of  F/D ratios for the oe-7 series around one. 

3. 6. Duality diagrams 

As a consequence of  the exchange degeneracy, the Reggeon vertices take the nonet  couplings: 

1 
FM, VM 2 =---~TvMMTr(MI[ V,M 2] ) (3.25) 

V ~  

1 
FM, rag = -7~ YrvMTr (M~( T, M2} ) (3.26) 

V ~  

w i t h  "[VMM = 7TMM(~TM) 

~B1RB 2 = II~IRBB {FRTr(B~[R,B2I) + DRTr(B~{R,B~) ) + (FR -DR)Tr (B1B2)TrR} ,  R = T , V ,  

(3.27) 

with 7VB~ = 7TB~(=~"tB)  a n d  [F/D]v = [ F / D ]  T . 

HereM and B are the 3 X 3 matrices of  0- and 1/2 + octets, and Vand T denote the vector- and 
tensor-nonet matrices [480] .* The absence of  the term Tr(M~M2)TrT in eq. (3.26) is required by 
3'}, = 7~ 8, and the last term in eq. (3.27) ensures f '  and ¢ to decouple from nucleons. 

Equations (3.25) and (3.26) are represented by the diagram (a) in fig. 11 in terms of  quarks. 
(Note that the indices of  meson matrix are just  that of  quarks.) Using the representation B il, k (B/ 
-- (1/X/~)eiktBkt.i) in which the quark indices are explicit, eq. (3.27) leads to 

- -  " [ B  k - -  ran/ (BlY ' (B2)k,,a} ] F~,RB: - ~ M ]  [(B0 ' (B2)mn,g + ( F -  D){(Bl)m/'l(B2)mk,l + - "nl (3.28) 

Table 8 
Predicted F/D ratios for the baryon octets and those for the 
t-channel Reggeons in the crossing-invariant solution of exchange 
degeneracy. The underlined value is the input of calculation. The 
values should be compared with those in table 5 and 7. 

2/3 -1 /3  ~ -1 /3  -7 /3  1/3 

0.82 -0.16 2.20 -1.45 -130 1/3 

*See footnote on page 260. Note that M = (1/x/~ ZhaC~a, B = (1 /x /~  ~3haq~ a etc., and Tr (haih3,kT]) = 4ifafl3,, Tr (ka{K3kT}) 
= 4de437. 
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V,T V,T  

(o) ~ 7- & 
M I M 2 M I M 2 

R R 

BI B2 B B2 

t'ig, 11. 

Here the first term corresponds to the diagram (b) and the second to (c) in fig. 11 (in this figure 
square brackets mean the antisymmetrization of quark wave functions). Thus, only connected 
diagrams appear for Reggeon vertices, and two ends of a single quark line cannot belong to the 
same external particle (the OZI rule) [390, 518, 285 ,286] .  

Suppose we consider scattering AB ~ DC (we adopt here the convention that all external 
particles are incoming). The Regge amplitude for this process is 

1 --  e -i~c~ - -1  - e -iTrc~ 
P~ + FATDFCTB V ~. (3.29) f (u , t )  = FAVDI-'CVB sinTro~ sinTro~ 

Substituting eqs. (3 .25)- (3 .28)  into eq. (3.29) and contracting the quarks of  V and T, we obtain the 
following expression [425 ] : For MIM 2 ~ 3/14M 3 

- exp (-irro~i~) ] l k i (~/14){ ( ]1'/~,)~ (At2)/k (AI1)~ ] f(u, t )  = 23 '2 [(MOi(Mz)i(M3)t (M4)k + 
" sinrro~/~ 

[(Ml)i(A13)](Ma)t (lll4) k + (AI4){(M2)~(M3)f(M,)ik] _ ~,~ff,(O. sin }r~/~. (3.30) 

For 341Bz ~ M~B3 

. f (P, t )  = 2"yM'yB{(~)mnJ(Bz)m,~k + ( F  - D )  [(B3)mn'P(Bz)mk,p + (B3)-/n,P(Bz)kn,p ] } 

X [ t k -exp( iTro~kT)  +(M0~(M4)f 1 ]u~kT(t). 
(M4)i (Mi)l sinrrolk [ sinrro~k~7 (3.31) 

Here the factor like Tr(MIM2M3M4), Tr(MIM3M:M4) etc. is called the Pa ton -Chan  factor [398]. 
The term with rotational phase and the term with real phase in eqs. (3.30) and (3.31) are 

expressed by diagrams (a) and (b) in figs. 12 and 13, respectively. In fig. 12 we omit another  
diagram with quark lines in an opposite direction.) The planar diagram (a) shows that there are 
resonances in the s-channel, Reggeons in the t-channel, exhibiting duality among both channels. 
Needless to say, there are no singularities in the u-channel as it is exotic. On the other  hand, in the 
non-planar diagram (b) the s-channel is exotic and has no resonances. The t-channel Regge poles in 
this case are built by the u-channel resonances. The diagram (b) becomes planar when particles 
2 and 3 are exchanged, exhibiting duality between the u- and t-channels. 

Therefore, the following simple rule has been derived for the duality diagram [ 2 8 8 , 2 4 5 , 4 2 5 ] .  
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Fig. 13 
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(i) Represent mesons by qq-and baryons by qqq. 
(ii) Write all the connected graphs, connecting the same kind of  quarks.t The two ends of a 
single quark line should not belong to the same external particle, the diagram as a whole must not 
be disconnected (the OZI rule). 
(iii) A given graph will then exhibit duality among the channels in which it can be written in the 
planar form. 

These kinds of  graphs are generally called duality diagrams or quark diagrams. Tile duality 
diagram asserts that any scattering amplitude can be written as a sum o f  bivariate dual amplitudes 
in which singularities lack in one of  the three channels (planar duality). There are only three types 
of duality diagrams, the (s,t), (u,t) and (s,u) dual diagrams* which are sometimes called the H-, X-, 
and Z-type diagrams, respectively. For instance, the reactions ~r+Tr - -+ ~r+Tr - and KN ~ KN are of  
(s,t) dual and KN -+ K~ is of (s,u) dual. 

The above rules are easily generalized to those for any hadronic process. 

Exchange degeneracies in hypereharge-exchange reaction 
As an interesting example, let us consider K-n ~ 7r-A. We have no (s,t) dual term but only (s,u) 

and (u,t) terms, as shown in fig. 14, which indicates that the amplitude for K-n -+ ~r-A is purely 
real for large s with t fixed, even though no channel is exotic. This implies the s-channel resonances 
should cancel each other. This is also a kind of  exchange degeneracy, and is often called "anti- 
exchange degeneracy". Correspondingly, the K* and K** trajectories are exchange degenerate in 
the t-channel giving a real phase, just as in the reaction with the exotic s-channel. Similar arguments 
also hold for KN ~ TRY.. 

In fig. 15, we show the Y* couplings in the reaction ff~N -+ ~rA at t = m~. ,  [455]. The parent 
resonances on the ~ - Z v ( 1 / 2 + - 3 / 2 - - 5 / 2 + - . . . )  and the Z ~ - ~ ( 3 / 2 + - 5 / 2 - - 7 / 2  +-. ..) tend to 
cancel each other independently in each amplitude, A' or B. Table 9 shows the signs of  parent Y* 
resonances in KN ~ 7rA and KN ~ 7r~. 

With the exchange degeneracy, the differential cross sections of  K-n ~ 7r-A and K-p-+ ~r-~ + 
should be equal to that  of  the line-reversed reactions lr+n ~ K+A (or 7r-p ~ K°A) and ~r+p ~ K+~ + 
at s ~ ~ ,  t fixed respectively. (Here the former reactions should have a real phase ~1 and the 

t l n  order to satisfy the C-parity conservation automatically one has to keep two kinds of duality diagrams (clockwise and counter- 
clockwise) [454]. 

:[:The (s,t) dual diagram has two sub-components as seen in eq. (3.31) for m e s o n - b a r y o n  scattering. Similarly the (s,u) dual diagram 
is decomposed into three components.  The SU (3) structure of  these components  has been studied [382, 223]. 
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Fig. 14. The planar duality diagrams for K-n ~ ~r-A. 
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Fig. 15. Contributions of  the Y* in the reactions K-p --* 7r°A at t = mk*. Here, solid circles imply the ]~c~- Y,,,/ series while open 
circles denote the ]~6-Y'/~ series (from Schmid and Storrow [455]). 

latter a rotating phase ~e-i=a.) These equations seem to hold well at t = 0, but the slopes of  
forward peaks are steeper in 7rN ~ KA(Z) than in KN ~ 7rA(Z) [ 135, 323, 336 ]. This is, particularly, 
clear in the experiment in which relative normalization has been carefully done [66]. As a 
consequence, the integrated cross section of  KN ~ hA(Z) becomes larger than that of  nN -* KA(Z). 
This breaking of  exchange degeneracy is seen by a factor of  two in the cross sections even at 
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Table  9 

Signs of  the  coupl ings  of  leading  Y* resonances  ( f rom S c h m i d  [451 ] ; see also PDG [397] ) .  t t e re  

we a d o p t  the meson-f i r s t  conven t ion .  I f  the  ba ryon- f i r s t  c o n v e n t i o n  is a d o p t e d ,  the signs o f  Y* 
and  Y* in KN -~ n Z  are reversed.  

1 /2  ÷ 3 / 2 -  5/2 + 7 / 2 -  3/2 ÷ 5/2- 7 /2  ÷ 

K N - ~ n ] ~  Y* + - -  + 9 + _ + 
Y* + - -  + --  w e a k  

KN--* rrA Y* --  + --  ? + --  + 

PL ~ 15 GeV/c, where K-p charge-exchange cross sections are almost equal to those of  K+n charge- 
exchange. (We will mention this breaking in section 4.5.) 

According to the FESR calculation (KN -+ 7rA, nN --* KA) [ 194; see also 300],  the relation 
/3K* = f/K** does not necessarily hold well (especially for the A' amplitude), i.e., the imaginary part of  
the KN ~ nA amplitudes does not vanish. However, the features characteristic o f  the exchange 
degeneracy can still be observed: 

(i) The phases of  the amplitudes of  nN -+ KA grow linearly as ~-no~( t )  as - t  increases, while 
those of  the KN -+ 7rA amplitudes are approximately fixed. 

(ii) The imaginary parts of  the nN -+ KA amplitudes have zeros characteristic of  the Regge-pole 
exchange with non-vanishing imaginary part, whereas such zeros are missing in the KN ~ nA 
amplitudes. 

A substantial imaginary part has been found in A'(K.N --* 7rA, ~)  also at higher energies in contrary 
to the prediction [47, 125, 504].t  (This imaginary part is necessary to give the observed large 
polarizations.) A zero is missing again in Im A'(KN --* hA, Z). (But it exists in Im A'(rrN ~ KA, E).) 
The partial-wave projection of  Im A'(KN --* rrA, X) suggests that the exchange degeneracy is broken 
in low-partial-wave components  but  it is held in peripheral components.  

Remarks on the Okubo-Zweig- I i zuka  (OZI) rule 
The OZI rule forbids a disconnected diagram; e.g., q~--~.~, cannot  decay into non-strange hadrons. 

Actually, the partial width I'(q~ --* 370 -~ 0 .66MeV is much suppressed compared with P(co ~ 3n) 
- 9.0 MeV. The suppression of  disconnected diagram is also seen in production experiments 
(e.g., o(Tr-p ~ 0n)/o(Tr-p ~ con) -~ 0.0035 -+ 0.0010 at 5 ~ 6  GeV/c [25])  or in the Reggeon coupling 
at t = 0, [52]. The forbidden decay mode ~b --* (non-strange hadrons) can exist only due to a 
deviation from the ideal mixing. The non-strange-quark component  in the physical ~ can be 
determined from the mass formula as well as from the production processes, and thus it is found 
to be about  10%, which is consistent mutually among various estimations (see table 10). There is a 
similar suppression in the 2 + nonet: The upper bound of  f' -+ 7ra" is F(f '  -+ rrrr)/l-'(f' --* all) ~< 1/100 
or F(f '  -+ nTr)/P(f -+ 7rTr) G 1/400 [70]. The Regge residues are also consistent with the decoupling 
o f f '  from nucleons at t = 0, [52]. 

One may suppose that such a higher order vertex diagram as in fig. 16a, which violates the OZI 
rule, may contr ibute to the decay XX ~ (non-strange hadrons). If this diagram is regarded as equiva- 
lent to that in fig. 16b, which represents an allowed vertex with particle mixing, violation of  the OZI 
rule is given by the mass mixing. 

"~In these  ana lyses  the  Regge phase  is a s sumed  for the  K* and  K** exchange  in the  s -channe l  he l ic i ty - f l ip  amp l i t ude .  
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Table 10 
Deviations f rom the  ideal mixing for  1 - a n d  2 ÷. Here e is 
defined as to(f)  = (~p + ffn)/x/2-  + eg, X. 

1-: mass formula  
F ( 0  ~ r r°7)a /F( to  ~ 7r°"[) 
F(~b ~ p °*r°)b/F( co --¢" n°,y) 
a(rr-p ~ ~n)C/oOr-p ~ ton) 

2+: mass fo rmula  
r ( f '  -+ n n ) d / r ( f  ~ nn) 
r ( f ' ~  ~rlr)e/r(f--* n~r) 
fit to the 2 ÷ --* O- + O-decay f 

e = - 9 . 2  -+ 2.5% 

lel ~ 9.7% or 5.3% 
lel ~< 12% 
lel -~ 6% 

e = +10.5 -+ 5.0% 
[el ~< 3.5% 
e = +5.1 +- 2.0% 
e = + 2  ± 22% 

aBenaksas et al. [62] or Cosme et al. [522] .  

bAssuming  the ~ ~ pn  dominance  in the ¢ ~ 3n decay. 
CAyres et al. [251. 
dBeusch et al. [70] .  

e Pawlicki et al. [523]:  The f - f '  interference is k n o w n  in 
z'N ~ K-K*N.  
f Samios et al. [440] .  We take the decay wid ths  f r o m  PDG 
[397 ] unless o therwise  specified. 

(a) (b 

Fig. 16. 

/ 

© 0 ,:3 
Fig. 17. 

The P a t o n - C h a n  factor corresponding to the diagram in fig. 17 t, which is often called the 
cylinder diagram, suggests that the breaking of  the OZI rule occurs in a unitary singlet since 

Z,x,yTr(~i~,x~ky)" Tr(XiXxXy) = 2Tr(Xi)Tr(Xj) = 126,.o51o. Indeed the masses of  the neutral vector and 
tensor mesons are given by the eigenvalues of  the mass-squared matrix 

~ mg ~ 
6 m~ + Am 2 , 

where the breaking occurs in an SU (3) singlet [ 14]. (Here we take a vector (pp, nn, XX) as a basis 

tThis  diagram should  con t r ibu te  to I - ( C  = - )  and 2* (C = +)  wi th  equal  s t rengths  bu t  in opposi te  signs. This can easily be seen if 
we keep two diagrams which differ as to the direction of  their quark  lines. (Note  that  IC = ±) = Iciq) ± Iqq).) 
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of the matrix.) This singlet contr ibut ion brings a renormalization of  the f and f '  trajectories as 
well as a mixing between them. 

The cylinder diagram is also considered to give the pomeron for the C = + channelt [206 ,237 ,  
210, 341 ]. We consider the t-channel partial wave of  7rTr scattering amplitude in the It  = 0 channel, 
then the J-plane structure is given by 

1 1 1 .7--~'~- 
F(J't)=g J~--~--~fg + g J--~---~fG J--~p G v _., g '  (3.32) 

where g and G denote the 7rlrf residue and the pomeron-f  (cylinder-f) coupling, respectively• The 
second term$ (cylinder term) corresponds to the pomeron, which couples to the external particles 
through f (and/or f ' )  [341, 96] (see also section 5.6). This term gives a leading contr ibut ion as 
s -+ ~ ,  with t fixed, 

F ( s , t ) - ~  Tr[- -~g  '~ 2 G 2 - l - e x p  (-i~rO~p)(~'s)'P. 
sinTro~p 

On the other  hand, this cylinder term represents the particle-mixing interaction. Equation (3.32) 
reads 

g2 
F ( J , t )  ~-- A a f  ~ G ~ / ( J  - ~p) .  (3.33) 

J -  (oLf-~- mOLl) ' 

Hence, we have the f trajectory shifted by G 2 / ( a f  - O~p) due to the cylinder correction. (If we keep 
higher-order terms in eq. (3.32), the pomeron trajectory is also shifted.) Corresponding to 
ot°t(TrTr) = 12 rob, we have G 2 ~- 0.07, or ao(0) - o~f(0) ~ 0.14 (here g~,~/47r = g 2 ~ J 4 ~ r  = 2 is 

• I 2 - I assumed). (This is consistent with o~ ( m A ,  -- m~)  ~ 0 . 1 ,  If O~p = 0 . )  This implies that a contr ibution 
of  the pomeron at high energy is consistent with the f - f '  mixing which is fairly small [512].  

Another  approach has recently been developed by combining the duality diagram with the 
unitarity. A brief sketch will be found in the note added at the end of  section 5.6. 

3. 7• T h e  B B  p r o b l e m  

In the preceding sections, we have confined our discussions to MM and MB scattering. It has been 
known that no non-trivial solution to the duality constraints, eq. (3.17), exists in BB scattering. 
This can easily be seen in A~ -+ A~  scattering, in which there are four isospin amplitudes (I = 0 ~ 3) 
in both s- and t-channels. The ( s , t )  crossing relation, eq. (3.17a), has no nontrivial solution with 
only I = 0 and 1 contributions in both channels. 

The simplest way to keep duality is to introduce exotic mesons [424, 435].  This can be 
demonstrated in the duality diagrams.§ There are two types of  planar diagrams appearing in BB 
scattering: One corresponds to ordinary resonances in the s-channel, which is dual to exotic 
exchanges (qqq-q-) in the t-channel (fig. 18a), and the other  to ordinary Regge exchanges being dual 
to exotic resonances in the s-channel (fig. 18b). In this picture, the exotic resonances should have a 

t i n  the  dual resonance model, the nonplanar-orientable loop has a peculiar singularity: a branch point  at a t ( t )  = 1/3 + 1/2 • a ' t ,  
independent  of  the intercept o f  input  trajectory [237 ,210] .  This singularity becomes a pole (c~p = 2 + 1/2 • ='t) at the critical 
dimension d = 26 for the Reggeon trajectory et R = 1 + c~'t, [341 ]. 

5;In this con tex t  we have assumed originally a singularity near c~p(0) = 1 for the cylinder, [512].  There is another  a t t empt  without  
assuming such singularity [423 ]. 

§An explicit dual model for B~ scattering can be cons t ruc ted  by introducing these exotic mesons  [ 202]• 
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(a )  ( b )  

Fig. 18. The planar diagrams for BI3 scattering. 

273 

dominant  role at low energies, since high energy amplitudes are dominated by Regge-pole exchanges. 
There are some indications in inclusive reactions that the s-channel resonances build Regge 
trajectories with low intercept such as ~(0) ~ -0 .5 .  (It will be mentioned in section 3.9.) 

These exotic mesons, introduced here, do not couple to MM channels. In the planar diagrams in 
fig. 18, they always appear in combinations as qqqq in such a way that they can not be separated 
in two parts having triality zero. If we keep the rule that the two ends of a single quark line should 
not belong to the same external particle, the exotic meson M4 = qqqq is forbidden to decay into MM 
and can only decay to BB (+nM), so that it does not appear in the MM and MB scattering at least 
in lowest-order duality diagrams [207]. This property can be visualized in a string picture of  
hadrons [378, 379, 482] (see fig. 19). 

3. 8. Veneziano models (B4 models) 

A crossing-symmetric model which manifestly exhibits duality between two channels was firstly 
obtained by Veneziano [492], as a solution of  the FESR bootstrap for rrrr ~ rrco [2] within the 
narrow-width approximation. 

Let us take rrrr scattering as a simple example to elucidate the model. The Veneziano amplitude 
for rr+rr - scattering [337,469,  4.68] becomes 

B4(s, t )  = - -  ~k l~(1 - o~(s))F(l - o~(t)) 
F(1 - o~(s) - c~(t)) (3.34) 

with o~(s) = o/s + %. 
The prominent features of  the B4 amplitude (3.34) are as follows: 

M M M 
O ~ + ~ ~__ ~ = O 

B M B 

+ ~ ~ O = 

e g M 

+ ~__ = O 

M4 

Fig. 19. String picture o f  hadronic reactions. Open and solid points  represent  quark and anti-quark, respectively. 
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(i) B4(s,t) has simple poles at offs) = n (n is a positive integer), and can be expressed as a sum of 
them 

R n ( t )  
B4(s,t) = h ~'. o~(s) (3.35) 

n =  1 H - -  

for c~(t) < 0. Here, 

= _(°~(t)n +-n 1- 1)_ = c~(t) (o~(t) +(n 1)..._ 1 )!(cfft) + n - 1) (3.36) R n ( t )  

Since o~(t) is linear in t and hence in cos0 s, this polynomial residue corresponds to resonances with 
J = 0 ,  1,  2 ,  . . .  , n in the s-channel. Similarly in the t-channel, we have 

B4(s,t) = X ~,  Rn(s )  (3.37) 
~=1 n - ~ ( t )  

which converges for ~(s) < 0. 
Equations (3,35) and (3.37) are equivalerrt expressions. The t-channel poles (s-channel poles) are 

already contained in the infinite sum of  the s-channel poles (t-channel poles). We have therefore a 
model with a manifest expression of  duality. Then we can define a mathematical form of  duality 
(Veneziano duality) by this model amplitude. 

(ii) The asymptotic behaviour of B4(s,t) for large s with t fixed is given, using the Stifling formula, 

a s  

B4(s,t) ~ X 7r - e - i n s ( t )  (oL's)~(t). (3.38) 
F(a(t))  sinTro~(t) 

It must be noticed, however, that the Stirling formula does not hold within an infinitesimal wedge 
around the positive real axis where the poles are. We therefore do not get the Regge asymptotic 
behaviour for the real s but obtain it off  the real axis. 

On the other  hand, B4(u,t)  has the asymptotic form 

B4(u, t )  ~ X 7r - 1 ( ,s)~(t). (3.39) 
U(o~(t)) sinTro~(t) 

Combining eq. (3.39) with eq. (3.38), we have the signatured Regge amplitude. We note that the 
scale parameter of  the Regge amplitude is fixed as So = 1/o~'. The amplitude B4(s,u)  falls exponentially 
off  the real axis as s ~ oo. 

(iii) The B4 amplitude explicitly exhibits the FESR duality. If we calculate fdvIm B4(u,t) by 
substituting all resonances included in the B4 amplitude up to v = PN (here u is defined as 
u = (s - u)/2), we obtain 

~ N ~k 7r (~ 'vN)  ~(t) + ~ 1 
dvIm B4(v, t )  - a'F(o~(t)) a ( t )  + 1 ~N(O~( t ) )  ' 

(3.40) 
0 

where the value U2v is taken to be half-way between the nth and (n + 1)th resonances, and ~U is a 
function indicating how well the resonance saturation is satisfied. The function q~U has the property 
• u(C~(t)) -~ 1 for N ~ ~ with oe(t) fixed, and further ~2v(~(t)) ~- 1 holds very well for bo~(t)l < N, 
which includes a physical region at v = vN (fig. 20). 

For further details of  properties of  the B4 amplitude, see [513, 514, 4?4].  
The property (i) is in marked contrast to that in the conventional field theory where the 
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~ N ( =  ) = F(N) (=.VN)=.1 
I - ( = * N * I )  

-4  -3  -2  -1 0 

~b°=(t~()) =(s) + =( t  )+ =(u) = 1 

15 

7 / 
-0.5 • =0.5 • t 

. . . .  l I I 

1 2 3 =( t )  

Fig. 20. An example of the e/,-function [2]. The region with hatching represents the physical region at the cut-off energy. 

t-channel poles should be added to the s-channel poles. For an illustration of  the relation between 
the dual amplitude and the conventional Feynman amplitude, we take a simple B 4 amplitude as B4(s, t) 
= k F ( -  o~(s))P(-- oe(t))/F(- oe(s) - a(t)). Suppose we take the limit oe' -+ 0 and X -+ 0 in such a way 
that g2 = X/oe' is finite and the mass of  the ground state is kept fixed so that only one particle appears 
in each channel, then the B4 amplitude reduces to a sum of  the Born terms in the s- and t-channels 
[443, 3771 

x p ( -  o~(s))F(- ec(t)) ~ X 1 q_ m 2 ~ . 

P ( -  o~(s) - a(t))  ~r 1172- S t- 

Hence the dual model gives the gO3 Lagrangian theory in the zero-slope limit. (This is also true for 
higher-order diagrams including loops [ 516] .) 

Equation (3.30) is immediately generalized in a crossing-symmetric form so as to construct  the 
0 - - 0 -  dual amplitudes [425, 398]. Represent mesons by qq and write all the connected diagrams. 
Then we obtain 

f=  ~ Tr(Mjm~4~M,r)B4(o~i~(s t~), c~tT(sl~)) (3.41) 
perm. 

with sl~ = (Pl + p~)2, sly/= (Pl + P-r) 2. Here, ~ means to take a sum over all permutations of  o~,/3, 
3' = 2, 3, 4 which give planar diagrams (see fig. 21). For instance, eq. (3.41) gives 

f=  ½ (Ba(s,t) + B,(u,t) - B4(s,u)) for 7r+n ° ~ n+n °, 

f=  ½ (B,(s,t) + B4(u,t) + B4(s,u)) for rr°Tr ° ~ n°n °. (3.42) 

The nonet scheme with ideal mixing can easily be incorporated in the B, amplitude, by taking 
the three classes of meson trajectories (eq. (3.15)) into eq. (3.41) [309]. 

Mathematical structures of the Veneziano model have been investigated in great detail through 
the operator formalism, and many interesting results have been obtained. They are, however, highly 

r , ,  .. 2 ~ 

/..__ (" 
I J sl'l~= " 

Fig. 21. 
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technical and too formal for our review and are not within the scope of  this article. We refer the 
reader to review articles [ 6 , 4 6 5 , 4 9 6 ,  416, 201,392,  351 ]. 

The Veneziano model itself involves some idealized assumptions (e.g., the narrow-width 
approximation). Therefore, it should be considered only as a mathematical model embodying 
duality rather than as a realistic model. This model, however, contains qualitative essence of  
hadronic interactions. Thus many properties abstracted from this model seem to hold in the real 
world. 

We add some remarks for the B4 amplitude. 

Semi-local duality 
The FESR such as eq. (3.40) is satisfied for any arbitrary moment  if we take the B4 amplitude. It 

is sufficient to take [0,N] as an integration interval instead of  [N,N]. (The FESR of  this type has 
already been derived assuming the absence of  wrong-signature fixed pole.) 

Equation (3.40) with (I0 N ~ 1 suggests that only several resonances (even one resonance as an 
extreme case) in the interval [0,VN] are sufficient to give Regge behaviours at high energy, and uN 
is not necessarily to be in the asymptotic region. Further we have 

1 v? + ~ / 2  rr 1 
--Av ~J_ A~/2 dvlm B4(v,t) = X l-'(o~(t)--------~ (~'vY(t) q~'(o~(t)) ' (3.43) 

Here, ¢ '  is very similar to rb N, and Av is an interval between two adjacent resonances Av --~ 1/~' 
(Av ~ 2/c( when trajectories are not exchange degenerate). Equation (3.43) implies that each 
resonance tower averaged over 1/~' (or 2/o~') immediately gives a high-energy Regge amplitude, 
and conversely it ensures that the smooth Regge amplitude at high energies, if extrapolated to low 
energies, gives an average description of  the behaviour in the resonant region in a semi-local sense. 
This semi-local duality gives a basis of  s-channel models as will be seen in the following section. 

On the other hand, if the t-channel is exotic, the FESR is of  a superconvergent type and we meet 
with a seious cut-off problem [ 164, 445,453 ]. Take the process rr+rr - ~ rr-rr + as an example. The 
residue of  direct-channel-resonance pole grows as -~s% in the B4 model, so that the relative 
contributions from n = 1, 2, 3, 4, ... poles are 1: ( 4 .5) : (10.4) : (-15.7) :  ... at t = 0 in the first- 
moment  FESR. Hence it is dangerous to cut off  after a few resonances) This is why the 
superconvergence relations have not been successful in practical applications. A fast drop off  of 
the exotic amplitude in s at fixed t arises from cancellation of  the neighbouring resonance towers 
with alternating signs when one integrates them over a sufficiently large energy interval. 

Regge-residue functions 
The Veneziano model gives a Regge-residue function of  the form/3(0 = 1/F(a(t)) which is 

occasionally referred to. The empirical rrrr amplitude seems to have such a Regge residue (see fig. 22). 

Supplementary conditions and absence o f  odd-daugh ter resonances 
Veneziano [492] has imposed a supplementary condition a(s) + a(t) + ~(u) = 1 on the trajectory, 

tA l though  the cancellation is no t  so good, the FESR (CMSR) for I t = 2, in practice, gives a low intercept of  effective trajectory 
such as a (0 )  < - 1 .  Fur ther  the integrated ampli tude does not  show any characteristics of  Regge-pole exchange [489].  
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V2 V2 f(v~,t) 

j j~ReQI 

" , ~  L ~ .  ~ ,, 
saturation) ~ 
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-1  - 2  t (GeVIc) z 

Fig. 22. The I t = 1 ampli tude of  ~r~r scattering as a funct ion  of  t f rom the CMSR ('r = 0 and "r = 1 in eq. (2.13)) using phase-shift  
data. (The cut-off  is taken midway between f and g.) Note that  bo th  the imaginary and real parts show the characteristics o f  the 
p Regge-pole exchange (from Ukawa et al. [489]).  

which is equivalent to 3c~(0) + 4o~'/a 2 = 1 in the case of  7rTr scattering, t:: This condition leads to 
Rn(t) = (-1)nRn(u)  for the residue function, which eliminates odd daughters, leaving only daughters 
spaced by two units of  angular momentum.  Correspondingly if we make the Regge asymptot ic  
expansion of  B4(s,t) u s i n g ~ ( z )  - - Q _ ~ _ l ( z )  tan rra/Tr as 

B4(s,t) ~ :i( t) ~J~c~i(t ) ( - -  1~/I)0), 

the above condit ion also leads to/3i=odd(t ) = 0,  i.e., it eliminates all odd-daughter Regge residues. 
This kind of  supplementary condition is automatically satisfied in the ghost-free dual resonance 

models owing to the Virasoro condition § [499],  so that odd-daughter resonances are absent in these 
models. There are some other theoretical indications suggestive of  the absence of  odd daughters: 
(i) In the quark model the odd daughters have unnatural parity, hence do not  couple to 0 - - 0 -  
systems. (ii) The same is also true for the daughters in a Lorentz pole. (iii) Partial waves of  the 
Regge-pole amplitude contain only even daughters (see section 3.3). 

We have no conclusive evidences for daughter resonances at present. However, the p"(1600)  
observed in 7P ~ 27rp, 4rip and e+e --+ 4n, [9, 71, 146, 3 1] can be assigned as the second daughter 
of  the g(1680). On the other hand there are no firm evidences for the p ' (1250)  which could be 
assigned as the first daughter of  f(1270).  

In spite of  persistent efforts, partial-wave analyses of  nn scattering so far cannot provide any 
definitive evidences for daughter resonances [271, 182]: No p ' (1250)  is seen in the solutions. No 
D-wave resonance is found at the position of  the first daughter of  g(1680). In the S-wave a broad 
enhancement can be seen a t v ~  -= 0.9 "~ 1.3 GeV after the substraction¶ of  the S*, but  its resonance 

t l f  we take this condi t ion seriously, it reduces to ap(O) .~ 1/3, which is somewhat  unrealistic for the physical pion mass. However, 
our  main purpose here is to investigate the essence implied by this condit ion.  

:~Several a t tempts  have also been proposed to cons t ruc t  dual models  wi thout  any odd daughter  independent  o f  the intercept of  
trajectory [348, 200].  

~In the scalar model,  B 4 = F ( -  O~(g))I ' (-  a(t))/  P ( -  a(s) - a(t))  with a(s) = 1 + a's, the supplementary  condit ion 3a(0) + 4a'U 2 = - 1  
being equivalent to a(s) + a(t) + a(u)  = - 1  is satisfied as 3 × 1 + 4 X ( - 1 )  = - 1 .  In the Neveu-Schwarz  model  [380] ,  nn 
scattering is described by eq. (3.34) with C~p(S) = 1 + a ' s  and an(s  ) = 1/2 + a's, then  we have 3 × 1 + 4 × ( - 1 / 2 )  = 1. 

¶See Fujii and Fukugi ta  [ 211 ], and Morgan [ 374 ]. 
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interpretation is questionable. For the rest of  the daughters, the situation is quite uncertain. In 
particular these analyses fail to confirm the p"(1600).  Therefore the elasticity of  the p"(1600) 
should be considerably small. 

In partial-wave analyses of  KTr scattering, a possibility of  the S-wave resonance (~:) under K* (890) 
is now excluded [358],  but  the S-wave phase shift passes through 90 ° slowly atMK, -- 1.1 ~ 1.4 GeV. 
This is claimed as a candidate for a scalar meson [ 196, 5 1 7 , 3 2 6 ]  which may be an SU (3) partner 
of  the possible e'(0.9 ~ 1.3). 

The B4 phenornenology 
The Veneziano amplitude for rr+rr - ~ rr+7r - is not necessarily unique as eq. (3.34) but  there are 

infinite degrees of  freedom in adding satellite terms, which give great flexibility, i.e., 

f(s,t) = ~, ~, Cnk I ' ( n -  a(s))I ' (n--c~(t))  (3.44) 
n : 1  k : n  F ( k  - o ~ ( s )  - c ~ ( t ) )  

In order to give a predictive power to the model, a simplicity ansatz that there is only a minimum 
number of  B4 terms is usually assumed. 

Semi-quantitative predictions can be made for several quantities which are not much affected by 
the structure of  daughters and are insensitive to the necessitated unitarity corrections. For instance, 
the relative strength of  parent resonances can correctly be predicted by the B4 model (see table 11, 
for an example). Further  the model gives correct phase shifts for exotic partial waves such as 
62, 622 etc. in 7rTr scattering. The B 4 model is expected to be predictive also for the partial wave with 
l > 1 (parent) = ~(s), mainly because of  its correct threshold behaviour (see [451 ]). 

The B4 model  diminishes its predictive power  where the narrow-width approximation does not 
hold and thus unitarity correctionst become important.  The empirical structure of  daughter 
resonances (or of  daughter partial waves) do not seem so simple as in the B4 model. 

An application of  the Veneziano model for m e s o n - b a r y o n  scattering is very interesting as a 
realistic problem.* There have been many at tempts [277, 291 ,284 ,  412, 338, 63 ,460 ,  292] 
along these lines. We mention here a model for kaon-nucleon scattering with the B4 terms of  the 
(s,t) type alone. The simplest model was constructed for the invariant amplitudes A and B [291 ]. 
This model gives (i) Regge asymptotic  behaviour in all channels; (ii) poles for mesons at 
o~(t) = 1,2 . . . .  , as well as for A's and Z's  with appropriate spins and parities. This model provides 

Table 11 

Elastic partial widths of parent resonances in the Veneziano 
model for 7r~r scattering with the p trajectory c~p(t) = 0.48 
+ 0.90t. The widths are normalized to Pp = 150 MeV 

(g~nn/47r = 2.9). 

JP 1-(o) 2+(f) 3-(g) 4 + 5-  6 ÷ 

calc. 150 129 51 46 19 17 
exp t . [397]  150+- 10 141-+26 47 +-12 ? 9 ? 

tFo r  practical applications, the unitarization is done as an expediency by introducing an imaginary part to trajectory functions 
[337] or by making use of aK-matrix [339, 502]. 

*As for the B s phenomenology we refer the reader to articles by Peterson and T6rnqvist [403] and by Chan et al. [ 110]. See also 
Jacob [302] for a review. 
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not only a strong connection between forward and backward amplitudes at high energies, but  a 
parametrization of  the variation of  resonance widths as a function of  their masses. Good agree- 
ment is found between the prediction and the experiment for the cross sections of  KN backward 
scattering at small u as well as o f  KN charge exchange at small t, when the normalization of  the 
model is given at t = 0. The elastic widths of  A- and E-resonances, however, are predicted to be 
small by a factor 2 or 3~ [ 291 ]. 

Although Veneziano model was partially successful in explaining qualitative features of  high 
energy amplitudes, the models are confronted with well-known difficulties associated with the 
spin of  baryons (e.g., the problem of  spin crossing relation [452, 278], the parity-doubling 
problem). The ghost problem also becomes serious, since we deal with the trajectory with low 
intercept. These problems must be resolved to construct a satisfactory model for m eson -ba ryon  
scattering. 
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3. 9. Duality for Reggeon-particle scattering 

In multi-particle theory of  the dual model duality should hold for Reggeon-part ic le  or for 
Reggeon-Reggeon scattering as well as for part icle-part icle scattering. Duality for Reggeon-  
particle (Reggeon-Reggeon)  scattering can be studied through the triple-Regge (di-triple-Regge) 
limit of  inclusive reactions. 

The single-particle distribution of  the inclusive reaction a + b -+ c + X is given by a discontinuity 
in M~: = (Pa  + P b  - -  Pc )  2 of  the forward a + b + c-~ a + b + cscat ter ing amplitude (fig. 23) [376, 
477]. For s = (Pa + Pb) 2 >>M~, t = (Pc - Pa) 2, the Regge analysis for the 3-body to 3-body 
amplitude [ 155] shows 

d3o  
Ec dP----~c ~-"  s~i(t)+~i(t)- ~ diScM2fii(u't) (3.45) 

where f/i(u,t) is the forward Reggeon-part ic le  amplitude for oLi(t ) + b ~ ~i(t) + b with maximum- 
helicity flip in the bb-+ a-/o 9 channel, and v = Pb(P, --Pc) = ½(MR - t - ma 2) denotes the sub-energy 
(cos0~i b) for this reaction (see fig. 23c). The Reggeon-part icle  amplitude fii(v,t) satisfies a dispersion 
relation in v like the ordinary two-body amplitude, as f/i is analytic in v and has crossing properties, 

X 

a b a a 
c 

a b a b a" a 

(o) (b) (c) (d) 

Fig. 23. 

tThis mismatch may be attributed to the daughters too strong near l ~. 0 in the B 4 amplitude. This problem of strong daughters is 
always encountered in Regge-pole descriptions. This will be discussed in the following section. 
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which can be shown in the perturbation theory [324],  in dual model [341, 391, 156] and in 
Reggeon field theory [235].  On the other  hand, for M 2 ~ co, but s/M 2 -+ ~,  fiii is described in terms 
of  Reggeons in the bb channel by the triple-Regge formula [ 155,371 ] as 

fq(u,t) ~ (M2 )~k(°)-~i(t)-~J(t)'7(t) (3.46) 

(see fig. 23d). Then we have the FESR for c~; + b --' c~/ + b, 

[ 6 3 ° ,  ] 
f duu  n E c dp 3 t a + b ~ c + x )  ( - 1 ) " E  a d 3 ° ( c + b ~ a + X )  
o dp3 

NC~k(O) -~ i ( t ) -~ j ( t )+n  + 1 
= ~ ~[ijk(t)sC~i(t)+c~j(t) - 1 ( 3 . 4 7 )  

i , j ,k  O~k(0 ) - -  O~i(t) - -  O~j(t) + n + 1 

This is called the finite-mass sum rule (FMSR) [391, 174, 304, 1 7 5 , 4 4 1 , 3 2 1 ] .  
With the exception of  the diffractive production the 3-body to 3-body amplitude is represented 

by the sum of  seven duality components  [493, 176, 177 ,488] ,  as an extension of  the two- 
component  duality in the 2-body amplitude. Among the seven components,  only three survive 
for s ~ ~ with t fixed: Two of them are the components  in which resonances in the o~b channel are 
dual to the ordinary Reggeon in the bb channel, and the other  represents non-resonating background 
in the o~b channel being dual to the pomeron exchange in the bb  channel. Then, Reggeon-par t ic le  
scattering reduces to the two-component  picture [ 105] which implies that the ac-system can be 
regarded as quasi-particle in the limit o f s  ~ ~ with t fixed so far as the ac system has neither exotic 
nor vacuum quantum number.  

Under the assumption of  two-component  picture, eq. (3.47) can be written in a semi-local form 
as  

d ( ~ - ~  (a + b -~ c + R e s . ) ~ ( M 2 )  ~k(°)-2~i(t) (3.48) 

for X = resonances (when i = j). In fact this relation is verified in various reactions [268, 193 ,395] .  
A similar relation with %(0 )  = 1 is expected to hold for the non-resonance production.  

If one makes full use of  inclusive reactions, one can test cases which are not  easy in the ordinary 
two-body reactions. One of  the interesting examples is K- + "K +'' forward scattering extracted from 
an inclusive reaction K- + p ~  A + X in the target-fragmentation region. (Here "K +'' means the K + 
Reggeon.) If we select only non-strange mesons (pions) in the product  X, we obtain O~k(0) ~ 0 in 
consistency with the q~-f' exchange [295]. This shows that the p - f  series are dual to the 4~-f' 
Regge exchanges (and not  dual to the p - f )  as seen in the duality diagram (fig. 24). 

- I + K-~  I xK  

p, f )  

Fig. 24. The duality diagram for K~K ÷ -~ K-K +. 
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Fig. 25. 

Another  interesting example is a test of  duality in the BB annihilation processes. Investigating 
the reaction rr- + p ~ p + X in the projectile-fragmentation region, we can obtain the information 
on p + "A++" -+ p + "A++" scattering. If we select only meson resonances as X, we have C~k(0) ~ --1/2 
which is much lower than ordinary meson trajectories [269].  This supports the idea that the meson 
resonances are dual to the exotic exchange (or Regge-Regge cuts) in BB scattering as suggested by 
the duality diagram (see section 3.7). 

On the other  hand, the validity of  the two-component  duality is controversial in p o m e r o n -  
particle scattering extracted from the diffractive production (a = c). A naive argument in the unitarity 
summation leads to the two-component  duality; diffractive resonance production builds the PPR 
component  (o~ i = c~/= P, o~g = R) and the diffractive production of  non-resonating background builds 
the PPP component .  An alternative argument, however, is that the diffractive production always 
builds the PPP component  (hence the PPR does not exist at all). In other words, the diffractively- 
produced resonance is also dual to the pomeron exchange [ 176, 177,]. This is the case in the dual 
resonance model; in the "PPR"- type  coupling in fig. 25 the pomeron singularity appears also in the 
channela as well as in the b and c channels [ 511 ]. Phenomenological analyses so far does not seem to 
discriminate either view point, mainly due to ambiguities of  the separation of  various Regge terms 
[256 ,257  (the former form is favoured); 106, 9 2 , 4 3 3 ,  193 (the latter form is favoured); see also 
267 for discussion]. 

There are some interesting constraints on the pomeron coupling. We refer to a review article [88]. 

4. Direct-channel view point of hadronic reactions 

4. 1. Success and failure of  simple Regge-pole description 

One of  the most important  evidences for the Regge-pole exchange is that charge-exchange 
scattering described by one Regge pole or an exchange-degenerate pair of  Regge poles in the Regge 
pole theory continues to shrink with energy corresponding to the universal slope o~' --- 1 (GeV/c) -2. 
The Regge trajectory was well determined by making use of  experimental data at the Serpukhov 
and FNAL energies which still exhibit clear shrinkage together with those at intermediate energies. 
(For a review, see [33].)  It should also be noted that this strong shrinkage still persists up 
to t ~ - 5 ( G e V / c )  z at intermediate energies (fig. 26). Elastic scattering of  rr-+p also shows shrinkage 
with o~' ~ 1 (GeV/c) 2 at large t where diffraction is not important  [82]. Regge shrinkage is observed 
also for baryon exchange processes [e.g., 4 7 1 , 4 5 ]  and for 7r-exchange processes [ 181 ,524] .  Elastic 
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Fig. 26. The O trajectory deduced from ir-p ~ nOn data [85] in the lab. momentum range 2 < PL < 5GeV/c (from Barger and 
Phillips [56]). The same trajectory determined using the data at the FNAL energies [33] is also shown (open circles). 

scattering where more than two Regge poles with different intercepts are exchanged, appear to show 
no or weak shrinkage. However, if one separates each Regge-pole contr ibution by an appropriate 
method,  ordinary Regge-pole contr ibut ion seems to exhibit strong shrinkage with a ' ~  l (GeV/c)  -2 
(e.g., the co-p  exchange (mostly co) in K±p [450];  the f exchange in ~r±p [145] and in 7p ~ pOp 
[1041). 

Another  important feature of  the Regge-pole exchange is the energy-phase relation. This 
relation is confirmed at t = 0 by making use of  the optical theorem (see, e.g., Bolotov et al. [77] 
for the 7rN charge exchange; Phillips [406] for the K~p ~ Ks°p regeneration), or by dispersion- 
relation calculations [264, 265, 98]. 

The simple Regge-pole model incorporating exchange degeneracy also gives a satisfactory 
description of  the t dependence as well as s dependence for differential cross sections of  charge- 
exchange scattering (e.g., rr-p -+ rr°n, 7r-p ~ r/n, K-p ~ K.°n, K+n -~ K°p, rrN ~ 7rA, rrN -~ r/A, 
K,N ~ KA, KN -~ KA), and for polarizations of  rr±p and K±p elastic scattering. 

On the contrary, there are several experimental data for t < 0 which the simple Regge pole 
model fails to explain, i.e.; 

(1) the non-vanishing polarization for rr-p ~ 7r°n [78, 259],  
(2) the crossover phenomena at t ~ - 0 . 2  (GeV/c) 2 in elastic scattering (non-factorization 

problem [41 ]), 
(3) the absence of  dip at ap = 0 in 7r-p ~ con and 7P ~ r/P in contrast to 7r-p ~ 7r°n and 7rN ~ 7r/x. 

This suggests the necessity of  introducing additional J-plane singularities such as Regge cuts, 
secondary poles and so on. We remember here that the important  consequences of  a simple Regge- 
pole exchange or an exchange of  an exchange-degenerate pair are the followings: 
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(i) Each helicity amplitude has the same energy dependence and the same phase controlled by 
the single ~(t) of  one Regge pole or an exchange-degenerate pair of  Regge poles. 

(ii) The position of  zeros of  the amplitude depends only on the value of  o~(t) and not  on the 
helicity structure of  the amplitude. 

In this section we consider hadronic reactions from the view point of  an s-channel picture as an 
alternative to the Regge-pole description in the t-channel. The s-channel picttire often gives us a 
complementary simple view in case where the t-channel description is complicated. In general, the 
t-channel picture has been successful in describing the s-dependence of  hadronic amplitudes while 
the s-channel picture offers a simple description for the structure of  amplitudes as a function of  t. 

Hereafter we mainly use the s-channel helicity amplitude, since it is suitable for description in 
the s-channel picture. The s-channel helicity amplitude behaves for s ~ co with t fixed as 

f++(AX = O) ~ A' 

~x/%-7 A (A ~ vB if If+-I >> IL,I). L _ ( A X  = 1) 

(Here AX is a net s-channel helicity flip.) See Appendix A. 
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4.2. The impac t-pararne ter representation 

It is of ten very convenient to represent the high energy amplitude as a function of / ,  or equivalently 
to use the impact-parameter (b -- I/q) representation, when we discuss hadron reactions from the 
s-channel point  of  view. Generally it is difficult to obtain the partial-wave representation o f  the 
amplitude directly from experimental data at high energy, without  relying upon precise amplitude 
analyses. However, as a special case, the partial waves of  the high energy amplitude can be obtained 
[ 1471 in the following approximation. Let us consider the K*-p elastic scattering, where both  
pomeron (P) and ordinary Regge poles (R) are exchanged. We neglect the R 2 term compared with 
p2, but  keep the interference term P • R. We also assume the P to be purely imaginary and to 
conserve the s-channel helicity. Further  we assume R to be purely real in K+p as there are no 
resonances in this channel. Since R interferes with P with the same phase and same helicity structure, 
we obtain 

d_o (K+p) ~ i pi 2 
dt 

~--~ (K-p) 2 IPI Im RAx=o, (4.1) IPI 2 + 

where AX denotes the net s-channel helicity flip. Then we have 

do _ _ do + 
Im R~x~0 = {~-~(K P ) ~ - ~  (K P ) } / 2 ~ t  (K+P). (4.2) 

As is shown in fig. 27, Im RAx=0 (at PL ---- 5GeV/c) possesses qualitative features of  the function 
J o ( R ~ )  with R -- 1 fm, which is easily understood by having one dominant band of  partial waves 
centred around l + 1/2 "" qR. In order to have strong Regge shrinkage, however, Jo(Rx/-2-7 ) must be 
multiplied by a shrinkage factor exp {B(s)t} with B(s) ~ e/ln S/So. In the impact parameter  languaget 
this means that the width of  the band expands as Ab(s) "" (ln s) 1/2 with energy. 

• The Hankel t ransform of  exp(Bt)Jo(Rx/C~) is (1 /2B)exp { - ( R  2 + b2)/4B}lo(Rb/2B) ~ ( 1 / 2 ~ )  e x p { - ( R  - b)2/4B}. 
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Fig. 27. The exper imental  result  for Im RAX=o(t)  calculated from eq. (4.2) at PL = 5GeV/c. The curve shows 
1.6 exp (1.3t) Jo(4.8x/sT) (from Davier and Harari [147]).  

Actually, as is expected, the partial-wave decomposi t ion of  the above amplitude exhibits the 
peripheral band centred at l .~ qR ~ 7 (b -~ R = 1 fm) and extends up to 1 ~ 10, which is almost the 
parent trajectory Y* at P L -  5GeV/c (fig. 28). 

Let us now mention the helicity-flip amplitude. The partial-wave expansion of  the imaginary 
part of  the Regge-pole amplitude with the residue function of  the form/3(0 ~ c~(o~ + 1) ... (this 
form has been verified for the helicity-flip amplitude), also has a peripheral band centred around 
b ~ R = 1 fm.¢ (Note that this type of  amplitude has a strong l < qR component  for the helicity- 
nonflip kinematics. ?) Indeed, the partial waves of  the imaginary part of  rr-p charge-exchange 

0.14 0.5 1.0 1.5 2.0 
Old , I I I b(fermi) 

0.08 = - 

0.06 

0.04 

0.02 

0 d 

0.02 

0 .04 

Fig. 28. Partial waves o f  the ampli tude Im R ~ h =  0 shown in fig. 27. The corresponding impact  parameter  is also shown (from 
Davier and Harari [147]).  

?This a rgument  depends on the intercept of  the t-channel trajectory. We consider here the p trajectory with a ( t )  = 0.5 + t. 
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amplitude (the model amplitude of  Barger and Phillips [541 ]) show the same characteristics both in 
the helicity nonflip and in the flip amplitudes [261 ]. 

When contributing partial waves dominate around lo, the position of  the first zero (and possibly 
the second zero) o f  the s-channel helicity nonflip amplitude is given by those of  Plo(Z) ~ Jo(loO).t 
The position of  zeros is assured to be independent  of  energy if lo ~ qR ~ x/s, [ 164, 290, 247 ]. 
(With this relation, the amplitude at t = 0 also grows as ~ x/if, implying o~(0) ~ 0.5, unless the 
dominant  partial waves decrease their magnitude.) Similarly, the zeros of  the helicity flip amplitude 
are given as the zeros of  P~(z) or of  Jl(loO). (Note that the position of  these first zeros just coincides 
to that o f a o ( t )  = a ~ ( t )  = a t ( t )  = OrAl(t)  = 0 . )  Therefore, the first zero in the nonflip amplitude is 
closer to the forward direction than that in the flip amplitude. Thus, the t-dependence depends on 
the s-channel helicity. 

The zero of  Im A' found at t ~- - 0 . 1 5  (GeV/c) 2 and that of  Im vB at t -~ -0 .5  (GeV/c) 2 in the 
FESR analysis of  rr-p charge-exchange scattering just correspond to the above situation. In the 
resonance region (PL ~ 2GeV/c) the parent resonance dominates the daughter resonance and the 
parent trajectory is in accord with the line of  b --- t fm. Actually the impact-parameter represen- 
tation of  the resonant amplitude in its energy region exhibits the dominance of  peripheral partial 
waves [216], producing zeros at t --~ - 0 . 1 5  and - 0 . 5  (GeV/c) 2 in the helicity nonflip and flip 
amplitudes respectively [164,217]  (see figs. 29 and 30). 

On the other hand, in the t-channel Regge pole model the imaginary part of  each t-channel 
helicity amplitude has zeros at ce(t) = 0, - 1 ,  - 2 ,  ... by exchange degeneracy and their positions 
depend only on o~(t) and not on any helicity structure. The Veneziano model eliminates the 
difference between the flip and nonflip angular distributions by~ having strong daughters (fig. 31). 
Both the low and the high energy analyses suggest that the t-channel pole model with exchange 
degeneracy must be modified by additional J-plane singularities and the substantial suppression 
of  daughters is needed. 

We now briefly touch on the real part. In general, if Im f ( v , t )  -~ v c~t) for v -~ oo with t fixed, 
Re f ( v , t )  ~ v c~t) (;-1 - cosrrc(t))/sinTrc(t) according as f ( v , t )  is crossing even or odd. (Even if a 
logarithmic factor is present, this relation is true in the limit log v -+ ~ [311 ].) Provided that 
Im A (v,t)  is dominated by the l "~ qR partial waves, and the above relation between the phase and 
energy dependence is obeyed, it is usually impossible to have the l "~ qR partial waves that 
dominate the real part. This is really the case both for the helicity nonflip and flip amplitudes 
[e.g., 422, 261 ]. 

Absorpt ion  models  
The absorptive correction due to the Regge-pole-pomeron cut is one of the prescriptions to 

suppress the low partial waves in the Regge pole model [18, 19 ,313 ,254 ,  431 ; see 299 and 405 for 
reviews]. According to the absorption model, the strong competi t ion among many open channels 
suppresses the contribution of  low partial waves through unitarity: Namely in the absorbed ampli- 
tude f t  = Rt + i~Pt" Rg (R = Regge pole amplitude, ~ = strength of  the absorption), the pomeron 
amplitude P( is almost purely imaginary and contains strong low partial-wave components,  then the 

fFu r the r  ou t  in t the zeros are not  found  at the posit ions of  zeros of  Jo(Rx/ZT) nor at those of Plo(Z) owing to the strong 
cancellations within the band of  impor tan t  partial waves. In reality, zeros o f  Im RLx,k=I are found at t -~ - 0 . 5 ,  - 1 . 5 ,  - 2 . 5  (GeV/c):  
in n-p ~ rr°n (see section 2.3). Zeros of  helicity nonfl ip ampli tude in the same reaction also appear to be spaced by At --~ l (GeV/c)  ~ 
[178].  The ~r~r FESR (p exchange) also suppor ts  the equal spacing of  zeros; t -~ 0.4, - 1 . 4 ,  - 2 . 4  (GeV/c) 2 [489].  
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Fig. 29. (a) Imaginary part of  the resonant amplitude of  KN scattering (I t = 0, Ah = 0) as a function of  impact parameter b in the 
resonance region (0.8 ~< PL ~ 1.8GeV/c). (b) The similar figure for the non-resonating background amplitude (from Fukugita and 
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Fig. 30. First zeros of  the prominent  Y* resonances on the Mandelstam plane as contributed to the helicity nonflip (open circles) 
and to the helicity flip (solid circles) amplitudes. 
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low partial-wave components  of f#  are largely reduced from the original Regge-pole amplitude. Thus, 
the Regge cut acts so as to make the amplitude to be peripheral. 

There are two schools of  absorption models: the so-called Argonne model (the weak-cut model) 
and Michigan model (the strong-cut model). There was a long controversy between these opposing 
schools, but  it appears phenomenologically that neither is right in its original form (for reviews, see 
[405, 198]). A common difficulty in all existing Regge-cut models is that they cannot reproduce the 
strong shrinkage especially for large t. Another  trouble is that the absorptive cut makes not only the 
imaginary part peripheral but also has a tendency to make the real part more peripheral. This raises 
severe difficulty in reproducing the polarization of  rr-p ~ rr°n [515]. No successful Regge-cut model 
is known yet. It is a very important  task to find a cut model which incoporates: 

(i) duality (including exchange degeneracies), 
(ii) "absorpt ion" effects which are sometimes strong enough to make the imaginary part 

peripheral, 

(iii) correct energy-phase relation for the amplitude in which the Regge-pole amplitude is already 
peripheral, 

(iv) Regge shrinkage consistent with o~' ~ 1 (GeV/c) -2, especially at large t (at least in the inter- 
mediate energy region). 

4.3. Dual absorptive models 

Assuming that the imaginary part of  the ordinary Regge component  is dominated by resonances 
locally at any energy s, and that the prominent  resonances obey a relation of  the form l cc mR =x/if, 
Harari proposed the following phenomenological picture summarizing the empirical regularities of  
two-body hadronic reactions [247 ,248] ;  

(i) The imaginary part of  the R-component  is dominated by the peripheral partial waves with 
R ~ 1 fm and therefore is given by a function of  the form "J~x(Rv'-27) '' in the small t region. (Here 
"J, xx" is meant  to be a function which has the same characteristics as Ja~, eBt.) In the language of  
the t-channel exchange picture, it is assumed that one will have a Regge cut which makes the 
amplitude to be peripheral when a single Regge-pole exchange is not  yet  peripheral. 
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(ii) The P-component has substantial contribution from all l (<~qR) partial waves and is given by 
a smooth function of  t such as e ct. Furthermore, as the first approximation, the P-component is 
assumed to conserve the s-channel helicity and to be purely imaginary in the small t region. 

(iii) When the imaginary part of  Regge-pole amplitude is already peripheral and thus the 
Regge-cut contribution can be neglected, the phase of the amplitude approaches to an asymptotic 
value at lower energies and has the Regge phase. On the contrary when the Regge-pole amplitude 
is not peripheral, one should have a large contribution from Regge cuts and the phase approaches to 
an asymptotic value very slowly. In this case, the real part is not predictable. 

In this picture, the scattering amplitude with the o - A 2 - f - w - e x c h a n g e  has the form such as 

Im Rax=o ~ "Jo(Rx/-sT) '', ReRax=o ~ unpredictable, 

Im Rax= 1 ~ "J~ ( R x ~ ) " ,  ReFax= 1 ~ Im R ax= ~ × (appropriate signature factor), (4.4) 

namely Rax=0 is substantially modified while Rax= l agrees with the predictions of  the simple Regge 
pole model. We now summarize how the characteristics of  various reactions for small t region can 
be understood [246, 247, 248]. 

(1) Elastic reactions: (i) The differential cross section is given by do/dt ~- [PI 2 + 2 [PI " Im R/,x=o. 
Since Im Rax=0 ~ "Jo" (a sum of  s-channel resonance) should be positive in an elastic amplitude at 
t = 0, we have do/dt(~,B) > do/dt(AB) (A = 7r, K; B = N) at t = 0. There are cross-over phenomena 
at t --- = - 0 . 2  and - 1.2(GeV/c) 2, since "Jo" changes sign at those points. The dip or break at t = - 0 . 6  

-0 .8(GeV/c)  z which dies away with the increasing energy is interpreted as the minimum of  "Jo". 
So far, this has been interpreted as a double-zero arising from the no-compensation mechanism 
/3(t) ~ o ~ 2 ( t )  in the Regge pole model [ 121 ]. (ii) The polarization is given by P do/dt ~ 2 IPI" Re Rax=l, 
which takes the form J~ X (appropriate signature factor) ast 

7r-+P -+ 7r-+P P ~ +Jl tan zro~ 
2 

K-p -+ K-p ~ J l  c o t T r ~  ~ g c Y t  cosTro~ 

1 
K+P -+ K+P ~ J 1  • ~ ~ '  

SlnT/O~ 

These are just the same as in the Regge pole model. 
(2) The prominent features observed in inelastic cross sections are the presence or the absence of  

dip at t = - 0 . 5  ~ -0 .6 (GeV/c)  2. This dip occurs when only the vector trajectory is exchanged and 
further AX = 1 amplitude is dominant.  As was seen in sections 2.3 and 3.5, the coNN and the fNN 
vertex conserve the s-channel helicity, and the pNN and the A2NN vertex are dominated by the 
helicity flip. For the boson vertex, the helicity structure of  the R e g g e o n - 0 - -  1- coupling is not 
unique, but it is usually assumed to be the same as that of the Reggeon-0--3 ,  coupling (the 
helicity-flip dominance). Thus we are led to the dip systematics in table 12. 

Finally we add a remark that the simple Regge pole model for the p-w-f-A2-exchange 
correctly predicts the AX = 1 amplitude. For example, the angular distributions of  charge exchange 

scattering and of  polarizations of  elastic scattering, which are dominated by the AX = 1 amplitude, 
are correctly given. On the other hand it fails in the case of  the AX = 0 amplitude.* For example, 

t T h e  f and to conserve the s-channel helicity, so that  their con t r ibu t ion  to polar izat ion is negligible. 
~:There are many  indications,  however,  that  at t = 0 the Ah = 0 ampl i tude seems to be well described by a pole alone; (i) the 

energy-phase relation, (ii) the line-reversal equali ty for an exchange-degenerate pair o f  react ions,  (iii) results f rom FESR or 
CMSR for rr-p charge exchange at t = 0, (iv) the effective-pole analysis of  Barger and Phillips, in which con t r ibu t ions  of  the 
0' vanishes at t = 0 in n -p  ~ ~r°n. Off  the fo rward  direct ion this is no t  the case. 
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Table 12 

Systematics of dips at t -~ - 0 . 5  ~ -0 .6  (GeV/c) 2 

processes Regge poles vertex helicity flip dip? 
meson nucleon net 

n-p ~ ~r°n 
n+p ~ noah+ p 0 1 1 Yes 

n-p ~ ~n 
n+p ~ .~A++ A 2 0 1 1 No 

K-p ~ K°n, KA 
K+n -~ K°p,  KA +-P + A2 0 1 1 No 

~rN ~ toN, ~ A  O 1 1 0 or 2 No 
7rN ~ oN (separating I t = 0) ~o 1 0 1 Yes 

~'P ~ nP p 1 1 0 or 2 No 
"rP --* n°P w 1 0 1 Yes 
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the cross-over phenomena,  cross sections of  nN -~ coN and 3'P ~ r/p, and polarizations of  charge- 
exchange scattering, which are controlled by the AX = 0 amplitude, are not given correctly. 

Some remarks on the peripherality 
The simple picture based on the peripherality of  the imaginary part leads to the qualitative 

understanding of  the characteristics of  hadronic reactions• We have clear evidences for the 
peripherality of  the P and co exchanges as seen in the cross-over phenomena in n-+p, K+-p and 
pp (pp) elastic scattering [e.g., 11, 83]• There is, however, some controversy as to whether  the 
peripherality holds for any Regge exchange, especially for the tensor exchange, because of  the 
difficulties in separating the contribution of  each exchange (see [ 199] for a review). 

As regards the f exchange, for example, the dip at t ~ -0•6  ~ -0 .8 (GeV/c )  2 in the do/dt(zr-p) 
+ do/dt(n+p) which is observed to disappear as the energy increases allows two different 
interpretations; (i) peripheral (as a minimum of  J0) [230, 145], (ii) non-peripheral (no-compensation 
mechanism) [42]• The separation of  the f exchange from the pomeron using their energy depen- 
dences shows that the f exchange is peripheral if Olp . . ~  0.7(GeV/c) -2, while it is not peripheral if 
o~ ~ 0.4(GeV/c) -2 [63, 42]• The effective slope o f  pomeron trajectory seems to decrease with 
increasing energy as has been found in K+p and pp scattering• If we take a value ot~, - 0.77(GeV/c) -2 
corresponding to K+p scattering in the relevant energy region [42], the f exchange should be 
peripheral• (This value o f  a], brings an appreciable real part to the pomeron component  for t 4: 0.) 
Another  way to separate the f exchange is that by the resonance approximation. The dominance of  
peripheral resonances in the FESR calculations, which has led to the 0 exchange to be peripheral, 
may also make the f exchange peripheral. Actually, the FESR calculation with resonance saturation 
gives a zero at t --~ -0 .25(GeV/c)  2 in the A' amplitude [224]. 

in K-+N scattering, the assumption of  resonance saturation leads to the vec to r - t ensor  exchange 
degeneracy, which implies that the f and the A2 exchange should show same shapes in the impact- 
parameter representation as that of  the co and the 0, respectively• The imaginary part of  the 
amplitude corresponding to the P + A2 or the f + co combination in KN scattering is shown to be 
peripheral at the intermediate energy* [216]. If the tensor exchange turns out to be non-peripheral, 

*The evaluation of  FESR using partial-wave data often suggests the non-peripherality of the A 2 exchange [143, 179]. The 
results, however, heavily depend on the input phase-shift data of  K+n and K+p (see section 2.3) and those results seem to be 
unreliable. 
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the K+N channel should have substantial imaginary part apart from the diffraction. 
The K** exchange is often reported to be non-peripheral [47, 125]. This is a reflection of  the 

breaking of  exchange-degeneracy among Y*'s in lower-daughter level, which gives central imaginary 
components  to the reaction KN ~ rrZ(A). The reaction KN ~ rrt; (A) still keeps a peripherality in 
the imaginary part. 

The amplitude having a rotating phase, i.e., the amplitude corresponding to a planar duality 
diagram, always seems to keep its peripherality, even if a separation of  tensor exchange would lose 
its peripherality. 

The peripherality for baryon-exchange processes will be discussed in section 4.7. 

4. 4. R e s o n a n c e  m o d e l s  

Duality asserts that the imaginary part is represented either by resonances or by Regge exchanges, 
but it does not  say directly much about  the real part. 

In order to discuss the real part, we start off  with the dispersion relation 

= 1 dv' Im (v',t) + 1 dr' Im f ( v ' , t )  
- -  t 

f ( v , t )  7r _ ~ v - v  lr v - -v  
0 

o o  

[ ,  ,,1 _ 1 f dr '  + v' + Imf(v ' , t ) .  (4.5) - 

0 

Here the first and the second terms receive contributions from the u-channel and the s-channel 
resonances respectively, so that we have 

f ( v ,  t) = +~.(u-channel resonances) + ~. (s-channel resonances) (4.6) 

in the resonance approximation. Correspondingly in terms of  the Regge expression, 

f ( v , t )  ~ [~-1 - e-i"~ls~ = ~s '~ - ( - s )  ~. (4.7) 

Here the second (or first) term represents the s-channel (u-channel) discontinuity, i.e., the full 
Regge behaviour originates from two parts: s '~ that comes from u-channel resonances and ( - s )  ~ 
from s-channel resonances. 

Coulter, Ma and Shaw [132] noticed that the first term of  eq. (4.5) or (4.6) is purely real and 
smooth,  and thus can be well approximated by the first term of  eq. (4.7), while the second term of  
eq. (4.5) or (4.6) varies rapidly with energy and only its average is given by  the second term of  
eq. (4.7). They proposed that the sum of  the first term of  eq. (4.7) and the second term of  eq. (4.6), i.e., 

• -s ~ +~.  (s-channel resonances) (4.8) 

gives a good approximation to the non-diffractive part o f f ( v , t )  in the energy region with fluctuation 
due to resonances. 

This prescription becomes most explicit in terms of  the Veneziano model. Namely, when the 
amplitude is expressed as 

(s , t )  + (s ,u)  + (u , t ) ,  (4.9) 

the sum (s , t )  + (s ,u)  which has s-channel discontinuities and thus corresponds to the second term of  
eqs. (4 .5 ) - (4 .7 )  should be replaced by the sum of  s-channel resonances. (The (u , t )  term shows 
precocious Regge behaviours, since it is in the opposite  side of  wedge where the asymptot ic  
expansion is impossible. This can be seen experimentally in K+N scattering.) In general, when one 
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considers the resonance model, it is more convenient to separate the amplitude into bivariate 
terms as in eq. (4.9), rather than to separate it into signatured terms. 

This interference model  is different from the old one [34] in which the amplitude is given by 
the sum of  a full term of  eq. (4.7) and the second term of  eq. (4.6), thus leading to the double- 
counting problem (see section 3.2). The opposite approach has been used by several authors [ 160, 
137] who used only the s-channel resonances (the second term of  eq. (4.6) alone and no Regge 
terms) for the full amplitude. It is obvious from our consideration that neither of  these two models 
is in agreement with duality. 

When the above prescription is put  into practice, there still remain some problems in the 
treatment of  the (s , t )  term, since one can take into account only a finite number of  s-channel 
resonances in some energy domain. Specifically: 

(i) Contributions from the tails o f  far-away resonances (especially those from the high-energy 
tails of  lower-energy resonances) are hard to take in. This problem is crucial for the real part, 
since the real part is not saturated locally by resonances. 

(ii) It is difficult to evaluate the contributions from daughter resonances which are not  identified 
as individual resonances because of  their large widths and their small elasticities. 
These problems become serious in the forward region where all resonances contribute constructively. 
This prescription is, however, successful in the description of  backward scattering where many 
resonances cancel against each other and the fluctuation of  the amplitude is still prominent.  It is 
often used for the determination of  resonance parameters [ 132, 344, 345 ,420] .  

P e r i p h e r a l - r e s o n a n c e  m o d e l s  

Let us argue the amplitude which is constructed collectively by the resonances with strong 
coupling along the line l ~ q R .  We consider here the amplitude corresponding to the (s , t )  term. 
(For the (s ,u)  term one has only to replace z by - z  in the subsequent discussions.) The imaginary 
part of the amplitude is dominated by the peripheral partial waves with l ~ q R ,  since it is 
dominated locally by the resonances. The resonances, however, do not dominate locally the real 
part. Instead, the low-energy tails o f  high-mass resonances contribute to the real part for l > q R ,  

while the contribution from the high-energy tails o f  low-mass resonances dominates for l < q R .  

Therefore, the real part of  the amplitude changes its sign at l ~ q R ,  or b ~ R (fig. 32) [ 289, 216, 
461 ]. (This sign change is also seen in the partial waves of  the Regge-pole amplitude.) As a 
consequence of  the collective distribution of  resonances along a line l -~ q R ,  one has an amplitude 
of  the form f ( b )  "~ 1 / (b  - R - l ab /2) .  

The model based on the peripheral band of  resonances differs from the optical or geometrical 

f(b) 
( s . t )  

Im(u,t) ~ 0 

Fig. 32. Schematic view of  the ampli tude with the peripheral-resonance dominance as a funct ion  o f  impact  parameter  b. 
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model [ 139, 231,476,  140] or the strong-cut model [313,254,  431 ], in that the real part is never 
dominated by peripheral partial waves in the resonance model while the real as well as the imaginary 
parts are peripheral in the latter models. 

We now consider the angular distributions. Suggested by the above arguments, we assume that 

f l ( s )  ~ 7(s) 
l - k(s) ' (4.10) 

where &(s) is an effective " trajectory".  The real part of  &(s) is taken as Re &(s) ~- qR, and the 
imaginary part corresponds to the width of  peripheral band, i.e., Im &(s) ~ qAb/2.tJ; It is convenient 
to follow the Sommerfeld's t reatment  [475] to get a sum of  partial waves [318, 462]. By ignoring 
the background integral, we obtain 

f(s,t)  ~-- - a(s) P~(s)(- cos0s) 
sinTr&(s) (4.11 ) 

In the small t region, this amplitude can be approximated by the Hankel function of  the first kind, 
Hi(z)  - J n ( z )  + iNn(z) [ 2 8 7 , 2 2 2 , 4 6 1 , 4 6 2 ]  as 

(One has only to replace Pz by P[ and H~0 by H~ for the helicity-flip amplitude.) A divergence at 
t -- 0 in the real parts of  eqs. (4.11) and (4.12) can be removed by taking into account the correct 
behaviour of  fl for l ~ ~ (.¢) ~ exp { - 2 ~ l / q } )  in eq. (4.10) [ 243 ]. For t ~< - 0 . 2  (GeV/c) 2, where 
the large l behaviour o f f l  is not so relevant, eq. (4.12) has a phase factor ~ exp ( iRx/-~) .  The 
comparison with the Regge phase immediately gives us the effective t-channel trajectory, o~ef f ( t )  

- (R/Tr)~-7 + constant. § Here the constant is the phase of  the residue function a(s). (The a(s) 
could also include a log s term accompanied with its phase.) This trajectory is almost linear in the 
small t region of  our interest except for [tl < 0.2(GeV/c) 2, and is in good agreement with o~p 
= 0.5 + t [463]. 

The amplitude for AX = 1 constructed in this way has a t-dependence similar to that of  the 
Regge-pole amplitude in the small t region except for t ~ 0. The model also accommodates the 
peripherality of  the imaginary part for both A)t = 0 and AX = 1 amplitudes. The peripheral- 
resonance model is successful in describing the t-dependence of  each helicity amplitude, while it 
needs additional assumptions to explain the s-dependence of  the amplitude .[318, 222, 463 ,243] .  

The amplitude f (b)  corresponding to the (u,t) term is given by a sum of  the tails of  u-channel 

t T h e  width of the peripheral band  should not  be confused with tha t  of the individual resonance. In the low-energy region such as 
PL <~ 2GeV/c,  Im o7 is controlled by the width of individual resonance [318 ,243  ]. Therefore, the meaning of the model is somewhat 
different f rom tha t  at higher energies. 

:~An example of the  analytic expression of such a " t ra jec tory"  is [461 ] 

 -log  fors>0 
&(s) = _--R x/2~_ log -s__= ~r -2-  o 

2 So _ R_ , / ~  log~ 
~r 2 so for s < 0. 

§ Equat ion (4.12) also includes a factor exp ( - I m  &(s)x/~7/q }, which ~ves a shrinkage. If we put  Im & (s) = R x/~-log (S/So)/2~r 
(seepreceding footnote) ,  we have exp { - I ra  a(s)x/L-T/q} = (S/So)-nX/27/rr = (S/So)aeff(O. 
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resonances. It is expected to be predominantly real and negative definite and has behaviour smooth 
in b (see fig. 32). It is interesting to observe that impact-parameter distributions corresponding to 
the combination - (u , t )  + (s,t) are in qualitative agreement with empirical ones (fig. 33) obtained 
in rrN charge-exchange scattering [422, 261 ] for both  real and imaginary parts as well as for both  
AX = 0 and AX = 1 amplitudes. There have been several at tempts at explicit construction of  the 
(u,t) term; by making use of  the line-reversal equality f (u , t )  "" If(s,t)l, [2221 or by continuing 
analytically the (s,t) term to s < 0, [463, 2421. 

4. 5. s-channel picture o f  t-channel couplings 

We have already seen that if we assume the towers of  direct-channel resonances with spin IR and 
momentum qR satisfying the relation IR ~ qRR, the fixed-t structure of  the amplitude is assured and 
a sum of  direct-channel resonances produces the Regge exchange (with possible Regge-cut correc- 
tions). In this section, we elucidate how the same s-channel resonances build the t-channel Regge 
exchange with different coupling patterns. 

We take the KN scattering as an example. It has been known by many partial-wave analyses that 
the two series o f  parent resonances A~-A7  and ~ - ~  with the impact parameter ~ 1 fm dominate 
the imaginary part o f  non-diffractive amplitudes. Let us first consider the I t = 0 amplitude (in which 
the f and co are exchanged) at t = 0. The A a - A .  r and the Z s - Z a  contribute additively to the AX ; 
0 amplitude (f++) such as ½ (A~ + A~) + a 2 (Zt3 + E 6), while they contribute destructively as - ½ (A s + A~) + 
~(2;~ + Z~) to the AX = 1 amplitude (f+_) (see Appendix). Hence we have Im f++ >> IIm f+-I for the f -co  
exchange at t = 0, so that we have [f++l >> If+_l if the appropriate signature factor is taken into account.  
As for the It = 1 (p -A2)  exchange, the A ~ - A ~  and the Z~--Z~ contribute to the helicity amplitudes 
as ,  

I m f + + : ½ ( A ~ + A . r ) - ½ ( Z a + Z ~ ) ,  Im f + _ : -  ½(Aa + Av) - ½(2;~ + ~ ) .  

We obtain IIm f+_l >> IIm f++l, and hence [f+-I >> If++l for the p and A2 exchanges at t = 0. When 

\ 
\ 
\ 

\\ / / " x _  

' , ' . 'o '  ' J  b(fm) 

\, X f:_ / ,MAG PART 
"',,. i / ~ ----- REAL PART 

Fig. 33. Partial waves of  the s-channel helicity amplitudes for nN charge-exchange scattering at 6(GeV/c). (We show them as a 
function o f  impact  parameter.) The elaborate Regge fit of  Barger and Phillips' is used as the input amplitude [ 261 ]. 
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particular resonance series dominate,  the kinematical difference of  the s-channel helicity amplitudes 
thus leads to the difference in Reggeon couplings.t 

The factorization of  t-channel exchanges also requires the helicity-nonflip dominance of  the f 
exchange and the helicity-flip dominance of  the p exchange in rrN scattering. This is indeed ensured 
by the dominance of  the A6 and the N~ (and the N7) in the s-channel. 

An example of  the whole correlation between the t-channel Reggeon coupling and the s-channel 
resonance coupling can be seen in the crossing-invariant solution of  the exchange degeneracy (see 
section 3.5). 

The factorization property in the t-channel seems to be well satisfied at t = 0. In the broken 
SU (3) world, however, the breaking of  the factorization in the t-channel is apparent in the 
t-dependence of  the amplitude, as it reflects a difference in the structure of  s-channel resonances. 
For instance, since the forward slope of  the amplitude is related to the average radius of  interaction 
as B/2  = (~lnf/i~t)t= o ~ (b2)/4 ( f=  e x p { B t / 2 } ) ,  a difference in the s-channel trajectories, say 
~N*,zx > ~v * ,v~, leads to a difference in the forward slope of  the amplitude; Bi(rrN) > Bi(KN) for 
each Regge exchange i. Such difference in the average radius of interactions would cause a 
breaking of  the line-reversal equality of cross sections in hypercharge-exchange reactions: The 
slopes of  rr induced reactions (rrN -+ KA(I;)) are steeper than those of  g. induced reactions 
(KN -+ rrA(2;)). The position of the amplitude zero also reflects the impact-parameter of  s-channel 
resonances; e.g., for the p exchange, we can see the first zero at t = - 0 . 4  ~ - 0 . 5 ( G e V / c )  2 in rrrr 
scattering corresponding to the small impact parameter of  the O and f resonances (b = 0.7 ~ 0.8 fm), 
while we can see that  at t --- -0 .2(GeV/c)  2 in rrN or KN scattering. 

4. 6. Dual i ty  in exot ic  peaks  

The reaction with the exotic crossed channel such as K-p ~ K°n in the backward direction 
provides us an instructive example for the duality and the resonance picture. At low energies, the 
K-p ~ K°n reaction contains Y* resonances in the s-channel, and we can see a strong backward 
peak in this reaction for PL ~< 1.5GeV/c (fig. 34). The FESR duality, however, implies that these 
resonances should average out to zero at fixed u. Then one may suspect that the observed peak is 
consistent with the duality. 

Figure 35 shows the amplitude in the backward direction. Here we can see the alternation of  the 
amplitude around zero with the phase which is 90 ° ahead (or equivalently As ~ 1/2o~' behind) in 
the real part compared with the imaginary part. Since the neighbouring resonance towers have 
alternating signs, an averaging to zero occurs when integrated over a sufficiently large interval 
(As --~ 2/o~'). The individual resonance tower, however, makes the backward peak. Namely, we have 
(f( 180 °))Ave. = 0 but (do/dt)150 ° = (be(180 °)i 2)Ave. @ 0. As total widths of  resonances increase with 
energy (mRPR >~ 1/c~'), the adjacent resonance towers tend to overlap, and thus the backward peak 
falls off  rapidly [84]. 

Experimentally, the 180 ° (or 0 °) cross section of the exotic reaction is known to fall off  as 
s -9-5 ~ s -t° (Chabaud et al. [ 101, 102, 103 ] and Eide et al. [ 173 ] for K-p ~ pK-, pp ~ K+K - and 
pp ~ pp; Akerlof et al. [3] for rr-p -+ K+Z -, K-p ~ rr+Z - and K-p ~ K+~,-). * The backward peak is 

tWe can see the fixed-t zero characterist ic of the Regge exchange persisting down to PL -~ 1 GeV/c in the helici ty ampl i tude  in 
which resonances add constructively,  such as Im f.÷(l t = 0) or Im f÷_(l  t = 1). On the other hand, a large cancellation makes the 
ampl i tude  such as Im f÷_(I t = 0) or Im f.+(l t = 1) qui te  small and there can be seen a large f luctuat ion with energy. Such ampli tude 
does not exhibi t  regularities unt i l  the energy becomes sufficiently high and widths of resonances becomes broad enough [217, 215].  

~We exclude here a data point  of  n -p  ~ K+I; - at the highest energy, where the s-dependence seems to become flat as ~s -2. This may 

be regarded as an evidence of the onset of Regge-Regge  cuts. 
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Fig. 34. Differential cross section for K-p --* K°n  (data from Armenteros et al. [ 16], Litchfield et al. [331 ]). Strong backward 
peaks in a low-energy region should be noted. 
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Fig. 35. Real and imaginary parts o f  the backward amplitude for K-p ~ K°n  (from Bricman et al. [84]). 
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often observed even at considerably high energy such as PL - 5 GeV/c*, though the cross section is 
quite small compared with a non-exotic o n e :  OK-p(180°)/OK+p(180 °) ~ 1/100, [101 ]; O~p~K+K-(0°)/  

O~p_.K-K+(0 °) ~ 1/200, [103]. 
This pattern of  semi-local cancellation is also realized in the Veneziano model with the Regge 

trajectories spaced by two units of  angular momentum [279, 172]. Let us con:,ider 7r+Tr --> zr+Tr - 
scattering, for simplicity. Since odd-daughter trajectories are absent in this model, only even (or odd) 
angular momentum states are present in each resonance tower, which give a fo rward-backward  
symmetr ic  contribution to the amplitude. The crucial difference between the forward (non-exotic) 
and the backward (exotic) peaks is the alternating signs of  subsequent resonance towers in the 
backward peak. The behaviour embodying exotic characteristics arises only through the introduction 
of  total widths, namely the introduction of  an overlap between subsequent resonance towers. 

The B4 amplitude is expressed as a sum of narrow-width resonances, 

B4(s , t )  = E Fn, t Pl(z) .  (4.13) 
n,~  n - ~ ( s )  

To introduce total width, let us replace expediently o~(s) in eq. (4.13) by o~(s) + Jim o~(s). Then 
we have 

B'4(s,t) = ~ I'n,t P~(z). (4.14) 
n,t n - a ( s )  - i I m  o ~ ( s )  

This corresponds to the prescription "keeping z fixed, replace o~(s) by o~(s) + Jim o~(s) in the B4 
amplitude (4.13)" [450,279,  172]. This amplitude leads to 

B'4(s,t) ~ - -  F(1 - a( t ) )  e -iTra(t) (O~'S) a(t) (4.15a) 

in the forward direction, and 

27rie-'Im a(S)e iÈ~(s) { 1/1-' [o~(u) + i Im ot(s_____~) u]} (c~'s) ~(u) (4.15b) 
4q 2 

in the backward direction. Therefore, the amplitude B'4(s,t) exhibits the Regge behaviours at small t 
and starts to deviate from it as Itl increases and then it changes smoothly into exotic behaviours 
at small u with the following characteristics: 

(i) The amplitude exhibits the oscillation with a damping factor ~ e x p  {-zrlm ~(s)} 
= exp{-zrol'msI's}with a phase which is 90 ° ahead in the real part, caused by the cancellation of 
neighbouring resonance towers with the alternating signs. 

(ii) There appear distinct backward peaks with slopes and relative heights similar to the non- 
exotic ones, even though no Regge exchange is allowed in the u-channel. 

Thus eq. (4.15b) concisely embodies our empirical knowledge of  the exotic amplitude. The 
s-channel resonance models such as stated in section 4.4 [318 ,243]  also have similar behaviours; 
i.e., If(s,O = zr)/f(s,O = 0)l ----- e x p ( - r d m  &(s)}. 

Several authors [39,314,  95] have postulated a local cancellation between the even- and the 
odd-daughter resonances without semi-local averaging over two towers of  resonance. Indeed the 
conventional B4 model of rr+zr - scattering (o~(s) = 1/2 + s,/a ] ~ 0) shows complete local 

tThese peaks had usually been attributed to the Regge-Regge-cut exchange [365,414]. Such exotic cut, however, cannot explain 
the s-dependence of the rapid fall-off. 
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cancellation at u = 0; but  this cancellation does not happen at almost all other  u-values. Thus the 
semi-local cancellation turns out to be essential also in this case [84]. 

In the m e s o n - b a r y o n  system the situation becomes slightly more complicated because of  the 
presence of  the two independent  amplitudes. Take KN scattering as an example. As was discussed 
in section 4.5, we have if+-I >> If++l at t = 0 in K-p ~ ~o n, which gives a turnover in the forward 
direction. Since the d-function has symmetry  in z, the inequality continues to hold also in the backward 
direction, when the overlap between resonance towers with opposite  signatures is still small. Hence 
a sharp backward peak would arise in such a case (see fig. 34). On the other  hand, we have 
br++l >> If+_ I in K-p -+ K-p even apart from the pomeron contribution, so that the shape of  backward 
cross section tends to be more or less flat. The backward peak is thus less prominent than in 
K-p ~ K°n [214].  

An interesting example can be seen in A(+)(rrN), which possesses characteristics of  the exotic 
peak, i.e., 

(i) IA(+)I 2 has a forward peak decreasing rapidly with energy. 
(ii) Both Re A(+)(0) and Im A(+)(0) alternate around zero with the phase which is 90 ° ahead in 

the real part (fig. 36). This suggests that A (+) is described by only the (s,u) term, owing to the 
decoupling o f f  from A (+) amplitude though the t-channel is not exotic (cf. eqs. (5.5) and (5.6)). 

4. 7. Duality for baryon exchanges 

At the end of  this section, we argue the baryon-exchange process. This process is interesting, 
because the baryon-Regge-pole amplitude, when extrapolated to its resonance pole, is connected 
to the knowledge of  the direct channel. Here we shall be confronted with the problem characteristic 
of  baryon system such as parity doubling. 
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Baryon Regge poles 
We begin with some kinematical considerations. The baryon exchange is reggeized with respect 

to the parity-conserving kinematical-singularity-free helicity amplitudes [220, 124, 35], 

f± (x /u , s )  = ~-(A + MNB) - v ' u B ,  

such as 

/e. (X/~,s) = 7_.(X/~)R(~±) 1 + rexp (-irrff ± ) is - t'! ~-*, 
sinrrff + ~ S o  

(4.16) 

,4.17) 

where R(ff  ±) = 1 /F(a  -+ + 1) for instance (a-+ -- a -+ 1/2). The MacDowell symmetry (A.20) leads us 
to the relation 

¢x+(x/~) = a - ( - ~ ) ,  7+(x/~) = - 7 - ( - x / ~ )  (4.18) 

between the Regge poles [234].  Here -+ indicates the naturality rP of  Regge poles. In this 
section, we assume the trajectory to be linear,* i.e., a+(x/u) = a-(x/~)  - a (u )  = a 'u + a0. 

At a resonance pole, u = M~, the A' and the B amplitudes behave as s JR-l/2 for s ~ oo (A' = A + MNB in 
this limit). One can easily deduce the constraints from eq. (4.16) [456[,  

[A'/B],,=Mh = +MR for rP = +. (4.19) 

The Gribov relation, eq. (4.18), implies that if a trajectory is linear (even in x/~), another trajectory 
with the opposite parity should be degenerate. However, no known resonance seems to exist in parity 
doublets.* Equation (4 .19) jus t  corresponds to the condition for no parity doublets.  

One way out  o f  this difficulty is to assume that the residue of  one of  the twin trajectories 
vanishes when ff passes through a physical integer, i.e., to require eq. (4.19) at each resonance pole. 
This implies that 3,+(@) contains a factor ~(1 +@/MR) for each rP = + resonance. Phenomen- 
ological baryon-Regge residues contain this factor or its product eliminating one or several parity 
doublets [e.g., 124, 35 ,456 ,  2 7 7 , 2 9 1 , 3 3 8 ,  63]. One can also eliminate an infinite number  of  
parity doublets, if necessary, by introducing a transcendental function § [370 ,478] .  

Another  way is to introduce a fixed cut in the angular momentum plane at u -- 0 [97]. This 
prescription requires eq. (4.19) to hold not only at resonance poles but  for any u > 0, i.e., 

[A ' /B]~±~ = -+x/u for any u > 0. (4.20) 

Thus, in order for A' and B to be analytic, one has to introduce a cut with a branch point at u = 0, 
which would move parity doublets  into an unphysical sheet. In the Carlitz-Kislinger model [97],  A' 
contains only poles while B has very strong cut contributions. In this model, the simple relation is 
lost between scattering regions and resonance regions. Further, this prescription is not  satisfactory 
in phenomenological analyses [65 ]. 

tArguments  for non-linear-trajectory will be given in section 5.5. 
:~Once pairs of  the N's and of A's at J = 5/2, i.e., the pair Na(1688) and N0(1670) (Am 2 - 0.06GeV ~) and the pair Ac~(1815) and 

At3(1830) (Am ~ ~ 0.05 GeV~), were considered to be evidences of  such parity doublets [37, 38]. However the ]~ members of these 
multiplets, ~a(1915)  and ~j3(1765), are obviously non-degenerate (Am 2 ~ 1/2GeV~). Further since we have txXSt3(0)-aZcrr(0) 

1/2, these two trajectories do not satisfy the Gribov conspiracy at u = 0. In addition, these octets have very different F/D ratios: 
[F/D]q2. ~'~0.8 and [F/D]q~- ~ -0 .1 .  It follows from the requirement of  duality that F/D ratios are nearly constant along the 
respective trajectories, so that these two trajectories do not seem to be parity partners. Thus we may conclude that there is no such 
evidence of  parity doublets. 

§For example, 3,+(x/uu) - exp{P(x/u)} Iln=l (1 + x/~/M n) exp [-xfu/M n + u/23~I~] with P(x/u) a polynomial of x/u. 
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Now the spin nonflip to flip ratio A' /B is kinematically fixed at the pole position, but not  fixed in 
the physical regions within the Regge-pole f ramework)  When a single pole or an exchange degenerate 
pair of  poles is exchanged, the differential cross section is given by 

do/du  cc [IA'I 2 + IBx/Z--~I 2] _-I~k+(X/~,s)l 2 (4.21) 

for s ~ ~.  Here F÷ has two phases; ~b = Regge phase, 0 = arctg (Bx/Z-ff /A') .  The phase q~ is fixed by 
the Regge trajectory, but the phase 0, and hence A' /B  - - f ( u )  is left free [479]. In order to determine 
a value of 0, one needs spin-correlation measurements: 

A'/x/L-- uB ~ -- (R + ie)/(  1 - A). (4.22) 

Here P = 0 in the present case, see eq. (A. 10). 
The Regge-pole amplitude, when extrapolated to u = M 2, does not give a unique coupling strength 

FR (the partial width of  the resonance R) unless this ambiguity of  Regge parameters is resolved. 
Namely, though do/du is invariant under any change in the form o f f ( u ) ,  the extrapolated value F R 
varies for a wide range. It is a well-kn0wn problem that the extrapolation of  A 8 Regge pole in 
7r-p -+ prr- gives too small a value for I'A(3/2+) [36, 282, 65]. These analyses assume a factor 
")'+(x/if) = 1 -X/-ff/M,a in the residue functions which eliminates the lowest parity partner, so that 
they keep f ( u )  = A ' / B  -- - M A  in the extrapolation procedure. We present in fig. 37 the A ' / B  ratio 
in the following cases: 

(i) 3'+ contains a factor eliminating the n lowest parity partners (n = 1, 2, 3). 
(ii) 7 + is chosen so as to give the correct width F~(3/2+ ) as well as angular distributions of  7r-p ~ pTr- 

(here the first parity partner is eliminated) [434]. We denote  this case as RRPM in fig. 37. 
As is seen in the case (ii), A ' / B  at u ~ 0 is only 1/4 of  the valueat  the pole position (u = MA2), while 
conventional Regge analyses assumed it to be constant with respect to u. 

On the other  hand, the successful extrapolation of  the Na Regge pole in 7r+p ~ pTr + and K-N-+ ATT 
to its pole position [36, 65 ,355 ,209 ,  58] are ascribed to the fact that A' /B  does not vary so much 
between at the N~ pole and at u ~- O. (A' /B at u -~ 0 is only 25% smaller than that of  u = M 2, [434].) 

Another  interesting example is given by 7r-p ~ K°A, in which two exchange-degenerate pairs of  
Regge poles, (Z~, ~ )  and (~8, Z~) would be equally important. The assumption of  equal con- 

R R P M ~ . ~ k  ~ M A 

n=l 
-M~ 

i A'IB 

M2(312 +) M~2(712 +) M2(II12 +) 

I I i u 

Fig. 37. Spin nonflip to flip ratio A'/B of  A 6 Regge-pole ampli tudes as a funct ion o f u  for the cases described in the text. 

?This  arbitrariness is no t  characteristic o f  baryon exchanges but  it generally occurs in the  Regge-pole analysis wi thout  the  FESR or 
the spin-correlation data as an input  [ 144]. In the analysis of  forward scattering, however,  Regge residues are assumed to have a 
simple form. This enables us to determine vB/A' at t = 0. 
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tributions of  two-exchange-degenerate pairs with opposite naturalities, together with c~Z~a-o~.~ 
1/2, makes A'/B purely imaginary and gives maximal polarizationt at u' ~ - 0 . 2  ~ -0 .4(GeV/c)  2. 

The purely imaginary A'/B is verified by the recent spin-correlation measurement [21] (see fig. 38). 

Duality for baryon exchange 
The spin-nonflip to flip ratio A'/B is also interesting from the duality view point. We can express 

this ratio in terms of  s-channel resonance contributions as 

[ A'] =VS - --- x/?- [t3] - [ ~ ]  - [ 6 ]  + [3'] (4.23) 
[ J u f i x e d  f++ q - ~  [(31 -t- [O~1 - -  [61 - -  [ 7 ]  " 

Here [o~], . . . ,  [6] implies the semi-local average of  the contributions from the o~, . . . ,  6 resonances 
and <r> is an effective radius of  interactions satisfying q<r> =Vff. If the TP = --(+)  resonance 
dominates in the s-channel, A'/MRB approaches to a positive (negative) constant, which implies 
that the rP = + ( - )  Regge pole dominates in the u-channel. This means that the s-channel resonances 
build most dominantly the u-channel baryon Regge poles with the opposite naturality [213]. This is 
also required by the (s,u) crossing symmetry  of A'(s,u) and B(s,u) and fixes the relative importance 
of  the natural to unnatural baryon resonances as was seen in section 3.5. 

So far the dual structure of the baryon-exchange processes is hardly known because of the lack 
of  reliable FESR analyses owing to the difficulties in estimations of  the contributions from 
BB ~ MM channel (especially those from unphysical regions). 

Qualitative features of  the baryon exchange, however, can be studied by assuming the semi-local 
form of  duality, i.e., by averaging the resonance contributions over As = 2/~' (Xn) [213]. In a 
region where parent resonances dominate,  this averaging implies that one (or n) from each of  the 
c~,/3, 7, 6 multiplets should be included in the integral. The integral of  the N* and the 2x with 

x-p-*  A K o 

PL = 5 GeV/c 

I I 
-.4 -.2 0 

--.2" 

" ° a ~ _  4 

Im A°IB 

.2 "  

Re/~IB 
I I 
.2 .4 

---8- 

-1.0 

Fig. 38. Spin nonfl ip to flip ratio A'/B for ~r-p -~ K ° A  from the measu remen t  of  spin-correlation parameters  [21 ]. The value IA']BI is 
consistent  with the Regge residue which eliminates 2 or 3 parity partners.  

t N o t e  that  P = 1 impfies A'/B - - - i  ( remember  that  p2 + R ~ + A 2 = 1 and  eq. (4.22)). 
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J = 3/2 ~ 9/2 gives g~NN/4rr ~ 13 and Fzx ~ 0.12GeV at u = M~ and M~, respectively. In this 
estimation A'/B is specified by the resonance, so that  the ambiguity mentioned before does not 
appear. We show in table 13 the ratios A'/B at u = 1 (GeV/c) 2 ~ M~ ~ M~ for several reactions. 
Although these values fluctuate depending upon how resonances are summed up, but they 
indicate the rP = - exchange dominance in the A exchange processes and the rP = + dominance in 
the processes in which the N can be exchanged except for K-p ~ Z-rr ÷. The N~ does not dominate 
in K-p ~ X-n ÷, since g~r~z is very small due to F/D ~ 1. 

We can also study the qualitative structure of  the scattering amplitude in a similar manner. 
Shown in fig. 39 is the u-dependence of  the imaginary part of  the amplitude obtained by a semi- 
local integration of the resonances [213]. (Here the integral is made at fixed u' since the regularity 
is seen better at' fixed u' rather than at fixed u in the low-energy region [46].) 
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Table 13 

The A'/B ratio at u = 1 (GeV/c) ~ in terms of  semi-local averaging of  s-channel resonances 
(A' in m b .  GeV: B in mb) 

u-channel  s-channel resonances sign 

Regge poles J = 5/2 and 7/2 J = 3/2 ~ 9/2 

7r+p --* p~r + N, A - 2 6 9 / - 1 9 6  - 3 6 5 / - 6 9 4  + 
7r-p --* prr- ~ - 5 6 / + 1 8 6  - 2 6 4 / + 2 4 5  - 

K - p ~  ?,,-rr + N, ,x + 1 1 / - 1 9 6  ? (~0 )  
K-p ~ ~'*n- A + 7 5 / - 1 4 7  
K-p --* An ° N - 1 0 4 / - 2 9 5  + 

1 I 1 I I 

(a) 
~Ef "~ Im A'ds 

1 0  ( i )  J =  512 a n d  7 /2  
( i i )  J = 7 1 2 a n d  9 / 2  

-10 

I I I I I I I f I I I I ~/ i  I 1 

(b) / 
A' - f'+_ ~ l ~ f l r n  B ds B-i++ / 

/ 

2( / i  

i ! 
/ 

i i  ~Ir -p 

( ~ , / /  ../// 

i 

ii 

i 

i I ] I I I I I I I I ~ I ~ ] 12 1 I L l  
- .6  - .4  -.2 0 -2 -. -. -. 0 .2 

u ' (GeV/c)  2 u' (GeWc)2 

Fig. 39. Imaginary partS of  the elastic ~r-+p ampli tudes  in a backward region given by the semi-local averaging of  s-channel 
resonances. The resonances with spin 5/2 and 7/2 or 7/2 and 9/2 are s u m m e d  up (from Fukugi ta  [213]).  
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The following features can be seen: 
(i) At u ~ 1 (GeV/c)  2, the rr+p ampli tudes have the sign of  the Na exchange and the rr-p 

ampli tudes  have tha t  o f  the A 8 exchange. 
(ii) The rr+p ampli tudes  have a simple s t ructure  as a consequence of  the  A~ dominance  in the 

s-channel: Im A'  ( ~ I m  fT_) has the well-known zero at u' = - 0 . 2 ( G e V / c )  2, which is a t t r ibu ted  to 
the wrong-signature-nonsense zero of  the N~ exchange as well as to the zero of  "Jo". 
Im B (~Imf++)  has a zero at u ' ~ -  - 0 . 5 ( G e V / c )  2 in agreement wi th  tha t  o f  " J l " .  High-energy 
analyses do not  discriminate yet  whe ther  such a zero exists at u '-~ - 0 . 5  [e.g., 189] or - 0 . 2 ( G e V / c )  2 
in I m B  [e.g., 50]. 

(iii) The rr-p ampli tudes are rather  complicated due to the cancellat ion among many  prominent  
resonances in the s-channel: Im A'  has a zero at u' --- --0.1 (GeV/c) 2 which is also found  by several 
high-energy analyses [ 189, 50]. It is diff icul t  to say any th ing  about  Im B for u' ~< 0 due to 
ambiguities caused by the large cancellat ion among s-channel resonances. 

It is interest ing to ask whether  the A 8 Regge pole has the wrong-signature-sense zero at oo, = 1/2 
(u - 0 .35(GeV/c)  2) required by the exchange degeneracy with the N~. (See example 3 in section 3.4.) 
The relative Regge phase be tween  N~ and A~ takes a value ~lr - rr/4 or ~rr/4 at u = 0 (since 
a a  oeN ~ 1/2), according as the A~ residue has a zero or no t  be tween u = 0 and MA 2 . (Here the Na 
and A~ dominance: is  assumed.) On the o ther  hand,  the cross sections o f  rr-+p -+ prr -+ and rr-p -+ nrr ° at 
180 ° give the relative phase o f  f (180  °) which is consistent with 7r/4 [e.g., 316, 50]. Hence no such 
zero is indicated in f+_ between u = 0 and M 2. The same result can be seen in fig. 39a. One may 
suppose, however,  that  the zero at u '  --~ -0 .1  (GeV/c)  2 in A' is a trace o f  a wrong-signature-sense zero 
which has been shifted to that  point  by  possible cut contr ibut ions.  (We remind the reader o f  the 
cross-over p h e n o m e n o n  in that  the wrong-signature zero at % = 0 is shifted to t --- - 0 . 2 ( G e V / c )  2 in 
the A' ampli tude.)  As for the spin-flip ampl i tude,  several high-energy analyses [e.g., 1 8 9 , 2 5 3 , 4 8 3 ]  
give f++(180 °) wi th  the sign suggesting a zero be tween u = 0 and MA 2 . 

5. Fu r the r  aspects of  dual i ty  

5. 1. O d o r i c o  z e r o s  

Odorico has focused his a t t en t ion  on the zeros o f  the Veneziano ampl i tude  [ 3 8 3 , 3 8 4 ] .  For  
brevity o f  explanat ion,  let us consider the B4 ampl i tude  of  the type  

P(1 - o~(s))I'(1 - o~(t)) (5.1) 
P( l  - o e ( s )  - o 4 t ) )  

This ampl i tude  has poles at oe(s), ~( t )  = 1, 2, 3 . . . . .  and has zeros at o~(s) + o~(t) = 1, 2, 3 . . . . .  which 
suppress double  poles at the intersect ions of  poles. These zeros appear at f ixed u. This s t ructure  is 
no t  special to the B 4 ampli tude,  but quite general in the case where s- and t-channel poles coexist,  
i.e., 

3'1 + 3"2 + c ~ 3" - 3"2s - % t  (5.2) 
rn z s ~ -  t ( m  2 -  s)  ( m  2 -  t )  " 

The B4 ampl i tude  specifies the residue as % = 72 and propagates the zeros to be linear. When 
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resonance poles have finite widths, these zeros imply do/d~2 to have dips at these points.? 
Such dips are most clearly observed when one of  the crossed channels is exotic and the pomeron 

exchange is absent. In the angular distribution of  K-p ---> K°n, we can see clear dips at fixed values 
of  u; u "~ - 0 . 1 ,  - 0 . 7  and - 1 . 7 ( G e V / c )  2. Crossing points of  (p, A2) in the t-channel and (As, A~/) in 
the s-channel are u ~- 0.4, - 0 . 6 ,  - 1 . 6 ( G e V / c )  2. This agrees well with our observation (Odorico 
[ 3 8 3 , 3 8 4 ] ;  see also fig. 40), although the existence of  ( ~ ,  2:~) may slightly modify the above 
values of  u. 

When the exotic channel is absent, the pattern of  zero trajectories becomes slightly complicated. 
Let us take m e s o n - m e s o n  scattering which is free from spin complications. Veneziano-type 
amplitudes for 7rTr, 7rK, KK and KK are given by 

I = B4(s,t) 

ii  -+ = B4(s,t ) + B4(u, t  ) 

III -+ = B4(s,t) +B4(u,t)+- B4(s,u) (5.3) 

in the limit of  the universal intercept of  Regge trajectories. $ If the supplementary condition 

, \ /-, /, / / 
,, ,, / ',, / /  

/ \\ \, / \ \  /'. / 
/ , \/', /, 

/ / ",,C,,,/,, :,/ 

' r  

Fig. 40. Resonance poles (s channeh Aa-A.r ,  t channel: p -A2)  and the amplitude zeros for K-p --* l~°n on the Mandelstam plane 
predicted by a simple B 4 amplitude. The position of dips observed in K-p ~ I~°n angular distributions is also shown (crosses) 
(after Odorico [383, 384]). 

%uppose  we can approximate an amplitude in terms of  partial waves up to L, then the amplitude f ( z )  is expressed by the product 
like f(z) ~- II~= 1 (z - z k ) .  Here z k becomes complex when widths are finite. Since the differential cross section can be written as 
do/d~2 = If(z)[ ~ -~ 1-[~: 1 (z - Zk) (z - z~ ) ,  da/dI2 has a dip with half-width Ilm Zkl at z = Re z k .  (Thus do/d~2 is invariant under 
z k ~ z ~ ,  i.e., under the change of sign of lm z k .  This causes 2 L fold ambiguity in phase-shift analyses [221, 61].) 

:~ I : 7r+Tr - ~  n+Tr -, K+n - ~  K+~r. KK ~ KI~; 

II + : K°rr ° ~ K%r°; I1- : K÷~r-~ K%r°; 

+ O + O III + : zr%r ° ~ ~r°lr ° ; I I I -  : zr-rr ~ n-Tr . 
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~(s) + ~(t) + c~(u) = 1 is imposed, the double-pole-killing zeros are required to lie along the 
following straight lines on the Mandelstam plane t* 

I : o ~ ( u )  = 0 ,  - 1 ,  - 2 ,  . . .  

I I  + : o ~ ( t )  = - 1 , - 3 ,  . . .  ; 

I I -  : o~( t )  = 0 , - 2 ,  . . .  ; 

o~(s) -c~(u) = +1, +3 . . . .  

o~(s) - o~(u) = 0, -+2, ... 

l i p  : a(s), o~(t), o~(u) = - 1 ,  - 3  . . . .  

III- : a( t )  = - 1 ,  - 3 ,  ... ; ~(s), t~(u) = 0, - 2 ,  - 4 ,  . . . .  (5.4) 

Among the Veneziano type models, only the combinations I, II -+, III +- of B4 terms with the 
supplementary condition give us linear lines of  zeros [385], but otherwise they give more com- 
plicated patterns of  zeros [388, 170]. 

Though the observed zeros of  rrTr scattering may deviate from straight lines by about 0.3 GeV 2 
on the Mandelstam plane, the patterns of  zeros, i.e., number of  the zeros, the direction of  their 
propagation and their approximate positions, are in good agreement with theoretical expectations. 
For example, figs. 41 a and b correspond to the case I and II-, respectively [170]. We add the 
following comments: 

(i) The zero which propagates along o~(u) -~ 0 is not the double-pole-killing zero but arises from a 
factor 1 -c~(s ) -~( t )  included in the rrTr amplitude. This zero appears to bend towards the Adler 
zero as it approaches the Mandelstam triangle [401]. 

(ii) The entrance of  the 2nd, 3rd, ... lth zeros into the physical region is observed as a decrease 
of the normalized harmonic moments,  (~33), (Y°)  . . . .  ( Y°t_ 1 ), [ 169]. A rapid decrease of  (y0) at 
x/7 ~ 1GeV in rr+rr - scattering [8, 270] is related to the opening of  KK threshold, and is hardly 
related to the linear propagation of zero [386] whose effect appears as a decrease of  (Y~), [ 169]. 

The linear propagation of  zeros is also observed in rrK and rrrr -+ KK reactions [470]. 

Resonance  couplings [385]  
The amplitudes of  type I and III -+ give ' )¢2/ ' ) t l  ---- 1 at the pole-pole  intersection, and those of 

type II -+ include ~'2/')'1 = +1, 2. These simple ratios of  residues are just the manifestation of  the 

nonet couplings of  the 1- and 2 + mesons to 0-0-. 
Further if we assume the reactions including r/ and r/' (958) as external particles to have 

amplitudes of the type I, II +-, III -+, we have two alternative coupling patterns: (i) The 0- multiplet 

tWith this condition the wrong-signature zeros of Regge amplitude coincide with the Odorico zeros. 
SWith this condition, II +- and III -+ are written as 

21-~(t) - ~(u))~ ~" 

II+ = ~ F(1 - ~(s))P(1 ~F  I L T ~ ) ) P - t  (?~)s in  2 {~ (u)-  ~ ( s ) ) J  

2x /TnF(1-~)P(1  ~--~)F~ - ~ - ) / r t  ~(t) + a(u'l Ft c~(u) + a(s')r(-a(s) 2 c~(t) ) [Viras°r° amplitude 498] llI+= - 2- 2 
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Fig. 41. Mandelstam plot of  resonance poles and zero contours of the 7rn scattering amplitude for the charge configurations 
corresponding to (a) I and (b) I I - ( f r o m  Eguchi, Shimada and Fukugita [170]). For the case of type I, see also Pennington and 
Protopopescu [400] and Hyams et al. [270]. 

as well as 1- and 2 + forms an ideal-mixing nonet and all of  the 0 - - 0 - - 2  + (1-) couplings obey the 
quark-model prediction [94]. (ii) The mixing angle of the 0-mul t ip le t  has just an opposite sign 
to the ideal ones (tan0 = - x / - ] ~ )  and the couplings including the singlet pseudoscalar (',/p, p, T~, 
7P, P, X, ) are one half of  that in the quark model, while 1- and 2 + obey an ideal-mixing nonet scheme 
[385]. (In this solution the couplings o f  A~Trrl', K**Krl and of  frl'rl' vanish.) 

We present the mixing angle of  0- and ~,p~p, T,/TP~P~T~ in table 14.9 This ~-r l '  mixing causes a 
destructive interference ofr l l  and r/8 in the K**Krl and AzTw/' couplings. 

Table 14 

The mixing angle of the 0-mult iplet  and the coupling ratio 3"pep1TJTpspsT 8. 
The mixing angle is defined by Ir/) = - Irh> sin0 + Ir~ 8) cos0, It/'> = Irh> cos0 
+ IrTs) sin0. Underlined values are the input of  the analysis. 

0 3,papiTs/TpspaT8 

quark model +35.3 ° or -54 .7  ° 1 
quadratic mass formula +10 + 1 ° 
linear mass formula +_24 +_ 1 ° 
I ' ( r / ~  23,)a/I'0r o ~ 23') -7 .6  + 2.6 ° 
Kotlewski et al. [319] b -15 .5  +- 1.7 ° 
Martin and Michael [356] c -11  ° 0.50 
Moscoso et al. [375] d - 1 0  ~ -11  ° 0.71 or -0 .64  
Bolotov et al. [76] e -20 .6  -+ 2.2 ° 1 
Apel et al. [13] e -19 .1  _+ 1.8 ° 1 

aThe Cornell value [89]. We assume the quark-model value for (3",/[rh)/(3,',tlr/s>. 
bFrom radiative decays of 0 -and  1-. 
eFrom various production experiments. 
dFrom K-p ~ r/A, rT'A at 3.95GeV/c. 
eFrom ~r-p ~ r/n, r/'n at 40GeV/c. 

tThere is an argument that the mixing angle of  0-varies as the value o f m  2 considerably such as O(m~) ~- 6 ° and O(m~') ~- 20 °, [294]. 
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Simple arguments do not hold for meson-ba ryon  scattering because o f  the spin complexity and 
of the complication of  the baryon spectrum. Experimentally, however, the angular distribution of  
various meson-baryon processes shows the simple dip systematics implied from eq. (5.3) [384]. 

Let us consider rr+-p ~ rr +- p scattering. We have the following dip systematics in the angular 
distributions. (Here we denote rr+p -> 7r+p as the s-channel.) 
( i a )  t -~ -0 .6 (GeV/c)  2 in zr +- p: the wrong-signature zero of  p (not in do/d~2, but in IA [2, which is 

free from the diffraction). 
(ib) t -~ -2 .8 (GeV/c)  2 in rr+-p [e.g., 79 ,437 ,  82]. 
(ic) t - -4 .8 (GeV/c)  2 in 7t-+p, [ 100]. 
(iia) u ~ -0 .2 (GeV/c )  2 in lr+p: wrong-signature zero of  N~. 
(iib) u -~ -2 .8 (GeV/c)  2 in rr+p, [459,368] .  
(iii) s ~- + 0.3(GeV/c) 2 in rr-p: the wrong-signature sense zero of  A~ (expected from the exchange 

degeneracy, but not yet  confirmed, see section 4.7). 
The dip at t - -2 .8 (GeV/c )  2 has been known to travel down until it reaches the backward 
direction, where it produces a marked dip in the energy distribution of  the 180 ° cross section of 
rr+p scattering at s --~ 4.85GeV 2 (this dip is also observed in rr-p, though the position is slightly 
shifted) [791. Similarly in the rr+p channel, the dip expected in IA 12 at t = --0.6(GeV/c) 2 produces 
a dip in the energy dependence of  the 180 ° cross section (expected at s -~ 2.1 GeV z, but observed 
at s ~- 2.3GeV=). Further the zero at u -~ -0 .2(GeV/c)  2 is observed as a dip of  the energy depen- 
dence o f  IAI 2 at 0 = 0 ° (expected at s -~ 2.0GeV 2, observed at s ~ 2.3GeV2), see fig. 42. 

The systematics oI dips is understood by a pattern of  the double-pole-killing zero in fig. 43, 
indicating that zr±p scattering has the characteristics of  the pattern III- in eq. (5.3). The expected 
dips in zr-p scattering are also observed, but their positions are slightly shifted due to the existence 
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Fig. 42. (a) Differential cross section for n+p elastic scattering at 180 ° as a function of energy (data from Rothschild et al. [432], 
Baker et al. [28]). (b) Energy dependence of IA(n÷p ~ n*p)l 2 at t = 0 calculated from the phase-shift data by Almehed and 

Lovelace [7]. 



Masataka Fukugita and Kei/i Igi, Phenomenological duality 307 

~. \  , 'X ,~ \ ' \  ,' / V /  / -  , A., ~',~\ , ,  ~ \  ~_',,,,',,/ / ~,, / , , ,  , , ^ -  

,' \ , ' \  \V, ,  / ', / ', .4Y 
,' \ ,' \ /~ ,  / \ ,  I ', 

P /" \v" '~" { ' , /  " " /  "v 7 
u=0~ ," , ' \  / , ' \  'X'\ / ' ,  / ' ,  . . . . .  ~ - 7 - X - - / - - ~  
~:_~:__,c . . . . . . .  ~ _ _ / _ _ _ - _ , , _ _ _ /  . . . .  _~_ 

°Y / ,':'/,/ / \  ~x'x / k /  ", 
/ / / A  / \ \ ' \ \  / 

, , '  ; 7 /  W \ \\.~. / \ .  . ,1,,-~_,,-~ ,, / / /  \ /  \ X ( ' ,  I~'p-~'p 
/_ _I_ . . . . .  Z/_/__ Z~ \ /  \',", / ~, 
,~=a . . . . .  ~ ~  ~ , - ~ 7 - ~  . . . . .  X . . . .  

/ /// I \ / \ \ ' , , /  ',,o 1.,o. .--, , \ ~ '~,, 

. . . . .  ~ : ~ ' 5 _ ' _ _ J  _ _ 3 {  . . . . .  _V_£~_ . . . . . . .  "L 

Fig. 43. Resonance poles (s-channel: A 6 ; u-channel:  N~; t-channel: O-g)  and ampli tude zeros expected from the simple B 4 
combinat ions  I I I - on  the Mandelstam plane (Odorico [384]).  

o f  N. r and A8 (As, At ~ 0.4(GeV/c)2). It should be noted  that  we omi t t ed  in fig. 43 by the reason 
explained later the resonance poles N 7 and A6 in the u-channel and f (1270)  in the t-channel which 
would also contr ibute .  

Odorico proposed tha t  the A ampl i tude has a simple s tructure and fur ther  he assumed tha t  
A(Tr+p) is described by ( s , u )  - (s,t) + ( u , t ) .  Then we have [387] 

A(Tr+p ~ 7r+p) = ( s ,u )  - ( s , t )  + ( u , t )  

A(Tr-p -~ 7r-p) = ( s , u )  + (s , t )  - ( u , t )  

A(+)(W'p ~ 7r°p) = ( s , u )  

1 
x/~  A(-)(Tr-P ~ 7r°n) = ( s , t )  - ( u , t ) .  (5.5) 

These equat ions  have several ou ts tanding  features. 
(i) 7r+p scattering should be domina ted  by the odd-signature resonances (J = 3/2, 7/2, ...) in the 

s-channel. This is realized by the A 6 dominance .  The t-channel should be domina ted  by the 
odd-signature (p) exchange (the f should be decoupled).  

(ii) In the qr-p channel,  the resonances with J = 1/2, 5/2, ... should dominate ,  while those with 
J = 3/2, 7/2, ... should be suppressed. This means tha t  the N~ should domina te  in the 7r-p channel  
and the N7 and A6 should cancel ou t  each other ,  i.e., we have, 

f mF, ds=O, I mF, ds=O,.... 
St .= 3/2 di : 7/2 

The p exchange also dominates  in the t-channel. 
(iii) The 7r°p ampl i tude  F(+) is superconvergent  in the forward direct ion,  i.e., f should be decoupled 

f rom this ampl i tude.  
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(iv) The imaginary part of  the charge-exchange amplitude is superconvergent in the backward 
direction. 

Figure 44a shows the resonance contribution to Im A at each J (at t = m2). One can easily 
recognize the above feature (i) ~ (iii) in the figure. In particular, one can observe almost complete 
cancellation between A~(3/2 +) and N.r(3/2-) at J = 3/2, [387]. A significant cancellation is also 
seen between A~(7/2 +) and N.r(7/2-) at J = 7/2. (This is the reason why we omitted the poles N~ 
and A6 in fig. 43.) 

400 

200 

-200  

(a) l j ~ f l m A i d  s a t  t=m~ 

jr~p-.rr'p 

~- 7/2 9/2 

Jr-p+~r-p 

[ - - - i  : 

I 
~-p~n 

3/2 5/2 712 912 

m 

5/~ 

(b ) -~ j~ f lm  & ds 

2 0 0  - n'*p.,.,-r*p 

-200 

J = 3/2 5/2 7/2 g/x2 
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at u =M 2 

m 

h is togram:  f r o m  Sacla, y anatys is  
t r i a n g l e :  f r o m  PDG. 1974 

I 
5/2 7/2 912 

xOp~:xOp 

3/2 5/2 7/2 9/2 

Fig. 44 (a) Cont r ibut ion  of the N* and the A resonances with spin J to Im A at t = m~. (b) The similar figure for Im A'  at  u = M}q 
(from Fukugita [213]).  
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On the other  hand, the A amplitude does not show the expected structure in the backward 
direction, but  the A' amplitude exhibits the structure expected from eq. (5.5) approximately 
(fig. 44b). The amplitude exhibiting the structure in eq. (5.5) should show behaviour like A and A' 
in the regions for t ~ 0 and u~ > 0, respectively. (Note that j~_ has such behaviour as s ~ ~ . )  Further 
it should have simple symmetry  property in z. Since such an amplitude is not constructed yet, we 
work only at t = m~ and u = m~. 

The crossing-invariant spectrum [ 167, 212] gives us a guide to understand the structure in 
eq. (5.5). The amplitude corresponding to the combinat ion I I - I ,  which behaves like ~A in the 
forward region and ~A'  in the backward region, has the following structure: 

7r+p ~ -- (s,t) + (u, t)  + ~ "  (s,u) 

7r-p ~ + (s,t) -- (u, t)  + ~1" (S,U) 

7r°P ~ + ~'1" (S,U) 

X~2-(rr-p ~ n°n) ~ + (s,t) - (u, t)  (5.6) 

where S'I = _ ( f2  _ 2 f +  13/9)/(/" 2 - 2 f +  5/9), ( f =  [ F / D ] ~ ) .  With f =  1, it follows that S'l = 1 and 
thus eq. (5.6) reduces to eq. (5.5). In this case the resonance spectrum with rP = + reduces to 
(1 • 81).y ~ (81)~. If we put  f =  2/3 and 0.82 corresponding to the values in table 8, we have 
~'1 = 5/3 and 1.16 respectively. Figure 44 really suggests ~'1 > 1. 

Similarly, corresponding to the combination II + I, we have the amplitude which exhibits the 
behaviour like "~A' in the forward region and the behaviour like ~MB in the backward region. 
This amplitude has the structure of  the form 

7r+p ~ - - ~ 1  ° (s,t) - ~'2" (u, t)  + (s,u) 

7r-p ~ - -~2  " (s,t) - ~1" (u, t)  - (s,u) 

7tOp ... _ ~'a + ~'2 [(s,t) + (u,t)] 
2 

1 ~'z - ~'1 [(s,t) - (u,t)] - V(s,u) (5.7) x /~  (Tr-p ~ zr°n) ~ -- 2 

with ~2 = - 3 ( 9 f  2 -  1 0 f +  5) / (9f  2 -  1 8 f +  5). If  we put  f =  1, 0.82 and 2/3, S'z takes 3, 2.3 and 7/3, 
respectively. With such values of  the parameter eq. (5.7) leads us to qualitative understanding of  the 
observed structure of  the A' amplitude at t = m~ and of  the B amplitude at u = m~ as a function of  
J, [213].  

5. 3. Local superconvergence relation and s y m m e t r y  [453]  

The superconvergence relation (SCR) is valid if the crossed channel is exotic, but  it does not  
lead to useful results if cut-off  is taken after a few resonances. There is, however, the case where 
the convergence of  SCR is sufficiently rapid and another class of  SCR holds. Such SCR leads to the 
symmetry of  resonance couplings [453].  

If  we assume parent-parent-pole duality and the degeneracy of  all the trajectories, the B 4 

amplitude with exotic t-channel is symmetric under the interchange of  s and u; this implies 
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symmetry in z t = cos0 r Consider the amplitude for KK. ~ KK, with It = 0, then the Bose statistics 
requires that the amplitude must be antisymmetric in Zr Therefore, the amplitude should vanish 
identically.t 

The identical vanishing of  the amplitude requires the pole residues to cancel locally. In our 
example, the combined residue of  the s-channel 1- pole (p, co, ~b) and 2 + pole (A2, f, f ' )  must 
vanish at all t values. For 1- pole, one has 

~ds Im fi(s,t) = O, (5.8) 
i= p,~o,(~ 

which leads to 

3 2 - - - 1  2 - 
7 g o K K  2 ( g w K K  + g ~ K K )  = 0 .  (5.9) 

This relation (local SCR) leads to the coupling ratio in agreement with the SU (3) coupling. 
This differs from the usual exchange degeneracy in the following points: 
(i) If the exotic t-channel is not antisymmetric, we merely have Im t f  = 0 and this leads to the 

exchange degeneracy between the s-channel Regge poles with opposite signatures, so that we have a 
relation between the residues of  1- and 2+; 3'(1-)2 = 3,(2+)2. 

(ii) If the exotic t-channel is antisymmetric, we have f = 0 and this gives the local SCR among 1- 
poles and among 2 + poles; ~ i ' ) ' i ( l - )  2 = ] ~ i ~ i ( 2 + )  2 = 0. 

Application to meson-baryon scattering 
We consider the amplitudes which are exotic and anti-symmetric in the t-channel, i.e., B [ 27l 

and A ;t ao, lo* 1. If  we saturate the local SCR with the 1/2 ÷ and 3/2 + baryons which form a multiplet 
5_6_6 of  SU (6), we get 

~. f[ImBi1271]t=ods=O, [26] 
i = 1 ] 2  +, 3/2 + 

~. S[~tImA'i [i°'1°.1] ds=O. 
i= 112 +, 3]2 + t=O 

We confine our discussion in the limit [la(O-)/M(1/2+)] 2 ,-~ O. Since the local SCR for A' is trivially 
satisfied in this limit, we work with the first derivative in t in eq. (5.10b). Then the spin kinematics 
is summed up by the following relation 

4M d A '  +1 +2 g2(3/2 +) 
dt _1 

We have two equations for two free coupling ratios, and the solution is 

[F/DI x/£ = 213 

g2o(3/2+)/g2(1/2+) = 4/25 (experimental value ~1/3 .84)  

in agreement with the SU (6)w predictions. 

(5.10a) 

(5.10b) 

t T h e  B4 a m p l i t u d e  for KK ~ KK w i t h  I t = 0 is g iven by  

f =  - X [ r ( 1  - a p ( s ) ) r ( 1  - o~(u) ) / r (1  - ao(s) - ~¢)(u)) - r ( 1  - ao(u) )r (1  - ~4~(s))/r(1 - so(u)  - ~ ( s ) ) ] .  

I f  we assume the  t ra jec tor ies  to  be  degenera te ,  t h e n  the a m p l i t u d e  vanish  iden t i ca l ly ,  i.e., f =  0. 
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Next, let us consider the reaction such as KN ~ g,N where u-channel is exotic. Saturating the 
FESR by the resonances with the couplings obtained above, we have 

/3p/~3~o = I I m  BUt = 1)ds/IIm B(It = O)ds = 5. 

Similarly, we obtain for dA'/dt  

{Jo/fJ~o = f lm d A'(It = 1)/f lm d A'(It = O) =1 dt 3. 

In other words the F/D ratios for VBB couplings are 

[F/D]A' = o% [F/D]B = 2/3 

in agreement with the quark-model result. Thus we have the SU (6)w couplings for the lowest 
multiplets. 
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5.4. Higher symmetries and duality 

It has often been said that the duality constraints lead to the result of  the quark model. Indeed 
the exchange degeneracy for mesons leads to the nonet coupling of  the quark model and it is easily 
incorporated in the spectrum (36, all L). Furthermore it is known that a Veneziano-type model 
for m e s o n - m e s o n  scattering can be constructed,  which gives the results of  the non-relativistic 
quark model (spectrum; SU (6), vertex; SU (6)w), [349].  In the case of  baryons, however, there 
are some complications. 

It is well known, on the other  hand, that the rich hadron spectrum is economically classified 
as a multiplet o f  the static symmetry  SU (6) × O (3)L. (For a recent review, see [428 ,429 ] . )  In this 
section, we briefly summarize the higher symmetry for hadrons, and then argue whether it can be 
accommodated  to the duality constraints. 

Spectrum o f  hadrons 
The oscillator pattern of  SU (6) × O (3)L multiplets is particularly useful in a classification of  

baryons [232, 185 ,308] .  We present in fig. 45 the spectrum of  baryons together with that o f  
mesons. The multiplet on the leading baryon trajectory is what one expects in the three-quark 
picture of  baryons. The existence of  parent multiplets, 5__@ L = even; 70, L = odd, is well confirmed 
for L ~< 4,t and there is some evidence for 7__00, L = 2; 5_66, L = 3 which needs further confirmation* 
(see reviews [ 4 2 8 , 4 2 9 , 3 3 0 ] ) .  For the daughter multiplets, the assignment is rather dubious. We will 
not discuss such daughter multiplets here, since they are less important for the argument o f  exchange 
degeneracy. 

Decay symmetry  (for more details, see [428])  
The static SU (6), when applied to decay processes, encounters the well-known difficulties, 

namely it leads to p -~ rrrr and A -~ rrN, for example. The SU (6)w is a relativistic generalization of  

%56, L = 0; filled up. 70, L = 1; nonstrange members are filled up. 
56, L = 2 nonstrange members are filled up. (However, A~(3/2 +, 1 890) in the Saclay analysis [24] is not yet confirmed.) 
7__0_0, L = 3; some members are known as Regge recurrences. 56, L = 4; some members are known as Regge recurrences. 

~:70, L = 2; N(7/2 ÷, 1990), Which couples more strongly to 7tAx than to nN, has been claimed as a candidate. For further evidences 
see [187]. 

56, L = 3; A(9 /2 ,  ~2200) is suggested to be a candidate for this multiplet. 
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Fig. 45. Harmonic-oscillator spec t rum of SU (6) × O (3) L multiplets.  (a) Baryons. Multiplets in parentheses do not  couple to 
0 - 1 / 2  + systems.  (b) Mesons. 

the SU (6), in that it is invariant under the boost  in the z direction (the collinear symmetry),  
[59, 329].  It leads to the successful F/D ratio when applied to the BBM vertex. However, the 
validity of  the collinear symmetry for the transition matrices is not evident. Further the W-spin 
conservation has not  been verified in any hadronic processes. 

The application of  the "SU (6)w" to transition matrix elements stands on a firm basis when 
the well-defined current quark is transformed into the consti tuent  quark by a unitary transformation 
[362, 363].  The SU (6)W,current is defined in terms of  the 36 good components  of  the generators 
(we denote them as F ~), which are taken out  of  the 144 U(12) generatorst [ 141 ]. If there exists 
a unitary transformation V such that P~ = VF ~ V -1 commutes  with the Hamiltonian,/~e forms a 
symmetry algebra SU (6)w, constituents and thus hadrons are represented as its irreducible represen- 
tations. Then, the mesonic transition matrix is estimated in terms of  (/~lFSal.~) = <B] VFS~V-1IA) 
with the aid of  the PCAC. 

One can explicitly construct  such a V in the free quark model [362, 363].  For the axial 
current F s~,/65~ acquires the component  which changes Sz (-Wz), i.e., we have/~s~ = ~ffAS~z=0 + 

" 5 0 ~  Fasz=+_l. If one assumes the transformation property of  F s~ in the interacting case to be the same 
as that in the free case, the mesonic-transition amplitude is expressed in terms of  two reduced 
matrix elements: The first component  had ASz -- 0 and corresponds exactly to the SU(6) w and 
the second has ASz = +1, giving rise to a symmetry-breaking part of  SU(6)w. This broken SU(6)w 
approach preserves the successful results o f  the SU(6)w and further it remedies some bad 
prediction of  the SU(6)w, [255 ,225 ] .  

Some results of  such broken SU(6)w approach can be obtained from weaker symmetries. For 
example, the coplanar symmetry SU (3) X SU (3)copl" leads to F/D = 2/3 for 1/2 +, 5/2 + ....  , 
F/D = - 1 / 3  for 5/2-, ... and g]o(3/2+)/g~(1/2 +) = 4/25 say [426].  (To obtain F/D = 5/3 for 3/2- ,  . . . .  
one needs at least the 3P o model [369, 402] ,  the matrix element of  which is identical with that of  
the broken SU (6)w approach for mesonic decays.) 

Symmetry and exchange degeneracy 
As mentioned in section 3.5, many solutions of  exchange degeneracy exist with more than four 

trajectories. We discuss here the solution when we include all the trajectories in the quark-model 
spectrum. It is o f  great theoretical interest to unify the duality approach with the quark description 
in order to construct  a consistent picture of  hadrons. 

t i n  the  free quark model  these generators are given by the space integrals of  144 densities qtFXeq with F - 16 Dirac matrices. 
The 36 good componen t s  o f  densities are V 0 - qthaq,  A z ~ qthaazq,  Tyz ~ qthaf3axq and Tzx ~ qth~#oyq.  
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The established baryon multiplets include 5__6_6 even L and 70 odd L. With this sequence alone, it 
is impossible to satisfy the constraints eq. (3.21), unless (i) we ignore the constraints imposed by  
exoticity in the t-channel [ 3 5 3 , 3 5 4 ] ,  or (ii) we take the constraints as approximate equations [451].  
It is shown, however, in a particular model that with the spectrum 

56 L = 0 

70 L = 1 

5 6 , 7 0  L = 2  

7 0 , 5 6  L = 3  

(5.11) 

one can satisfy the constraints in both the s and t channels [350, 427].  Furthermore it has been 
shown that such a solution gives resonance couplings in accordance with the broken SU (6)w and 
it also requires a universal dominance of  either ASz = 0 (SU (6)w-like) or ASz = +1 (anti-SU (6)w) 
component  independent  of  L, [ 168]. 

Let us consider the quark diagrams (a) and (b) o f  fig. 46 corresponding to the (s,t) and (s,u) 
terms. The diagram (b) is obtained from (a) by interchanging two quarks at both the end of  the 
upper side, so that the two diagrams are related to one another by interchanging a pair of  quarks in 
the final state. Therefore, the even-L states in the s-channel, which are given by the sum (a) + (b), 
possess symmetrical multiplets 56_ and multiplets of  mixed symmetry  70. The odd-L states are given 
by their difference (a) - (b) and possess multiplets of  mixed symmetry  70 and antisymmetric 
multiplets 2__0_0, [350].  A more detailed analysis shows that the amplitudes for MB -+ MB represented 
by diagrams (a) and (b) involve the 5_66 and 70 in the following proport ions in the s-channel [350];  

(a) 1515__661 + 16[70]  

(b) 15156] - 8170].  (5.12) 

These combinations,  of  course, have no exotics in the t- or u-channel. 

Let f(L) and g(L) be L dependences of  the s-channel baryon Regge residues in the (s,t) and (s,u) dual 
amplitudes, respectively. If we assume that f(L)4= g(L) and further f(O)/g(O) = 1/2, f(l)/g(1) = l, 

t t • t o  

$ 

(a) (b) 
Fig. 46. The (s,t) dual (a) and the (s,u) dual (b) quark diagrams. The diagram (b) is obtained from (a) by interchanging two quarks 
marked by dot, followed by twisting the entire upper side. 
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the 70 and 56 can be eliminated at L = 0 and L = 1 respectively,t then we have the spectrum 
eq. (5.1 l) with the exchange degeneracy [427, 168], 

L = 0  L = I  

56 ~" 70 

104 ( 3 / 2 +  ) ~ 82-- 1/3 ( 5 / 2 - )  

! (3/2-) } 
8~43 (1/2 +) ~ _852/3 (3/2-) 

10 2 (3/2-) 

L = 2  

(56 • 7o) 

+~ I 104 (7/2+) 1 
i (7/2+)I 

t . .  1_ (5/2)  
8 L (5/2 +) 
102 (5/2 +) 

L = 3  

( 7 o . 5 6 )  
84-1/3 (9/2-)I -o 
]-O 4 (9/2-)  / "" 

82/3 (7/2-) 
10 z (7/2-) "'" 

8~13 (7/2-) (5.13) 

One of  the most interesting tests o f  higher symmetry  (for a review, see [428]) is the 
inelastic phase of rrN ~ rrA in which orbital angular momen tum of  the final state is different from 
that of  the initial state [ 186]. This phase is sensitive to the value of  ASz and the recent SLAC-LBL 
analysis indicates the ASz -- -+ 1 dominance for the 70, L = 1 and the ASz = 0 dominance for the 56, 
L = 2 [99]. This result, if continues to hold, seems incompatible with exchange-degeneracy arguments, 
which require either the ASz = 0 or the ASz = -+ 1 dominance for any multiplet. 

5. 5. Non-degenerate parity partners 

We have already mentioned in section 4.7 the possible ways to avoid parity doublets of  baryon 
resonances. Another  at tempt to avoid parity doubling is to include ax/u- term in the trajectory 
function,~ i.e., to introduce non-degenerate parity partners [500, 272, 273]. 

Figure 47 shows an example of such trajectories. Here the parity partner of  the N~(940) is the 
N~(1535), [2721. (The parity partner of  the N~(940) is missing in the scheme of Barger and Cline 
[37, 38].) It can be seen schematically that 

non-degenerate 
parity partner 

N~(1/2 ÷,940) ~.  ] Na(1/2- ,1535)  

- . . .  degenerate parity 
." , ' " ' . . .  partner (Barger and Cline) 

N~(1/2 ÷, 1470) g" ~', N~(missing) 

t A n  example of  dual amplitudes constructed using the (spinless) quark is [350]. 
1 

B4(s,t ) = # ~ dx x -a ( s ) - I  (1 - x) -a(t) 1 

o 

1 

f v ~ (  s+u-M2 #a)/2 B'4(s,U) = h dx x-a(s)-l(1 - x) -c~(u)-I [ 1 - x(1 - ~j! 

0 

corresponding to the diagrams (a) and (b), respectively. The leading power in a (t) at the pole a (s) = L behaves like 

B4(s,t) ~#[~( t ) IL /L!  (1. a(s)}, B'4(s~) ~ X[-a(t) /2IL/L! (L - a(s)} .  

With h = 2# the conditions f(O)/g(O) = I[2, f(1)/g(1) = 1 are satisfied. 
Z~This type of  trajectory can easily be incorporated in the Veneziano model [500, 320]. 
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Fig. 47. An example of nucleon trajectories with non-degenerate parity partners in comparison with conventional trajectories of 
Barger and Cline (from Ida [272]). 

In this scheme the parity doublet  of  the N(A) at J = 5/2 has no direct connection at all with the 
Gr ibov-MacDowel l  symmetry,  but  is a consequence of  an accidental degeneracy of  two nucleon 
(lambda) trajectories. The trajectory of  N~(940) appears to pass through o~ = - 1 / 2  at u > 0, so that 
the dip of  rr+p -+ prr + cannot  be interpreted as the wrong-signature-nonsense zero of  the N~ Regge 
exchange. This difficulty, however, can be avoided if the so-cal)ed switching phenomenon of  the 
two N~ trajectories occurs as in the Bethe-Salpeter model when they cross each other [ 273 ]. 

Based on such an interpretation, Ida classified known baryon resonances into four families of  
Regge trajectories 1 + 8 + 8" + 1__0 and their daughters. 

( i )  1 0 6 - 1 - 0  v, , 1 - 0 ~ - 1 0 ~ ,  , . . .  

( i i )  _ 8 0 - 8 ~ ,  , 8 7  - (88 ' )  , . . .  

(iii) 8 ~ -  8t3,, _88- _8~' ,... 

(iv) 1 v - (18 ' ) ,  1~-(1~, )  , ... 

The spectrum has resemblance to that of  a quark model with (56, L = even) * (70, L -- odd) as to 
the states o f M  <~ 2GeV except  for the followings. The Roper  resonance N~(1/2 +, 1470) has a 
natural place in the spectrum, (ii) but  there is no room in it for the N7(3/2-,  1700). In this 
spectrum there is also no room for the N~(7/2 +, 1990) E (7___0, L -- 2). (These difficulties are removed 
by introducing another four families of  trajectories [274].)  

The quark model with non-degenerate parity partners 
There is an a t tempt  to unify the quark model and duality scheme by introducing the non- 

degenerate parity partners [283].  
Assume that we have an analytic function o~(V~) for baryon trajectory which satisfies 

o~(x/s) - o~(v/-2--s) ~ 1 in the resonance region, and consider, for example, such a trajectory,  on the 
positive branch of  which the o~-~, series appears. Then the /3-6  series (non-degenerate parity 
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partner of  the c~- T series) lies on the trajectory a ( - x / ~ )  which is one unit below as is shown in 
fig. 48. In this scheme the parity partner of  a baryon pole a (1 /2  +) becomes/3(1/2-) which is also 
identified as the first daughter of  a parent pole -/(3/2-). 

In order to obtain the quark-model spectrum for the quark-spin doublet  say, it is sufficient to 
have two such trajectories which belong to 82/3 E 56 and to (_1 • 8_5/3 • 1_0) E 7__0. The F/D ratios of  
the octets as well as the ratio o f g  ] : g2 : g]0 in 70 do not vary along the trajectories for -oo<vff<~o. 
The relative weight of  56 and 70 is fixed so as to satisfy the exchange-degeneracy requirement 
and to eliminate 70  and 56 at L = 0 and L = 1 respectively (see eq. (5.13)). 

5. 6. Pomeron. duality and unitarity 

The problem of  pomeron is an important  one, which has not  been argued in this article. Here we 
sketch only some key points. 

The most important  tool for investigating the pomeron is the unitarity relation 

Im <flTli> = p~<flrtln>(nlTli>. (5.14) 

We encounter  here a non-linear equation for the amplitude whereas dominant characteristics o f  
duality are based on its linearity. The right-hand side of  eq. (5.14) is dominated by multiparticle 
intermediate states. Equation (5.14), when we set f = i, implies Otot = Oel + ainel. Here, Oinel consists 
of  two components  [505],  a diffractive component  yielding an energy independent  n-particle cross 
section and a non-diffractive component  such as the multi-peripheral or the multi-Regge mechanism, 
in which only ordinary Reggeon is exchanged in the n-particle amplitude. It is known that the 
non-diffractive component  occupies 75 ~ 85% of  the inelastic cross sectiont [415 ,249 ,  192, 322 ]. 

5 / 2  

312 

I / 2  

? 
. / /  

/ 
/ 

tl 

/ 
/ 

a ( , / - ; )  

o (- , /q-) 

Fig. 48. A baryon trajectory which satisfies a(x/s) - a(-x/'s-) -~ 1 in the resonance region (from Igi and Shimada [283]). 

t i n  the central region approximately 25% of the pions produced in the n-p reaction (15% in the pp reaction) is known to come 
from the decay of  the po meson [e.g., 506 ,472] .  Hence, a considerable fraction of  the pions is ascribed to the 1- (and 2 +) meson 
production. 



Masataka Fukugita and Ke#i IgL Phenomenological duality 317 

Hereafter we assume that a contr ibut ion from multiparticle states is dominated by the multi-Regge 
mechanism. Then, eq. (5.14) becomes an approximate relation connecting the diffractive 
component  to the multi-Regge amplitude. We use the unitarity equation only at t = 0. 

An n-Reggeon-exchange amplitude can be expressed as a sum of one planar amplitude and ( 2 " - 1 )  
non-planar amplitudes in terms of  the duality diagram as is shown in fig. 49. The unitarity 
summation of  these amplitudes leads to the diagrams in fig. 50. Here we ignore the interference 
between a planar and a twisted diagram and that between diagrams with twists at different positions. 
This is equivalent to the assumption that the production line does not  include twists as is readily 
understandable in the duality diagram (see fig. 51). Absence of  twists in production lines is 
equivalent to equal weight for production of  particles with opposite charge conjugations, e.g., equal 
weight for 1- and 2 ÷ resonance production (or 0- and 1 + production) along a multi-peripheral chain. 
On the contrary, inclusion o f  twists implies that the diagram includes exotic states when viewed 

+ + e e e  

Fig. 49. 

+ 0 0 ' 0  +--- 
/ f f - - . - . . ~ , ,  

(b) l~(I + 

Fig. 50. 

I 

Fig. 51. Quark diagram corresponding to an overlap of two production diagrams with twists at different positions. An extra twist 
is inevitably required in a production line. 
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from the t-channel (fig. 51), so that the above assumption means that no exotic exchange should 
exist in the output  of  the unitarity summationt  [454]. 

The unitarity summation is divided into two classes as in fig. 50. In the class (a) all the planar 
diagrams are summed up. They have the same topology, if closed loops are contracted, as that of  
the ideal-nonet meson-exchange diagram,* so that we equate this summation with the ideal-nonet 
meson-exchange amplitude. On the other hand in the class (b) all the diagrams with twists are 
summed. In these diagrams only the unitary singlet is allowed to be exchanged in the t-channel. 
This summation is thus to be equated to the pomeron-exchange amplitude [e.g., 206, 381,327,  
494, 107,495,  109,454] .  Exotic exchanges are absent in the unitarity summation as mentioned 
above. 

A perturbative summation of  duality diagrams (the so-called KSV programme [312;see 6 for a 
review]) has been known as a conventional approach to satisfy the unitarity order by order in the 
coupling constant g2. There is another  way of  summation, the so-called 1/N expansion, in which 
g2N is fixed to be O (1) (N being the dimension of  the internal symmetry  SU(N)), so that the 
diagrams with any number  of closed quark loops in it is equally important [484,495] .  (In this 
expansion diagrams in (b) are O ( l /N)  as compared with those in (a).) A practical approach to the 
loop summation is to replace a duality diagram by the square of corresponding multi-Regge ampli- 
tude and to take a sum using the multiperipheral model, as we will provide later an example. 

In such a scheme, pomeron is expected to couple with external particles via Reggeons 
with the same quantum number as the pomeron, such as the f and the f', [341, 96]. Then the 
amplitude is written as, 

T(J,t) = ~ %(t) Bij(j,t) 7j(t) 
i , j= f , f '  J - o q  J-~-~i ( 5 . 1 5 )  

Here B~j(J,t) represents the singularity of  the pomeron (fig. 52). 
The property of this (f, f ' )  coupled pomeron is as follows: 
(i) If Bq is assumed to be unitary singlet, i.e., Bq ~ (pp + fin + ~-X)/V~, an apparent deviation of  

the pomeron exchange from a unitary singlet is given through the mass breaking of  f and f'. Defining 
r(t) = (c~p(t) - c~f(t))/(~p(t) - o ~ f , ( t ) )  (empirically r(0) --- 0.6), we obtain, from eq. (5.15), ~tot/.tot = VKp/Vz-p 
(1 + r(0))/2 - 0.8, ~'op-t°t = ~'~p,-t°t ~'q, pt~'op"t°t/"t°t = r(0) ~ 0.6 etc. in good agreement with the experiments. 
Moreover, the values of o(Ap) ~ 34.6 + 0.4 mb [227] and o(~p) ~ 34.0+ 1.1 mb [27] are 
consistent with the above r(0) with [F/D] TB~ % --5 (see table 7). 

?In a multi-peripheral model with product ion of only pions, e.g., in the original Chew-P igno t t i  model,  we have c~(1 t = 1) = c~(I t = 2) 
in the ou tpu t  of  the unitari ty summat ion  if the conservations of  isospin and of  G-parity are imposed [118].  In order to suppress the  
exotic exchange one needs product ions of particles with opposite C-parity, the p meson say [454].  

t i t  is to be noted that 

b.'....~_.__...~t c b x ~ j , c  

a d a d 

~Ng  4 ¼Tr(XaXbXcX d) 

b \ \  . / /c  
) ~/~.~ ( _ ~ g4C t 1Tr(hahb)Tr(hchd), 

a 

where C t is the C-parity of  the t-channel. 
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Fig. 52. 

An 

Fig. 53. 
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(ii) The pomeron has the same helicity structure as the f(f ' ) .  Namely, the pomeron conserves 
the s-channel helicity as the f does. In hyperon-nuc leon  scattering, however, the pomeron is 
predicted not to conserve the s-channel helicity at the hyperon vertex. 

(iii) Factorization; the residue ratio, 7P/Tf, is independent of  the reaction. 
(iv) Equation (5.15) has a pole at O~v-- ~f (= %).  If  we set ~p(t) = 1, the pomeron coupling takes 

the form analogous to the electromagnetic form factor, which may validate the Wu-Yang model 
[509]. 

The (f, f ' )  dominated pomeron has been successfully applied to various processes such as 
quasi-two-body reactions [205] and inclusive reactions [e.g., 87, 510, 29 ,296;  see 293 for a review]. 

In order to argue dynamical properties of the unitarity summation, let us take the multi-peripheral 
model [68, 10, 118, 116, 112]. The n-Reggeon-exchange amplitude (fig. 53), in the Chew-Pignot t i  
approximation, becomes of  the form An = (glns)ns2~r-1/n!, o~ M being the trajectory of  exchanged 
Reggeons with t ~ 0. Hence we get 

= ~" (glns) n s2~M-1 = s2O~M-l+g AM ~ ~ (5.16a) 

corresponding to the summation of  planar diagrams. Meanwhile the sum of  (2 n - 1 ) non-planar 
diagrams gives, 

( g l n s )  n S20~M-I = S2e~M-l+2g _ S2O~M-l+g A , = ~ ( 2  n - l )  n~ " . (5.16b) 
n 

If  we impose a bootstrap condition AM ~ s aM on eq. (5.16a), we obtain 

o~ M = 1 - g. (5.17a) 

Putting Av  ~ s ~v for the leading term of  eq. (5.16b), we have [327,494]  

ap= 1. (5.17b) 

This is another motivation to identify the sum of  twisted diagrams with the pomeron. The similar 
result can be obtained by solving a multi-peripheral integral equation in the Chew-Pignot t i  approxi- 
mation [133,108,  109 ,438,454] .  In a simple model with broken symmetry,  the bootstrap condition 
requires ideal nonet to have equal spacing s o - OtK. = OtK. -- ~ , ,  [ 158, 396]. 

The simple model sketched here leads to multiplicity (n) ~ 2g •lns (g = 1 - o~ M ~ 0.5) which is 
too small compared with experiments (n~) ~ 3(n~-) ~ 3 X 0.84 ln(s/so), and it also gives f 2 -  ( n ( n -  1)) 
- (n) 2 = 0. These defects, however, are overcome by identifying the produced particle as a cluster or 
a resonance decaying into 2.5 pions on the average. 

Now the second term of  eq. (5.16b) just cancels the f contribution in the output  of  the unitarity 
equation. Furthermore,  by taking into account the charge conjugation, it is found that pomeron 
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contains the C = - part in the non-leading term, which denotes the co pole and in the simple model 
it exactly cancels the ¢o contr ibut iont  [454 ,438 ] .  So far as we consider only the sum of planar 
diagrams, the exchange degeneracy of  (p,A2) and of  (f, eo) is satisfied. However, if we take into 
account the full output  in the unitarity sum, the exchange degeneracy of  (f, co) will no longer be 
satisfied. (The exchange degeneracy of  (p, A2) still holds.) 

We add a remark on the pomeron in BB and BB scattering. There are 2n/2 non-planar diagrams 
with an odd number  of  pairs of  twists in the n-Reggeon-exchange amplitude of  BB scattering. On 
the other  hand, BB amplitude has (2n/2 - 1) diagrams with an even number of  pairs of  twists, which 
also gives a secondary term that cancels the f and o). Hence we should have OP°m(pp) 5/= OP°m(pp-). 
A possibility to recover the equality is to take into account a contr ibution from the non-planar 
diagrams of  BB ~ mesons to compensate the missing piece in the BB amplitude [ 184]. This 
argument, however, brings an undesirable secondary term for the meson exchange. (The contrary 
argument that the BB annihilation contributes to ot°t(BB) - ot°t(BB) and hence builds vector 
mesons [e.g., 485, 229] can easily be denied" by the duality-diagram argument [184].)  

In this section we have given only an outline o f  the approach to understanding of  the pomeron 
and Reggeons in the multi-Regge scheme combining the unitarity with the duality. Much effort  has 
been done along this line and many interesting results have been obtained [495, 127, 108, 109 ,454 ,  
396, 72; see 2 2 , 4 3 9 , 5 2 5  for reviews]. Details of  the results, however, should be deferred in another 
review article. 

N o t e  a d d e d .  the  p o m e r o n - f  i d e n t i t y  

In the conventional theory, we have two Regge poles with the vacuum quantum number,  the 
pomeron and f in the It = 0 channel apart from the f'. An alternative viewpoint has recently been 
proposed that the pomeron is just the f trajectory renormalized (and mixed with the f '  trajectory) 
via the cylinder correction (see fig. 17) to the planar diagram [423, 119]. The cylinder correction 
(C) to the planar term (R), as was given in eq. (3.32), is 

F = R  + R C R  + . . . -  1 (5.18) 
R - 1 -  C" 

Here R has a singularity such as R ~ 1 / (J  - aR).  If C has a singularity like C ~ 1/ (J  - a c )  with 
oe > aR, we still have two singularities shifted due to the cylinder correction(see eq. (3.33)) [512, 
497 ]. Rosenzweig and Chew assumed, however, the cylinder term has no such singularity, then the 
cylinder correction simply shifts aR, and hence we have only a singularity. The situation corresponds 
to the cancellation of  the f pole by the secondary singularity of  pomeron in the full ou tpu t  of  the 
unitarity summation in the multi-Regge scheme. 

In the broken-SU (3) scheme one has the ideal-mixing nonet  at the planar level, and the breaking 
of  the OZI rule is introduced through the cylinder correction. Assuming the cylinder correction 
to be an SU (3) singlet, we take 

t P l a n a r  d i a g r a m s  give a n  e q u a l  c o n t r i b u t i o n  to  C t = - a n d  C t = + ,  l e a d i n g  to  t h e  t o - f  e x c h a n g e  d e g e n e r a c y  in tlae o u t p u t  o f  
u n i t a r i t y  s u m m a t i o n .  While  ( 2 n / 2  - 1) d i a g r a m s  w i t h  an  even  n u m b e r  o f  pa i r s  o f  twi s t s  c o n t r i b u t e  e q u a l l y  to  b o t h  C t = - a n d  

C t = +, 2n /2  d i a g r a m s  w i t h  a n  o d d  n u m b e r  o f  pa i r s  o f  tw i s t s  give a nega t ive  c o n t r i b u t i o n  to  C t = - a n d  a pos i t ive  o n e  t o  C t = +. 

D e n o t i n g  the  c o n t r i b u t i o n  f r o m  o n e  d i a g r a m  as [ G ] ,  a s u m  o f  n o n - p l a n a r  d i a g r a m s  h e n c e  gives a c o n t r i b u t i o n  (2 n - 1 ) [ G ]  to  

C t = + a n d  - [ G ]  to  C t  = - .  T h e  t e r m s  - [G]  in b o t h  C r =  +_ s t a t e s  cance l  t he  f a n d  the  w e x c h a n g e s  [ 4 5 4 ] .  
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1 
J -  0% 

R =  0 

0 

and 
1 

C = +X( t )  1 

1 

0 0 

1 
0 

J -  ao 

1 
0 

J -  o~ 3 

(5.19) 

1 1],  
1 1 
1 1 (5.20) 

where o~ o and c~ 3 denote the unrenormalized trajectories afo = C~o = ap and OLf' ° = 0/0o respectively, 
and the sign of  C takes _+ depending upon the charge conjugation of  R. Then the diagonalization of  
eq. (5.18) gives the f(co) trajectory shifted upward (downward)  and mixed with f'(~b). Figure 54 
shows illustrative trajectories in this model. The mass formula of  1- and 2 + suggests the cylinder 
correction k(t) to be small for the time-like region such as t ~> 0.5(GeV/c)  2 (this is called the 
asymptot ic  planarity [see 120 ,497] ) .  At t = 0, however, there is a substantial deviation from the 
ideal mixing, and hence the f - co  exchange degeneracy is broken; off(0) = 0.81, or,o(0 ) = 0.43. This 
framework is also applied to the 0-  mesons to understand the breaking o f  the rr-,? degeneracy [294].  

There is an evidence that the total cross sections are well described by the nonet  trajectory alone 
(with otf(0) = 0.85 ~ 0.95) up to PL ~ 30GeV/c,  [30 ,526] .  Of f  the forward direction, however, such 
a one-pole description in the It = 0 channel seems not to be so successful. Especially it would be 
difficult to explain the disappearance of  the dip with energies observed in (do/dt) (n-p) + (do/dt)Or+p) 
at t "" - 0 . 6  "- 0.8(GeV/c)  2. Further  analyses would be needed. 

I 

1 . 5 -  

1.0 i 

d f - -  = ,A 

o.5- J 

~3 
0 @/ 

I I I 
0 0.5 1.0 1.5 2.0 

t (GeV 21 

Fig. 54. The leading-trajectory pat tern after the cylinder correct ion has displaced the I t = 0 states. The scale of the splittings at 
t = 0 is fixed by the choice ao-c% = 0.37, % - a t a  = 0.14 (from Rosenzweig and Chew [423]).  
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N o t e  added: violation o f  the O Z I  rule 

So far we have considered only the diagrams without twists in the produced particle line (see 
fig. 50). Violation of  the OZI rule is caused by the inclusion of  such twists [527,528] .  Consider the 
reaction 7r-p ~ q~n (fig. 55). Writing the suppression factor of  twisted produced line compared with 

untwisted one as e, i.e., e = t / l  I, we obtain the ratio of  the absorptive parts, hence that of  the 
= P P ~- v ~ e / N i n  the case of  SU(N) symmetry  p Regge residues, A(rr-p ~ Cn)/A(Tr-p -+ con) ~/~e/~/~,o 

[527]. The suppression of  twisted produced line comes from the cancellation among produced 
particles with opposite charge conjugations. This suppression mechanism works only if the twist is 
in the t ime-l ike qCt line and it does not work for the twist in the space-like qq line(l=~l--r I). In 
this picture the central production of  the ¢ meson does not get the factor e since it is possible to 
write a diagram without twists in the time-like qCt line. Thus we may expect that the central 
production of  the ¢ meson is less suppressed [5291. 

If we apply the above rule to the decay process [528,530]  without inquiring the validity of  its 
application, we have the following suppression factor: 

~p -> pTr, ~ ~ pTr : e2/N ¢ -> dprrTr : e2/N 2 

¢ --> corrrr :e2/N ¢/ -~  ~rrrr, ~ ' ~  ¢~l:e /N.  

This seems to explain the tendency of  the OZI rule violation in the decay process. There is another 
suppression due to the symmetry  breaking. We ignore here the suppression for simplicity of  
explanation, although it becomes extremely important for the decay of  the ~ particles. 

It is interesting to note that the pattern of  OZI rule violation depends on the varieties of  reactions 
and their kinematical regions. In the approach given in section 3.6 the pattern of  the violation is 
independent  o f  them. 

Besides the violation of  the OZI rule, the inclusion of  the twist in the produced particle line gives 
rise to several interesting effects; (i) exotic exchange [ 527 ] (fig. 56a); A (exotic exchange) ~ e2/N "s z~-I 
and (ii) breaking of  (P, A2) or (K*, K**) exchange degeneracy [531 --534] (fig. 56b); %(0) - C~A2(0) cc e 
It has been known that the parameter e obtained from analyses of  these phenomena is mutually 

consistent. 

IE 
K-  p (a) (b) 

Fig. 55. Fig. 56. 
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Appendix A: Kinematics for meson-baryon scattering 

We give here the definitions of  the various amplitudes referred to in the text. We consider 
m e s o n - b a r y o n  scattering M(ql) + B(Pl) -+ M(qz) + B(pz), where q~(qz) and Pt(P2) are the four- 
momenta  of  the incident (outgoing) meson and baryon, respectively. We denote the meson mass 
as ~ and the baryon mass as M. According to CGLN [1 17] the scattering amplitude is defined as 
follows: 

( M2 ) 112 
Sfi  -- ~fi  - -  (27r)4ia4(P2 + q2 -- Pl -- q l )  o o ~ o  o u - ( P 2 ) T U ( P l ) .  

P ip22q 12q2 

Here, T is decomposed into the invariant amplitudes A and B, 

(A.I)  

(A.2) 

f 2  

with z = 

f/_+ = 

Baryon 

Part&l-wave  analysis  
By introducing the centre-of-mass variables 

lg =x/7  = total energy, E --- total nucleon energy (A.3) 

the amplitudes A and B are written in terms of  the usual s-channel amplitudes ft  and f2 as, 

W - M  1 B 1 1 1 A - W + M  A ~ z ~ f 2 '  = E - M  4n E + M 4rr E -~ 34 fl + ~ f2. (A.4) 

The cross section in the centre-of-mass system is given using fl and f2 

do = (o"  q2) (o " ql) 
dr2 ~.. [(xf[fl + f:lxi>l 2- (A.5) 

spin q2qx 

The s-channel amplitudes fl and f2 are decomposed in the partial-wave amplitude ft+_ = 
(~l_+ exp (2i6l±} - 1)/2iq with the total angular momentum J = l -  + ½ and parity (P = - ( - ) 0  as 

00 

it  = Y y,+Pl'+,(z)- X 
l = 0  l=2  

~ _  - f t+)P/(z) (A.6) 
/=1 

cos0. Inversely, ft_+ is given by 
1 

½ fdzOClPt(z )  +f2Pt+_a(Z)) • 
--1 

resonances are classified in four families (a . . . .  , 6 )  according to their signature r = (-)J-112 
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and par i ty  P = - (_)t:  
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r P 

a + + j e  = 1/2 +, 5 / 2 + , . . .  f t -  w i t h l  = odd 

13 + _ j e  = 1/2-, 5/2-,  . . .  fl+ with l = even 

~1 JP = 3/2- ,  7 / 2 - , . . .  f t -  wi th  l = even 

6 _ + are = 3/2 +, 7/2  +, . . .  ft+ with l = odd.  

The s-channel helicity amplitude 
According to J acob  and Wick [303] ,  the s-channel helicity ampl i tude  is def ined as 

+ , .s = p, f++ = ~ ( J  2)J~+d~l/2 1/2(Z) cosO ~f+S+(PJ+v2 - J- V2) 
J J 

* + ° Y . g ( e ' +  e' f + - = 2 (  J +  2)f;-clg-l/Zll:(Z)=Sln'~ s+- s V2 + s-1/2). 
J J 

Here we have 

fgq = f,+ -+ f ( ,+, )_  

or symbol ica l ly  f+s+ = [/3,6] + [o~,7]. The s-channel helicity ampl i tude  is related to fl  and f2 as 

0 0 
f++ = :2+ cos-~ = (fl + A ) c o s  5 ,  

(A.7) 

(A.8) 

Using these ampli tudes,  the differential  cross sect ion and the spin parameters  are given by 

d o / d ~  = if++[ 2 + If+_[ 2, Pdo/dgZ = 2Im f++f*_, 

k d o / d ~  = 2Re f++f+*, A d o / d ~  = If++l z - - I L _ I  2. (A. 10) 

The convent ional  Wolfenstein parameters  R and A are ob ta ined  f r o m / ~  and ei by  rota t ing the 
nucleon recoil angle in the l abora to ry  sys tem [e.g., 64] ,  

5: 1 [2] sin0R cos0R-I • (A. 11 ) 

As for  the direct ion o f  the spin, we take n = qi × qf  according to the Basel convent ion.  
For  small-angle scattering, the impac t -paramete r  representa t ion  gives a convenient  descr ipt ion 

[e.g., 228, 1, 18]. Since the Legendre po lynomia l  Pl(cOsO) is approx ima ted  by  J o ( [ 2 / +  11 sin 0 /2)  
we have, by  notingPl+l - PI ' ~  lPl, 

f++ ~ c o s O q  2 f bdb f++(b)Jo(bX/77). (A. 12a) 
o 

Similarly using the relat ion Pt'~ lJx([2l + 1] sin 0 /2) /s in  0/2,  we get 

f+_ ~. q2 ; bdb f+_(b)Jl(bx/ZT). (A. 12b) 
o 

0 0 (A.9) f+_ = f+_ sin 5 = (f~ - k )  sin ~-. 
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We also have similar expressions for near-backward scattering. With the help of  the relation 
dJl]2 1/2(_Z) = r l'~S-1/2g s ~ - - :  ~,-1/z 1/2(z), we have 

f++ ~ q2 ( bdb (f+t+even _ ft=odd)jl(bv:Z---~) 
0 

• 0 2 f+_ ~ sin -~q ~ bdb (f+l=even_ _f+t_=odd) Jo(bVCL-ff,). (A. 13) 
0 

The t-channel helicity amplitude and the reggeization o f  meson exchange 
The helicity ampli tude in the t-channel is simply related to that  in the s-channel by the T r u e m a n -  

Wick crossing operat ion [487],  and turned out  to be A'  for t-channel helicity nonflip and B for 
t-channel helicity flip, respectively• Here A' is defined by 

i P 
A =A + 1 - t / 4 M  2B 

with 

(A.14) 

s - u t _ Ptqt 
v -  4M - VL + -- COS0 t (A. 15) 434 M 

(v L = lab. energy of  the meson). Using these amplitudes, the first two equations of  (A. 10) reduce to 

do 1 M 2 4sq%in20 B[2] 
"dt-~(-~q)  (1-4-LM2)[IA'I2+(4M2-t)2[ 

do 1 A' * 
Pd- /  - 1 6 z r ~  sin0 Im • B 

The meson exchange is reggeized with the t-channel helicity amplitudes A' and B, [473] as, 

(A. 16) 

A' = 3 # ( t )  -Z-1 - exp {-iTra(t)) ( v )4(0 

B = [3B(t) -z- 1 - exp (-izro~(t) } I v 1 ~(t)-I 
sinrrot (t) Wo--/ " (A. 17) 

The s-channel helicity ampli tude is related to A'  and A for s ~ oo with t fixed as 

~ M A ,  ' M x / - Z t  
f++ 4zrW f+- --~ 4rrW - - ~ - A .  (A. 18) 

Thus the s-channel helicity ampli tude corresponds to (A',A) approximately while the t-channel 
helicity ampli tude corresponds to (A',B). 

For  the kinematics  of  unequal-mass case, see e.g., Field and Jackson [ 194]. 

The reggeization o f  baryon exchange 
The parity-conserving helicity ampli tudes in the u-channel are f2 (x/if, s) and fl (x/if, s). The baryon 

exchange is reggeized with these ampli tudes by removing the threshold singularities.t Writing them 

tThe reggeization is generally done with respect to the parity-conserving kinematical-singularity-free helicity amplitude [ 220, 240, 
503, 129]. 
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as/~'+, we have t 

f''+(V~,s) = T(A + MB) - V ' ~ B .  (A.19) 

(For  s -+ ~ with u fixed it follows that  A + MB ~- A'.) Here f''+(wfu,s) includes only  the r e  = -+ Regge 
exchanges in the leading order  in s, and is subject  to the MacDowell  s y m m e t r y  [346] 

/~+(w/7,s) = - / 6 -  (~V~-,s). ( i . 2 0 )  

The Regge-pole expression is given by 

F _ ( V / - U ~ S  + _~. is 1 + rexpi-izro~'+(V~)) - t ]  ~'+('/~) 
sin nee+ (w/-5) ~ !  (A.21) 

for the rP = + exchanges.  Here one has the Gribov conspiracy 

c~-(v~) = c ? ( - - v ~ ) ,  t3-(v~) = 13+(-wfh - ) (A.22) 

for each Regge pole [234].  
In case when the t ra jec tory  is linear, it is o f ten  convenient  to write the  residue funct ion  as 

~'+(V'~) = y+-(V'-d)R(u), "V+ (x/u) = ,.,/even -b" ~ o d d  (A.23) 

where ,,/even (,),oaa) is an even (odd)  po lynomia l  in x/u-. With such polynomials ,  we can write 

A'/B ~- (A + MB)/B = ")'even/')' °aa. (A.24) 

The s-channel helicity ampl i tude  behaves as 

t 

f++~X/ -uB ,  f+_ ~-- 1 A, 
8rr 8rr 

for s -+ 0% with u fixed. Here u' = u - / t m a  x ( / /max = ( M 2  - -  /22)2/S is a kinematical  boundary) .  

Appendix B: Crossing mat r ix  

Let us define the react ion o f  each channel  as 

(s) M + B--* M' + B' 

(t) M + M' -~ B + B' 

(u) ~ '  + B ~ ~ + B'. 

Then the (s, t) crossing matrices of  ~rN and KN scattering are 

A(It 1 !_-2/3 [A(It=O)] = [1/2 

I.A(I, 1) 1.1/2 

t#+ (,~-,s) = {(~', - mOlS, v'~}L (,~if, s), 

2/3 J 

3/2 ] 

- 1 / 2 J  

[ A(Is = 1/2)] for 7rN 

A(Is 3/2)J 

A ( I ~ = 0 ) ]  f o r ~ N "  

A(Is 1) 

l ) - ( , , f f f ,  s) = { (E u + M)/87r'~ff f)  f~ (~u,s). 

(B.]) 

(B.2) 
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The SU (3) crossing matrices of 8 × 8 -+ 8 × 8 for the SU (3) vector (1_, 8As, _8sa, 8_ss, 8AA, 1_00, 10*, 
27) are as followst [154, 4171' 

and 

S t s  ~- 

Xu s = 

I/8 0 0 1 1 5/4 5/4 27/8 

0 -1/2 -1/2  0 0 V'~/4 -x/3-/4 0 

0 -1/2 -1/2  0 0 -V"5/4 -V~/4 0 

1/8 0 0 -3/10 1/2 -1/2 -1/2 27/40 

1/8 0 0 1/2 1/2 0 0 -9/8 

1/8 1/v"5 - l /x /5  -2/5 0 1/4 1/4 -9 /40  

1/8 -1/V~ l/v@ -2/5 0 1/4 1/4 -9/40 

1/8 0 0 1/5 -1/3 -1/12 -1/12 7/40_ 

Xs t  ~ X t s  

- 1/8 0 0 1 -1 -5/4 -5/4 27/8 

0 -1/2 1/2 0 0 -M"5/4 V'~/4 0 

0 1/2 -1/2 0 0 - ~ / 4  V'~/4 0 

1/8 0 0 -3/10 -1/2  1/2 1/2 27/40 

-1/8  0 0 -1/2 1/2 0 0 9/8 

-1/8  -1 /V~ -1/V"5 2/5 0 1/4 1/4 9/40 

-1/8  1/V'5 1/V'~ 2/5 0 1/4 1/4 9/40 

_ 1 /8  0 0 1/5 1/3 1/12 1/12 7/40_ 

x,u =xus. 

(B.3) 

(B.4) 
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