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A systematic quantum expansion of soliton solutions to nonlinear field equations is developed. The method is
based on the standard canonical quantization procedure. When the nonlinear coupling g is small, the
Hamiltonian is O(g~2) and its quantum eigenstates take on a WKB form, giving a direct connection between
the quantum description and the corresponding classical soliton solution (which can be in any dimension,
either time-dependent or time-independent). Our general method is illustrated by a variety of one-space-

dimensional examples, some new and some old.

I. INTRODUCTION

The nonlinear field equations which form the
basis of quantum field theory have long been known
to possess a rich array of solutions on the clas-
sical level, some of those classical solutions hav-
ing rather remarkable particlelike properties.'*?
In this paper we describe a general quantization
procedure which permits the quantum-mechanical
interpretation of these classical solutions and the
computation of quantum corrections to them. Be-
cause of their particlelike properties, these non-
linear solutions are called solitons.

To see how such solutions may emerge, let us
consider any local field theory, consisting of an
arbitrary number of fields. It is convenient to
characterize their coupling by an overall constant
&, with the requirement that when g=0 the field
equation becomes linear. Let us assume that the
theory possesses some conserved quantities, such
as charge @, or baryon number N,..., or some
boundary condition at infinity. For example, in
the special case of a scalar field ¢(x) in one space
dimension x and one time dimension £, the con-
served quantity can be simply

P(=) = (=) ,
which is independent of time.

Assuming that the energy density is positive
definite (and is chosen to be 0 everywhere in the
vacuum state), we may search for the lowest en-
ergy state of such a system with some appropriate
conserved quantity fixed. Classically, if the ener-
gy density in this lowest energy state is finite,
nonzero, and of finite extension in space, then the
state is defined to be a soliton, or multisoliton,
solution. It is clear that as g—0, these solutions
do not satisfy the corresponding linear field equa-
tion.

Examples of soliton solutions can be found in any
dimension. In one space dimension,'™ there are
the sine-Gordon equation, the quartic coupling
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theory, etc. In two or three space dimensions,
there are the various magnetic-monopole solu-
tions®™'!; in addition, there are solutions similar
to the abnormal nuclear state.'? [As an illustration
of the latter case, we may assume the system to
consist of only scalar fields, say one charged
field ¢ and one neutral field x, with a coupling
contained in (m +g%)? ¢T¢ +V(x), where V(x) has
an absolute minimum at x =0 and another local
minimum at X =-m/g. It is quite simple to show
that when the “charge” @ exceeds a certain limit,
soliton (i.e., abnormal) solutions occur in which
@ is confined in a finite volume  and carries a
finite rest mass; x = -m/g inside Q but 0, its
vacuum expectation value, outside. We note that
keeping @ fixed is a constraint that involves both
¢ and ¢.]

Because of the localization of energy density the
number of solitons (or antisolitons) in such a clas-
sical solution can be directly counted, at least
when ¢t— +, If the constraint depends on the time
derivative of the field, then in general even the
classical single-soliton solution in its rest frame
is time-dependent; otherwise, it will be time-in-
dependent. Once a single-soliton solution exists,
then at least on the classical level, multisoliton
(and/or antisoliton) solutions can be readily con-
structed by forming the appropriate asymptotic
states at {=-=. Such solutions would naturally
be time-dependent, since as time develops, these
solitons (and/or antisolitons) should undergo scat-
tering and other possible dynamical changes. Our
main concern is to begin with such a classical
solution, and to develop a systematic quantum ex-
pansion in g, through which the corresponding
quantum-mechanical solution can be derived;®® as
we shall see, the lowest-order term in this expan-
sion, which will turn out to be O(g™?), is essen-
tially the classical solution.

For definiteness, we consider a Lagrangian den-
sity depending on an N-component real scalar field

¢
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- l Ei‘ 2_ -2 i
8—-2;( u) g7 Vigo') . (1.1)

If we expand V(g¢') as a power series in ¢' about
its minimum, then the quadratic (or mass) term
is independent of g, the cubic term is linear in g,
etc. Hence, in the limit g—0, at least formally,
£ contains only quadratic terms in ¢>‘; therefore,
g plays the role of a coupling constant.

Let

[¢'F, )]a=g7 0" F, 1,25, ..., 20)

represent a family of classical solutions to the
Euler-Lagrange equation determined by the La-
grangian density (1.1). These solutions all have
the same energy, and depend on the integration
constants 29, ...,2%. Because of the factor g™*

in its definition, the N-component c-number func-
tion o’ satisfies

820’ V() _,
ax,®> ~ aq’ ’

where V(0) = V(0'(F, t,29, ..., 22)). Since the above
equation is independent of g, so is of. We will al-
ways introduce a sufficient number of parameters
2%, ..., 2% so that translation of our solution in
space or time can be accomplished by changing
the parameters 2%, ...,2%. In particular, there

will exist a set of values z,(¢, 29, ..., 2%) which
allow us to write
o'(F, t, 29, ..., 2%)
=0'(F,0,2,(4,25% ...,2%), ..., 2x(t, 2%, ..., 2%)) .
(1.2)

For the single-soliton solution in a D-dimensional
space, we will use at least D integration constants,
say 2%,...,2%, representing the center-of-mass
position of the soliton at a particular time. In the
case of an /-soliton solution in a D-dimensional
space, there should be at least /D integration con-
stants corresponding to the initial positions of the
! solitons. It will often be useful to choose the pa-
rametrization z,, ..., 2, of our family of classical
solutions so that the z,(¢, 29, ..., 2%) defined by Eq.
(1.2) have the simple form

= V]
Z, S upt+2, ,

where the #,’s are constants (k=1,2,...,K), so
that

ot =o' (T, 2, ..., 2x)
has no explicit dependence on ¢, and it satisfies

- ?%* 3 V(o)
25t ) —_— =0. 1.
Vo 2 Up Y 82,02z, ac’ 0 (1.3)
Y

For a time-~independent solution, one has u, =0
and therefore z,=22. That such a simple choice,
z,=u,t +29, is always possible for any time-de-
pendent solution follows from the time-transla-
tional invariance of the original field equation. We
can always choose one of the integration constants,
say 2%, to be related to the time translation,
t—~t+constant, and this leads to the special choice
that only u, # 0, but all other #,=0. In general,
for an /-soliton solution in a D-dimensional space,
it is most convenient to choose u,, ..., #;p to be
simply the velocity components of these ! solitons
as t—=—c, and therefore 2, ..., z;p, become their
positions at least in the asymptotic region.

For the quantum theory, we expand the field
operator ¢‘(F, t) about the classical solution
g o (T, 2y, ..y 2k):

¢‘(F, t) :g-l Oi(F’ zl, M ZK)

b Y GOUE 2z, (14

n=K+1

where z,,...,2¢, g+, 9x+as - - - are treated as
coordinates and the N-component c-number func-
tions ¢4(T, 2,, . . ., 2¢) form a complete set of real
functions, subject to the constraints

N i
;fzp,‘,z—zh =0 (1.5)

and the orthonormality relation

ZN: f¢:¢:’d7:6nn' ) (16)

im1

where dr=d%. We now propose to apply the usual
methods of canonical quantization to the Lagran-
gian density (1.1), written in terms of these new
coordinates z,,...,2g, g+, Qg4py - - -

This approach will be developed in the 1ext sec-
tion. The quantization procedure can be carried
out in a completely standard and straightforward
way. The Hamiltonian of the system, as a function
of the coordinates z,,...,2y, 9k, ... and their
conjugate momenta (—8/9z)),...,(=128/9zy),
(-9/8qx,,), ... can then be explicitly given. By
using this Hamiltonian, we can attempt to express
the solution of the resulting quantum-mechanical
problem as a power series in g. The leading term
for small g is O(g7?), and it can be derived by
solving a K-dimensional quantum-mechanical prob-
lem, depending only on the coordinates z,,..., 2z,
and their conjugate momenta. It turns out that to
0O(g™) the solution of this K-dimensional Schro-
dinger equation is precisely that given by the WKB
approximation; it leads to a direct connection be-
tween the quantum-mechanical solution and the
classical solution of interest. The next-order
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solution is O(g°), and it involves also ¢, and ,
=-19/3q,. Since terms in the Hamiltonian that
depend on cubic or higher powers of ¢,and =, carry
additional powers in g, to O(g°) the Hamiltonian is
reduced to one that depends, besides on z, and

b =—19/3z,, only quadratically on ¢, and 7,. This
then reduces to a system of harmonic oscillators
whose frequencies may depend on z,. Its quantum-
mechanical solution is closely tied to the corre-
sponding classical problem, as shall be explicitly
exhibited in Sec. II.

In Sec. III, our general method is illustrated by
application to field theories in one space dimension
and one time dimension. Independently of the de-
tailed form of the Lagrangian, we derive the quan-
tum-mechanical solution of a single soliton, either
at rest or in motion. The general form of the
characteristic frequencies of the harmonic oscil-
lators in ¢, and 7, is discussed, which allows us
to examine the inverse problem of starting from
the energy spectrum and then deriving the corre-
sponding field theory.

The question of statistics of solitons in one space
dimension is fundamentally different from that in
two or more space dimensions. In space dimen-
sions other than one, there is a continuous set of
points at infinity. Except for some special the-
ories involving gauge vector-meson fields, be-
cause of continuity, we can assume ¢>‘(°°) to be of
a constant value equal to that in the vacuum state.
Thus, we may at least formally expand the soliton
state in terms of the usual free-meson creation
operators acting on the vacuum state. A soliton
canthenbe viewed asa bound state of an indefinite

1 k. ([ -8 = oyt
’Fde%EZ[ZZ»(g ot 2 g
i k=1 R p=ker k

.i=1

)

number of mesons; its statistics are like those

of any bound state, determined by its constituents.
In one space dimension, the above argument fails
since the value of ¢' at x =« usually differs from
that at x=~ = in a soliton state. On the other hand,
as is well known and shall also be analyzed in Sec.
III, the statistics of any one-dimensional system
of interacting identical particles is entirely a
matter of convention, not of principle.

Section IV contains a brief discussion of the
quantization of the time-dependent two-soliton and
soliton-antisoliton solutions to the sine-Gordon
equation. This section serves primarily as an
illustration of the use of the coordinates z,, g, of
Eq. (1.4) in a nontrivial case. For the soliton-
soliton or soliton-antisoliton scattering solutions
only the terms of order g 2are discussed. The
quantization of the periodic breather mode (soliton-
antisoliton scattering with imaginary velocity) is
carried out through order g° and results similar
to those of Dashen, Hasslacher, and Neveu® are
obtained. Finally, in Sec. V, we introduce and
quantize a new one-dimensional scalar field theory
whose classical solutions include soliton pairs
permanently confined in a “bag.”

II. GENERAL METHOD

Let us now use the usual canonical methods and
the coordinates defined in (1.4) to quantize the dy-
namical system described by the Lagrangian den-
sity (1.1). In terms of the coordinates z, ..., 2y,

9x415 9542 - - -, the Lagrangian becomes

>+ i ént/)f.T

n=K+1

—% ﬁ:[g“(%‘n > q,.(ﬁzp:)r-g'z V(o‘ +g i qnzpi)} (2.1)

i=)] n=K+1

in which the derivatives of o* and Y} are taken by
regarding z,,..., 2, and T as independent vari-
ables. In the following, for convenience we shall
adopt the convention that all repeated indices are
to be summed over. The superscript ¢ varies from
1 to N, while the subscripts k (or &) and n (or »’)
are always treated differently; they vary as fol-
lows:

K=k (ork)=1,
but (2.2)
norn’)2K+1.

The momenta conjugate to 2z, and ¢, are

n=K+1 E
r
9L . .
b= 3_2,, = Myy 2yt +Mpny
9L . . (2.3)
Ty = '37” =Mup 2y +Mpp 4y

where the different matrix elements of the mass
matrix M(z,, q,) are given by

-, 80’ oy} -, 9d* Byh
M.u'=fdf<g Yozt w“) <g P22 g, 2 )
R

9z, 0z 8z,
ayt,
Mkn =Mk=fqn’ 32’; lp:ldT ’ (2'4)
and
Mrm’:Gnn' .
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The Hamiltonian for the system is ables. We recall that for an arbitrary set of /
1 - - variables x,, ..., x; given as functions x;(y,, ..., ¥;)
H =20 Yaur Du + PAM ™ )i T of a second set of variables y,,..., y, we c;n wx"ite
+%7rn(M—l)nn' Myt 1 32 .1 9 9
_ Z 35— _l)ng— ) (2.9)
+g‘2fV(a‘ +8q, 98 dT | (2.5) =1 =1 Vs
where where the matrix g;, is given by
B ey = 1 2 dx, 0x,
V(&) = V(&) +3(V5) . (2.6) }: 5y, 3y, ’
The coordinates, conjugate momenta, and the
Hamiltonian (2.5) can all be identified as operators while the function J is the square root of the de-
in the standard way, yielding a well-defined quan- terminant of the matrix g;,;. In our case, the ma-
tum-mechanical theory provided a prescription trix g;; is simply M given by (2.4). The matrix M
for ordering the noncommuting factors in # is can be written as
given. This can be done by viewing the Hamilton- M=G& (2.10)
ian (2.5) as a differential operator on the Hilbert )
space wave functions of the variables z,, ..., 2, in which the tilde denotes the transpose and G is
44y, - - - Using the substitution p, ~—#(3/9z,), of the form
m,—~~1%(3/3q,). If we had made the usual expansion ‘A B
of the field operator ¢'(¥) in a complete set of G=
orthonormal N-component function, say f(r), N 01/’

without any constraint
where A = (A,,) is a (K X K) matrix, whose square

(T, t) = Z Qs (t) fi(F) (2.7) is given by [in the notations of (2.2)]
s
(A%)pr =Migy? = Myg My (2.11)
and us'ed the c?eff1?1ents Q,(t) as coordma'tes, the and B is a (K X =) matrix whose matrix elements
resulting Hamiltonian would have no ordering am- are simpl
biguities and if viewed as a differential operator Py
would be of the form By =M -
9 The determinant of the (» X «) matrix M is there-
H=-= — . .
2 ; 9Q,* +U(Q,) 2.8) fore equal to that of the (K X K) matrix A?; this
leads to
The order}ng of the opfer.ators in Eq..(2.5) ca:n then J=detA . (2.12)
be determined by requiring that as differential
operators the expressions (2.5) and (2.8) are iden- Thus, the precise form of the Hamiltonian oper-
tical, being related by a simple change of vari- ator in terms of our variables z,, ¢, is
J
H-= % J-l [ph(M-l)kh' ka’+pk(M-l)hn Jﬂn + ﬂ"(M-l),.,h ka + "n(M_l)nn’ J"n']"'g-zdeV(oi +84, ¢:,) . (2- 13)

This Hamiltonian is considerably more complex than that usually encountered in quantum field theory
[e.g., Eq. (2.8)]. If it is to be of use we must develop an approximate method of solution, presumably one
retaining a connection with the original c-number solution whose properties were the initial motivation of
this approach. If we treat the dimensionless coupling constant g as a small parameter, then H contains
terms of order g2, 27}, g% g',... . At least in certain cases it is possible to find explicitly the eigenstates
|¥ ) of H accurate through zeroth order in g. Their eigenvalues E, cluster about a large central value
g£7%8, differing from it by terms of order g°,

E,=g7%8+6,, (2.14)

where 8,~0(g%. As a function of the coordinates z,, g, we will write |¥ ) as

$8(2),. .. 88) /62

Vo2, .-y 265 Dars-vvyGny---)=€ XelZ1y ooy 2h5 K01y -+ ) s (2.15)

where S(z,, ..., 2g) is independent of g and, to leading order in g, Xo(2,,...,2x; 9+, - - .) is independent
of g also. The terms of order g2 in the eigenvalue equation

H-E)|¥=0 (2.16)
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involve only the z,’s and can be written

1 aS -
AR ,,,,,_— f[w (7, 2 1,...,zx)]2d7+fV(a‘(r,zl,...,z,())dT—é’=0, (2.17)
where M, is a (K X K) matrix whose matrix elements are
8o’ o
(M ap! -fd‘fsz 22 (2.18)

If one derives the Hamilton-Jacobi equation determined by the Lagrangian (2.1), expresses it in terms of
the variables 2,,4,, and then ignores all dependence on the ¢,’s, Eq. (2.17) is exactly what results. In most
cases this Hamilton-Jacobi equation can be solved for a continuous range of the energy & by a function
S(z,, ..., 2x) depending on & and K integration constants.

In our case, this wide range of possibilities is severely limited because of the requirement that the terms
proportional to g7! in Eq. (2.16) must also vanish. More explicitly, these terms are

S - < f agt oyt
@6\t J 4752 52

2 )01, e o 4, [ar S i vy [arSol-Suieo, (2.19)

where we have simply expanded (M ™)., V(¢), and V¢' to first order in the quantum fluctuation g, ¥4(»). In
the above expression, the repeated indices ! and !’ are, like k2 and k’, to be summed over from 1 to K. It
is convenient to adopt the choice

2, = Ut + 2§ (2.20)

discussed in Sec. I. After integrating by parts and using the orthogonality condition (1.5) and the field equa-
tion (1.3) satisfied by 0'(T, z,, . . ., 2¢)

a20* av(o)
24 —ee. —
V20" +uy uy 52,02, Sry= o, (2.21)

Eq. (2.19) becomes

3s - 3s ] f _
[sz M M) e 82y —Uuy ar w,. 62,33,/ =0. (2.22)
—
This is ensured if a [agt %’ 50t 920+
3S fdru,: 3z (8_1_,_ 9z, 02, 1" 9z, 9z,0z, " >’
13 R 1] 'Y 'Y 1 R
6—zk'=(Mo)klul' (2.23)

(2.26)
[In fact, Eq. (2.19) can be shown to follow from our
general parametrization z, =2,(t, 2%, . . ., 2%) instead
of the special choice (2.20), provided that %, in Eq.
(2.23) is replaced by dz,(t, 29, ..., 2%)/dt, evaluated
at zJ=2,.] In order for S to exist, we must have

which is zero on account of (2.21). In any scat-
tering problem between solitons and/or antisoli-
tons, as t—=—, (M,),; approaches the appropriate
limit of free solitons (or antisolitons), which is
independent of their positions (i.e., 2§). Hence,
(2.24) holds in this limit and therefore also at any
2 (a_s_> -2 (.ﬁ.) (2.24) other time, since it does not change with time.

9z, \d2y/ 02y \32, /' We are thus led to a unique choice of the function
S, obtained by integrating (2.23). It is interesting
to note that Eq. (2.23) when combined with Eq.
(2.17) implies that the energy 728, with & given

or, because of (2.18) and %, being constant,

3t 9% f a0t 9% b
-y, - —_—————— u, = y
de 92z, Bz,azk,u' dr 82, 02,02, “=0.
(2.25) 8 =3 up(M)pnr Uy’ +fd‘r 3Vt + V()] , (2.27)

We recall that the function o*(F, Z,...,2g) is de- is the same as that of the classical solution, and
rived from a classical time-dependent solution is a constant independent of the parameters z,.
through the substitution (2.20). Thus, we may Next, we examine the terms of order g° in the
regard the left-hand side of (2.25) as a function of eigenvalue equation (2.16). To do so, we must

¢, keeping z{ fixed; its time derivative is expand (M ™Y),,, V(¢), and V¢’ to second order in
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q,. The final expression assumes a relatively
simple form if we first perform a linear trans-
formation among the 2z,’s so that only one of the
u,’s is not zero, say

U =u (2.28)
and
u, =0 for k<K . (2.29)

The result is

.9 A
2 j5z—x'-m 9zy +3 My Myt 3 Gy Frnpr

+%(ﬂn Grm'qn’_qnGrm' ﬂn’)" ga] Xa=0 ’ (230)

where 7,=-1%(3/3q,) and F,, and G, are functions
of z,,...,2x given by

- - LR
Fyr= [ [ 901) Bty +4, 2D gt |ar

+3UR f o (M ™ Vanr Frrnr
. azgt
- s
fnk"fwn 3Z~32Kd7,

and

(2.31)

3y,
G, l=—Gl=—uf‘—-'LdT.
nn nn ‘p" azx

Before entering the general discussion of how to
solve this seemingly complicated eigenvalue equa-
tion (2.30), it may be instructive to consider the
simplest case in which the classical solution o is
time-independent.

1. Static case

If our original classical solution is static, then
u=0, and (2.30) reduces to

%(ﬂn My +qp Fonr qn’)xa= é,axa . (232)

This equation can be easily solved once the quad-
ratic form F,,- hasbeen diagonalized. The definition
(2.31) shows that F,, is the n, n’ matrix element of
the operator
=2, V()
2
=Vt ot oo

(2.33)

Differentiation of the classical field equations
(2.21) with respect to z, reveals that when #=0 the
K functions 80/9z, are eigenstates of (2.33) with
eigenvalue zero. Thus it is possible to choose the
zp,‘, orthogonal to 3¢°/8z, and also eigenstates of
(2.33) with eigenvalues w,? so that
F, =0, w2 . (2.34)

The resulting spectrum &, of (2.32) is given by

8.=Y Mu+)w, (2.35)

where the N,’s are occupation numbers =0,1,2,... .
The eigenstates X, solving Eq. (2.32) will provide
eigenstates of our original Hamiltonian accurate
through order g° only if the eigenvalues w,? are
independent of the variables z,. In most cases of
interest a family of static classical solutions
0‘(?, z,,...,2k) reflects a continuous K-param-
eter symmetry of the original Hamiltonian. The
simplest example is the one-dimensional trans-
lational symmetry of the equations studied in Sec.
III; similarly for an N-component scalar field in
one space dimension, K will be equal to N in the
case that the N-component fields are all uncoupled.
If such a symmetry does exist, we can define the
solution o*(F, z,, ..., 2¢) as that obtained by acting
on a single fixed solution ¢*(F, 0, . .., 0) by that
K-parameter symmetry operation determined by
the values z,,...,2,. In our one-dimensional sin-
gle-soliton example, the single parameter Z is
introduced by translating a solution centered at the
origin a distance Z to the right. Likewise, we can
choose the functions ¥4(T, z,, . . ., zx) to be the re-
sult of the same symmetry operation applied to
Yi(F,0,...,0). In this way the momenta conjugate
to the variables z, become generators of the K-
parameter symmetry and commute with H. In
particular, the matrix elements F,,, and eigen-
values w,’ are independent of the variables z,.
Thus the products (2.15) are eigenstates of H accu-
rate through order g° If a sufficient number of
variables z, has been introduced so that the K
functions 80/9z, comprise all the eigenvectors of
(2.33) with zero eigenvalue, then all the w, will be
different from zero. Consequently, if we consider
states with definite values of the conserved mo-
menta p,, ..., px, our ground state of H will be
nondegenerate to order g°.

2. Time-dependent case

Next, we consider the general case u # 0. The
eigenstates x, can be written down formally as

1
xa(zk; qn) = Tj" e‘(apK)'x U(‘zi{)
XX 21y« ooy Bg=1,0,4,) . (2.36)
Here 0py is a constant, X4(2,,...,2x-;,0,4,) is
any function of z,,...,z,_, and the ¢,, while U(zy)
is a “time” development operator which satisfies
. 9
H,U(zg) =iu — U(zy) , (2.37)
9zy

where
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H, = 3(T Ty + 4y Fopr @yt + Ty Gt @ = Gy Gt Myr)
(2.38)
and
U)=1. (2.39)

In H,, the subscript 2 indicates its quadratic de-
pendence on ¢, and m,. The operator U(zy) is uni-
tary. If the variable 2/« is interpreted as the
time, Eq. (2.37) can be viewed as a Schrédinger-
type equation for an infinite-dimensional harmonic
oscillator with time-dependent coefficients. Al-
though not shown explicitly, the operator U(Z)
will, in general, also depend on the variables
Z,...,2¢-;. The energy eigenvalue &, for the
state X, specified by (2.36) is

8a=(Opp)u . (2.40)

The somewhat unusual Hamiltonian H, appearing

Hél 2%[(5"71)2 +an'(6qn) (an’) +20nn’(6”n) (5(]"1)]

in (2.37) has a very direct and simple interpreta-
tion. Consider our original problem expressed in
terms of the variables z,, ¢,. A solution to the
classical equations lying close to the solution

s g2 35
w(t) =8 ZE(ZII,...,Z,?) ,

q":O’ ﬂ’"zo (2‘41)

2, (8) =upt +28,

may be written
2y(t) =25 (t) +02,(2),
_, 88
Du(t) =g"2 a—z-;(zf' +0z,,...,28 +62,) +0p,(¢t) ,

qn(t) = an(t),

If the classical Hamiltonian is expanded in powers
of the fluctuations 6z,, 6p,, 0q,, 67,, the terms
quadratic in these quantities and of leading order
in g are

m,(t) =6m(t) . (2.42)

1 - a0 d -
+28%0D (Mo Vupr O - 281, | — 2 (M, e dT Bp, g, . (2.43)

9z, 8z,

As expected, 0z, does not appear in Hj', and the choice 6p, =0 is thus consistent with Hamilton’s equa-
tions and eliminates the variables 6z,, 8p, from H;' altogether, leaving simply the Hamiltonian (2.38).
Therefore, the operator U(zy) is precisely the time development operator for the system obtained by quan-
tizing those small oscillations about the classical trajectory z, =%,¢ +29 for which all the 0p, are zero.

Thus the problem of finding eigenstates of the complete Hamiltonian (2.13) accurate to order g° has been
reduced to that of solving the Schrédinger equation for a system of harmonic oscillators with time-depen-
dent coefficients and an infinite number of degrees of freedom. Since such an equation does not have an
explicit general solution, we will limit the remainder of this general discussion to expansions about two
specific types of classical solutions: (a) slowing varying and (b) periodic. Examples of other situations

can be found in Sec. IV.

(a) Slowly varying. If we assume that « is sufficiently small, so that compared to any characteristic

frequency w, of H, we have

Y a0’
9z

< lw,0'],

(2.44)

Eq. (2.37) can then be solved by the usual adiabatic approximation. The resulting eigenfunctions X 4(z,, 4,)

are

1 i “x
Xal2s, 4n) = 7€ B’K"KH{ e - £ +h) [ e dzg |
n 0

T

where ky(x) is a Hermite polynomial of order N
and the ¢, and w, are the coordinates and corre-
sponding eigenfrequencies which diagonalize the
quadratic form F,,s obtained from (2.31), by re-
placing the explicit factor #* by zero.

(b) Periodic. If we assume that our classical

/ .
x(& )1 4(2”"N,,!)_1/2h,, (wnx/zqn) e-(x/z)w,,cf} , (2.45)

solution ¢*(F, ¢; z,, . .
T, then

., Zg) is periodic with period

e R 7. 4 7
o'(r’zu-"’zl(-nzl()‘o (r,zly'-"zk-1’ZK+uI‘) .

(2.46)



The coordinate points z,,..., 2k, 9x4,, ... and
Zy,...,2x+uT, qg,,, ... determine through Eq.
(1.4) the same configuration of our physical sys-
tem. Thus in our quantum-mechanical description
we will use zg in the range

0<zy <uT (2.47)

and require that our wave function have the same
value at the physically identical points zx =0 and
2x=uT. This condition will give the familiar quan-
tization of energy. For example, if we make the
adiabatic approximation of Eq. (2.45), then for the
ground state N, =0 the entire wave function ¥ of
Eq. (2.15) will be periodic if

ul
’[ [Px(zx) - % ; w,,(zx)] dzy +(0pg) uT =2mm ,

(2.48)

where 0p, is a constant and py = (3S/8z,) = (M ) xxX,
on account of (2.29). By using (2.40), we have
u=98,/9(6py), so that (2.48) may be written as

fuT {px(zx) + 3(51’1() [6 -= Z w,,(z,()] }dzx =2mn .

(2.49)

Thus the eigenenergies g2 § + §, are shifted from
those given by the usual WKB values by a sum of
the zero-point energies of the harmonic oscillators
averaged over one period of the classical motion,
+@,, where

ul

= (uT)™ w, (2g) dzy . (2.50)
0

If Eq. (2.49) is to be satisfied for all values of
Z,,...,25-, With a constant value of &, it is suf-
ficient té require that (M )xx and w,(zy) be inde
pendent of z,,...,2,-,. This can be achieved if we
assume it is possible to choose variables
2,,...,8g-,, as described in the paragraph fol-
lowing Eq. (2.35), so that their conjugate momenta
-i(9/982,)),...,=i(3/92x_,) commute with H. Again,
in most cases of interest, a family of degenerate
periodic classical solutions o‘(x, I R 4
+uT) exists because the original Hamiltonian pos-
sesses a continuous (K - 1)-parameter symmetry.
In order to quantize fluctuations about a general
periodic orbit, we must know some properties of
the operator U(«T) determined by the Schrédinger
equation (2.37) and Eq. (2.39). In fact, this oper-
ator is completely determined by the solution to
the classical problem of small oscillations. It can
be easily shown from the classical theory of small
oscillations™ that through canonical transforma-
tion our variables 84,(t), m,(¢) can be chosen
so that
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a,0q,(T) +b,87,(T) = e~ " [a, 64,,(0) +b, 07,(0)] ,
(2.51)
aF8q,(T) +b8m,(T) =€' " [a 54,(0) + b 87, (0)] ,
where B, is a characteristic exponent (or stability
angle) and we have required that our classical

orbit be stable so that 8, is real. We will choose
a, and b, so that
i(a,,b;,*—b,,a,;*)=l ’ (2.52)
and define the quantum-mechanical operator
AnEanqn +bn(_ ia/aqn) ’ (2‘53)
which obeys
[Am AI’] =0,,
Because the Hamiltonian H, in (2.37) is quadratic
in the g9, and m,, the Heisenberg equations of mo-
tion for the operators ¢, and 7, are identical to the

classical equations. Therefore, (2.51) can be
written

U(Tu)'A, U(Tu)=e "B A, (2.54)
which implies that
U(Tu) = exp [_iz (A,TA,,+%)B,,T]. (2.55)
n

The constant 3 in the exponent can be determined
from the formula

¢ y-1/2
(olu(tylo) = )detT[exp( f () dt'), .., } ,
(2.56)
where the matrix JC can be written in four blocks,
8%H, 02H,
9ATaA,, A} A},
¥ = 82112 82H2 ’
T8A,0A, ~ 08A,0A]

and only the determinant of the correspond‘ing
lower right-hand block is to be taken in evaluating
Eq. (2.56). Using Eq. (2.55), we can impose the
condition of periodicity in zx for the wave function

‘I’a(zh ) qn) =e“—28(‘1" .

) < Ulzy)

x T A4y (W%T |0) (2.57)

and obtain the condition

f %PK(ZK)'*'[g E(N +3) By } 6(68 )ldz =27mn
’ « (2.58)

so that the total energy (1/g%) 8 + 8, is shifted
from the familiar WKB value by

3 (N, +3) B,

n

(2.59)
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for a state with the occupation numbers N,. Thus
if the characteristic exponents and corresponding
modes of the classical small-oscillation problem
can be found, the quantum-mechanical eigenstates
and eigenvalues can be found to order g° Again
we assume that the parameters z,,...,2,_, can
be so defined that their conjugate momenta com-
mute with H guaranteeing that py(z,) and the 8,
are independent of z,, ..., 2x_, and that Eq. (2.58)
can be solved by a constant eigenvalue §,. If we
have introduced sufficient parameters z, that the
requirement 0z, =0 eliminates all classical small-
oscillation modes with zero characteristic expo-
nent, then, among states with definite values for
the conserved quantities p,, ..., px-,, the ground
state N, =0 will be nondegenerate.

This concludes our general discussion. Sys-
tematic extension of this procedure to higher order
in & may well be possible, as will be considered
in the Conclusion.

III. ONE-DIMENSIONAL THEORIES

While the general method that we have developed
is applicable to theories in any dimension, explicit
examples can be most easily obtained for fields
with only one space dimension (besides the time
dimension). Considerable attention has already
been given in the literature to both the classical
solutions' ™ and some aspects of the quantum solu-
tions,’® especially of the ¢*-coupling theory and the
sine-Gordon equation.?™ In this and the following
two sections, we shall illustrate our general meth-
od by examples of various one-dimensional field
theories. Although our emphasis is on new de-
velopments, naturally some repetition of results
that have already been obtained by others is un-
avoidable.

Let the Lagrangian density of a single Hermitian
field ¢ in one space dimension be given by

__1(3V_ -
£--3 (32 ) -2 view, 6.
where x,=(x,it) and V can be any function of g¢.
We assume that V does not contain any derivatives
of ¢, so that the theory is renormalizable. The
field equation is

2

sra= 8 Ve =0, (3.2)

where V(&) =dV(£)/dt. In order to have soliton
solutions, the absolute minimum of V is assumed
to have degeneracy. Without any loss of generality,
we may choose the absolute minimum of V(g¢)

to be zero, which occurs at several different val-
ues of g¢, labeled a,, a,, ... such that

Vige)=V(a,) =0. (3.3)

It is convenient to arrange the a,’s in ascending
order,

@, <oy <ag<re . (3.4)

Their total number may be either finite or infinite.

A. Classical solution

The time-independent classical solution of a
single soliton can be derived by setting ¢ =g~ 'o(x).
Equation (3.2) becomes simply

d3g

T3 -Vi@=0, (3.5)

which implies

2
—21- (%) - V(o) =constant . (3.6)
Thus, if we regard x as a fictitious “time,” the
problem becomes identical to one in elementary
mechanics, in which there is a point particle at
a “position” coordinate 0, moving in a potential
— V(o). Because of (3.3), — V(0) has several peaks
of equal height at 0=a,, a@,, ... . In terms of the
mechanical analog, the single-soliton (or anti-
soliton) solution is one in which the “particle”
moves between two neighboring peaks, say a; and
a,,,, starting from 0=q; at x=- = and ending at
0=ay,, (or a,.,) at x=+=. In analytic form, it is
given by

fo[z V(o)) 2do=x . (3.7)

Because of Lorentz invariance if g 'o(x) is a solu-
tion of (3.2), then

& to(yx—yvt) (3.8)

must also satisfy the same field equation, where
y=(1- 02)—1/2.

B. Quantum expansion (c.m. system)

The quantization procedure can be most easily
carried out in the center-of-mass system in which
the total momentum P is zero. In the notations
of Secs. I and II, there is only a single collective
coordinate 2z, (i.e., #=K=1), which will be labeled
Z. The expansion (1.4) now assumes the form

¢=g"‘a(x-Z)+q,,(t)zp,,(x-Z) ’ (3-9)

where, as in (2.2), the repeated index 7 is summed
over from n=2 to ». In accordance with (1.6), the
¥,’s satisfy the orthonormal condition

[ = 24t - 2 dx =5, (3.10)

and the additional orthogonality relation (1.5)



[ otx-2)/0214,(x- 2)dx=0 . (3.11)

Furthermore, according to (2.33) and (2.34), they
are the eigenfunctions of a Schrddinger-type equa-
tion

d2
[' axzt V”(")] bn(X=2) =02 Yu(x=2),  (3.12)

where V”(0) =d?V(0)/do® and 0 =0(x - Z). This
choice (3.12) can also be directly arrived at by
simply substituting the expansion (3.9) into the
field equation (3.2), setting ¢,(¢) to be proportional
to exp(+iw,t), and then neglecting higher-order
terms in ¢,. Since Z-—~Z +8Z represents a trans-
lation, the function

P(x=-2)= o(x Z) (3.13)
must satisfy (3.12) with a zero frequency w, =0, as
can also be readily verified by differentiating (3.5)
with respect to Z. From (3.7), it follows that ¥,
has no node in x; therefore its eigenvalue w, =0
is the lowest of (3.12). Because of (3.11), ¥, is
excluded in the expansion (3.9).

Because of translational invariance, the Hamil-
tonian is clearly independent of Z. The conjugate
momentum of Z is the total-momentum operator
P. In the center-of-mass system, P=0 and there-
fore (2.13) becomes

B =307 (1,00 e I,
g [ Vo gang)dx (3.19)

where ¥ is given by (2.6), m,=-1i(8/9q,), J is the
Jacobian of the functional transformation given by
(2.12). The mass matrix M is, according to

(2.4), given by

*( _, oo Y,
Mll: . <g13Z+q" aZ)dx ,

M., =M,,1=q,,,f oty ax (3.15)

and
My =6m|' ’
where 7 and n’ are = 2. By using (3.12) and ne-

glecting O(g) corrections, one can readily reduce
(3.14) to simply

1 0
H=3 Z (12 + w2 q,%) +m ; (3.16)
n=2
the corresponding energy spectrum is given by

E=m,+y Ny, , (3.17)

n=2
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where m and m, are, respectively, the unrenor-
malized and renormalized masses of the soliton,
and N, is an occupation number, N,=0,1,2,.
Neglecting radiative corrections, one has

M}de

ox (3.18)

m=m,=g"> [
If radiative corrections are included, then m, =m
+3 D w,+0(g?). Since the difference m, —m is
0(g°), (3.18) is correct to O(g™2).

In general, the energy spectrum (3.17) consists
of discrete levels and continuum. We may expand
the (renormalized) function V(o) near one of its
minima, say 7 =ay:

V(0) =3 12(0 = a,))* +O((0 = a))*) . (3.19)

If o(x) is the classical soliton solution which varies
in the region

Q;SOsay,,,

then in (3.12), V”(0)=u/? at x=— and V”(0) = u,, >
at x=+=, Thus, the continuum starts at E=m+ u
where U is the smaller of y; and u;,,. Further
discussion of the eigenvalue problem (3.12) will be
given in Sec. III D.

C. Quantum expansion (moving system)

Next, we illustrate our general method by carry-
ing out the quantization in a system in which the
total momentum P is nof zero. This also gives the
simplest example of performing quantum expan-
sion around a classical time-dependent solution.
We begin with the solution (3.8). It is convenient
to introduce

8=y(x=2) , (3.20)

where v is treated as a fixed constant and Z is a
coordinate variable. The expansion (1.4) becomes

¢ =g"0(6) +a,(t) ¥a(6) , (3.21)
where 0(6) and y¥,’s satisfy

d%o(6)

2~ V@=0,

f $a(0) $(6) A =0, (3.22)

an

f 00 222 4

Throughout our discussion, the integration in x
always extends from x=— to x=+%. As in (3.12),
we may choose ¥,(6) to be the eigenfunctions of

[- 25V |0 =02 0n0) (3.29)
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The sum in (3.21) then extends over all such eigen-
functions except the one with the lowest eigen-
value; i.e., those with w, # w, =0. The Hamiltonian
H is given by (2.13). Noting that in the present
case, k=K=1, z,=Z, and p, =total momentum
operator P, we may expand H in powers of ¢, and
Tyt

H=H,+H +H,+H, +-** | (3.24)

where H is independent of ¢, and m,, H, depends
on ¢, and m, linearly, H, quadratically, H, cubic-
ally, etc. In explicit form, H, and H, are given by

Hy=5(y+y " Ym+3(my) ™ P? | (3.25)

and

8y, 80

9z BZd

H =g [1=y7 = (my)™ P?]q,

(3.26)

where v is the constant introduced in (3.20), and
m is given by (3.18) which is independent of y. In
order that H, give the correct energy to O(g7?),
H, must be zero, at least to O(g™"). [Otherwise,
by combining H, and H, one would be led to
q,~0(g™") and consequently also to additional
0(g™?) terms in energy.] Thus by defining

v=(l- ,y-z)1/2 ,
we find that

H, =0
provided

P=myv . (3.27)
The same relation also leads to

H,=my. (3.28)

Now, m is O(g~?); the above argument shows that
to the same order, P is given by myv and the
energy is my.

A somewhat more complicated situation emer-
ges if we want to carry out our calculation to the
accuracy ~O(1). Since P is a constant of motion,
its value may be different from myv by an addition-
al O(1) term. Indeed, for an excited state, moving
with velocity v, we should expect

P=myv+N, w,yv, (3.29)
where the repeated index n is to be summed over,
and N, is an occupation number=0,1,2,.... Re-

garding N, ~ O(1), we find that, after substituting
(3.29) into (3.25) and (3.26),

H,~ 0(g)
and

H,=my+N, w,yv*+0(g>). (3.30)

To the same order of accuracy, one must in-
clude H,. By using (3.27), or (3.29), one can
verify that

H,=5(m, 1, +qa Fop Gpr +7,G ppt Dn? = 4n Gt Ty?),

(3.31)
where, in agreement with (2. 31),
Fro= fax a2y, S0
+3v2[j(§;—)2dx] it (3.32)
fo= [ 22 4, (3.33)
G == Grin == v [ 4yl ax (334)

and 0 =¢(6). In the present case, because of trans-
lational invariance, F=(F,,) and G =(G,,) are
constant matrices, independent of Z. The diago-
nalization of H, is straightforward; the details

are given in Appendix A. As will be shown there,
the spectrum of H, is given by, apart from an
additive constant related to renormalization,

Nw,/7. (3.35)

Together with (3.30), the energy spectrum of the
entire Hamiltonian becomes, as expected,

(m+N,w,)y. (3.36)

D. Vibrational modes

The vibrational mode ¥, is determined by (3.12).
It is well known that for either the sine-Gordon
equation, for which

V(o) =p*(1 - coso), (3.37)
or the quartic coupling theory, for which
V(o) =% p3(1 =0%)2, (3.38)

the p,’s are related* to the associated Legendre
functions PJ*(y), which satisfy the differential
equation

[(1-y2)i -2y

+1(1-1)- 1"‘; ]P’,"(y):O.
(3.39)

To see this, we shall follow a slightly more gen-
eral approach than that in the literature. We shall
first try to deduce the appropriate functional re-
lation between the variable y and the space coor-
dinate x. By a change of variable x -y(x), Eq.
(3.12) can be written as

\:(L%)z & (f—xy{)—_ -V (or)+~u,,} =0. (3.40)
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In order that this equation should reduce to the
associated Legendre equation (3.39), we must
have the same ratio between the coefficients of
d®/dy® and d/dy in these two equations. Thus,

dy/de 2y
(dy/dx)"’ = l—yz . (3.41)

A simple integration leads to

dy _ 2
a1, (3.42)
where « is an integration constant. A further in-

tegration gives, apart from a trivial additive con-

stant in x,
y =tanh(xx). (3.43)

Next, by comparing the (d/dy)-independent term
in these two equations, (3.39) and (3.40), we
obtain
&V(o

_—% ro2= [ [(I-1)(1=y®)=nf].  (3.44)
Let us consider the limit x - +%°; because of (3.43),
y-+1, and because of (3.7), (3.37), and (3.38),
(#V/do®)~ u?. Thus, (3.44) reduces to

w 2= p?—nfl, (3.45)

Since the lowest eigenvalue of (3.40) is w, =0,
while the maximum integer value of m is [, this
implies that

lk=pu. (3.46)

The corresponding eigenfunctions, do/dx for
(3.40) and P; (y) =sech’ (kx) for (3.39), must be
proportional to each other; i.e. ,

do

rh (rk)sech! (rx), (3.47)

where Ax is the proportionality constant. Further-
more, according to (3.7),

1/do\2

S(2) = vion (3.48)
therefore,

V(v) = 3A%k2sech? (kx). (3.49)

From (3.47) and (3.49), one can verify that (3.44)
is satisfied, showing the consistency between
these expressions. In the following, we discuss a
few special cases.

(i) For I =1, from (3.47) we find

o =2Xxtan"teX* (3.50)
and from (3.49)
V= 22%2%sin%(g/2), (3.51)

which is the same as the sine-Gordon potential

(3.37), provided A=2 and k=4, From (3.45), one
also sees that the second-lowest eigenvalue of
(3.40) is

(4)2:”, (3'52)

which is at the beginning of the continuum w,> u.
(ii) Likewise, for [ =2, we find

7 = xtanh(kx)
and
V=3 [1-(0/A)?]%, (3.53)

which reduces to the quartic potential (3.38), pro-
vided A=1 and k=34, From (3.45), it follows that
the second lowest eigenvalue of (3.40) and its
corresponding eigenfunction are

w,=(5V3 )1 and ¢, = Pl(y); (3.54)

the third lowest eigenvalue and its corresponding
eigenfunction are

w3 = K and ¥, <PY(y), (3.55)

which is also at the beginning of the continuum.

(iii) For ! =3, while V is defined by (3.47) and
(3.49), the resulting function V= V(o) contains un-
physical singularities in 0. This can be most
easily seen by investigating the behavior of V(o)
near x =w=, Let us assume g—-0, as x-~<. From
(3.47) and (3.49), one can verify that in the same
limit

V@)~ 3820 -0,) +0((0-0,)**%"), (3.56)

which implies that V(s) has a branch point at ¢ =g,
if I is =3.

Remarks. Normally, to obtain the vibrational
modes, one would start from a Lagrangian. The
above discussion allows us to take a different di-
rection from the usual one: We may now explore
the inverse problem, in which one starts from the
vibrational modes and then constructs the appro-
priate field theory. For example, if it is given
that the vibrational modes y,, expressed in terms
of a certain variable y, are known solutions of a
differential equation, say

& d o
L;—yz “PG) +Q"(y)]¢" -0, (3.57)

what would then be the corresponding field theory?

By comparing (3.40) and (3.57), the functional
relation between y and x can be determined. Just
as in (3.41), we have

dZy/de_. .
W—PU), (3.58)

therefore,
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dy_ exp[fy1%30dy]. (3.59)
dx

The functional relation between ¢ and x can be ob-
tained by noting that for n=1

(3.60)

The field theory is then determined, because

1 /dy\?
Vi) = ) (d_x> .
It turns out that if ¢,’s are hypergeometric func-
tions, all physically interesting examples have
already been studied; they are simply the sine-
Gordon equation and the quartic-coupling case.
However, if we consider differential equations
of a more general nature, such as those with four
or more regular singularities, then there are new
physically interesting possibilities. An example
will be given in Sec. V.

(3.61)

E. Statistics

Recently, Coleman®'® has shown that the sine-
Gordon theory is equivalent to the massive Thir-
ring model, the solitons in the former become the
fermions in the latter. Because of this equiva-
lence, the question of the appropriate statistics
of solitons in a general case has attracted some
attention. In this section, we wish to emphasize
once again that the statistics of any one-dimen-
sional particles, and solitons in particular, is
entirely a matter of arbitrary choice.

It is instructive to examine first the classical
description of a multisoliton system. As discuss-
ed in Sec. III A, a single-soliton solution is one
in which the classical solution ¢ varies between
two neighboring peaks of —-V(o), say s =a; at x
=-w and 0= aq,,; at x=+ . [See (3.3) for the
definition of @;.] The K-soliton solution is one
in which 7 varies between K+ 1 neighboring peaks

of -V(g), say s =a; at x=—w, and 0 = a;,x at x =+,

By following a discussion similar to that given in
Sec. III A, one can show that for K =2 all such
solutions are time-dependent; the over-all change
ino

o(w) —o(==)=0a,,x -0, (3.62)

is, of course, time-independent.

Let us assume that at least as { -+, the clas-
sical solution varies from a; to a;., in K steps:
At x =z (¢) the solution changes from 0 = a; to =a;.,,
then at x =z, () from 0= a;+, to =a;4,,... until at
x=zy(t) fromo = a;, g, to =a,4+g. In this solu-
tion, the energy density is concentrated at z,(¢),
2,(t),... , 2¢(t), which may therefore be regarded

as the coordinates of the K solitons. These K
solitons are clearly distinguishable, since the
field o near any one is different from that near
the other. Yet, because of the way they are de-
fined, these K solitons are always kept in a fixed
order:

2, () Sz,(t)szy(t) s o< zg(l). (3.63)

This means that, in one dimension, even classical-
ly it is éimpossible to interchange the position of
any two solitons. Thus, the problem of their
statistics cannot be related to any matter of prin-
ciple, but rather only to questions of either con-
vention, or convenience.

Next, we recall that in any one -dimensional
problem of K identical particles in quantum me-
chanics, the question of statistics is always a
matter of convention. As we shall see, in one
dimension if singular potentials are admitted
there is no fundamental difference between fev-
mions and bosons. A one-dimensional system of
fermions can always be viewed as a system of
bosons, but with an additional infinite repulsive
core between them. Conversely, a one-dimen-
sional system of bosons can always be viewed
as a system of fermions, but with an additional
short-range attractive potential between them.
This additional attractive potential may be viewed
as the zero-range limit of a square-well potential
with depth « and range »; as v -0, u—< such
that

(mu)2y=%n, (3.64)

where m is the mass of each particle. Thus
although the wave function vanishes when the rel-
ative coordinate between these two fermions is
zero, its derivative vanishes at the edge of this
attractive potential, simulating the typical be-
havior hetween bosons.

In the case of one-dimensional solitons, this
question is further obscured since, in general,
the interaction between solitons cannot be exactly
described by a two-body potential in the first
place.

IV. TWO-SOLITON SOLUTIONS

In this section we will illustrate the general
method of Sec. II by briefly discussing the quan-
tization of the time -dependent,'® two-soliton
solutions of the sine-Gordon equation

32 32 2 .
—a-t(zg—a):ﬁ +—‘;—zsmg¢ =0, (4.1)

in one space and one time dimension. These solu-
tions, with zero total momentum, are of two forms
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_4 _l(u sinhy, x i
%s(x,1) _gtam coshy, utu 4.2)

and

_ 4. sinhyut#)
a"(x,t)-gtan (—j—ﬂucoshyuxu , (4.3)

where y, = (1-%%)""2, Actually the first solution

describes soliton-soliton scattering, containing
two regions in each of which the field increases

by 27/g for increasing x. The second solution
represents soliton-antisoliton scattering, since

at large |¢|, for increasing x it increases by
~27/g for x ~—ut but decreases by ~27/g for x ~ +ut.
These solutions both have energy (164/g2)v,, just
twice the energy of a single soliton moving with
velocity #. Finally, if an imaginary velocity

u=iw (4.4)

is substituted in the solution (4.3), the ‘“breather
solution” results:

siny, witu >, (4.5)

Oy (%, 1) =3tan“<——”—-——w coshyx I
where v, = (1+w?)~Y2, Consideration of these
examples will permit a quantum-mechanical dis-
cussion of soliton-soliton and soliton-antisoliton
scattering as well as a concrete application of
our method to a periodic classical solution, 7, .

A. Soliton-soliton scattering

The most natural set of coordinates for quan-
tizing the soliton-soliton solution (4.2) are obtained
from the family of classical solutions g, (x, ) by
writing

dx) =0, (¥ =Z,u"'2)+q, ¢, (x-Z,2) (4.6)

as in Egs. (1.4)-(1.6). However, the change of
coordinates from the usual linear set @, of Eq.
(2.7) to Z,z,q, is not well defined in the region

4, =0 where we wish to use it. Because g, (x-Z,
u~'z) is an even function of z, 30,,/8z will vanish

at z =0, causing the Jacobian for change of coordin-
ates J, Eq. (2.12), to vanish at the point z =¢,=0.
Thus the proposed change of coordinates is singu-
lar at this point. One method for avoiding this

difficulty uses an alternative variable
¢ = In(coshy,zU4), —w <{ S, 4.7)

Positive { corresponds to physical soliton-soliton
separation while the region of negative ¢ does not
have a simple, physical, two-soliton interpretation.
Adopting this coordinate, we write

d(x)=0(x-Z,8) +q, 4%, (x-Z,¢), (4.8)

where

o(x—Z,§)=§tan"[u-————-"———smhye(§x_z)“] (4.9)

and the y,(y, ¢) obey

j_..,—g%(y' C)d/" (yy g)dy :O,
4.10)

°]
f B—Z(y,g)w,,(y,g)iwo-

We can now find those terms in the Hamiltonian
H of (2.13) which are of order 1/g* and determine
the Hamilton-Jacobi equation (2.17). Straight-
forward integration yields

(M) = f_:(%(x-z, E))de

64 e?t

= gzy“ u®sinh’a

(M), = f: (Z—‘g’-(x-z,z)) ax
4g

64 e .
- [Lg_z-y u"sinh3a(smha —a),
u

ez(
(sinha +a)<7 —1) s

(4.11)
% 2 )
;}2 LV(a)dm%(Mo)u *giz J;[ l-cos(o(x=Z,¢)}] dx

= %(Mo)zz + %#2(Mo)¢g ’
(Mo)z; = 0,
where

2e2t
cosha=—5 -1.
u

(4.12)

We use the notation of Sec. II, except the variables
2z, (=1,...,K) with K =2 are now replaced by Z
and {. Likewise, when k appears as a subscript

it is replaced by the appropriate Z or ¢.

Because our classical solution, o(x -Z,, £),
where ¢ =In{cosh[y,u(z,+ut)]}, has zero center-
of -mass velocity, vanishing of the order g~' terms
of Eq. (2.16) requires that we choose p; =3S/3Z =0.
The resulting Hamilton-Jacobi equation (2.17),

1 1 a8\ 1 - 1
[l ) - =0. .
T (a§> +o2 VO -2 8 (4.13)

is, of course, the familiar WKB approximation for
the terms of order g~2 in H. If the specific inte-
grals (4.11) are substituted in Eq. (4.13), it be-
comes

1 1 as\?
(—) 5 Mo)e riu (1 —e72)

8" 2M o). \o¢
160y, 1
+ - =0. 4.14
= ?8 0. (4.14)

Again the vanishing of order g~' terms, Eq. (2.19),
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requires that & equal the energy of our initial
classical solution (4.2), for which the WKB solu-
tion

Z
S(E) =+ f AcMo)e cul1 —e™2%) 29,1 g?  (4.15)

has a turning point at £ =0. Thus, although (4.13)
determines the form of the wave function for £« 0
and 0« ¢ to leading order in g, the vanishing of
the order g2 terms in H for £ ~0 requires us to
go to Eq. (2.30) which also contains the g, to con-
nect the two solutions. The required detailed con-
sideration of small oscillations for the sine -Gor -
don equation is beyond the scope of this paper.
However, we can observe that if the normalization
integral over the region { < 0 is to be finite, then
only one of the two solutions (4.15) will be allowed,
as is generally the case for a system of two iden-
tical particles, either bosons or fermions. Final-
ly, it should be noted that the complexity of the
point £ =0 where the two solitons coincide effec-
tively obscures the question of which convention

of their statistics is the most convenient one. This
uncertainty should be expected since the interac-
tion between solitons cannot be exactly described
by a two-body potential.

B. Soliton-antisoliton scattering
As in the previous case, expansion about the
classical solution o(x, ) of (4.3) is complicated
by the presence of Jacobian singularities. If we
write

4><x)=§tan“[ St | +analx -2, 2)

u coshy,(x -=Z)u
(4.16)

the resulting coordinate change is again singular
for z=q, =0 since at that point ¢(x) is completely
independent of Z. Such a situation will always oc-
cur when the classical solution vanishes at all
points x at a given time. This difficulty can be
neatly avoided if we give the classical solution a
center-of -mass velocity v. Now the times at
which ¢ vanishes for different values of x will no
longer be simultaneous and the singularity goes
away. Therefore, we use the expansion

4
¢(x)~Et

an-! | sinh{wy(y, 'z —uvy,(x =Z))]
1 cosh[py, v, (x = Z)]

+qpta(x -2, 2). (4.17)

This new set of coordinates is completely regular
in the region g, ~ 0. The first term on the right-
hand side of (4.17) becomes the Lorentz transform
of (4.3) for Z =vt, z =ut.

If we apply the method of Sec. II, we will find a

single quantum state with center -of -mass momen-
tum p; = 16pvy,y,/g2% and, for large 2z, relative
momentum p, =16uuy,/g%,%(1 —u*v?) plus quantum
excitations. Although we are considering two dis-
tinct particles, we have found just a single solu-
tion with fixed p; and p,. This is because p, is a
signed quantity and to find the solution with rela-
tive momentum -p, we would have to expand about
the very different classical solution in which the
relative velocity # was replaced by -u. Our quan-
tization procedure does not predict transitions be -
tween these two distinct quantum states even
though they have the same energy. Such is, how-
ever, not the case for soliton-soliton scattering.
Even if we define coordinates in a moving system
as in (4.17)

o(x) =% tan“{ u sinhpy,y,(x = Z5) }

coshuy, [y, 'z, Fuvy,(x =Z,)]

+nla(x = Z,, 2,) (4.18)

the quantum states determined using each of these
sets of coordinates are identical, being connected
by the simple coordinate transformation

Z+=—Z_, Z+=Z-’ Q;=qn-- (4-19)

C. Breather mode
Finally, we consider quantization of the breather
solution (4.5). Again a regular set of coordinates
can be found by boosting the solution (4.5) to ve-
locity v and writing

_4 . sinfy,ply, 'z —woy,(x -Z))]
9lx) =7 tan % wcoshly v, (x —Z)] }

+qn¢n(x —Z,Z). (4.20)

Since the physical field ¢(x) is a periodic function
of z with period 2my,/uy,, we restrict z to the
single interval

0<z<2my,/Byw (4.21)

and require that the wave function ¥(Z, z,4,,q,, .. .)
satisfy

‘I’(Z, 03 9344 - - - ) =‘I’(Z, ZTT‘,»‘D,/'.L'}/“,, 93,94 - - )

(4.22)

The phase iS/g? entering ¥ and solving the Hamil -
ton-Jacobi equation (2.17) can be directly de-
termined from Eq. (2.19) which follows from the
vanishing of the order g~! terms in the time -inde-
pendent Schrddinger equation (2.16)

aS
ﬁ :PZ = (Mo)zlv +(Mo)21w)

(4.23)
as

Bz =pg= (Mo)llv + (Mo)ttw .
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The right-hand side of Eq. (4.23) is simply the
value of p; and p,, as functions of z, for our clas-
sical solution. If we now impose the periodicity

requirement (4.22) including the terms of order

g°, following the method of Sec. II, we find that

(2.58) becomes

16p2  , (2™/kTw 'j‘" 30 a0 00\? L =
ot [ e [_axfogg g () I (Bem B B ran2mn 29
where
—en -1 s8ing,
a(6,, 6,) =tan (———-—-—w cosh62>
and (4.25)

0, =Y ulys 12 —wvy,(x =Z) |, 6,=yuy.(x =Z)u.

If we translate the x integration by Z —vz/w and then change integration variables to

x =v,(x —vz/w),

Eq. (4.24) becomes

2’ =y, (2 —vwx),

g %9, 9,

vwx '

where 85" and BS™ are now center -of-mass quan-
tities: As we saw in (2.35), 8™ =847, , while by
definition g™ =v,B,. Interms of Z’ and x’, 6, and

6, become
0y =Vw'lhy O =vyuxlh. (4.28)

Periodicity in the z’ variable allows us to rewrite
the integral in (4.27) as

2 © 21/ YoM aoc\2 321 . _
vl [T (5] - o
- 0 1

(4.29)

This can be combined with the value obtained by
Dashen et al.* for the classical sum of character-
istic exponents

1 211' 4 s =1
L = =-—+4 +0FE
¢ Z,.ﬁ" Yowh  w o YeTORS
(4.30)
to yield
32 g%\ . .. _
—g_T (1 ——8—1;—) sin Yy, = 2mn (4.31)

if we choose 8, = -2y,iL /7 +8E where OE contains
the divergent vacuum energy and a term propor -
tional to the elementary boson’s self-energy. Thus
’
Ve =Sin %6_ n,
and the mass spectrum of the breather state is
given by

1 16 !

162 ° 27( Yy )t —vwx’ 3o 90
‘: ywzf dx' f dz'|v +w<

r

(4.26)

2
) jl + <8;‘"" —Z %ﬁﬁ'“")Zn/ywwu =2, (4.27)

n

Here ., is the renormalized boson mass and

g2
LA g2/8n"
Equation (4.32) gives precisely the mass spectrum
for the breather mode found previously by Dashen
et al.* and completes our brief outline of the appli-
cation of the methods of Sec. II to time -dependent
two -soliton solutions of the sine -Gordon equartion.

V. A ONE-DIMENSIONAL BAG

As a further illustration of the different vari-
eties of extended objects that can be realized in a
local quantum field theory, we discuss a simple
example of a “bag.” The original concept of a
“bag” was derived'®'” from quark models of had-
rons. To build such a “bag,” several conditions
should be satisfied: (i) the total quark number N
is conserved, (ii) a single quark state (1 =1) has
an infinite energy, but (iii) certain multiquark
states (91> 1) are stable and of finite mass. At-
tempts have been made'® to derive the “bag” struc-
ture from a local field theory by taking the infinite
limit of certain renormalized mass and coupling
constants. Our example differs from these ap-
proaches by keeping all renormalized quantities
finite, but identifying quarks as solitons.

Again, we shall make the unphysical assumption
that there is only one space dimension; i.e., x,
=(x, it). Let ¢ be a scalar Hermitian field. The
Lagrangian density is

2= -%(a—"’)z ~V(9),

axu



1622 N. H. CHRIST AND T. D. LEE 12

where V(¢) is proportional to

(g%¢% +€®)(1 - g2¢%)?, (5.1)
with a proportionality constant =3 (i /g)%(1+€2) .
The constant € is assumed to be real and positive.
One sees that the potential function V(¢) has two abso-
lute minima at g¢ = +1and -1, and alocal minimum
at ¢ =0. If we expand ¢ near its absolute minimum
¢=x(g"'+56¢), then

1 3+€?
¥“¢)=%u%6¢F+§~T§§7gu%6¢P+.“

Therefore, 1 denotes the meson mass and g is the
dimensionless coupling constant. As € varies, the
height of the local minimum at ¢ =0 changes.
When € - «, the local minimum disappears, and
the potential V reduces to the special quartic func-
tion considered before.

By following the general discussions given in
Sec. ITI, one finds that the field equation

3% dv(¢) _
ax,2 ~ d¢

0

admits a time-independent classical solution
¢ =g 'o(x) where

o(x) =[1+€ 2 +sinh®(3px)]"/2sinh(3px). (5.2)

A typical shape of o is given in Fig. 1. The cor-
responding quantum-mechanical operator ¢(x, ¢)
is then given by

¢(x1 t)=g-10(X—Z) +qn (t)d)n(x—z)’ (53)

where, as in (3.9), the repeated index n is summed
over fromn =2 to ©. The §,’s again satisfy both
the orthonormal condition (3.10) and the orthogo-
nality relation (3.11). It is convenient to define

the soliton-number operator

= g () — (=0)]. (5.4)

The solution (5.2) corresponds to 1=2. As can be
seen from Fig. 1, it consists of two kinks, and
therefore may be regarded as a two-soliton bound

FIG.1l. Two solitons (kinks) in a one-dimensional bag.
[See Eq. (5.2).]

state. The interesting feature is that (for arbi-
trary € finite and nonzero) there is no single-soli-
ton state. The state =1 has an infinite energy.
In accordance with our general discussion, ¥,’s
are C -number functions which satisfy the “Schré-
dinger” equation (3.12)

[_% +d7‘;(;’_)]¢,,(x) - w2, (x). (5.5)

As will be shown later, this equation can be trans-
formed into the Heun’s equation.'®
The lowest frequency of (5.5) is

wl = 0,
and its eigenfunction is

do(x)
dx

(%) = (5.6)
Because of the orthogonality condition (3.11), the
sum (5.3) extends over all eigenfunctions of (5.5)
except n =1. The energy spectrum of the system
is given by (assuming the total momentum = 0)

E=m +Y_N,w, (5.7)
n=xl1
where the constant » denotes the mass of the two-
soliton ground state and the quantum number N,
=0,1,2,.... If we neglect the radiative correc-
tion, then’

2

| -

m = éi;':l —-3€
262

1+(1+€2)"2]
L 2
*Are)7T (1+5e*)In——mm— .

€
(5.8)

Ase—~0, m—~3(u/g?), and as € ~w, m— 3(u/g?),
which is the same result as that for the quartic-
coupling theory.

Let us arrange the characteristic frequencies
of (5.5) in ascending order 0=w,< w,<w,<....
The energy levels (5.7) of the system can be separated
intothe bound states E <m +u and the continuum E
2m +u. Forthebound states we are only interested in
those frequencies that are#0and <y . Eachbound state
is then characterized by the corresponding set of
occupation numbers N, ; its rest mass is

/’
M=m +Z N,w,<m +. (5.9)
nel

Here, the sum )}’ extends only over those w, that
satisfy

O<w,<p. (5.10)

(If one wishes, one may extend the definition of
the bound states to include also the level M
=m +1.) As we shall see, for € <« 1 there are



many bound states with soliton number N =2; the
total number of such bound states is quite large
~0(e ~(-lne)).

We discuss next the second -lowest frequency w,
of the “Schrédinger” equation (5.5). It is easy to
verify that

as€—-cw, W,~3/34 (5.11)
and apart from a normalization factor

b~ (1 —0?) 20, (5.12)
Also,

ase-0, w,-ep (5.13)

and apart from a normalization factor
Y= (1 =0?)o. (5.14)

The former € - » limit is simply given by the ex-
plicit solution (3.54) for the quartic coupling the-
ory. To derive the latter we note that for ¢ small
the two kinks are far apart and therefore behave
almost like independent particles. When € - 0,
J,(x) becomes simply +9,(x), where + depends on
the sign of x and ,(x) is the zero frequency eigen-
function given by (5.6). This follows because ¥,(x)
represents a translation of the whole system in
which the two kinks move in a parallel direction,
while ¢,(x) is the first vibrational mode in which
the two kinks move in an opposite direction.

For arbitrary €, upper bounds on w, can be de-
rived by using the standard variational principle.
For example, by assuming a trial function form
Ppc(1 -0%)o, one can readily establish, after some
simple manipulation,

wy<pe/(1 +e?)l/z, (5.15)

A better upper bound can be obtained by assuming

b, [(1 —0?) +A(1 =% 20, (5.16)
2T ]

where X\ is a variational parameter. The calcula-
tion is straightforward, and the result is given in
Fig. 2. This improved upper bound for w, is ex-
act in both the € =0 and € =» limits, and is ex-
pected to give a fairly accurate approximation of
w, at any €. Because of (5.13), for small € the
(9 = 2) bound -state levels are close spaced; the
corresponding value of the occupation number N,
can vary from 0, 1,2, ... up to a maximum value
el

For the third-lowest characteristic frequency
w,, we have again its exact limiting form

AS €=, Wy— LU (5.17)
and apart from a normalization factor

by— 302 — 1. (5.18)
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The results are the same as those for the quartic
coupling. In addition, as can be readily verified,
at €2=3 we have also the exact result

wy=3/3p (5.19)
and apart from a normalization factor
Py = (1 -0%)"2(0* -3). (5.20)

In general, the solutions of (5.5) are transcenden-
tal functions. Only in some special cases can
these solutions be expressed in terms of elemen-
tary functions, as given above.

When € is sufficiently small, some approximate
knowledge of higher frequencies can be obtained
without much effort. Let us examine the behavior
of the “potential” term in the “Schrodinger” equa-
tion (5.5). As€-0,

2
Ugiid_ggf'_)_.iuz(l -120% +150%) . (5.21)

By using (5.2), one sees that over a rather large
range of x,

_L<x<L (5.22)
where
L=(2/u)(-lne) +O(1), (5.23)

the magnitude of o is ~ O(¢); therefore, v is ap-
proximately a constant =;u2. For |x| beyond the
above interval (5.22), v goes through a small dip
and then rises rapidly towards its asymptotic val-
ue p2. Thus, when € is sufficiently small, the
eigenvalues of (5.5) that lie between 1% and p2
can be derived approximately by considering a
Schrddinger equation with a simpler potential, one

w,
(“2/k ) ppeg
BOUND
\/_'g'_ L
.8
.6
-4
L2
n
o 1 ! I 1 1 S/(|+€2) 2
2 4 .6 8
| I 1 1 1 €
Rl .5 1 2 0

FIG. 2. The second-lowest frequency w, of Eq. (5.5),
evaluated by using the trial function (5.16). (The lowest
frequency w; is 0.)
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that is a constant ;1.2 inside —L <x< L and is p?
outside. (The slight variation of the actual v near
x=+L does not alter the over-all feature of the
frequency distribution when € is small.) These
eigenvalues are given by

w2=q?+5p? (5.24)
where the “wave number” ¢ is
2qL=mw, 2m, ..., . (5.25)

The maximum value Ir is determined by w,< .
Thus, we have, on account of (5.23),

1= (2V3/m)(-Ine). (5.26)

To construct the bound-state levels, we return
to (5.9). Since w, is between 3 and p, its occu-
pation number N, can only be either 0 or 1. Each
bound state is characterized by a set of integers
{N,} and N,, where N, denotes the occupation
number of the second-lowest frequency, w,=¢epu.
When all the N,’s are 0, N, can vary from 0 to €',
When one of the N,’s, say N,, is 1, then all other
N,’s (g# p) must be zero, while N, can still vary
from 0,1,... up to (4 —w,)/ep. Thus, when €~0,
the total number of bound states  is given approx-
imately by

= [ (rew)I2L(n ~w,)dg +0(e™) ,

where the integration extends from 0 to 3V 3 .
By using (5.23), we find

Q= (me)™ (- ne)lV3 -in(2+V3)] . (5.27)

When € increases, the number of bound states de-
creases steadily., As € -, in the N =2 sector,
besides the ground state there is only one excited
state with R<m +pu.

Our remaining task is to convert (5.5) to a well-
discussed form of transcendental equation. It is
convenient to use o as the independent variable.
Equation (5.5) becomes

d? d 2 _
(adgz +b%+c+u,, >zp,, =0, (5.28)

where
Va2 =4(1 +€%)w,?/u?,
a=(1-02P(c®+€%),
b=0(1 -0?)(1 - 2€% = 30%) ,
and
==1+2€% +60%2 —€%) - 150* .

The equation has five regular singularities at
go=x1, tie, and », We define

£=0?
and
==,
where
s=[1-(a/uf]™.

Equation (5.28) can then be written in the standard
form of Heun’s equation, one that has only four
regular singularities:

di[l 1+2s 1 ]gﬁ

ag® "l TT-T Tegre)ddg
aBs-q
—r 1 __f_0
-y =0 629
where

and
g=-1[1-2€? - 4(1 - s?)(1 +€?) +2s€?] .,

Its solution is usually cast in the standard expres-
sion’®

0 1 -e =
f=P<O 0 0 a & . (5.30)
z -2s z B

Detailed properties of these functions can be found
in the mathematical literature.

VI. CONCLUSION

In the preceding sections we have developed and
applied a quantization procedure which allows the
quantum-mechanical description of various clas-
sical solutions to nonlinear field equations. Our
method is a canonical one in which the resulting
quantum-mechanical problem requires the diag-
onalization of a Hamiltonian operator H (2.13).

H is naturally given as a power series in the cou-
pling constant g. If we transform our quantum
states ¥, by removing the phase factor e;s/ﬂ’
where S obeys Eqs. (2.17) and (2.22), then the
transformed Hamiltonian H’ which acts on the
states

Xa=e ¥, (6.1)
can be written in order of ascending powers of g:
H' =H'(-2)+H'(0)+H'(1)+H'(2) +. ..
The term of order g~2 is simply a constant
1
H'(-2)=—=§, 6.2)
2 (

the energy of our classical solution. ‘i‘he term of
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order g° is just the quadratic Hamiltonian

+%("n Ty +annn' qn'
+ T, Gml’ 4w =4, Grm’ﬂn’ ) (6-3)

of Eq. (2.30). Since this Hamiltonian contains the
q’s and m’s quadratically, it is closely related to
the classical small-oscillation problem and, atleast
in some cases, it may be possible to diagonalize. If
we can diagonalize H’(0), thenthe effects of the high-
er-order terms H'(1), H'(2), etc. canbe computed to
arbitrary order in g by systematic perturbation ex-
pansion treating H’(-2)+H’(0) as our diagonal,
unperturbed Hamiltonian. Such an expansion may
give an accurate description of those quantum-
mechanical states lying near our original classical
solution. Of course, there are some states, dis-
placed in energy by order u?/g? from our classical
solution, that will be poorly described by any finite
order of this perturbation expansion. For example,
if we are expanding about a single-soliton solution,
our perturbation expansion will not reveal, with-
out some nonperturbative technique, soliton-sol-
iton-antisoliton states, higher in energy by order
p?/g%. Of course, if such a three-soliton state is
of interest we can always begin by directly ex-
panding about it.

Clearly, in general this perturbation expansion
will only be justified, even for those states lying
closest to the classical solution, if the parameter
g is small. This limited range of applicability
seems to be a necessary feature of all expansions
about a nontrivial classical solution. Only if the
action of the original classical solution, of order
£7%, is large can we be assured that it is a rea-

sonable first approximation to the quantum solution.
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APPENDIX A

In this appendix, we discuss the details of how to
find the eigenvalues of the Hamiltonian H,, which is
given by (3.31). It is convenient to define

JCE(I G> and §=<"> R (A1)
G F q

where

P U

m=(m,)=|m;| and g=(q,)=]q,|. (A2)

The matrices F =(F,,/) and G =(G,,) are given,
respectively, by (3.32) and (3.33). Thus, H, can
be written as

H,=3E3C¢ . (A3)

Because in this Hamiltonian the coordinate ¢ is

coupled to the conjugate momentum =, naturally
we are interested in canonical transformations

that mix g and m:

(e
E~t'= q,)=T‘§ . (A4)

In order that the new coordinate g, and its conju-
gate momentum n, (i.e., the components of ¢’ and
7 ) remain Hermitian, we restrict ourselves only
to T real. Furthermore, we require

Tp,T=p, (A5)
where
0 =i
p2 = 1 0 ’ (Ae)

so that the usual canonical commutation relations
between the coordinates and the momenta are pre-
served.

In order to find the transformation matrix 7 that
can diagonalize H,, it is useful to examine the
Heisenberg equation of motion

i£=[¢,H,] = (p,30)E . Aan

The desired transformation matrix T can then be
determined by its normal modes

£§(8)=E(t)xcexp (—iv,t);
ie.,

(0, 3C) &% =vgt” . (A8)
As we shall see [in (A19)], the eigenvalues of p,3¢

are all real and nonzero. Since p,iC is purely
imaginary, it follows from (A8)

(P 30)(8%)* = - va (£%)*, (A9)

where the asterisk denotes the complex conjugate.
Thus, the eigenvalues of p,JC occur in pairs: +v,.
Because ¥ is real and Hermitian, if £* and £° are
both eigenvectors of (p,3C) with eigenvalues v, and
v,, respectively, then for |v,| #|v,|, we have

(£*)0,6° = £%p,t° =0, (A10)



1626 N. H. CHRIST AND T. D. LEE 12

where the dagger denotes the Hermitian conjugate;
in addition,

Zanga =0.

It is convenient to choose the normalization of ¢°
such that

(A11)

(£*)p,8° =1. (A12)
We may decompose
£ =27B(R® +41%) (A13)

where R® and I® are both real, and arrange re-
spectively the eigenvectors and the eigenvalues of
P, in a linear order

S S (G LR S €0 LR S () L
and (A14)

Vnety = Vae1s Yns = Vny Var1, =V,

.y n=1» “n» ny Yntly ntiy -

Because of (A10)-(A13), we have
R"'p,R™=I"p,I"=0

and (A15)
R'p,I™"==I"p,R™ = -ib,,, .

The transformation matrix T that we are searching
for is simply

T=(..,R"LR",R™, ..., ..., I 1", 1™, .,.)

(A16)

in which each column of the matrix T is given by
the appropriate R" or I", It follows from (A15)
that (A5) holds. Furthermore, under (A4) H, be-
comes diagonal:
HZ*Z%Vn("nZ +qn2) . (A17)
Our remaining task is to solve explicitly the
eigenvalue equation (A8). By using (Al), we may
express this equation in terms of ¢°, the lower
component of £, The resulting expression is

[(G+iv, P +F]-¢* =0 (A18)
As we shall see, the solution is
Y =y ', , (A19)

where y=(1 -v2)""2 and w, can be any one of the
nonzevo eigenvalues of (3.23); the corresponding
¢° is related to the eigenvector ¢, (6) of (3.23) by

A O=ce ' [y @ @6t ax, 0

where c is a constant, and as in Sec. I the sub-

script n=2,3,... .

One can establish (A19) and (A20) either by di-
rect verification or, alternatively by considering
the following classical solution of the field equation
(3.2) in the c.m. system

Pe1 =0* =g7'0(x°) +c Y (x%)exp(-iw, t°) . (A21)
For clarity the space-time coordinates in the c.m.
system are denoted by x° and ¢°; they are related
to those in the moving coordinates in the usual way,

2 =y(x=vt) and t°=y(t -vx). (A22)
The solution (A21) can also be written as
®° =g7'0(6) +qn ()4, (6) , (A23)

where as in (3.20), 8=y(x-2), and the function
Z=Z(t) is defined by the orthogonality relation

do(6)

ch?" -g % (6)]dx=0. (A24)

We may expand 6 and Z in powers of g:
6=16,+g6,+0E) ,

and (A25)
Z=2,+8Z,+0(&) .

By substituting (A21) into (A24) and then separating
out the O(g™!) term, we determine Z,=vt and
therefore

P=6,. (A26)

Because of (A25) and 6, =-vZ,, x° is related to 6
by

°=6,=0+gvZ, +0(g?) . (A27)

By using (A27) and t°=9"' - vx°, we may express
(A21) in terms of 6 and ¢:
do(6)

¢* =870 (0) +v 2, ——

+CY, () exp (f wavd—iy lw t)+0(g) . (A28)

The O(1) term of the orthogonality relation (A24)
now gives

o (& wla

=~ ce™twat/y fg%w, (0)ef“a”®dx . (A29)
Since (A23)=(A28), we find ¢ to be given by (A20),
v, by (A19), and therefore the energy spectrum of
H, by (3.35).
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