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ABSTRACT

This thesis exploits the interplay of statistical
mechanics and field theory. Generally speaking, field
theories are abstract mathematical objects in which pow-
erful mathematical methods have been developed. Field
theories are useful for doing calculations but the essen-
tial physics is usually hidden and obscure. To unravel
the important underlying ideas is difficult. Statistical
mechanics, on the other hand, deals with physical systems,
the physics of which i1s known via experiment and intuition.
Statistical systems are concrete objects in which the
essentizl underlying physical ideas are known. The roles
of field theory and statistical mechanics are therefore
complementary, one is powerful mathemstically, the other
provides physical insight. When a field theory is equiv-
alent to a statistical mechanics system (or vice versa),
one has the best of both possible worlds: one knowns the
physics and one has the mathematical tools to calculate.
This thesis establishes and exploits the connection be-
tween field theory and statistical mechanics.

The theais has two main parts. The first applies
field theory methods to statistical mechanics. In par-

ticular, statistical systems are related to fermionic-
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like field theories through a path integral representation.
Such path integrals are over anticommuting variables. The
basic definitions, ideas, and uses of anticommuting varia-
bles are presented in Chapters I and 1I. Previously solved
models are resolved quickly and simply. Considered are

the Ising model, the free-fermion model, and close=packed
dimer problems on various lattices. Graphical calculation-
al techniques are developed. They are powerful and yield

a gimple procedure to compute the vacuum expectation value
of an arbitrary product of Ising spin variables. From a
field theorist's point of view, these chapters are the
simplest most logical derivation of the Ising model par~
tition function and correlation functions. This work
promises to open a new area of physics research when the
methods are used to approximate unsolved problems.

Chapter III solves by the methods of Chapere I and II
a new model named the i28 pseudo-free vertex model.

The second part of the thesis applies statistical
mechanics intuition to field theories. Chapter IV shows
that certain relativistic field theories are equivalent
to classical interacting gases. Using this analogy
many results are obtained, particularly for the Sine-
Gordon field theory. The main results are enumerated

in the summary to which the reader is referred. Chapter V



addresses the most important problem in strong inter-
action physics: quark confinement. The difficult task

of proving confinement has confronted theorists for a
decade. Chapter V, although not a proof of confinement,
presents a logical, esthetic, and simple picture of how
confinement works. A key ingredient ig the insight gained
by using an analog statistical system consisting of a

" gas of macromolecules. This analogy allows the computation
'of.Wilson loops in the presence of topological vortices

and when symmetry breakdown occurs in the topological quan-
tum number. Topoiogical symmetry breakdown calculations
are placed on approximately the same level of rigor as
instahton calculations; The picture of confinement that
emerges is similar to the dual Meissner type advocated by
Mandelstam. Before topological symmetry breakdown, QCD
nas monopeles bound linearly together by three topological
strings. Topological symmetry breakdown corresponds to

a new phase where these monopoles are liberated. It 18

these liberated monopoles that confine quarks.
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PRELIMINARY NOTES

A shortened version of Chapter IV has appeared
in print in Physical Review D18, v916 (1978). The
American Physical Society has granted permission for
its inclusion in thls thesis., Chapter V will be published
in Nuclear Physics B. The other chapters have also

been submitted for publication.

Each chapter has its own set of references, figures,
and figure captions. These appear at the end of each

chapter.

ACKNOWLEDGMENTS
I thank Harry Morrisca for reading Chapters I,II, and
III, I thank Korkut Bardakci for discussions concerning
the material in Chapters IV and V. I also thank him for
his excellent guidance. I am grateful to both Harry

Morrison and Korkut Bardakci for encouragement.



(11)

TABLE OF CONTENTS

Abstract
Preliminary Notes (i)

Part I Applications of Field Theory Methods

to Statistical Mechanics 1

Chapter I The Use of Anticommuting
‘ Variable Integrals in Statistical
Mechanics I
I. Introduction

II. Integrals Over Anticommuting

Variables 4
III, Sample Representatious 8
IV, Quadratic Actions 14
V. The Operator Algebra 18
Appendix A 21
Appendix B 22
Footnotes and References for Chapter I 24
Figures for Chapter I 25

Chapter II The Use of Anticommuting
Variable Integrals in Statistical
Mechanics II Ly
I. Introduction 45
II, The Partition Functions for the
Dimer and Ieing Models 46



III. Graphical Evaluation of Partition
Functions

IV. Solvable Two-Dimensional Dimer
Problems

V. Anticommuting Variable Correlations

VI. The Ising Model Correlation
Functions

VII. Summary

References for Chapter II

Figures for Chapter II

Cnapter III The Pseudo-Free i28 Vertex Model

I. Introduction

II. The Model

III. The Solution

IV. The 128+8 Pseudo-Free Vertex Model

V. Conclusion

Appendix A

References for Chapter III

Figures and Tables for Chapter III1

Part TI Applications of Statistical Mechanics

to Field Theory
Chapter IV The Grand Partition Function

in Field Theory With Applications to
the Sine-Gordon

(111}

53

56
€3

155

156



(iv)

I. Introduction 157
II. Gaussian Representation 160
III, Perturbative Verlification 172
IV. The Two Dimensional Sine-Gordon 183
V. The Phases of the Sine-Gordon 187
VI, The Non-Linear @ -Model 195
VII. Renormalization 197
VIII. Tidbits 210
IX. Summary 21¢€
References for Chapter IV 219
Tables and Figures for Chapter IV 222
Chapter V Topological Symmetry Breakdown
and Quark Confinement 228
I, Introduction 229
1Y, Closed Loop Gas as a Field Theory 234
III. Wilson Loops in the Presence
of Topological Vortices 244
IV. zy Vortices 253
V. Monopoles 277
VI. From 2+1 to 3+1} 28
VII. Relation to Mandelstam's Scheme 294;
VIII. Open Questions 296
IX. Summary ;M
References for Chapter V 305

Tables and Figures for Chapter V 310



PART 1

APPLICATIONS OF FIELD THEORY METHODS
TO STATISTICAL MECHANICS



CHAPTER I

THE USE OF ANTICOMMUTING VARIABLE
INTEGRALS IN STATISTICAL MECHANICS I



I. INTRODUCTION

This paper introduces & new method of attacking certain
problems in statisticel mechaniecs. It uses integrals over
anticommuting variables to express partition functions in terms
of field theories.

The interplay of field theory end statistical mechanics is
important. Many complicated field theories have simple underlying
statistical mechanies ans.loguesl). This supplies physical insight
into these complicated field theoretic structures and allows one
to extract the key concepts. On the cther hand, when a statistical
mechanics model is expressed as a field theory, various field
theory techniques can be used such as perturbation theory,
operator methods, variational methods, functional methods, etec.
These ere powerful avenues of attack, especially for extracting
numbers. In short, the statistical mechanies point of view allows
one physical insight whereas the field theory point of view supplies
the powerful mathematical tools. It is therefore important to
understand 'the connections between statistical mechanics and field
theory. It is in this direction that this paper is written.

I shall use integrals over anticommuting variebles. They
were introduced to handle fermionic degrees of freedom in a path
integral formulationz). Until recent‘.l:r3 }, they were ususlly used
in formal ways, rarely being employed in actually c&lculati.ns.

In this paper and the following ones they will be used in a
practical manner to obtuin numbers. They are, without a doubt,
powerful mathematical tools. They supply relations, relate

unrelated models, organized unruly algebra, and evoke rapid



calculat.i;ms often in & few steps.

I will try to follow a loglical development with &
pedagogical touch. First, this paper will introduce and review
integrals over anticommuting variables (Sec. II). I have tried
to summarize their key properties. Further details may be found
in the references. Next (Sec. TII) I will show how several problems
may be expressed in terms of anticommuting variable integrals. This
is a brute force method involving no elegance or ingenuity. Often
8 model has several different representations. It is important,
therefore, to find the "best” and "efficient"” one.. The fourth
section will present a couple models in solvable form. Finally,

I will discuss what these variebles mean in the context of operator
field theory.

This paper and the next deal only with solvable models.
This 1s deliberate since it forms & testing ground on how these
methods work. In the next paper, the actually solution of the two
solvable models presented in Sec. IV will be carried out.

II. INTEGRALS OVER ANTICOMMUTING VARIABLES

This section will reviewh) some properties of integrals
over Grassmann variables. More details may be found in reference
four. A set of N Grassmann (or enticommuting) variables are
objects, 1, (¢ =1,2, «-+, N), satisfying

g + gl = O - (2.1)

In particular, rha = 0. Taking sums and products the most general



construct is

f = ao + z aQnCt + E aaa“a“a + een + 3123'“Nq1q2”-nN R
a a<g

(2.2)

with the a's real or complex numbers. Functions of these variables
are defined via Taylor series, which because of eq.(2.1) terminate
at the Nth order. Equation (2.2) is the most general function,

an Nth order polynomial.

The anticommuiing variabie iacegral of a function, f, of

the form of eq. (2.z) is defined by

qur = fdr‘ldr"a' .. qur = 8ps .y (2.3)

The only term which contributes is the one where each 15 occurs
precisely once, the sign being determined by the order (for example,
quldqeqqu = -1). Often n's are associated in pairs (or
conjugates), one of which will have a dagger (i.e. %y &nd n;).
This is convenient for determining the sign of an integral. For
these the measure is defined as ./:iqdq‘r = qulqu dr]qulTl .
Statistical mechanics problems will involve spins, atoms,
bonds, etc. at sites, ;, to which anticommuting variables will
be assigned. The variable, -J?, will range over the region of
interest; for & cubic crystal this might ve a three dimensional
lattice so that x = {a,8,:' has integer coordinates. Often

several variables are needed at a site, in which case, an additional

label, r, 1is required, and the nu's will appear as
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0 1‘1‘[1- =1,2,-++, T) for T types. Graphically n_ and ql may
x  x x x

be represented by an “0" and an "x" at X . Different types
may be distinguished by using different colors. The important
point to remember is that e contribution to &n integral occurs
only if each site is covered by one "0" and one "x" of each
color (type).

Key properties of these integrals which are consequences
of eq.(z.3) are the following:
1. Shift of variable. Given Ja which anticommute with themselves
and with all the 1n's,

qu f([qa)) = /dq f((qcZ + J(Z}) . {2.4)

2. Chenge of Varigbles. Let V = z AOB“B (with A invertible)

be linear corbinsations of 7u's and henee an equivalent set of

anticommuting variabvles. Then
qu £(n) = (et 8) fav £(a”tv) . (2.5)

Constrest this with normesl (i.e. Riemann) integration where there

is & factor (det A)-l rather than {(det A) in eq. (2.5).

5. Quadretic end Quadratic-like Actionms.

qud’nf exp( Z quan;)= det & . (2.6)
[+7:)



1 oo
fdn exp(g Z A Bnﬁ) PfA. (2.7

ap

/dqdqffd‘ydw"' exp(z ) "o. s 5 B) perm A . (2.8)
w3
fdndn ( 2 LR oss78 )= ht A. (2.9

These are respectively the determinant, Pfaffia.ni), permanent, and
hfaffian of A . Permasnents and hfaffians are determinants and
Pfaffians without the sign of permutation factor. In egs. (2.7)
and (2.9) A must be even dimensional. In eq. (2.7) A may

be Chosen to be antisymmetric. In eq. (2.9) it may be chosen to
be symmetric, but must have zero's along the diagonal. These

equations are easily proved by expending the exponents: permutations

of products of AQB are obtained with the appropriate combinatorial
and sign factors. Equation (2.6), however, is easier to prove
1 1

by transforming q — A and using eq. (2.5).

Anticommuting variables are powerful objects. Let us
demonstrate some of their power by proving the well known resulté)
that (Pf A)E = det A for an antisymmetric even dimensional matrix.

Usual proofs are quite curbersome. Use eg. (2.6) and rewriic

o =¥ 0@, ol o4 030,



dqad t. rél) (2) Since A 1is entisymmetric

r‘aAcxﬁqB =1 (l) anél) %‘- qée)Aaaqé‘?) (the cross terms cancel).
The exponent factors into two exponents and the integral factorizes
into two integrels, each of the form of eq. (2.7).
Finally, one may take derivatives of anticommuting variebles.

For example, d%l = 1, dﬁl iy = 0 . All the usuel rules of
differentiation hold except for mimus signs in the product rule due
to anticommutetion relations. Thus d%].(nenl)

( d%ln2 )ql -, d%lnl = - .. These derivatives act to the
right. Derivatives acting to the left are defined analogously:

-
r]l d%1 =1 . A powerful tool is the following:

L. 1Integration by parts. Given two functions, f and g,

3 g
qu fa =ﬁnf e (2.10)

In conclusion, anticommuting variables may be manipulated,
integrated, and differentiated much like ordinary variables exceptthat
anticommutation must be taken into account.

III. SAMPLE REPRESENTATIONS

In & dimer problem6’7’8) there are a set of sites and a
set bonds connecting certain peirs of sites. The bonds may absorb
dimers. If E’b is the energy of a particular dimer,

z, = e}.p(-aﬂb) is the Boltzmenn factor essociated with an
absorption. A site may be used only once, so that no two dimers
may overlap or even touch. Effectively any two dimers are infinitely

repulsive, There are two kinds of problems: the close-packed
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problem in which every site must be covered exactly once, and the
usuel dimer problem where some sites may be left uncovered.

The statistical mechenics of this system is determined
by the partition function. This partition function may be
represented as an anticommuting integral. As an example, let us
consider the two dimensional close-packed dimer problem. The sites
are the integer lattice points (o,8) in a two dimensionel plane.
Bonds occur between nearest neighbors in the vertical and horizontal

directions; z, is associated with vertical bonds and Zy with
horizontal bonds. The partition function is

- t t T
2z ,z) = / dndn’ exp E ( %ol o1 k415
a,p

ki r
+ 2, lp s e +1 e +1 ) (3.1)

There is an n &nd nt for each site, and the totel measure is a
product over all sites of the measure at each site. The operator
exp(thmaqgerhﬂﬁngﬂﬁ) =1+ %rbﬁqctanaﬂﬂngﬂﬁ has the option

ol placing & dimer on the bond between (o,8) &and (x + 1,p)

(see fig.l1). If the option is exercised, a weight z, results and
no more dimers msy be placed on s:i:tes invoiving (a,B) and

(@ + 1,8). Since the integral is zero unless every site is covered
exactly once, eq. (3.1) is the partition function for the two
dimensional close-packed dimer problem. This model (a.nd, in general,
any close-packed dimer model) is by eq. (2.9) a hfaffian.

Modifying the measure of eq. (3.1) by

qudqf —»fdnqu exp(z Mﬁﬂgﬁ) R (3.2)
ap
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would produce the (usual) dimer partition function, since the

+ : ¥y 12
oplop piece of exp(naaqas) 21+ naﬁnaa would cover any
uncovered site (a,B8). On the other hand, for sites already

covered by a dimer the 1 term would be used. The new action would be

+ + t
Agimer(fy 2y) = Z "oqa"aga(l * Bgmglaap * zv"aaﬂ“usa)'(z.. 3)
ap

Equation (3.3) may be interpreted as the partition function of
monomers and dimers where the enery of a monomer is zero. If

Em is the energy of a monomer, then

+ +
Adimer + monomer(zm’zh’zv) = Z T“czB“aB(zm + zh“aﬂ.e’hﬂ_a
B
+ (3.4)
* zv“aﬁﬂ"abﬂ.) s

with z = exp(~- BE ), 1is the partition function for dimers and

: + Jl' T .
. B al = = bt
monomers y rescaling n,4 ‘quaﬁ Tlgg Zmn one obtains

N 2 2
Zaimer + monomer(zm’zh’zv) = 2y Zdimer(ﬁl/zm’ zv/zm), (3.5)
where N is the number of sites. This result (that the partition
function for dimers and monomers is simply related to the partition
function for dimers alone) is easily derived using physical
considerations. In general, there will be transformations on the

Grasspann integral which yield results in a few steps thet, unlike



n

this example, are difficult to obtain using pkysical arguments. This
is one reason why anticoumuting variables are powerful.

To deal with a general dimer problem, let C be &
labelling of sites. The set of bonds, B, is a set of pairs

(a,p) having Boltzmann factors Zop Then

z =fdndqf exp(Znan; + Z zae‘naqr;nﬁng ) (3.6)
a

(@,B)eB

Dimer models are equivalent to thrrer field theories with a
kinetic erergy term consisting only of a mass piece, T]T]f . The
field theory methods that deal with qqfrm* theories may be applied
to dimer problems.

Almost all partition functions which have a graphical
representation are expressible as anticommuting integrals. The
d-dimensional Ising modelg) hes such a graphical representation
where one sum's over closed non-overlapping but {possibly)
intersecting polygonal curves; in two dimensions this is q}riained
by starting with configurations where all spins are dowr"ﬁnd
drawing curves around regions of up spin. There is e Boltzmann
factor for each unit of "Bloch" wall. Altemativ*‘ﬁ:v, one may use
bond variableslo) (which works in any dimension) for which there is
a simiiar representation with different Bloch wall Boltzmann factors.

Let us consider d = 2 . Then
(3.7)

ZIsing(Jh’ Jv) =f chosed polygons(zh’ zv) ’

vwhere 2. (Jh’Jv) is the Ising model partition function, with

Ising

6;7;8),



horizontal and vertical spin couplings J;l and Jv’

Z ) osed polygons (zh, zv) is the partition function for closed

non~overlapping polygons with Boltzmann weights, 2z and z,

for horizontal and vertical Bl>ch walls, end f is a multiplicative

factor. For the first representation

£=ex [MpI +83)
7, = exp(-283,) (5.8)
zv = ex‘p(-EBJh) )

where N is the number of sites. For the bond variable representetion

(2eosh BJ, cosh BT, )N,

o]
]

= tanh BJ, (3.9)

2 =tanhBJv.

Duality is the well known fact that the Ising model has these two
representations relating low and high temperatures, one using
bond variables on the lattice and one using disorder variables on
the duel lattice.

To express the Ising model as a field theory, use four sets
of enticommuting variables at a site (o,B) , nr and q;g with
r = R("right"), IL("left"), U("up"), or D("d.ovg") (see fig.2).

To draw the sides of polygons use dimer operators
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R Rt L Lf
ﬂasﬂaaqa+lﬂna+la and naﬂqaﬁnaﬂ*'lnaﬁ a (see fig. 3).

give rise to a wall action

They

_ R R+tL _Lt U _Ut D
Al = E [zh(naanaanaﬂsna +1ﬁ) + zv(naﬁﬂa‘3 ”aa+1“aa +1)
B
(3.10)
I next require "selection rules” at each (a,p) site. Suppose
D Dt R then only the configuration

'laﬂ“aaﬂas"aa is inserted in the integral,

of (fig. 4a) may occur. Figure L illustrates the eight possibilities

which can happen. To limit the graphs to these possibilities insert

1 +g with
Bt S v
(z.11)
Tt e T e
where I\Ir = qrqrf . By using 1 + g = exp iln (1+ g)] = EJCP(S - %’gz)

an action for these selection rules is obtained

U v -
+ N +N§BN£E-2N§BNGBGﬁNQDB)’ (3 12)

where again N;B = T];B rt . The total action for the Ising model

is 4= Aw:a.ll * As.r.'
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I call the above method of obtaining integral representations
the "selection rule" method. By weighting the configurations of
fig. 4, more general Ising-like models are obtained. Representations
of more complicated models like the Baxteru) mode) can be derived
in & similar msnner.

The above representation of the Ising model is ‘nefficient:
It uses four sets of anticommuting varisbles per site; furthermore
the action involves products of up to eight variasbles. Given e
particuler model, there will be many Grassmenn integral representations
It is important to find efficient representations. Ingenuity in
finding the "best" set of variables end tte "best" actions will
determine whether a model is exactly solvable and will determine
how well approximation methods work. In the next section, efficient
representations are found for these two c-dimensional models.

IV QUADRATIC ACTIONS

Some models have quadratic action representations. I
call these pseudo-free theories because they are exactly solvable
by the techniques that solve free theories. 1Imn this section I
will represent the two dimensional close-packed dimer end Ising
models as pseudo-free theories A later paper will calculate
the partition functions and correlation functions.

The two dimensional dimer problem will be dealt with first.
The method used to solve it closely follows the stendard methodl‘)
of attack. In fact, I will be essentially reproducing the known

method in integral form, circumventing a few algebraic steps along

the way.
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Teke the lattice plane, group sites intc units of four, and
use the labelling indicated in fig. 5. Sites i and 3 are called
odd sites; sites 2 and 4 are called even sites. For each unit
(a,8), assign four sets of anticoumuting varisbles,

T';B’ q;g (r = 1,2,%,4), one for each of the four original lettice

points. It will be shown thet

B B
cumer(zh’ Zy ) zdlmer(zh’ zv) =qudr,T exp(A), (k.1)

where

»
[}

A A, 1l 2
E [ﬁ#ﬂasﬂa; oalas)

uB (4.2)

A, 2 bt 1
+ zv(nagngs na;naﬁ

" G "25"3115) ’ zﬁ(”ézaﬂ";; ’ "ojz.sf‘ggﬂ)J ’
end AB is obtained by replacing zﬁ by zﬁ y zﬁ by zE ) q;B by
r'OB’ and qa; by q‘-;ﬁ . Egquetion (4.2) may look complicated, but
it has a simple graphical representation in fig. 6. Each of the
eight dimer-like operators of fig. 6a corresponds to a term of eg.(¥.2).
The dimer object, qé‘sqsg, produces an "o" at 1 and an "x" at 2
in the (@,B) unit. Arrows are used to indicate the order of the
n's &s illustrated in fig. 7. The dimers weighted by zA factors

w e

are the ones with "c"'s on odd sites and "x"'s on even sites
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and are called A-dimers. The B-dimers have "x"'s on odd sites
and "o"'s on even sites.
We can now make contuct with the usuel method of solution.

By the "golden rule" of Grassman integrals, each site must have an
"x" and an "o" . This means each site is covered by exactly one
A-dimer and one B-dimer. Therefore ,. we have a simultaneous A and
B dimer problem: Expand the B-action exponent and choose one
configuration, b, which covers all sites with B-dimers. Let w

be its weight (that is, the product of the zﬁ ard z:‘Br factors;

for example, if zg = z"; £ 2P then Wy = (z N/E vhere N is the
number of sites). Expanding the A-action exponent, each A-dimer
covering results in diagrams of closed non-overlapping polygons and
overlapping isolat~=d dimer pairs (see fig. 21, p. 233 of reference 7 )
/w.ith the proper weight (up to possibly a minus sign). A minus sign
could result because of reorderings of anticommuting variables in
evaluating integrals. It is proven in Appendix A, however, that

all terms are positive. The reader is invited to check some
examples by using the rules of fig.8. Each configuration, b, of
B-dimers yields w, Zdimer(zh’ z ) Equation (4.1) results by
summing over &8ll B-coverings.

Every planar close~packed dimer problem, which is exactly
s0lvable by the usual tecimniques, is expressible as an anticommuting
integral over a gquadratic action. At this stage, Grassmenn integrals
are used only as g bookkeeping device which organizes the algebra.

No true progress has been made. The next example will obtain a
quadratic action for the Ising model. Although similar to

previous derivatiuns, several simplificetions are made.
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I shell use eqg. (3.7) which relates the Ising model to a
sum over closed non~overlapping but (possibly) intersecting
polygons. I shall then use the anticommuting variables to "draw"”
these configurations. Two sets of variables will be ucz2d at each

. : h ht v vt -
(a,8) site: Tops o’ and o’ Top The superscripts "h" and

"v" stand for horizontal and vertical. Consider

N +
21 0sed Polygons(zh, z,} = (-1)" fandn” exp(a), (4.3)

vwhere N is the number of sites and

= Ag10ch wa1l * Acorner * “monomer ,

_ hi h vi v
ABloch wall = Z (zhnaﬁna+1ﬁ+ zvnaﬁnwﬂ) 3
ap
(L.5)

AcomeI‘:Z a htqv + 8 vi.h + 8 vfhf-‘-a vrh)
1 Togap * ®3"apTop * %2oplep T MasTaa’

aB
h hy v vt
Aponomer = Z (bhnaﬁnaa * B glo ) -
075

The Bloch wall action produces & unit of Bloch wall in either the
horizontal or vertical direction [see fig. (9)] weighted by the
appropriate Boltzmann factor. The term Acomer produces the four
corners of fig. (10) necessary to construct & ploygon. I have
allowed for the most general quadratic form by weighting corners
with the a; . For the Ising model, set a; = 1 . Finally,

o n

'y . "y 1y .
Amonomer £ills all unoccupied "h" and "v" sites with monomer.
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Again, for the Ising model, set bh and bv =1 . The eight possible
configurations which can occur at a site are shown in fig. (11)
with their weights. There is an extra (-1) for each site
because of the (-1)1\l in eg. (4.3). The minus signs in con-
figurations (b) through (g) always cancel in pairs and may be
dropped. The extra minus sign in fig. (11n) is explained in
Appendix B. This Appendix desls with minus signs due to reorderings
of Grassmann variasbles. Finelly, the double corners of fig. (12a,b)
do not occur because a single corner uses up both horizontel and
verticel variables. Equatiens (3.7), (4.3), and {L.4) form the
quadratic action representation of the two-dimensionel Ising model.
V THE OPERATOR ALGEBRA

This section dissusses the operator espects of Grassmann
variables and their probabilistic interpretation.

In the previous two sections, partition functions have
been expressed as fermionic field theories. By taking expectation
values of Grassmann variables (as well as functions of them)
we may treat them as operators. They act like "locel observables”,
measuring tools with probabilistic interpretations. Consider for

example, the two dimensional dimer problem whose action is given

by ea. (3.3).
+ + t
z & d .
(ogog) _/t-in ' exo(Ayner HiggTog) » (5.1)
is the sum over dimer configurations with the restriction that no

dimer be placed on the (Q,B) site. Therefore, <“ap";a) is

the probability that the (u,B) site iz not covered by & dimer.
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Likewise {1 - “aﬂ";a> is the probability that (a,B) is covered.
In general, the expectation value of an operator will be the
probability that a corresponding configuration will occur.
What do the eguations of motion mean? The equation for
: s < d
qaﬁ is obtained by taking & Ad:i.mer' Let O be an operator

(i.e. some function of the 7's and qf's) and use integration

by parts [eq. (2.10)]:

(L oy=(& a). .2
0= (5-2)

Equation (5.2), vwhich involves the equation of motion of qaﬂ s

will generate meny probability relations and is quite useful. For

(o] u u
example, let O be "ca and let P(a,B)’ P(a,B)’ P(Oz,a)a.nd(a,sﬂ)’

etc. be respectively the probabilities thet (x,B) is oceupied,
that {o,B) is unoccupied, that {x,8) and (a,p+l) are
unoccupied, etc., then

Fo,8) = %n|(a,p)andalan,p) * P‘(la,a)and@-l,a)]

* 2y [P‘za,ﬁ)and(a,ﬁ'fl) ’ P‘(l“'ﬁ)a'“d(a’s-l)J - ©-3)

I invite the reader to aerive this relation using physical
considerations and compare it to the simple and powerful method of
anticommuting variasbles.

The set of relations of eg. (5.2) along with the anti-

commutaticr eguations [eg. (2.1)) determine the model. They are
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an equivalent expression of it, because A is obtainable from
egs. (5.2). The Ising-like or dimer-like problems are uniquely
éetermined by a set of local probability r.lations. In field
theory the equations of motion are foremost. The operator
techniques used to attack such field theories may be used in
statistical mechanies. I call this the operator method of local

observables.
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APFENDIX A
This Appendix treats the minus signs of the two dimensional

close-packed dimer problem.

An isolated dimer pair between two neighboring sites r and
s (see fig. 13) will be of the form q“n:q:qs + qrq:qsq:; so
it has has the correct sign.

To deal with a closed polygon, P, orient it counterclockwise
aend cell the parity of P the number of minus signs which result
from rule (b) of fig.8. There are two types of polygons: type 1
(fig. 1ka) and type 2 (fig. 14b). For type 1, there is & minus
sign from rule(c) and no minus signs due to rule(a). Therefore,
for type 1, the overell sign is opposite to the counterclochwise
parity of P. For type 2, the identical conclusion is obtained
using a similar approach. sesteleyn's t.heorernl5 ) (which is easily
verified for test exemples and easily proven by induction on the
area of P) says that the counterclockwise parity is (-1)I+1 (where
I is the number of inf;erior points) if all elementary polygons
(ones with no interior points) have odd parity. In fig. 14, for
example, I = 1 and the parity is even. With the arrow assignment
of fig. 6, all elementery polygons are odd parity. We conclude
all polygons having an even number of interior points have the
correct sign. Fortunately only these kinds of polygons occur in
a covering since dimers, covering two sites at a time, cannot cover
regions of an odd number of sites. [Therefore, all polygons have the

correct sign.
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APPENDIX B

In this Appendix, I will analyze the sign problem
associated with egs. (4.3) end (4.4). The conclusion will be
that the sign of a configuration of polygons is equal to the
number of intersections which occur. This expleins the extra
minus factor in the weight of fig. (13n). I will proceed in steps:
first dealing with an isolated non-self-intersecting polygon, then
with one that self-intersects, and finelly dealing with a multipoly-
gonel configuration.

Consider a closed polygon, P, which does not intersect
itself. I will show that its sign is positive. Choose a
horizontal bond of P and proceed to the right (and eventually
around the polygon). Start at the "x" and use the rules of
fig.B. When moving upward or to the right no minus signs resu.lt;.
from rules(a) or (b) because arrows are in the correct direction
end "o"'s occur before "x"'s. When moving downward or to the
left, each site has & minus sign from rule (a) and a minus
sign from rule (b). They cancel in pairs. Next consider what
heppens, when one goes around a corner. There are eight different
types (see fig. 15) [two orientations times the four basic corners
of fig. (10)]. They are oriented because we are moving around
the polygon in a particular direction. Figure 15 summarizes the
results: only corners of types d end d lead to a minus sign.
Now use the following theorem (which is easily proved by induction
on the area or P): Tet m , m, etc. be the number of type e,
type b, etc. corners occurring in an oriented non-self-intersecting

polygon, P . If P is counterclockwise oriented then
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(B.l)
o, - mc =1, .
m ~-m =1,
d d
Ta, .\"a
This implies that the sign due to corners is (-1) “(-1) “=-1.

For clockwise oriented, P, the theorem holds with a -7,
b «b , etec. Rules(a) and(b) therefore result in one minus
sign which when combined with the minus sign of rule(c) gives en
overall plus sign.

Now consider an oriented self-intersecting polygon, P .
It may be constructed from non-intersecting ones by the pasting
construction of fig. 16. The order of the operators in P is
indicated in Figure 17a. When they are regrouped into the forms
occurring in the non-self-intersecting polygons (Figures 17b and
17c) which "compose" P, a minus sign results for each intersection
as Figure 17 illustrates.

Finally, the result holds for multipolygonal configuretions
because pairs of polygons can only intersect an even number of

times. Summarizing, an extra minus occurs for each intersection

(fig. 11h).
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Figure 1.

Figure 2.

Figure 3.

Figure k.

Figure 5.

Figure 6.

a5

The dimer operators: (a) The horizontal dimer operator,

%”;e"aﬂs";ﬂs’ and (b) The vertical dimer operator
T T

TagTog o g+ *

The two-dimensional lattice used for the Ising model:

(a) Each site has been replaced by four sites, and

(b) The notation used to label sites. The pair,

(2,B) , labels the group and "Right", "Up", "Left",

and "Down" are used to label types.

Bloch wall operators: (e) The horizontal dimer operator,

R _RTL . .
"as"aa 'a+1ﬁ“a+1a , and (b) The vertical dimer operator,
ur o Dt

"as"aﬁ"%ﬂ"aﬁﬂ :
The eight possibilities which can happen at a vertex.

In each case, the operator on the right will produce
the dimer configuration on the left. Figures (a) - (g)
represent the seven terms in eq. (3.11). To these one
must add the last term which is the unity operator.

The lattice plene reorganized into groups of four sites
each. Each unit is labelled by & peir of integers

{@,f) and each of the four sites in a unit are labelled
by 1,2,3, or 4. Sites of type 1 and 3 az"e called odd
sites, wheraas sites of type 2 and L &y . even sites.

(a) The eight bonds corresponding to the eight terms
in eq. (4.2). Each of these operators create A-dimers
and is weighted by a z‘A factor. The arrows indicate
the order of the 7's (see fig. 7.). (b) The B-dimer

operators which meke up the Be-dimer action, AB .
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Figure 7. The use of arrows to indicate operator ordering. On
the left-hand side is the operator, nfn, which
equals minus the right-hand side operator, rm* . The
arrow originates from the first anticommuting varieble
and terminates on the second one.

Figure 8, Sign rules. The rules for evaluating the sign of a
"dimer loop"” are as follows: Pick an initial "o"
or "x" (here, "o" is chosen at A) and proceed
around the loop (here, counterclockwise). There is
a) a minus sign for each "x" occurring before an
"o" (the point, B), b) a minus sign for each arrow
in the opposite direction (the bond, C), and finelly
¢) a minus sign if one begins with an "x". In this
figure the sign is positive.

Figure 9. Bloch wall operators: {a) is the graphical representation
th
glla+1p
horizontal Block wall; (b) is the vertical Bloch wall

of ng which occurs in eg. (4.14) and produces a

operator, n;; “;aﬂ .

Figure 10. The corner operators in eqg. (4.4). In all cases they
occur at the (a,B8) site, that is corner operators
only change the direction of a curve; they do not
connect neighboring sites. Although one could use
labels to distinguish horizontal and vertical variables,
it's easier to use the following convention: if an “o"
or an "x" has & horizontal line coming into orout of

it, it is a horizontal variable; on the other hand

vertical variables have vertical lines flowing into or



Figure 11.

Figure 12.
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out of them. For example, (a) involves a horizontal

ht
"x" or Tgp @nd & vertical "o" or “ZB . The arrow

indicates the order, so that this term is "2;'1;5 » the
first term in Aorner °F €d- (4.4). (b), (c), and (Q)
are the other three terms.

The eight possible configurations that can occur at a
site. When disorder variables are used [eq. (3.8)], the
first two columns represent corresponding spin
configurations. In obtaining the weights of column 4 e
(-1) fector has been included from the (-l)N of eq.
(4.3). The minus signs in (b) through (g) may be
eliminated because i) there are always an even number of
(b) and (c¢) configurationa and ii) corners (d) and (f)
as well as (e) and (g) occur in pairs. Alternatively,
one could redefine the b's and a&'s in eg. (4.4) to

have minus signs. Configuration (h) has an extra minus
sign due to reordering of anticommuting variables as
described in Appendix B. The numbers in column 4 are
easily obtained: For example, the bh of (b) is
obtained because a vertical bond enters and exits the
vertical site and a horizontal monomer with bh must
fill the empty horizontal site.

Intersections. The double corners of figs. (a) and (b)
are not allowed by eq. (4.3). When four lines meet at

a site tney must pass directly through as in fig. (c).
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Figure 1k,

Figure 15.

Figure 16.

Figure 17.
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A typicel dimer pair. The sign of this pair is plus
. tt t t
since NN TNg= ¥ M0N0
The two types of polygons. Type 1 [fig. (a)] is

+
characterized by the fact that =wn occurs at eech
site when going counterclockwise arount the polygon.

Alternatively, as one goes around the curve the 'x
occurs before the "0" in a given dimer. For type 2
[rig. (b)], nfq products occur at each site. The

parity of this polygon will be even if all elementary
polygons ere counterclockwise odd. The assignment of

arrows in fig. (6) does make all elementary squares

of odd perity.
The eight oriented corners and the minus sign factors

associated with them.

The pasting construction. Polygon, P, may be

obtained from two (possibly self-intersecting) polygons,
Pl and P2 5 by cutting open the corners and rejoining.
There are four (two different types of pairs of cormers
times two orientations) possible pasting constructions.
How the minus sign arrises. This is just & "fermion”

statistics effect. The order of operators in an

intersection of P is indicated in Figure (a) and is

(“;'\3)(‘1;%) . When P is decomposed into non-inter=

secting polygons as in Figure 16, the order of the
operators is that of (b) or (c}. For case (b),

(ﬂIﬂh)(nan) == (n;_nj)(n;nh'), that is, there is a
minus sign relative to (a). For case (c), (n;qI)(qhqB)

; +
is also - (nlnB)(n;ﬁh) .
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CHAPTER II

THE USE OF ANTICOMMUTING VARIABLE
INTEGRALS IN STATISTICAL MECHANICS II
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1. INTRODUCTION

In the first paperl) (to be referredto as I) certain partition
functions are represented as fermionic~like lattice field theories
using Gressmenn integrals. This allows one to use powerful field
theory methods to attack statistical mechanices problems. Several
models had quedratic action representations. Among these were
the two~dimensional Ising model and the two-dimensional square
lattice dimer problem. They are pseudo-free theories and are exactly
solvable. In this paper, these two partition functions are explicitly
computed (Sec. II). This is a straightforward calculation: one
transforms to momentum space just &s one would do with & free field
theory. This partically diagonalizes the problem; it breaks up
into a product of 4 x 4 determinants. Next, graphical methods
are introduced to organize the algebra (Sec. III). They are useful
because they are systematic and pictorial. Section IV considers the
general class of solvable Z-dimensional close-packed dimer problems
on various lattices. A set of rules are derived which quickly
compute partition functions. These rules are illustrated using the
square lattice and applied to the hexangonel lattice. Next, the
rules are extended to genersl pseudo-free theories. This means
that, given any quadratic action, there is a simple systematic
calculational procedure. For the free fermion model anticommuting
variable correlations are calculated (Sec. V). They are first
considered in momentum space where the compututions reduce to
solving modified minieture dimer problems. The Ising model is
included in the free fermion model, so that the results of Sec. V

can be used to calculate spin correlations. Section VI exemplifies
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th’s by considering two horizontal spins. The approach generalizes
so that one may, in principle, compute the vacuum expectation value
of an arbitrary number of spins, although the form of the answer is
cumbersome. This is because spin variebles, which are the physical
variables, are complicated functions of the anticommuting variables,
vhich are the mathematical variables in terms. of which computations
are simple.

Paper I was a pedagogical introduction to Grassmann integral
techniques. It emphasized how to use anticommuting variables and
how to express partition functions as fermionic-like field theories.
This paper emphasizes computationel methods. It illustrates how to
calculate partition functions and correlation functions. It provides
graphical rules which simplify complicated calculations.

This paper considers only solvable models. They form the
testing ground to see now and if the techniques work. They also
form a solid toundetion upon which unsolved problems may be attacked
by approximation methods. The real power of anticommuting variables
will come when they are applied to these unsolved models.

II. THE PARTITION FUNCTIONS FOR THE DIMER AND ISING MODELS.

In paper I, the two-dimensional Ising model was represented
as 8 Gressmann integral over & pseudo-free fermionic-like msction. A
similar representation was obtained for the close-packed dimer problem.
By pseudo-free action, I mean & quedratic action. Such theories are
solvable by the same methods that solve free theories: transform to
momentum space. This partially diagonalizes the problem because of
translational invariance. What results is a product of Pfaffians of

4T x 4T dimensional matrices. The variable, T, is the number of
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n's and n*'s per site. If bilinears occur as q'q*'s the problem
simplifies to a product of determinants of T x T dimensional
matrices. This is why it is important that the number of variables
per site not be too large.

I will always choose a to renge from -M to M and g8 +to
range from =N to N, so that there are (2N+1)rows and (2M + 1)
columns. In the Ising model there are (2N + 1)(2M + 1) sites,
whereas in the dimer problem, there were 4 sites per (@, B) unit
so that there are L(2N + 1)(2M + 1) sites in all.

Going to momentum space means writing

ro_ 1 1 2nios_ , 2ni t“\ﬁrA
v X o Jama o ( 5% B

/

(2.1)
r 1 1 2y znipt t
e L e e (3 FE )
ap ~ s
)t 2M+1l 2N+l
+
In eg. (z.1) a:t and a:t are an equivelent set of anticommuting

variables; § ranges from -M to M and B ranges from -N to N.
The determinant of this transformetion is one. One should think in

terms of the correspondence:

(a, B) «=(x, v},
(2.2)

2M + ’2N+1)‘_'(px’py)'

[

( Pus 2nt
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The variables s and t are simply momentum variables. Equation
(2.1) implies periodic boundary conditions. Trese conditions will
always be chosen, so thet one is working on a toruse).

Eq ation (2.1) implies the following useful formulas:

+ +

at r _ qt r
2 Tog Mag ~ 2%t %t
ap st

1 1 ;
Q' 1 _ q' . r 2nis
2 op Ty = D st g P <2M 3 1)’

ap st
1

q _r Lo + .

Nag = q r 21is
Z op failp = Z Bst Bst exP(2M+l)’
o st

2.3)
t 1 (

q _r _ q' r 2rit
Z ep Tap = z 35t Bst exP(EN +1),
ag st

B st

q T _ qQ T
2 Tesep = 2 %5t e ,
aB st

Tt t ot

g’ r _ q' r

g Top ; Z 85t fost
ap st
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q and r, refer to the types of enticommuting

variables. The "operator" exp (2:(151) is like the quentum

The varisables,

mechanical operator exp (iax Px) which shifts one unit in the

x-direction.

Let us first solve the close-packed dimer problem. The square
of the partion function has the representation given by egqs. (I.L.1)

and (I. &2). Using eqs. (2.1) and (z.3)

Zgimer(zh’zv) = ﬁada* exp(A),
A s
2 At (c.b)

st
ot t t T
_ 1.2 LT 3 21 3 Lt
Ast - [zh (astast * ast:ast) * 2y (astast * ast.ast

A

2t onis 5 gt 2nis
* ("stast e"P( M+ 1)+astast eXP |- TM+ 1
t . + o
1 4 2nit 3.2 _ mutl)
+ zv(astast exp(EN + l)+ 8518t P\ TN +

t
+ Iterm with a:t and a:t interchanged and

exponents conjugated ] .

In going from paper I to eq. (2.4) I have set zﬁ = zg =z

nd = =2 .
8 Zy T % 'l

The integrals over each (s,t) can be done individually using

eq. (I. 2.6) yielding the determinent of the following martix:
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s t
= -] v
M, = hg O 4 0 , (2.5)
o -V, 0 -h__
v_t [o] hS o]
with
2nis
hs'zn(l'e"pam+1) s

(2.6)
_ 1 2nit
Vo S (1" P TR + 1

_ _ 2715 - 2ﬂt.
det M, = (nh_ o + vV ) [(2 2 cos f; +(2 -2 )z

t -t
(2.7)
The total answer is the product of these determinents:
M N M N
2
Zdimer(zv’zh) = I I | I det M, = exp E E £n{det Mst)
s==M t=-N s=-M t=-N
(2.8)

The free energy per unit site in the thermodynamic limit,

fw - XT ¢n 2 , becomes

1 i dpx i dp, 2 2
-Bf = § f 1€) f -@‘”‘Ly n [(2 - 2 cos px)zh +{(2 - 2 cos py)zv},
-5 -1

(2.9)

which agrees with the well-known mswera’h’5’6). In obtaining

{2.9) sums have been replaced by integrals in the standard way

ont,
and p, 2M+1 and p =3y

due to fact that there are 4(2N + 1)(2M + 1) sites.

Finally the factor of % is
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Now consider the two~dimensional Ising model, which can be
related to the partition function for closed polygons (reviewed
in Section III of paper I). The corresponding action is given
by eq. (I. 4.4). In calculating the partition function, any values
of b's and a's satisfying bh =%1l,b, =1¢1, a163 =1, 858, =1,
and

may be used. For convenience choose by=b =18 = &5 = 1,

8, = - &, =i . Equations (1. 4.4), (2.1), and (2.3) result in the

action

Aclosed polygons Z Agy o

st
nt n 2ris vty 2pit
Bt = [%n8st Pst P G 7 1) * B8selst P (G 1)
nt v vin o nt vt vy v vt on ot
togghgy ey tlag A ctiage  taga tege | (2.20)

The (s,t) wvariables mix with (-s, -t) varisbles. Therefore,
after doing the integrations, eq. (2.10) will result in a product of

Pfaffians of 8 %« 8 dimensional matrices. However, transforming

st "“.It ’ s<0

or (2.11})
a* - g s=0t<0
st st?

for both horizontal and verical variables, the action, (except for Aoo)

becomes of aa* form (this would not have worked for the choice
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h .h v vt
Agy = [hsast&st * Vifslst

t + 1 t
v _h h v . b v . .V h P
Bstst” %stBst T 1 BgtBag.tt 1 B5tPigat 4 (2.12)
where
by =1- 2 exp (2M+l)’
(213)

_ 2rit
v, =1 zvexP(2N+l) .

By eq. {I. 2.6) the integration over (s,t) and (-s, -t) variables

is the determinant of the following matrix:

h -1 0 -1
s
-1 vt i
Moy = (s,t) 4 (0,0) - (2.14)
0o - h -1
-s
i 0 =1 Vg

det M, =hh_ v.v A, - (hS +h_S)(vt tv_,) o+ L

_ 2 2 2 2xs
= (1 + zh)(l + zv) +2(1 - zv)zh oS T
2 2nt

+2(1 - zh)zV cos Z—T 1 T - (2.15)

The (0,0) integral must be done separately and gives -(det Moo)l/2
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I conclude

- I | 1/2
2 losed polygon (qet Mst) ,
st

exp [-]2-' E ¢n (det Mst)J ,
st

1 "dp Tap
—exp{ (2N + 1)(aM + 1) (’2)_/?‘/_2*
-5 -1

x £n [(l + zs)(l + 23) +2(1 - szr)zh cos p_ + 2(1 - z.s)zvcos py]

(2.16)

The exponent, 1/2, compensates for double counting (s,t) and
(-s, -t). In the last step of eq. (2.16) the thermodynamic limit
has been taken. The anguler integration variables, p, eand py,
ere simply momentum variables. Equations (2.16), (I. 3.7), and
(L3.8) [or (I. 3.9)] yield the famous Onsager result7) for the free

energy per unit site

sing =7

g dp n dp,
1 x Yy
-afI > / P / o i 4 [cosh EﬁJv cosh 2BJh
T -
(2.17)

+ sinh EBJh cos P + sinh QBJV cos py]

III. GRAPHICAL EVALUATION OF PARTITION FUNCTIONS
In this section I will introduce a graphical method to calculate

partition functions. Later, it will be extended to correlation
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functions. I do this because when the number, T, of variables

at a site becomes large, the evaluation of Pfaffians and determinants
becomes cumbersome. It is important to have a systematic approach.

I will introduce a diagrammatic method which organizes the algebraic
computations. For the models dealt with so far, it will seem
superfluous; however, when more complicated models are encountered,
it will be guite useful. The one danger is the possibility of
overlooking a graph.

Consider A_, in eq. (2.4). It is like a minjature dimer
problem on four sites. The first and second brackets [or the left
hand side of eg. (2.4)] correspond respectively to the dimers of
figs. la and 1b. Together they form the ministure dimer problem
of fig. lc. Figure 2 gives the four possible coverings of fig. lc
and their weights. Overall signs are determined by the rules of
fig. (I.8). The sum of these diegrams yields eq. {2.7) as it should.

Let us now solve the generalized closed polygon problem
given by (I. 4.4), using the diagrammatic approach. This model
is called the free-fermion modela). This problem has been solved
by exXpressing the partition function as & product of fermion creation
and annihilation operators acting on a vacuumg). This is the reeson
for the name free-fermion. The method of reference 9 is, however,
different from the one used here. In particular, anticommuting
varigbles satisfy (nr’ns*] = 0 and cannot be thought of creation and

+
ennihilation operelors which satisfy (v, ¢° J = B -
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In momentum space the action of eg. (I. 4.4) becomes

t . f s
_ h 2nis 2nit
Afree rermion” Z ZpBst stexP<2M + 1) * zvasta'sd: exP(aN + 1)
s,t
v vtnt
h' v h h h
B1%gt%st * a5as1: st * BPgttigt MBhlgy  (301)

t
h h v,V
* PpfatBst T Pyistfst ] :

If (s,t) and (-s, -t) variables are grouped together, the
miniature dimer problem associated with eq. (3.1) is illustrated
in fig. 3. There are nine possible coverings &s fig. & shows. The

sum of these is

2; 2xt
(oS o 3T = Beh VeV alaj(h Ve + BV i)
(3.2)
- age{ngv_p thvy) + (egeg ¢ o)’
where
h =1v - exp ( 2nis )
s T % T % M+ 1 7
(3.3)

Vp =B, =z, eXp (21\1”?1)

or
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2ns 2rt _ 2 2 _ 2ns 2. 2 2nt
L (2M Y13+ 1) = [(bh * g, - 2ab, cos mry 1)(bv+zv'2zvbv°°saxv+1

- 2(21_1_515 + agah) (bh - 7, cos zﬁii)(bv - 2z cos é—li%)

_ . 2ps_ . _ext
+ 2(&3.15.5 aQah’zh"v sin s sin se—

(3.%)

+ (e»la»5 + 6'25'14)2] .

The partition function is

1/2
Zi‘ree fermion =(_IT L(S’t)) / ’ (3.5)

st

which becomes in the thermodynamic limit

n
1
-affree fermion 2 f

d, " an ,

= [ e, 60
-3 -1
where L is given by eg. {(3.4). The factor of 1/2 is due %o
double counting of (s,t) and {-s, ~t). Equations (3.4) and (3.6)
agree with the known results’lo).

IV. SOLVABLE TWO~DIMENSIONAL DIMER PROBLEMS
This section considers solvable two-dimensional dimer

problems. By solvable, I mean solvable by the usual Pfaffian methodss).
The models will be translated into Grassmann integral form, from which
a series of graphical rules will be derived. The treatment used

here does not differ from the usual Pfaffian treatment. What is

gained is & simple graphical approach which allows one to rapidly solve
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a dimer problem. Furthermore, the diagrammatic methods extend to any
pseudo-free field theory. This section serves as a pedagogical
introduction to graphical methods.

%)

I refer the reader to the standard methol of solution
There are two key points:

I. Solvahility Condition. A planar dimer problem is solvable
if its bonds may be oriented so that every elementary polygon is
clockwise odd. Planar means it may be drawn on a piece of paper
sc that bonds do not ..oss. The bonds are then givan an orientation.
The direction is usually denoted by an arrow. A polygon is clockwise
odd, if when traversing clockwise, one encounters an odd number of
bonds oriented in the opposite direction. An elementary polygon is
a nor self-intersecting polygon made up of bonds which has no bonds

in its interior.

II. The Method of Solution. F.ix & standard B configuration

which covers the lattice. Each covering (these new ones will be called
A coverings)when combined with the % configuration results in a
set of closed polygons and isolated dimer pairs, the partition function
of which has a Pfaffien representation.

Condition I «nd Observation II make the problem solvable by
Pfaffian methods”).

For every model satisfying I, the Method of Solution II can
be translsted into Grassmann integral form: A bond oriented from
point, P, to point, Q, upon which on A-dimer may be pleced
corresponds to & term nPnQ in the action {see fig. Sa). A standard
B~bond between P and Q corresponds to & term ng; (see fig. Sb).

A-dimer operators are ordered with the graph orientatinns, whereas
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B-dimer operators are ordered oppositely to the graph orientations.

The action is schematically of the form

dimer = 2 z,mm + Z ntnf N (4.1)

A-dimers B-dimers

A

The Boltzmann factors of A-dimers are Zp s whereas B-dimers have
unit Boltzmann factors. It is not hard to see that this action
produces the closed polygons and isolated dimer pairs used in the
Method of Solution II. The signs are all positive because of
Condition I. This may be proved by induction on the length of a
polygon and employing Kasteleyn's theoremu). Figure 6a illustrates
one set of orientations on & square lattice which makes every
elementary polycon clockwise odd. Figures6b and 6c show the A-dimers
and a standard B-dimer configuration consisting of horizontal dimers.
It is convenient to group the sites in units of four &5 in fig. (I.5).

The corresponding action is

1.2 2 3 L 3 2
Adimer = Z [thbB“aB * 200k * Znlaplos t ZvopTop
ap
2 1 b 1k 2
* 5 lepTag * ""h’éa“mla* Zaaaes * Zv“ge,“oaﬂ] (4.2)

SHEERAE

where the notation is that of Paper I (secs. IIT and IV). Some dimer

problems satisfy
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Simplifying Condition C. A graph satisfies Simplifying

Condition C if vertices can be grouped into two sets (which I call
odd and even) such that no two odd (or even) vertices have a bond
in common.

When this condition is satisfied, transform 7 — qf and
n" — 7 at ali even sites. This makes the bilinears in the action
of the form rmf, the partition function becomes a product of
determinants rather than Pfaffians, the graphical rules simplify,
and calculetions are easier to do. Figure 7 shows the rectangular
lattice after this transformation.

Graphical Rules When Condition C Holds

or

Rules When Bilinears Are of nﬂ form

1. Group vertices into repeating units that fill-a. square
array. Use (a,B8) to label the units and use r = 1,2,3, <+», T
to label the different vertices within a unit. Figure (I.5) is an
example for the square lattice.

2. Consider one unit, U. There are two kinds of bonds:
(a) those which are conteined within U and (b) those which go from
U to some other unit. Of the latter, [(b)], for every bond which
goes from a typervertex in U to a type q vertex in anot'.er unit,
there is one bond which goes from a type r vertex in another unit
to a type q vertex in U. Thus, they occur in pairs. Half are
to be included in U and the others ignored and erased. Figure 8

illustrates this for the square lattice.



60

3. Keep (&) type bonds as they are. For a (b) type bond
which goes fromen r din U to a q in another unit, "fola"
it back into U, so that it goes from r to gq within U (see fig. 9.
If q is on "o" 1located in & unit m horizontal spaces to the

right and n spaces upward (m and n may be negative) multiply the

bond weight by

exp (:unpx + 1:py) . (L.2)
If g is an "x" multiply the bond weight by the complex conjugate

of eq. (L.3), that is

exp (- imp, - inpy) . (4.5)

Figure 9 illustrates this. Figure 10 shows all the weights in the
square lattice example after Rule 3 has been carried out.

4, Rules 1 through 3 result in & minipture dimer problem.
Solve it by finding all coverings and their weights (see fig. 11

for the square lattice). Call the sum of the diagrams L(px, p.) .

y
The free energy per site, f, is
n n
ap, dp
1 X
-Bf = Tf = f 5% o Lip,, p,) - (k.s)
- -1 .

The factor of % occurs because there are T sites per unit.
Figures 12-15 illustrate the solution for the hexangonal
lattice dimer problem. Figure 12 shows the lattice, the bond

orientations, the units of eight vertices, and the even and odd

sites. The "borizontal" direction is in the x-direetion; the "wertical”
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direction is in the y~direction. Both these directions aré also
shown in Figure 12 (one must tilt the f1gure & bit). There are
three Boltzmann factors, Zys 2y and zy, corresponding to the
three directions in which bonds may point. The Boltzmann factors,
the A-dimers, and the standard B-dimer configuration are shown in
Figure 13. The folded-over minlature dimer problem is shown in
Figure 14. The possible coveringsand their values are given in

Figure 15. The result is eq. (4.6) with T = 8 and

L{p,, py) = ["n + z exp(- 2ip ) + zu exp(21p )
(4.6)

+ 22}21 exp(~- ip, ) +2z2 y X (:Lp ) - 2z2z exp(ip - ipx) J .

Graphical Rules When Condition C Feils
or

Rules When Bilinears Are of 77 and nilf Form

These rules will be exemplified by treating the square latvcice
dimer problem of eg. {4.2). Although Condition C is satisfied, the
simplifying transformation will not be performed. Thus the action
will be eq. (4.2) as it stands. Figures 6b and 6c show the A and
B dimers.

1, Same as above.

2. Same as ebove.

3. Draw two copies of U (see fig. 16). Call them U, end G,
For (a) type bonds going from r to g draw two lines: one from

r in Ul to g in U2 and one from r in U2 to g in Ul



62

(see fig. 17). For nn dimers (i.e. A-dimery of (b) type originating
at an r in U and terminating at a q in another unit, again

draw two lines. First draw one from r in Ul to g in UE

and multiply its weight by exp(~ impx - inpy), then draw one from

r in U2 to q in Ul and multiply its weight by exp (impx + inpy)
(see fig. 18). For 111-111' dimers (i.e. B~-dimers) do the same as

for vrn dimers but multiply weights by the complex conjugated

phase factors of the nn case (see fig. 18)., In all cases, if

bonds are oriented from r to q they remain so, regardless of
whether they go from Ul to U2 or U2 to Ul . Pigure 19 shows
the resulting weights for the square lattice.

L. Solve the miniature dimer problem (see fig. 20) and call

the result L(px, py)' The free energy per unit site is

T ap " ap
-8t = 9—1-1-' f gx f 2—111 4n Lip,, Py) - (e
-7 -

Graphical Rules For A General Pseudo-Free Theory

In general, there will be Tm*, %, and ntqf products.

Two copies, Ul and UQ, of U are to be drawn. Follow the

second set of rules, 1,2,3, for nm and nfn* products. For rmf
terms use rule 3 of the firct set for the Ul copy of U but for U2
use complex conjugated phase factors. Finally, use eq. (4.7) and rule

L, Figures 3 and 4 illustrate this for the action given in eq. (I. b4.k).
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V. ANTICOMMUTING VARIABLE CORRELATIONS

This section will compute the anticommuting variasble

correlations (or "propagators") for the free fermio~ model [eq. (I. &)L

The configurations and their weights were given in fig. I. 11.

In addition, there are 2y and 2, Boltzmann factors for each unit

of horizontal and vertical Bloch well.

The correlation functions will first be calculated in

momentum space and then in coordinate space. It will be done

graphically. The variables s and t will be used instead of

P, and Py The two are related by eg. (2.2).
+

+
Consider (a. a.ht) The operator a:ta:t places a dimer

"_n

between the "o a.nd "x" at the horizontal (s, t) site.
Unlike exp (a'st st)’ however, one must use it. Therefore,

+
<t® ht) is related to the mimature dimer problem (MDP)of fig. 3,

where one inserts a

to the (s,t) horizontal sites. The result is the modified mimshire dimer

Z(a
"superbond" and erases all other bonds which connect

t
problem (MMDP) of fig.21(a) B alculate (a:tars‘t) take the value of

the MMDP and divide it by the value of the MDP of fig. 3.

General Rules For Calculating Momentum Space

Correlation Functions

1. Obtain the MDP using the rules of the last section.

and t variables are used rewrite, P, and 'py in terms
Calculate the

value of the MDP and call it D(s, t) = L(p s Py ) = L(zﬁﬁ.’ 21%3)

Since s

of s and t using the correspondence of eq. {2.2).




64

2. Let &1

and &2 denote two generic anticommuting
variables in the MDP of rule 1. To calculate (ala.g') draw

a superbond from 1 to 2 and assign it unit weight. Erase all
bonds irvolving the 1 and 2 variables. This is the MMDP. Call

its value N(s, t). Then

12
{(a7a”) = N(s, t) / D(s, t) . (5.1)
Figures 21-24 calculate the non-zero {aa’) free fermion
correlations, by showing first the MMDP and then its coverings.

In these figures, the upper left and upper right variebles are
g
and &' 3 a’ . The lower left and
-5~t? T-s-t +
lower right pairs are L a:t, and B o g0 al_ls_t.

respectively a:t, a:t,
The bond weights
are those of Figure 3. The superbonds, denoted by darker lines,

have unit weight. Figure 25 shows the MMDP's for the {aa®)
correlations which have no coverings. They have zero value. Figures
26-28 and Figures 29-31 calculate the non-zero f(aa) and (a+a.1'
correlations. Finally fig. 32 shows the MMDP's for the two

remaining correlations which have no coverings. The tebulated

results are

1’ B
<arslt :t> = (h-svtv_t = 8'18'3"1-, = 8'28')4"_1-,) / D(s, t) (Fig. 21), (5.2)
M Bt st) = (hsh-sv-t - e.la.ihs - agauh_s) / b(s, t) (Fig. 22), {(5.3)
hVT)- [hv (e.a. +aa)J/D( t) (Fi
BotPst’/ = %1ifag’-t T N s, ig. 23), (5.4)

¥
(a;’ta:t) =a, h v, - (a. a. +a Eh)' / (s, t) (Fig. 24), (5.5)
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1
<a:ta-:-t) =0 (Fig. ??(a)), (5.6)
h vf :
(age@gt? = O (Fig. 25(0)), (5.7)
t
(a:ta?s_t) =0 (Fig. 25(c)), {5.8)
v V+ .
(agp2 gut? = 0 (Fig. 25(a)), (5.9)
(@ ) =am(v, - v )/ s, t) (Fig. 26),  (5.10)
(a‘;t Yo) = ayaz{h_ - h) / (s, t) (Fig. 27), (5.11)
(a:tak_ls_t) = 521(5155 + azah) - hsv_t]' / b(s, t) (Fig. 28), (5.12)
(ﬂ:tazt' =0 (Fig. 32(a)), (5.13)
( ntnt | . ‘
BBy = a3ah(v£ -v_,) /os, t) (rig. 29), (5.1%)
@Y ) caay(n -8 /D, 1) (F1g. 30),
a8 o ) =ae(h  -h s, t ig. 30), 5.15)
v+ hf .
agtient) = &y [(apag vege) ~hov ]/ (s, t) (Fie. 1),  (5.16)
tnt.
(Fig. 32(v)), (5.17)

where hs, Vio

Of course, correlations involving (s, t) and (s} ¢

venish if neither (s, t) ¢ (s', t') nor (s, t) = (-

and D(s, t) are given by egs. (3.3) and (3.L).

) variables

s',-t").
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To obtain coordinate space correlations, use eq. (2.1) to express

n's in terms of a's, and then use the results of egs. (5.3)-(5.18).
The thermodynamic limit can be taken and the correlations are

t
(ngﬂnah.s.hf f gxm[i(a a')p, +1(B-B)pJ

o (5.18)

[n(- p Vi, )v(- p) - eyev(p ) - e V(- p )] / Lpys 7y)

R
(n;BnZ.B.>=f = f JEXP 1(a-a)p + 18 - B')p, ] x

(5.19)
[n<p Ja(- BIV(- p) - aen(p) - amn(- )] /L, B)

f f 1(a-a)p +1(ﬁ-s)p]"

L (B BV ) = (a8y + 8] / LGe,s B) (5.20)

Y - ﬂd_P’s KE}L [(-v ip-p x
“aB“aB‘ = 5 s~ exp [ila -o')p, +1i (B B)py]

-1 -1t

as (B(= V(- B)) - (ay85 +858)] / Lo, ) (5.21)

f feﬂ exp 16 - ap, +1(8 - ')p ] *

a8, (Vi) - (- 2)] / L(r, 2 (5-22)
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dp dp
v
W)= [ 5 [ mt e st 166 - 070
-7

apy [n(- 5 - 0] / 10e,, 2 (5.23)
v _h i d_PI " d_PI x ' s | 1Y
AR - [ ew|ie-am, s 106 - 005,
- -7
ay [(ala5 +axm,) - hip Jv(- PY)I / Lip,, py) ’ (5.24)
T g "dp, g7 dp
o= [ 52 [ oo

8.35u lv(py) -v( - Py) I/ L(Px: Py) 3 (5.25)

i(a’ - alp, +i(p" - B)Pylx

vaf "dpx "EI -(. ) -(' )
<qaa“a'3v)=f = [ wrew|ie -, vile - el
-

-1

88, Ih(- p,) - h(px)] / 1o, py). s (5.26)
tot Foap 1 dp
(n;aﬁ'sﬁ = f = f ) [1(0“ - olpy (8" - By |x
-1 -1
&) [(3133 + aeah) - h(px)V(- Py)] / L(Px; Py) P (5.27)
where

h(p,) = b, - 7, explip ) ,
(5.28)
v(py) = b, -z, explip) ,
and L is given by eg. (3.4). Equations (5.18), (5.19}, (5.20),
(5.21), (5.22), (5.23), (5.24), (5.25), (5.26), and (5.27) =re

respectively obtained from egs. (5.2), (5.3), (5.4), (5.5), (5.10),
(5.11), (5.12}, (5.14), (5.15), end (5.16) by replacing h_ and v,
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by the corresponding momentum valued functions of eq. (5.28). The
factors exp Ii(a - a')pxl and exp[ i(p -E)pyl in egs: (5.18) -
(5.24) are translation operators. Eguations (5.25) - (5.27) have
conjugated translation factors because daggered variables are involved.

Equations (5.18) - (5.27) are the coordinate-space anticommuting
variable correlation functions for the free fermion model.

VI. THE ISING MODEL CORRELATION FUNCTIONS

This section will calculated the correlation function of two
spin variables in the same row. It will be compared to the known
result as a check on anticommuting veriable techniques. Two
horizontal spins are chosen for illustrative purposes only. The approach
extends to an arbitrary pair; in fact, the vacuum expectation value of
several g¢'s can be computed. The only drawback is the cumbersome
form of the answer: & Pfaffian of (in general) large size. In short,
everything you ever wanted to know about the Ising model is
expressible as a Pfaffian.

We will need the free fermion enticommuting variable
correlations [egs. (5.18) = (5.27)]. Bond variables will be used, in

which case the Ising model is related to the free fermion (or closed -

polygon) partition function by egs. (I. 3.7) and (I. 3.9), when
a=a=a5=ah=b =bh=-l. (6.1)

The weights of configurations are given in fig. X.11. These values

must be used (as opposed to the less restrictive conditions

2 2 s .
3155 =858, = bv = bh = 1) because correlation functions, unlike the

the partition function, need not have the same number of e and 55
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type corners, ay and ah type corners, etc. This is obvious

from eqs. (5.18) - (5.27) where correlations are not simply functions

of alai, 8.8, ete.
Spin varieble correlation functions can be considered as

partition functions on a defective 1attice5). I refer the reader

to reference 5, p. 248 - 257. This means that spin correlations are

{up to multiplicative constants) the partition functions of Ising

models with modified Bloch wall Boltzmann factors along selected
Vs m . :
paths. For example, ZIsing<cl,O°m+1,O) is zh times the Ising
model with the usual zZ, and z, Boltazmenn factors for all Bloch
walls except for the horizontal ones between {1,0) and (m + 1, 0)

-1
where 2, is the Boltzmann factor. This defective lettice

partition function is obtained by replacing
m I m
L U -1y nfy
"P( zh*laoﬂaﬂo) by exp 2 :%o 0% 2 o o
=1 Q=1 asl

I m
L - vt n
= exP(E : %0 T o) I | 1+ (o gy of s so that
Q=

G=1

mn
T
(o) 0er, o) = ¢ I [ [;h s (1~ DIl 0] ) (6.2)
Q=1

Equation (6.2) typifies how spin variable correlations are related
to anticommuting verieble correlations. Equation {6.2) can be

generalized to the case when the left hand side is the vacuum

expectation value of several o's .
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For pseudo-free theories, the following formulas are useful:
(qlq2...qm) = Pf Hij (for m even) , (6.3)

where

Mid = (ninj) . (5.4)

SEVIR 3N T
if (ninj/ = (ninj> =0, then

tatngntn,oe nfn) = et My (6.5)

where

PR
Mij = (Tli"]j)' (6.6)

These formulas are the anologues of Wick's expansion. In eq. (6.3)
one sums over all pairings of 1n's, the sign of which is determined
by how many permutations are required to get the 1's in paired
form.

The vacuum expectation value of an arbitrary product of
spins is expressible as a linear combination of anticommuting
variable correlations. These vacuum expectation values can be
computed using eqs. (5.18) - (5.27) and eqg. (6.3). I will demonstrate
this for two horizontal spins.

Equations (5.22) and (5.25) imply <ﬂ§o‘1§o) = <’1§:“;o) =0
for all @ and B. Apply eq. (6.5) to (6.2). The z, term of

2, nt n , .
!zh + (1 - zh)nao Tasl O ‘ in eq. (6.2) multiplies the same factor

&as the term in the Wick expansion obtaeined by contracting
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nt h
o with o+l 0" Therefore

<cl,o°m+l, o) = det Mi.]" (6.7)
where
2y¢ ht n

Mij = 20055 * (1-3z) iM54g 5 ) (6.8)

T I

dp dp

- f e f e [ ip, (s - 3)] (6.8)

-R -1

by - @) entingiaho,v(- n,) o)) ||/ 360, 7,
In obtaining eq. (6.8), eq. (5..8) has been used. Eguations (6.7)
and (6.8) expres's the correlation function cf two horizontel spins
as a Toeplitz determinant, as is usually done and yields the correct
resulth’5).

To calculate the vacuum expectation value of a product of
spin variebles, proceed analogously. It will be eguivalent to an
Ising model on a defective lattice. When expressed in terms of

anticommuting variables, it will result in an expression of the form

(6.9)
(MTo's) = (Ceyp *+ damnp)(es) * d5unam) ey ot Goncy 2nfom-1"ew/ -

In eq. (6.9) n,; denotes an anticommuting variable such as

and d.

5 541 are

h ht v v'r Th sab
rhﬁ’ T'aﬁ’ T]QB, or T'aﬁ . e variables S5 541

constents determined by the defective lattice. For convenience
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write di 41 = didiﬂ; any values of di satisfying this will do.

Wick's expansion along witn eq. (6.3) tells us that eq. (6.9) is

(MTe's) = ¢ My (6.10)

where

4d;(nny) + By 4% 3ay0 1 0dd
(6.11)

didj(ninj> =8 ) 3. 30 Levem.

The {nn) correlations are given in egs. (5.18) - (5.28).
In principle, &1l Ising model spin correlstions may be

calculated using the sbove method. The reason they result in such

cumbersome expressions is the following: The variables which solve
The Ising model are the v's . They might be celled the mathematical
variebles because they represent it as a pseudo-free field theory.
Correlation functions of anticommuting veriables are simple to
compute. Contrest this with the spin variables. They are the physical
variagbles. They are, however, complicated functions of the methemetical
verigbles, the n's, which means that spin variable computations

result in cumbersome expressions. In conclusion, there are two types

of variables, spin veriasbles which have a siq}ple physical interpretation
but are mathematicelly awkward to work with and 5 variables which do
not have ag simple a physicel interpretation but are easy to wvork

with mathematically.
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VII. SUMMARY

Here is a summary of these first two papers. The focus of
attention was solvable two-dimensional statistical mechanics
models, in particular, the Ising model, the free-fermion model,
and the close-packed dimer problems. The partition functions
were expressed as integrals over anticommuting variables. In this
form they resembled fermionic field theories. The solvable mc;dels
had quadratic actions, which were computed by using iree
field theory techniques. More importantly, & series of graphical
rules were derived which allowed one to compute partition
functions and anticommuting variable correlation functions by solving
miniatwe dimer problems. This provided a quick and simple graphicel
calculational approach. Many mcdels can be solved by drawlng a few
diagrams. Fanally,I showed bow to calculate the vacuum expectatior
velue of an arbitrary number of Ising spin variables.

For the most part, there are no new results. What has been
gained is a powerful reorganization of 0ld methods. Abstruse Pfaffian
techniques have been rewritten as & set of simple graphical rules so
that celculations are straightforward and systematic. The Grassmann
integral has formulated the problem in terms of a field theory where
powerful field theory methods have been applicsd.

These first two papers have dealt with solvable models. One

need only add a term,

ty ot
ZA{}@E@XB@L , (7.1)
ap
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to the free-fermion action of eq. (I. 4.4) to break the free-fermion
constraint and obtailn the general eight vertex modele). This model
is unsolved. It is an interacting field theory. The approximation
methods used for interacting field theories can be applied to it.
Here is where the real power of anticommuting varlables is. Most
interesting statistical mechanics problems are not solvable; an
example is the 3-d Ising modellg). 1t is important to have viable
approximation schemes. Such schemes will be obtained via Grassmann
integrals. Furthermore, they will be, in general, systematic and
simple.

In short, these first two papers have formed a testing
ground for anticommuting variable techniques. They formed a solid

foundation of solveble models upon which unsolvarle models can

be approached,
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Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

The Ministure Dimer Problem. Figures (&) and (b) are the

graphical representation of the first and second terms in

Ay of eq. (2.4). The ho, v, ete (eq. 2.6) factors

are the weights of the dimers. The sum of (a) and (b)

form the ministure dimer problem of (c).

The Four Possible Coverings. The weights of tlcse diagrams
2 2

are: (a) (vtv_t) , (b) (hsh_s) , (e) (hsh-svtv-t ,

(a) (hsh_svtv_t). The sum yields eq. (2.7).

The Minigture Dimer Problem for the Free-Fermion model.

n_n "

t
The upper left "o  and "x  are a:t, a:t; the lower
t
v v

left are a:t, B‘:t; the upper iight are a_s_t, e._s_t;
the lower right are al-:s-t’ aﬁs-t' The weights of bords
are as indicated with hs and vt given by eq. (5.3).
The Possible Coverings of fig.3. The arrows arz shown

to aid in determining the sign [use rules of fig. (I.8)i.
The values of there diegrams are (a) (hsh-svtv—t)’

(b) (- ala.jhsvt), (¢) (- a'le'Bh-sv-t)’ (d) (a.le.Ba.le.}),
(&) (-agghyv ), (£) (~epmh vp), (g) (ay8,8.3)),
(h) (ala2a3aj+), and (i) (aga.haea.h).

The A and B Dimer “perators. In (a) is a typical bond
oriented from P to Q. In the action will correspond
the term npflg &8s in (). If a standard B-dimer lies
on this bond then there is a term ngq; as in (c). The

A-dimers are assoclated with nn products, whereas



Figure 6.

Figure 7.

Figure 8.

Figure 9.
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B-dimers are associated with qqu products.

Square lattice Dimer Pro™lem. Figure (a) shows the
orientations which make every elementery square clockwise
odd, Figure (b) represents the A-dimer operators and fig.
(c) is the standard B-dimer configuration consisting of
horizontal dimers.

The Simplifying Transformation. Condition o holds for
the square lattice of fig. 6. After the transformation

qf—' n at even sites, the dimer operators of figs. 6a and

6b become those shown here. The B-dimers are drawn above
the A-dimers. )

Illustration of Rule 2. Figure (&) shows the (a, 8) unit.
There are two B-dimers and four A-dimers entirely contained
in (o, B). There are eight A-dimers which connect sites
in (a, B) to sites in nearby units. They occur in pairs.
For example, the upper right A-dim.., ’155“(21;1-1 , has .
partner, the lower right A-dimer, T’gﬁ-lncez; . Rule 2 erases
one bond from each pair. Figure (b) is an example of what
results.

Rule 3 for 1'111‘t Products. Figure (a) shows the two dimers
of fig. 8b which start in the (0, B) unit at sites 2 and 3
and go to the sites 1 and 4 of the (@ +1, g) unit. Rule 3
says to "fold" these back into the (&, B) wnit es shown
in (b). Let "o" and "x" correspond to the anticommuting
variables & and aT. Then the a.;al bond weight gets
multiplied by exp(ipx) whereas the a.saI weight gets

multiplied by exp( -ipx) .



Figure 10.

Figure 11.

Figure 12,

Figure 13.
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The Weights for the Square Lattice. Rule 3 applied to
fig. 8b results in this figure. The welghts of the
B-dimers remains 1 as indicated. The A-dimer weights
have contributions from (a) type bonds as well as (b)
types. When added they result in the factors

h(px) = zh[l - exp(ip )], v(py) = zv[l - exp(ipy)], etc.
The Two Coverings of Figure 10. The value of (&) is

h(p n(- p,) = zﬁ(e - 2 cos p ). The value of (b) is
v(py)v(- py) = 23(2 - 2 cos py)' The sum of these is
L(px, py). When put into eg. {4.5), the free energy

per site is obtained.

The Hexagonal Dimer Problem. This is the rexagonal
lattice. The above bond orientation. make every elementary
hexagon clockwise odd. The units are outlined by dotted
lines. There are eight sites in ~ach, and (&, B) 1label
them. This lattice satisfies Simplifying Condition C;
the odd sites are denoted by larger dots. The x-direction
is northeast and the y-direction is northwest as
indicated.

The Dimer Operators. Figure (a) shows the A-d* mers and
thelr weights. Only half of the “external” dimers have
been kept in accord with rule 3. Figure (b) shows the
B~dimers. Their weights are unity. If this B
configuration is chosen in every unit, then every site is

covered by a B-dimer.
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Figure 15.

Figure 16.

Figure 17.

Figure 18.
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The Miniatue Dimer Problem. Rule 3 applied to Figu.se 13
results in this miniature dimer problem with the indicated
bond weights.

The Coveringsof Figure 14. There are nine coverings.
Their values are (a) (z;), (v) (z: exp(- Qipx)>,

() {2 emp(21p)), (0) (zf2l exp(- 13))),

(e) {2222 exp(- ip))), (£) (ZEé exp(ip, ),

() (zizi exp(ipy)), (h) (- zizs exp(ipy - ipx)) and
(i) (- 232(7'5 exp(ipy - ipx)). The sum of these values
gives the L(px, py) of eq. (L.6).

The Two Copies. For the square lattice, U consists of
four sites. Rule 3 says to draw two copies of U. These
are labelled U, and U,. The different; sites within
each Ul have been numbered 1,2,3, and k. One should
think of Ul as representing (s, t) variables and u,
as representing (-s, -t) wveriables.

The ( a)-Type Bonds. In Figure (a), there is an A-dimer
from fig. 6b and & Bedimer from fig. 6c. Each »f these
results in two dimers, one from Ul to U2 and one
from U, to U; as (b) incicates. The orientation
remains the same, so that the A-dimer in U which goes
from 4 to 3, still goes from 4 to 3 in both cases in
Figure (b).

The (b)-type Bonds. Figure (a) shows one fn (b) -type
bond and one qqu (b)<type bond. Although the latter

does not oceur in the standard B configuration of



Figure

Figure

Figure

Figure

Figure

Figure

19.

20.

2l.

22.

23.

2k,

go

fig. fec, it has been put in here for illustrative

purposes. If U 1s the (a, B) unit then the two

bonds go from the (u, 8) unit to the (& + 1, 8) unit.
Both give rige to two dimers in (b) the weights of which

get multiplied by the indicated phase factors.

The Resulting Bond Weighta. Figure (&) shows the resulving
A-dimers and their bond weights. Figure (b) shows the
E~dimers. Their weights are all upity. Here,

h(px) = zh[l - exp(ipx); and V(py) = zvll - ex‘p(ipy)..
When superimposed (a) and (b) give rise to e miniature
dimer problem.

The Coverings of Figure 19. There are four coverings of
Figure 19. Their values are (a) [h(px)!.{- px)f,

(6) Lolpy)v(- 2)0% (o) [n(pn(- p)v(p V(- ), end
CURRLICMLICE OL( JONICE J

The (ast s: correlation. Figure (a) is the MMDP,

Figures (b), (c), and (d) are the coverings. Their values
are (b) (h_ &V V-t)’ (e} (- a8y t)’ and {(d) (- aeahv_t).

The correlation. Figure (a) is the MMDP.

(ast t
Figures (b), (c), and (d) are the coverings. Their values

are (b) (hh_ V-t)’ (e) (= alaihs), and (4) (- EZEAh-s)

The (“st st) correlation. Figure (a) is the MMDP. Figures

(b), (c) ang (d) are the coverings. Their vaiues are (b)
(- a8 a.h), (e) (- aja) 3’), and (4) (a;h_v_.).

The (ﬂstast) correlation. Figure (a) is the MMDP. Figures

(v), (e), and (d) are the coverings. Their veiues are (b)
(- “2“3“3’ (e) (- 515333), ana (d) (8 h_v_)e
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Figure 2. Tne zero (sa%) correlstions. Figures (a), (v), (<),

"
and (d) are the MMDP's for the (a a (a" a¥ /s
t 1 -S- t S5t =s=t
(a ht n _y)» and (a a _y) correlations. None of these
s
MMDP's have any coverings.
h .
Figure . The (a st ?s-” correlations. Figure (a) is the MMDP,

Figures (b} and (c) are the two coverings. Their values are

(b) (alaevL) and (c) (=~ alaQV_t).

Figure [". The {ala' . correlation. Figure (a) is the MDP.
Figures (b) and (c) are the two coverings. Their values
are (b) (- 52&5hs) and (c) (agajh_s).

Figure . “. The (a:taﬁs_t, correlation. Figure {a) is the MMDP.
Figures (b}, {c), and (d) are the coverings. Their
values a;e (b) (a2 h)’ (e) (ala2a5), and {d) (- aEthm)

Figure 29. The h a S correlations. Figure (a)is the MMDP.
Figures (b) and {c) are the coverings. Their values are
(v) (a G 1) and (¢) (- aiahv-t)'

Figure 30. The (a :,: a’._,/ correlation. Figure (a) is the MYDP.
Figures (b) and {c) are the coverings. Their values are

hY
(v) (ala“h_s/ and (c) (- alahhs)'

Figure 31. The (a.::ah: ,) correlation. Figure (a) is the MMDP.

Figures (v), (e), and, (d4) are the coverings. Their values

are (b) (a a“ah), (c) (alaiah), and (d) (- ahhsv_t).
nt
Figure 32. The (astast) end {a’ ot st> correlations. Figures (a)

and (b) are the MMDP's, Neither has & covering
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CHAPTER III

THE PSEUDO-FREE 128 VERTEX MODEL
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INTRODUCTION

Two fundanental papers (Samuel 1978 a, b) (to be referred
to as I and II) have recently developed a new approach to attacking
Ising-like spin models and ferroelectric systems. This paper will
use the new methods to solve a new model called the pseudo-free 128
vertex model.

An enormous number of statistical mé:hanics problems have
graphical representations. This means that the partition function
is a sum over graphical configurations appropriately weighted by
Boltzmann factors. Papers I and II show that it is sometimes
possible to find a lattice fermonic-like field theory which reproduces
the graphical configurations with the correct weights. The field
theory is written in path integral form. The path integral for
fermionic systems is an anticommuting variable one. Anticommuting
variables provide a powerful new approach to statistical mechanics
problems. References I and 11 were devoted to developing their
application to interesting systems. These two papers were pedagogical.
They reviewed the theory of anticommuting variables and developed ways
of expressing partition functions in terms of them. Graphical methods
were introduced in II that quickly calculate partition functions and
anticommuting variable correlation functions. A whole class of
solvable models were resolved using the new methods as a chexk that
they did indeed work.

This paver is concerned with the pseudo-free 128 vertex
model, It has 32 free parameters and encompasses a wide range of

systems. A close relative is the 128 + 8 pseudo-free model. It is
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even more general with 40 parameters. It is also solved in this paper.

Papers I and II systematically discussed the anticommuting
variable techniques. For this reason few details of the 128 vertex
model calculations are given. The model and the results are simply
presented. How to overcome various difficulties such as the sign
problems, how to get vertex weight factors, etc. are §traight forward.
It is suggested that the reader consult references I and II.

Section 1I gives a brief description of the pseudo-free
128 vertex model, Sec. III calculates its partition function, and
Sec IV treats the 128 + 8 pseudo-free vertex model. Finally
Appendix A discusses the minus sign problem due to anticommuting
variable reorderings.

It should be mentioned that, in principle, these models can
be solved using the Pfaffian methods. As noted in reference I, the
integral over a quadratic action is always a Pfaffian. The anti~
commuting variables have the advantage of easily determining minus
sign factors, of systematically organizing algebra, and of
establishing directly a connection with field theory. References to
Pfaffian methods can be found in I & II.

II THE MODEL

Ising models are, in general, related to closed polygon
partition functions (CPPF's) where sides may overlap but cannot
intersect. In such a CPPF, one sums over closed polygons weighting
the sides by "Bloch wall" Boltzmann factors. The two-dimensional

Ising model thus has such a representationf. The Ising model is not

+ See the references in I and II.
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the most general model which is easily solvable. The corners of
polygons may also be weighted, resulting in the so-called free-fermion
model described by the action of equation (I. 4.4) whose weigh£s
are given in figure I. 11. Let w(p) be the weight of figure I. 1llp.
Then, the following constraint, known as the free-fermion constraint
is satisfied: w(a)w(h) + w(b)w(c) = w(d)w(f) + w(e)w(g). Thus,
although the free-fermion model is not the most general eight-vertex
model, it is the most general easily solvable model.

N Slightly more complicated than the basic Ising model would
be to include one set of diagonal next nearest neighbor interactions.
Such a system is equivalent to the Ising mcdel on a triangular lattice.
It is again related to a CPPF. By weighting corners as well as sides,
a free-fermion generalization, known as the pseudo-free 32 vertex
model (Satto and Wu 1975) is obtained. Thevy have solved this model
and discussed some of its interesting submodels and critical
phenomenon.

When both next nearest neighbor interactions are included,

the Ising model cannot be solved. Spins sit on the sites of a
square lattice (figqure la). Bonds are drawn between sites which
interact (fiqure 1b). The four dQirections inclined, horizontal,
diagonal, and vertical, are respectively denoted by "i", "h", “a“,
and "v" as shown in figure 2. The polygons of the corresponding
CPPF are drawn on the lattice of figure la using the bonds of
figure 1b. The number of polygons is arbitrary. Although edges
may intersect (figure 3a), they are not allowed to overlap
(figure 3b). Weighting the corners of polygons results in a more

general CPPF. The most general, easily solvable CPPF of this form is
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the pseudo-free 128 vertex model. It is the free-fermion generalization
»f the next nearest neighbor Ising model.
It has 32 parameters which may be varied independently. It
ic thus a very general model. For example, it includes the pseudo-free
32 vertex model, which as Sacco and Wu{1975) noted, contains
interesting models as subcases. Many new models are contained in the
pseudo-free 128 vertex model.
As its name implies 128 configurations can happen at a site.
This is to be compared to the eight vertex model where there are
only eight. Of course, the solvable pseudo-free 128 vertex model
does not assign arbitrary weights to all 128 configurations, only
about one fourth of these are independent. The rest are determined
by “free-fermion constraints"., Vertex models are related to
ferroelectric systems. From this point of view the pseudo-free 128
vertex model can be considered as a very general ferroelectric model.
As discussed in references I & II, the partition function
can be written as an anticommuting variable integral over an action,

128 . . R 128 128
The action consists of three pieces, Auall' corner’ and

128

nonomer " They are given by

R at +
128 _ Z n' h d v v
Agalr = [ "us”uue ¥ Zagae1p t 2 "ua"a+1s+1 + zv”ue“aeu] ’
ag (2.1)

T T
f 3 g' f 4 g £
Acorner Z Z ng Tog C!B gfnuﬁnuﬂ gfnaﬂnaﬁ * cgfnuﬁnuﬁ] ’

af (f,9)€ES
(2.2)
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it ' ot o
128 _ h h
Ayonomer = Z [" Nag"ag * Palggag * "as"aﬁ + b "as"us] - 2.3
af

The n's are anticommuting variables. There are four types
at each site: inclined, horizontal, diagonal, and vertical ones.
In additiorn, there is a daggered and undagger version of each. The
a and B label sites, that is, (a,B) are a site's carcesian
coordinates.

The terms in (2.1! have the graphical representation of figqure
4. The conventions established in references I & II are used:
daggered variables and undaggered variables correspond to "x"'s
and "o"'s, the direction of a line entering a variable determines
whether it is an inclined, horizontal, diagonal, or vertical type,
and arrows denote the order of bilinears. The constants, z,, zh,
z4e and z,r are the Bloch wall Boltzmann factors. Each inclined,
horizontal, diagonal, or vertical unit of wall is weighted by Zie 2,

2 or =z

a’ v'

In equation (2.2), S is the following set of ordered pairs:

= {(i,h), (i,d), (i,v), (h,d), (n,v), (d,v)]}. (2.4)

The set, S, is uded so that equation {2.2) can be written

. 2
conc’ sely. The constants, cfg (=1, 2, 3, 4 an@ (fr 9} £S),
allow corners to be weighted. Like the 2z's, theilr values are at

one's disposal. There are 4 of them. The terms in (2.2) correspond

to those of figure 5. It is useful to define



1 _ 3
gt = gt -
cz H -c2

fg = gf ’

(2.5)

c3 H c1 .

fg gf

4 _ 4
cfg H -qu ’

for £,9}eS. Then,

1 + g1
128 =>_Zlfg 1.2 gl ¢ idgf]
Acorner ~ 4 [;fgnusnus * 2 S9eMapMag * 3 Sgeagas | - (2.6)
aB fg
vhere the sum is over distinct f and g among the set {i, h, d, v}.

Equation (2.3) cortains the monomer terms and the remaining

four free parameters, bi' bh' bd' and bv. N

In a functional integral these three actions draw polygons;

128 128 128 .
Awall draws the walls, Acorner forms corners, and Amonomer fills

unfilled sites. The integral is an anticommuting variable one over

the action, AlZB:

_ 128 128 128 .
Ma2g = Aa11 ¥ Pcorner ¥ Pmonomer ° (2.1

The psuedo-free 128 vertex model is a fermionic-like pseudo-free
field theory.

By expanding the action, the CPPF configurations are obtained.
Table 1 shows the weights of each vertex configuration after Bloch
wall Boltzmann factors have been extracted. It turns out that the
overall sign of a vertex weight is determined by the number of line

intersections as figure 6 illustrates. The total weight of any
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polygonal configuration is the product of table ]l vertex weights at
each site times the Bloch wall Boltzmann factors, zf(f =i, h, 4, v),
for each unit of wall. The first page of table 1 has the configurations
where six edges enter a site; pages two through four contain
configurations with four lines entering; and page five has those where
two edges enter. The two remaining configurations, those with zero

or eight lines entering (boxes 127 and 128), are placed at the top

of page two.

One must be careful of minus signs which res:lt from
reordering the anticommuting variables. Appendix A& proves that the
overall sign of a closed non self-intersecting polygon is plus.

The overall sign for intersecting polygons is (-1)1, where 1 is
the number of intersections. For intersections which occur at a
vertex the minus sign factors have been included in the weights of
table 1. There are, however, intersections which do not occur at a
vertex (see figure 7). An additional minus sign factor must be
included for each of these types of intersections.

The vertex weights are expressed in terms of the following

cocfficients:

1 - .11 2 4

cef;g =z Cegcgf cgecfg ' (2.8)
2 -1 2 2

Cef;g = cegcgf cgecfg ’ (2.9)
4 - 4 1 1 4

cef;g = cegcgf Cgecfg v {2.10)

~R - 2 2

= +
Cefig bgcef Cef; g * (2.11)
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! O 2 O 2 (2.12)
ef:gj ~ eqg gf;] ge fg;) ej ifig je fi:g , :

2 1.2 _ 21 1.2 _ 2.1

Cef;g3 - Seggf:i ~ Sge®fg:j * Seiifig T %3¢y ¢ (21¥
4 _ 4 1 1 4 a1 1 4

c . S c_c . —¢c_ ¢ .+ C .C. -C. C_.. (2.14
ef;gj eg gf;j ge fg;j ej ifig je fi:;g ' )

L= 2 L L
Cef:gj - Cef'gy ¥ bjcef=9 * Poet;5 ¥ Cerigr (2.15)

1 1 2 4
ng H cfgcgf + cfgcgf ' (2.16)

ng bfbg + ng ' (2.17)

11 2 4 11 2 a4
Z - + - -
efg cefcfe;g cefcfe:g cegcge;f * ceg cge;f . (2.18)

F

= + F F .
Fefg bebfbg beng + beeg + bg ef * efg ' (2.19)

N R T 2

Finav ~ [ Cia;naisv ¥ Ciainaisv

R S

iv;a%vim iv;d vi:h

11 2 4 (2.20)

" €ih;vChiza ¥ Cin;vEhila

1 Cl + C2 4
CivinSvi;a T Siv:nSvi;a

SR S S .
€ih;a%isv T Cind%nisv

S S R
€ia;vSai;h - ia;vCaizn :

In equations (2.8) - (2.19), each e, f, g, and j stands for any of

the i, h, 4, and v. All subscripts must be distinct. In (2.11)

and (2.15) £ =1, 2, or 4.
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The coefficients satisfy the following symmetry properties:

the cz's, c4's, Eq's, and 24's are antisymmetric in the two
indices before the semicolon and symm-rric in the indices after the
L _ 2 .2
ef;g fe;qg’ “ef:gj ef;jg

semicolon. For examnle, c = - .
fe:qgj

2 —
- Cfe-gj'qhe F's and F's are completely symmetric in their indices.

They have the following interpretation. cCorners can combine
to fill the anticommuting variable sites. Pfg (respectively, Pefg

and Fi v) is the weight which results in filling the f and g

hd
(e, f, g and all) sites by using two (three and four) corners.

Fihdv excludes terms in which two pairs are filled separately, i.e.
- - F ively,
there is no term proportional to Pthdv‘ ng (respectively, efq)

is the way f, g (e, f, g) sites can be filled by using monomers and

corners.

Likewise, two corners can combine to form ¢ third. cef-q

(respectively, cif'gj) is the way two (three) corners combine to form

a cif corner and in the process use up the g (g and Jj) variasbles
- . =4 ; 2

cef;9 (respectively, cef;gj) is the way a €.y ©cOrner can be formed,

in which g (g and j) sites get filled, by using both monomers

and corners.

All the definitions of functions in table 1 have been supplied

except for the weight, w297 of box 127. It is



115

“127% Finav EL b;bpbbg) * (bbyFay * babiFry

+ Db Fap ¥ BaP iy ¥ BOF bbb

2.21
* BFrae * ByFiay * Pg Fign * ByFian’ tz.21)

* Fopfav ¥ Fiafhe * Fivfan? * (Fihdv>] .
Table 1l along with figure 7, essentially defines the model.
II THE SOLUTION
The partition function can be related to a miniature Qimer
problem using the methods developed in II. If one, then, interchanges
dagger and undaggered variables for (-s, -t) variables, a
determinant is obtained.

Define

.1(px.- Py) =b, - ziexp(z.px - .1.py) .

h(Pr) bh - zhexp(ipx) B
(3.1)

It
=2

atp, . py> g T 2gexplip, + 1py> .

1
o
]

v (Py) 2z exp (ipy) .

Let D be the following 8X 8 diagonal matrix:



z(px. py)
hip )
d(p, ., py)
D(px . py) = V(py)
\ i(-p,» -py)
h(-px)
d(-px ,—py)
V(-py/)/ .
(3.2)

Let Cl, Cz, and C4 be the following 4 * 4 arrays of numbers:

1 1 1
0
cih cid C.'LV
c:L 0 1 cl
hi ®hd v (3.3)
1
C =
1 1
o
€ai “an Sav
c:L cl c:l 0
vi vh vh 4
2 2 2
0
ih cid czv
2 2 g2
) “hi ha  Shv
ct = (3.4)
2 2 2
0
cd:l. c.:u-‘ cdv
2 2 o

c.. ¢
vi vh vd .
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0 c4 c4 4

ih id  Siv
4 o c4 4

4 °hi hd  “hv

c = (3.5)
4 4 4
0

€ai €an Cav

4 4 X o
Cvi “vh va /

Let [C]']t denote the 4 % 4 matrix which is the transpose of cl.

pefine the 8 X 8 matrix, M(px. py), by

P [

M(p,, py) = Dip,« py) + (3.6)

[czl []

and set

L(px, py) = Det M(px, py)' (3.7)

where Det stands for the determinant. The partition function for

the meudo-free 128 vertex model, 2128‘ in the thermodynamic limit,

is
1 ﬂdpx "dp
Z =exp|TS S -—Y-z_" EnL(px, Py) B (3.8)
-7

128 2
P



1e

where T is the total number of sites. The free energy per site,

fi28° 18

K dap 7 dp
=1 X ==
-Bf128 =3 T / > ﬂnL(px,py),(3.9)
-7 -7

where B is the inverse temperature.

For particular models where the 2's, c¢'s, and b's
take on certain values, the determinant in (3.7) can be evaluated by
using computers. One can then obtain the free energy by using (3.9).
Other physically interesting quantities such as the eénergy per site and

the specific heat can be obtained by taking derivatives with respecttof
IV THE 128 + 8 PSEUDO-FREE VERTEX MODEL

Closely related to the pseudo-free 128 vertex model is
the 128 + 8 pseudo-free vertex model. Append to the lattice of
figure 1 the points where inclined and diagonal bonds cross, that is,
sites with half-integer cartesian coordinates. Figure Ba shows the
original sites (the round ones) and the new half-integer sites
(the sguare ones). The terms, round and square, or, integer and
half-integer, will be used to distinguish the two types of sites.
For round sites, bonds are drawn to the four nearest neighbor
round sites and the nearest neighbor square sites, but, for square
sites, bonds are drawn only to the four nearest neighbor round sites
(figure 8b). What is the most general easily solvable closed polygeon

partition function which can be drawn of the lattice of figure 8b?

The answer is the 128 + 8 pseudo-free vertex model. This CPPF is



required to have properties similar to the 128 vertex model: any
number of polygons are allowed; they must be drawn on the lattice of
figure 8b, sides can intersect but cannot overlap; and the corners
and sides are weighted by various factors. This CPPF is generated
by using an anticommuting variable irtegral over an action, A128+B'

The action again consists of three pieces: one that draws the walls,

128+8; one that forms corner, A128+B ; and one that fills unfilled
wall corner
128+8

anticommuting variable sites, A .
monomar

12848 _ Z . at a .. at a
Aall = [zdnaBna+53+H+zd NyekgB+y s 18+1
of

oty

. z,ni* ni . it s h*nh P
iMag+1 Mgty * Zi Moenpalas1p h"a8 a+18 )

2 V* v
vaBaB+1 )

The =z and z, wall operators are shown in figure 4, while the

z;. z;' , z;,zé' wall operators are shown in figure 9. The weights

of the two different kinds of diagonal bonds have been chosen
independently; hence the two parameters zé and zé' . The same

goes for inclined bonds.
128

The corner action consists of a piece, A identical
corner,

to (2.2), and a piece that forms corners at square sites:
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12848 _ ,128 8 -
corner corner t corner ’

X at t
Acorner Z[c u+‘:8+l,nu+ys+l, u+l,B+!, (11.4-58-9.5 (4.2)

+ . .
34 i 4 4 i
* S Mgy Tastpay t© "a+&B+5“a+58+5] .

The round corner operators are shown in figure 5, while the square

corner ones are shown in figure 10.
; . ; s s 128
Finally, the monomer action consists of a piéce, A ’
monomer

which fills round anticommuting variable sites, and a piece which fills

square sites:

12848 _ 128 + a®
monomer monomer monomer,
8 ~ it a a
Pmonomer [’"1 By TriBen * "‘a“a+ae+a“-;+se+5] . (4.3
128 L )
where Amonomer is given in {2.3).

At round sites there are four kinds of anticommuting variables:
inclined, horizontal, diagonal, and vertical, whereas at square sites
there are only two kinds: inclined and diagonal.

The result is a vertex model with two kinds of vertices: square
and round. The weights of the round vertices are the same as for the
pseudo-free 128 vertex model and are given in table 1. The weights
of the square vertices are the same as the pseudo-free ecight vertex

model {i.e. free-fermion model) and are given in table 2. All wall
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weights have been extracted, so that the total weight is the vertex
2 3

weights times the wall weights. If m, =mg = 1l and ¢ c c

c‘1 = 0, the pseudo-free 128 vertex model is obtained along with the
minus sign factor of figure 7.

In Appendix A, it is proven that non self-intersecting
polygons have no overall minus s5igns due to reorderings of anti-
commuting variables. For intersecting polygons, a {-1) results for
each interséction. These minus sign factors have been absorbed into
the weights of tables 1 and 2.

The 128+8 pseudo-free model has 40 parameters. The anti-

commuting variable integrals over square sites can be performed since

they do not couple to each other. The result is

¢t +mzzndind v me ,,nif ni
W i“d"a nua at+lf+1 32121 Nag+1 a+18
aB
+ z'clz”niT nd + 2z sz nd.r it + z’c32”nd‘rﬂi (4.4)
i “d 0B+l a+lf+l a aB uB+1 d” “i af a+lB .
v zoehyernd 2 _z,,ndTnd ni* !
a® 23 Mow1g+1" a+1s i"d"d af a+lf+l aB+l a+lB | 7

which can be written as

I T
1 1
£ exp[ Z( ‘a aﬂna+1e+1 * 2;"0gr1Mar18

1 i 2 4 i 4 4 i
kiaMasTes18 * Xaiag"aper * KiMageg ¢ "ai”aB”uB-l)]' @5
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where T is the total number of (square) sites and

13 2 4
f=mimd-cc -cc ,
. Zq = 2g2g /T,
2, E 2,z md/f ,
{4.6)
b RPN |
kig Z2{236/E
2 - ..2
kg, TzgEc/f
3 - . -3
kd:. = zdzi c /£,
4 - - .- 4
kdi fzgzc /f.
It is useful to define -
1 _ .3
kdi - kdi ’
2 2
k.. =z -k, ,
id di @.7
4 . 4
kia® - kgi
&n £ = - Bf .
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The kig(l =1, 2,3, 0or4; f,g=1ior d) terms in (4.5) have

the pictorial representation given in figure 11. The resulting
anticommuting variable action is the same as for the pseudo-free

128 vertex model except for the four kl terms, and the fact that

fg
23 and z; are related to square site parameters via equation (4.6).
1 2 4 N <
Let D(px, Py)‘ c,C, and C be the same matrices as in

equations (3.2), (3.3), (3.4), and (3.5). Define

/ 1 .
0 0 kidexp(-sz) 0
I 4] o] 0 o]
{4.8)
1
K (px) =
[N s
-:kdiexp( :pr) 1} 0 1}
i
i
10 0 0 0
0 0 k2 exp(ip )} o]
1a®*P Py
Q Q Q o
2
XK{p ) = (4.9)
p}'
2 .
- 1] o]
kdiexp( 1py) 0
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/ 4 <
o] o] kidexp(-lpy) ] \
0 o 0 0
4
K (Py) = (4.10)
4 .
kdiexptxpy) /] 1] (4]
o] o] o} b]

- 1
Let [KL (px)} denote the hermitian conjugate of Kl (px), i.e,

[-Kl(px)J 1. {Kl(-px)J v Let

4 4
- [clt + xl(px)f] {C tK (py)}
M(p_,p )} = D(px, py) + (4.11)

Y
128+8
\ [c2 + xz(py)} [cl + xl(px)]

L({p_,p ) = Det M(p_,p) . 4.12)
128+8Y 128%8 ¥

Then, the free energy per unit site, f128+8' {that is, per round
and square site pair) is

n n P

x -t

Zn T 40 Ly ogug(PyrPy) e
1 b

-8B

N

-Bf

= £° +
128+8 128+8

(4.13)
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where f£°

: . . K
128+8 is given in (4.7)

V  CONCLUSION

Two new statistical mechanics models have been solved. They
are solvable via the Pfaffian method althought this paper solves them
using the anticommuting variables.

The next step is to determine the physics of these models, in
particular, the critical phenomenon. Because of the 8 xB
determinants in equations (3.7) and (4.1?), this will be qQuite tedious.
The use of computers to evaluate these determinants will probably be
necessary. One can say, however, that thera will be multiple phase
transitions with Ising-like logarithmically divergent specific heat.
This is because one submodel, the pseudo-free 32 vertex model, is

known to have such multiple phase transitions (Sacco and Wu 1975)

AFPENDIX A. Overall Minus Signs: The Non-Self Intersecting Polygons

This Appendix will prove that there are no overall minuses
created by reorderings of anticommuting variables for a non-self
intersecting polygon drawn on the 128+38 lattice of figure 8b. This
also proves the result for the pseudo-free 32 vertex and pseudo-free
128 vertex models since any polygon drawn on their lattice can be
drawn on the 128+8 lattice and the same kinds of bilinear operators

are used.

The proof is similar to that for the free-fermion model, which
was given in Appendix B of I and to which the reader is referred.

Extensive use will be made of the sign rules (a), (b}, and (c) of
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figure 8 of reference I. The proof proceeds via induction on the area
of a polygon. Any polygon can be built from the four elementary
triangles of figure 12 (see figure 13). These are the polygons of
minimum arez. Figure 14 starts the induction proces= by proving that
these have an overall pi.is sign.

As reguired by the sign rules, the polygon is given an orien-
tation. Choose the starting point to be on "x". Move around the
polygon and count the number of minus signs due to rules (a) and (b).
When moving in the positive directions of figure 2, no minus signs
occur because "x”'s are after "o"’s and arrows point in the correct
directions. When moving in the negative directions, there is a minus
sign factor because "x"'s occur before "o"'s, bat, in addition, there is
a minus sign factor because arrows point in the wrong direction. Moving
in straight lines causes no minuses. Next consider corners. There are
56 different corners; the 28 types of figures 5 and 10 are multiplied by
two orientations. Figure 15 summarizes the results. The corners of
figure 15 creat? a minus sign and all others do not. The easy way to
find the overall minus sign is to count the number of figure 15 corners
in an oriented polygon. If the number is odd, then the extra minus due
to rule (c) makes the overall sign positive.

The elementary triangles can be attached to polygons in
24 different ways: each of the four elementary triangles can attach
one side or two sides in three ways. All twenty-four are
illustrated in figure 16. Each of these results in several cases
depending on the neighboring structure where the triangle is joined.
in total, there are 480 different cases to consider. These are all

shown in figure 16. It is founé that the addition of an elementary
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polygon creates zero or two minus factors or removes two minus factors.
This implies that the overall minus sign factor due to corners is the
same as for the elementary triangles, namely minus. The number of
corner minuses is odd. When combined with the rule (c) minus, the claim
is proved: a non self intersecting polygon has no minus signs due to
reorderings of anticommuting variables.
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Figure 1. The Square Lattice.

Figure 2. The Four Directions.

Figure 3. Allowed and Forbidden Configurations. The sides of
polygons may intersect as in figure (a) but cannot overlap
as in figure (b).

Figure 4. The Wall Operators.

Figure 5. The Twenty-Four Corner Operators.

Figure 6. Overall Minus Signs. The configurations in boxes 1,4, 30,
and 128 of table 1 are reproduced here. They have been
redrawn so that the intersections can be seen. 1If the
number of intersections is even the overall sign is positive,
while an odd number of intersections yields a negative sign.
Boxes 1, 4, 30, and 128 have respectively one, three, zero,

and six intersections; hence boxes 1 and 4 have an overall
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Figure

Figure

Figure
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Figure

7.

8.

9.

10.

11.

12.

13.

12°

minus sign, while boxes 30 and 128 do no¢t.

Extra Minus Sign. An extra minus sign factor results
when any two sides intersect between lattice sites. This
figure is an example in which this happens. The weight
of this polygon is the product of Bloch wall Boltzmann
factors, the product of table 1 vertex factors, times

an extra minus one: [zizdzhzh]x [(box 105) (box 112)
(box 117) (box 126)] x [—1] .

(a) The 128 + 8 Vertex Model Lattice. (b} The Bonds
in the 128 + 8 Vertex Model. The sites in figure la
are the round ones here. In addition, sites have been
added at the points with half integer cartesian corrdinates
(the square sites).

The Diagonal and Inclined Wall Operators. A square site
has bonds connecting to the four nearest neighbor round
sites. This figure shows the four wall operatorc which
produce these bonds. Each of the four have been assigned
a seperate weight.

The Four Corner Operators at a Square Site.

The kﬁg Operators. After square site integrals have
been preformed, the 128 + 8 vertex model becomes the
128 vertex model with the addition of these four terms.
The Four Elementary Triangles of the Lattice of figure 8b.
Building Up a Polygon From Elementary Triangles. The
polygon of figure (b) is cbtained from the polygon of
figure (a) by attaching the elementary triangle of figure

12b.



Figure 14.

Figure 15.

Figure 16.

ieo
The Overall Sign of the Elementary Triangles. The sign is

determined by the sign rules of figure 8 of reference I.
Begin at the x near the point, A, and proceed counterclock-
wise around the triangle. The minuses due to rules (a) and
(b} are shown here. In each figure there are an odd number
of them. In addition there is a minus due to rule (c}.
Thus the overall sign of each of the four elementary
triangles is plus.

The Oriented Corners Which Create a Minus Sign. Figures
(a) through (1) (respectively, figures (m) and (n)) show
the round (square) vertex corners which create a minus sign
because of anticommuting var?’-ble reordering.

The 480 Cases. Here are the 480 cases which must ke
considered in the induction step. Each of the 12 boxes
shows two of the 24 ways of appenbing an elementary
triangle. 1In the left half of a box one side is joined,
while in the right half two sides are joined. The joining
triangle is the one formed by the solid and dotted edges.
Only the neighboring structure of the polygon, to which the
elementary triangle is being attached, is shown. When

this triangle is attached to a configuration on the left,

a configuration on the right results (see figure 17a,

which is an example for box 1), and when this triangle is
attached to a configuration on the right a configuration

on the left results (s2- figure 17b, which is an example

for bor 1 and figure 13 which is an example for box 7).



Figure 17.

Table

1.

130

.
An arrow on a line indicates that when the orientation

is in that direction then one of the figure 15 corners

is involved and a minus factor is present. Box 1 shows
that the corner minus sign structure is unchanged in the
joining process. Sometimes the process creates (or
removes) a figure 15 corner, however another one is

always created or removed at one of the two other vertices
(see figure 17&, which is,a subcase of box 6). By
inspecting these boxes, corner minds sign factors are

seen to be created or removed in pairs so that the overall
mindg sign factor is unchanged.

Examples of the Figure 16 Induction Step. Figure (a)

is an example of going from a box 1 left configuration

to a box 1 right configuration. Figure (b) shows a

box 1 right configuration going to a box 1 left con-
figuration. The arrows denote the location of a figure

15 corner when tranversing the polygons in a counter-
clockwise direction. 1In figures (a) and (b) no new

figure 15 corners are created. Figure (c} ic an example
of a box 6 transformation where two extra figure 15
corners are created, when the polygon is oriented in the
clockwise direction.

The Weights of the Vertex Configurations of The Pseudo-
Free 128 Vertex Model. The Bloch wall Boltzmann factors
have been extracted. Tie weights are expressed directly
in terms of the parameters of the action [equations (2.1)-

(2.3)] or via the functions in equations (2.8)-(2.21).
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Table 2. The Weights of the Square Vertices in the 128 + 8

Pseudo-Free Vertex Model.



132

G9b-262 18X

T @anbtg



133

XBL 792-466

Figure 2



134

L9v-26L 18X

(Q)

£ oi1nbrg

(0)




135

89p-26L 18X

(p)

Az

(g'o)
X

+

:+Q.So

(9}

(g'n)

(1+g'1+0)

¥ oanbra

(q)
Uz
mYllllllAllllk
(g"1+0) (g'm

(0)

'z

(1-g ‘1)

(g ‘@



Figure 5

126

‘Y’/o

4
C\Id

XBL 792-457



137

69b-26<4 18X

82|

Qg

%

9 aanbtg

°J

/ _



138

(a,B+1) (a+l, B+I)
(a, 8) (a+l,B)
XBL 792-470

Figure 7



139

1L -26L 18X

(q)

8 8anbyg



140

O X
[ ]
X
z’d \z"'
X 0
XBL792-472

Figure 9



141

eib-262 18X

o1

2anbrg

(D)



142

I @anbya
pip-264 18X
[{2] 9
1] "
» ¢t
(t-g'o)
o]
(g'1+0) (g'o)
0 X
(o]
(g'o

X
+go)

(0)

v_x

0 X
(g'1+0) (g'v)



143

Sib-26L4 18X

(P)

(9)

21 @anbrg

(q)

(o)



T4l

9lb-26L 18X

(q)

€1 2anbty

(0)

r'y




8.b- 262 18X

(p)

#1 @1nbtg

(9 (Q)
»
xo XO/ Wu/xc/
xo\ x% £ xV
£x0—=—xo> p
[4)

(9)

N
TEXO———X0—7
—%, ol



146

ST 2anbta

p9p-26L 18X
(W) (W)
(0 (N (W) Aﬁ (P) ¢q)
() (1) (6 (9) (9 (°)






(a)

(b)

(c)

XeL 792-477

Figure 17

148



149

2
-Cla

Table 1

XBL 792-460



150

127

=4 .
cvi;h

43

CanCli* C?d Co -C|di C:m

C‘de:i +Cai ConCarCi

a3 .JZ_

vd;i

29

. %

CruChit Coi Can CurCai

37 :

a5 l

C',",C:i + CLi éea' C:“,C:i

SN ® 1, 46
:h;i -Fi h
3 < 39 a7
6:i;h
2 .. a8
E:hd —E:'ld i
33 49

CarCui+CueCri~CuCa:

34

—E:d:i

Table 1 (Continued)

X8L 792-46!




151

R 67
-
Cdi;v
68
2
th;i ‘Clia-,n
: 69
/ -
-th,l _C‘ih;d
54 62 . - . 70
Coaii CleCun* Cfi Con-CinCla
55 &3 - .
R K
cfhc:/i + C;licfd - C:licfh R
56 64 I 72 '
CinCoa* Cl, Can=CigCln -Cinis
57 65 73
ChuCai* Cdah.cci - CiChy "am;d
58 : 66 74

_C|hi,-.v

EIiv;h

XBL 792-463

Table 1 (Continued)



152

75

83 9 :

CarCiu* & b?erLvC'm Csa;p. CigC:,d* thC:d - C;Cf;
76 : 84 I 92 .

'(—:Im v C;m Cilv'csi C:d'C;wC‘id

77 j\ 85

93

> _j

ci.Ci *(\2 ;:C:‘.-C:.

~gh>~iv i

95 :

A / ':,O—l.' 2

26

97

o8

_> _:"..'.' .

2.2, 2p2_ (2 p2
Ch. Codr CuiCaiCai Cun

Cf;Cih*C!ana' C;Imcsl

XBL 792-462

Table 1 (Continued)}



153

13

14

s

13

Ho

nz

18

ne

19

e
Cvd;ih

!

Table 1 (Continued)

X8L 792-459



154

(a) . (m;mg- c'c- c%c?)
0 A

(c) \ my

(d) v c!

(e) > c?

(f) A ¢

(a) < ¢

ONED QI

XBL 792-456

Table 2



155

PART 11

APPLICATIONS O. STATISTICAL MECHANICS
TO FIELD THEORY
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CHAFTER IV

THE GRAND PARTITION FUNCTION IN FIELD THEORY
WITH APPLICATIONS TO THE SINE-GORDON THEORY



157

I. INTRODUCTION

This paper will emplcy a techu.que, known as gaussian integra-
tion,1 by which certain ficid theories ure identified with a gas
of interacting particles. Originally the method was used to re-
write & partition function in a field-thevretic way. Field theory
techniques were then used to obtain results for the statistical
mecnanicul system. The method can also be applied to a grand par-
tition f‘unct,ion.2 This makes it possible to go from a thermodynamic
system where purticle numober is not fixed to a field theory repre-
sentation, which simplifies the analysis of the thermodynemic sys-
tem. The idea of this paper is to reverse the process: In some
cases the analogue field theory is a relativistic one. An example

is the sine-Gordon which is equivalent to a neutral Coulomb gas.

I.QI 2A°fc058qx
The vacuum expectation value of e = e , which is a sum

of vacuum bubble diegrams, is egual to the grand partition function
for such a Coulomb system, Ao playing the role of the absolute
activity and 8 playing the role of the inverse temperature. Tn
these cases one can analyze the field theory by using the underlying
statistical mechanical analogue. k. owledge of the sine-Gordon will
yieid information about the Coulomb plasma. Likewise, one may use
the Coulomb plasma to gain information about the sine-Gordon. This
i the plan of this paper. It enables one to use one's intuition of
the Coulomb plasma to obtain field theoretic results.

Some of the results of this paper have appeared in the mathematics

1iterature.3'h'5 The author feels these are worih repeating since such
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mathematical presentations are not accessible to most physicists.
This paper stresses simple, physical, and intuitive methods of
derivation.

The, peper is organized as follows: Sectinn II reviews the
gaussien representation method. The system can have several dif-
ferent types of particles with different activities. Various inter-
particle potentials may also be used. The physical significance of
the smearing of fields is discussed. Section III checks perturbe-
tively the results of Section II. This check gives one insight into
the statisticel mechanical—field theoretic analogy. In particular,
the Feynman diagrams have a simple physical description in terms of
the underlying thermodyramic system. This correspondence is cut-
lined in Table 1. From Section IV onward the main concern of the
paper is the two dimensional sine-Gordon. Section IV introduces the
sine-Gordon field theory and discusses its infrared singular nature
which in the Coulomb analogue model forces strict neutrality. Section
V determines the phases of the sine~Gordon. At low temperatures there
is a dipole gas, whereas at high temperatures there is a plasma phase.
The impact on the existence of solitons is discussed. Section VI
shows how non-linear o-model is equivalent to the sine-Gordon. In
Section VII the renormelization is performed to all orders in xR and
Bq2. when Bq2 is small, This shows that the theory is vell defined.
Other aspects of renormalization are also dealt with. In Section VIII
remaining ideas are discussed, most of which depend heavily on the
Coulomb gas analogy. Most important is the vacuum structure and its

effect on the theory, Charge screening and shielding, fractlional
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charges, the effects of infrared divergences on Feynman rules, and
the sine-Gordon solitons are discussed. 3ection IX is the summary.
There, the main results are simply enumerated. The paper concludes

with a comment on vacuum gases as models for hadrons.
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II. GAUSSIAN REPRESENTATION

The partition function for a system of interacting particles
may be represented as a field theory. The technique, known as geus-
sian representation, is well-known in statistical mechs.nics.l’2
In certain cases, the resulting field theory is a relativistic field
theory. These are of particular interest since it allows one to
think in terms of the underlying statistical mechanical system. This
associstion provides physical insight into the field theory which one
usually does not have, thus allowing for the extraction of the inter-
esting physical effects.

This section will review the gaussian representation method along
with comments concerning the use of different potentials, the smesring
of fields, and various other technicalities which occur in passing
from the grand partition function to the field theory. For simplicity
the gaussian representation method will be first applied to a specific
example: <the Coulomb plasma in three dimensions. This was actually
done by Po:l.ye\.kov6 in anelyzing a three dimensional instanton confine-
ment mechanism. His instantons were monopoles interacting via a
potential whick was Coulomb-like for large distances and mitigated
for short distances. Because of the softened short distance behavior
the Polyakov model has a natural renormalization prescription. This
will be obvious later on. For the true Coulomb gas there is no
natural renormalization and the grand partition function will be wltra-
violet singular. For the present, ignore the bad short distant behavior

and eny infinities which result from the use of the bare %potential.
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Consider the grand partition function, z, for a plasma zon-
taining an arbitrary number of positive charges (ions) and negative
charges (electrons) interacting via a Coulomb potential at a tempera-

ture, % , and having an ibsolute activity, AO:

] i i”[dﬁ"--daﬁjdx--..qxi

xexp-—g'-z Z _’1_’

#m Iﬁ K I £#m le_xml

P
-:E :E ]EE—%i_T (2.1)
m

In equation (2.1) the charge is q on both the ion and the electron.
Both species have the same activity so that although the system need
not be neutral, only configurations which are nearly neutral should

contribute to z, as we know from physical considerations. A being
° gu

the activity is related to the chemical potential, Hyo by Ao-e °,

In Eq. (2.1) V is the volume of interest, i.e. the charges are confined
to the region, V. Of course, 5 does not exist because of the infinity
resulting when a + approaches a -~ . One can introduce repulsive cores,
alternatively one can smear the charges a bit. The latter procedure

is more natural since, as will be shown later, the smearing of charges

corresponds to the smearing of fields, a practice which naturally

occurs in the rigorous mathematical treatment of field theories.
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Keeping track of combinatorics, (2.1) may be rewritten as

i n_: z z Idﬁl....di*gn

n=o ql=:q qn=tq v
8 99
x exp {- 7 z — (2.2)
e |§£-ﬁml .

Consider

H(Rl"."an'ql’"“qn)

-sf -erdmmj p(R)x(R)a’R

ﬂvxe K
{2.3)

o T o '

with

n
olH;R .-"°,§n;q1.'---.qn) =Zq263(§-ﬁl). (2.4)

=1

Equation (2.3) may be evaluated using the usual ‘rules for geussian

functional integrals:
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8f o8 8L L @ #)0(E") aPrar-
v

W=e
8 1 .
- p(ﬁ) I D(§ )
ce © R
5y 1,
-_S— —EE_ (self energy term). (2.5)
2#m |§1-§m|

The self-energy term is - _92_n —_];— and is infinite. This infinity
fol-

is made finite by smearing the charges (which is equivalent to

smearing fields) or is completely eliminated by normal ordering

the rinal lagrangian of Eq. (2.7) as is revealed in perturbation

theory.

Notice that Eq. (2.5) contains the factor present in the

integrand of Eq. (2.3). Thus, up to selfl energy terms,

1 -8 Zxﬁx - xg
?=i ﬂvxe z 2 z z
n=o qQ,=*q 9,52
n
ig x(Ryla,

"f 43R --eeadRe ¥
1 n
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1=

A

x in—‘} z jd%emxm)%n (2.6)
n=o

9,79 .

or

-Bf 322‘3'“—\71 + 2Aofv cos[qu(R)]d3R
R

2_ =.N]; ﬂpxe . (2.7)

where N = ﬂDxe R

Equation (2.7) is the fundemental geussiesn representation of the
grand canonical sum for a Coulomb plasma. Z_ hes been expressed
as the field theoretic <exp(2kofcosﬁqx}> where the bracket
represents an average with respect to the free massless Euclidean
functional measure in three dimensions. The corresponding lagran-
gian is the sine-Gordon ang hence one has the result that

ihe sine-Gordon field theory is equivalent to the Coulomb plasma.

X» in some sense, represents B coerse-grained Coulomb poten-

tial. The equation of motion for x is

Py = kn(2)_q)sinBax. (2.8)
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Let ¢ = ix. ¢ then satisfies

v% = -bn( ) (-2sinbBag), (2.9)

which is tne well-known Debye-Huckel cguation. The Debye-Huckel
equation is usually derived by assuming that the Coulomb potential,
¢, satisfies Vzo(x) = —bnp(x) where p(x) is the local charge den-
sity end hence equal to a mean charge density, no, times the Boltz-
man factor for a plus charge to be at x (exp{-8q¢(x]}) minus the
Boltzman factor for a minus charge to be at x (exp{Bqé[x]}). For
high temperatures Aoq =n, so that the Debye-Hiuckel derivation yields
the same result as gaussian integration. &he Debye~Hiickel derivation
is, at best, heuristic. For example, it is not clear why one should
use the Boltzman factors, exp{*8qé(x)}, rather than the probability
factors, exp{*Ba¢(x)}/[exp{Bae¢(x)} +exp{-Bqe(x}}]. Gaussian inte-
gration eliminates this guesswork. It tells us that the correct
charge density factor is Aoq when the Boltzman factor

exp{-8q¢(x)} -exp{Bqé(x)} is used.

In the above example the equation of motion of the field theory.
corresponds to the Debye-Hiickel equation of the Coulomb plasma. The
gaussian representation methci applies to systems interacting via
arbitrary two-body potentials. Using the field theory representations

of these statistical mechanical systems, one can obtain the analogue of

the Debye-Hiickel equation by looking at the corresponding field theory

equations of motion.

The previous derivation may be generalized in several different ways.

First of all, it doesn't depend on the dimension. One merely
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replaces the integrals in the action by d-dimensional integrals.
For example, if the integrals in equation (2.7} were replaced by
d-dimensional integrals then one would obtain the Coulomb gas in
d~dimensions (the interparticle Coulomb potential would be

q; 9
Lo bn 172 , and if one replaced the 8n factors by

d-2 V(Sd-l) rd-2
a-1 . 1 4%
2V(S~ ") then the interparticle potential would be iz a2
r

Here V(Sd_l) is the volume of the d-1 dimensional sphere.

Secondly, one can use other potentials such as the Yukawa
exp(-mr)/r. Consider a potential V(r,r”}. Let H_ be the in-
verse of V, so that Ho(r,r‘) B <r]H°|r'> satisfies jf(r)ﬂo(r.r‘)
V(r‘,r“)g(r“)d3r a3 a3 = _[f(r)g(r) ar (for reasonable f
and g). One needs to assume that ff(r) Ho(r,r’) f(r’)dar d3r’ 20
for all reasonable f. The partition function for particles inter-
acting via V with activity and inverse temperature respectively

Ao and B is

8
- .2-2 V(R;,R;)

n
3 -_-z .:_? deRl"ndBRn e 14 N (2.10)
n

which may be expressed in terms of functional integrals using the

gaussian integration method:
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-3 .ﬂv)(e- -28-f53r d3r'x(r)h'o(r,r’)x(r‘)

3‘ N
ix(r)e. .3
Aofv e a>r

x e . (z.11)

- & [a3radrox (e tryrxtr)
vhere N = [Dxe .
e 1 ik-{r-r°),,2, 2, a%k
For extmple, if V = , Hir,r) - r[e ' (x“+n°) ———
r [ n 3
(2n)
and

8 f (VKE;}+m2 2) , Jveiax

y - % ﬁvxe . (2.12)

Lastly, one can have a gas f several particles with different

charges, q(l), q(2), ey q(m) and activities Xgl), ey A((Jm).

Ia the Yukawa case one would call the g's quante rather than charges.

q,4q.
The two body potent.al would be in the case of the Coulomb
-mr
g8s, qlq2 e_r_ in the case of a Yukawa gas, and qiq2V(r) in the case

of a general gaes where V(r) represents the basic potential between

two positive unit quenta. The grand canonicel sum is



168

. . “51)]“1 “‘(’m)]"m
3 120 2 i i

3,(1) 3.(1) 3.(2) | 3.(2)
x| a cere @ x %y eee 37X
fv ! . I L

fd%:im) d3x(‘“) B, {(2.13)
v m

where li is the number of the ith specie present, xgl) is the coordi-
nate of the Jth particle of the .ith specie, ard U is the sum of poten-
tial energy terms between ell pairs of particles:
m m li 2,',I
U= % z z z z q(i)q(-’)v(x](“),xs_“) -~ self-energy,

k= (2.14)

"
Il
-
[
I
-
-
©
1
-

The same derivation as before works with the p in Eq. (2.4) replaced by

.

m "i
o= S S oWz, (2.15)-
i=1 2=1
and the « ;V ) replaced by Ho. becomes

(1)
8 E (1) x(r).3
L -3 (x.Hox)+]v & a’r
=% f;'vxe . (2.16)
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In particular, vhen m=2, Xél) = liz) = Ao’ q(1)= -q(2)= g, and the

Coulomdb potential is used, Eq. (2.16) reduces to Eq. (2.7). By

(2)

choosing k(l) = A+ different from A = X; one cen deal with a

[} [ )
Couwlomb plasma of ions and electrons with an excess of ions (or
electrons). Finally, for a neutral system of Yukawa particles with

quanta + and - q one obtains

2.2
o [ (9 9x+m®x7)
Bf 87 + 2X°j"lcossqx

zj =1 ﬂvxe s (2.17)

whose underlying lagrangian is the "massive" sine-Gordon,

22
&= 8 !éggx + 8 Egﬁ— - 2Xo cosBfqx. In two dimensions the massive

Schwinger model at zero Coleman angle is equivelent to the maessive

R 8 R .
sine-Gordon  and hence is_eguiva.ent to & neutral Yukawa gas.s

For both Coulomb and Yukawa gases, singularities occur when oppo-
site charges approach each other. In addition there are self-interaction
infinites. The self-energy terms can be eliminated by normal ordering
the potentiel which is equivaleni to absorbing the infinity into Ao as
will be showa in the next section. This is well-known t5 sine-Gordon
theorists. The singularity resulting from plus-minus short distance
interaction is not so simply elimineted. One convenient possibility
is to smear the point charges. This is a reasonable procedure since
point charges never exist anyvgy. Replace a point charge at Ri by a

charge distribution f(r-Ri). Hence‘ff(x) d3x = 1 and f(x) is peaked
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about x#0. ¢ in Eq. (2.4) would be replaced by

? smeared {

n

Fl= S q,rR,). (2.18)
=]

The 1imit f{x)~+ 63(x) reproduces the point charge distribution. The

effect on the field thecry representation is to replace exp{iBqx(R)}

by exp(i/qu(;)f(;-ﬁ)dBr)Eexp{iB(x'f)(ﬁ)) so that equation {2.7) be-

comes

_B]!ZB'“_VX + 2A°j;cosﬂq(x*f)(ﬁ)d3ﬂ
1
} smeared = N vae 1#19)

and equation (2.16) is replaced by

m
. (1)
- g (X'Hox)+f z Ail)e”q (x#f)
' Vi=l (2.20)

=3 ]Dxe
3 smeared N

This type of smearing is necessary in mathematical field theory

where fields are distributions and must always be smeared with test
functions. In tnese models the smearing of fields is natural since

it corresponds to the smearing of point charges. The self-energy term

also becomes finite and is equal to
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2 - eoml;-;'| ... 3 3
52L f:'(r — r(r-ia’ra’r- 2.01)
[7~r-]

for the Yuxawa case. The sell-energy i the Coulomb case is given

by Eq. (2.21) with m=0 and in the ,+ucrni case ic

2
%—f VR EEe a3, (2.22)
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I11. PERTURBATIVE VERIFICATION

The purpose of this section is twofold. First, the formal
gaussian representation 1s verifieu in perturbation theory. I
is checked to third order in Xg for the Coulomb plasma modei (sine-
Gordon field theory) in three dimensions. All orders in B are
resummed to give the first few terms of the grand partition function.

Tnus perturbetion theory when rearranged does indeed give the grand

canonical sum. The second purpose of this section is to set up a
correspondence between perturbative Feynman diagrams and the statis-
tical mechanical system. This is done in the latter part of this
section and the results are summarized in Table 1.

<exp(2xo.[coseqx)> is the sum of vacuum bubtle diagrems. To
obtain the Feynman rules one could rescale y so that
So = %:[VI-VX d3R, however when not rescaled So (= ] Zﬁi?‘ d3R) acts
like the electrostatic energy o1 the system. To retain this physical
meaning the Feynman rules will be listed without x rescaled. For
bubble diagrams they are {

a) Draw all topologically distinct vacdhm bubbles (connected
or disconnected) with vertices of an arbitrary even order {including
zero order). Order, here, refers to the number of lines attached to
a vertex.

b) For each vertex associate a factor (210) ]-d3ri. i refers

v
to the ith vertex.

c) For each vertex of order 2n associate & factor of (-quz)nv
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1 Q
—
Tro-r.]

14

. 1 . . -
e) Put in a factor m for each pair of vertices connected by

d) For each propagator associate . factor of %

£ lines. See Figure la.

£) Put in & factor of N 1 fur each i-foid self-energy
21)1! 221' ~

tajpole. See Figure 1b.
g} Put in a factor of [(order of symmetry group of graph)!]-l.

h) The empty graph is to be included and contributes unity.

Eqguivelent rules for a) and g) are:

&) Draw all bubble graphs {topologically distinct or not),

that is label the vertices and treat them as distinguishable.

g) Put in e fector of [number of vertices!}-l.

The effect of the self-energy tadpoles is to renormalize AO.
Any graph can be drawn as a grap: without tadpoles plus tadpoles ad-
Joined. Consider the effect of adaing an arbitrary nwrber of tad-
. poles to a "bare" vertex (see Figure 2). The following factor will
multiply the "tadpoleless" vertex:
Sl L
lo] -

Z (-2 Ly (L )ne (3.1)

n! n >
n=0 2 B|0|

If the smeared interaction 2locos(8qx:f) is used Eq. (3.1) becomes

- ’12‘ quf £(r) + £(r") arair-
e [r=r-| ) (3.2)
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Comparing this with equations (2.5) and (2.21 with m=0), one sees
that the effect of tadpoles is to multiply each vertex by o 8 self-energy
Hence rules b} and f) are modified to

h) For each vertex associate a factor 21ﬂld3r1 with AR the
renormalized activity and Ap=) . e Boelf-energy

f) Do not include self-energy tadpole diagrams.
Alternatively one may use 21H:cosaqx: as the interaction density.
Normal ordering corresponds to a renormalization of xo. This fact,
well known to sine-Cordon theorists, actually holds for any inter-
acticn which can be represented in gaussian form. One can also see
this in the grand canonical sum (Eq. {2.2]) vhere the self-energy

terms would simply factor out to multiply AZ by e-an'E'. i.e,

A -2 e-sself—energy____l .

o o R

It will now be ch=cked that to order 13 <hat perturbation theory
reproduces the Z of Eq. (2.2). ™ zero'th order the empty diagrem

contributes 1 and 2 begins with 1. The diagrams of order xo are

shown in Figure 3. They contribute ZAR fd3r=2xﬂv which equals
v

AR Idar. The diagrams of order lg are shown in Figure 4. They
ql“q v

sum to
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2a
] 22 .[ 3, 43 N
oy (BT AR aR, ; Rz

(S
n
>
=]
~N

]
>

] ERCY ( -BaT /1R -5 | BQG/‘Hl'R2‘>
'.‘,)e + e . (

The % factor multiplying the expression comes from the symmetry

facter of rule g. (3.3) equels
99

- Ry R,|

2
K >: fd3R1d3R2 e , (3.1)

>

2

Q%29 4,724

which is the second order term of Eg. (2.2).

3

g are shown in Figure 5. They separate

The diegrams of order X
into two classes: those with an even number of propagators between
vertices (Figure 5a), and those with an odd number of propagators

between vertices (Figure 5b). The even case contributes
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(2,)° & i > ;< !
31 z €D z (2sT z Ten)t

imo n=0 n=o

[d3R d3ﬁ d3.R 2 2 2£+2n02m

1 2L 1 )Zm 1 2n
B[Rl-nzl B[R2-R3[ BlRa'Rll . (3.5)

£ is the number of propegators between vertex 1 and 2, m is the

number between 2 and 3, and n is the number betwveen 3 and 1.

Summation of (3.5) yields

3. {e) _
XRZB =
-89°
g 3 l I“r’“z
—-—[d3ndnd3n e
31
2 8g?
R_~R TR -R.]
Aol 23t T2
2 -
R.-R TR.-R.]
e 31 4 31 (3.6)

The odd case is similar and gives



"
-8q” [
R_-K F_-A, R.-h.1  ]R,-R
2 3 c 3 1 3
S e - e e - e
Equations (3.6) and (3.7; sum to give
3
2x
3, =3 [,led ()} . TR f 3. .3, .3
Aty = g (? +2) 5+ ) R e RaR,
2 1 1 1
x exp-8 + +
P-Bq <]R1-52| TR-RyT * TRy-R}]

1

2 =1
+ expfq +
(?Rl'ﬂe]

1 +
[RZ-RBI ]R3-Rl]

1
+ expBq IRl'Rzl

N
TN

- 1 + 1
[Rp=Ra] * IRy~R, |

1
+ expBq IFl'R;T

and vnis agrees with the third order

oot
[R2-R;T |R3-Rl]

term in Eq. {2.2).

177

(3.8)
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Doubtlessly, perturbation theory reproduces the grand partition
function to ail orders in AE for this particular exampie, the
Coulomb: plasmn in three dimensions, If enother interwcticn nad
been used, or if several charges of different activivies had beern
used, perturbation theory would have reproduced 3« Of course,
the Feynman rules would have to be modified. In particular Rule

d would have to be replaced by
d) For each propagator agsociste a factor of % V(ri.rJ).

Particles of different activities would lead to vertices which
would have Lo be distingulshed. The appropriate A's wowid have
Lo be amssociated with the appropriate vertices, etc. Finally,
the types of graphs and the factors associated with a particu-
lar vertex order would be differ»nt. The Feynman rules for other
theories are thus easily obtained by modifying the rules presented
in this paper.

A simplification can be made. There are zero order ver-
tices (vertices to which no lines are attached) in the Feynman
graphs because the interaction 2AH:c058q)E: when Taylor expa.r.zded

; (i)
begins with EXR. One . rewrite 2hg:cosBax: [or A(l)ewq X3

+y iga (1)
as ZAR:(coqux -1):+2)\R [similarly for A(l)elsq X type terms].

Eq. (2.7) can be rewritten as
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As & resuw.t the statement, "Don't include zuro orger grapas but

24V
"

multiply all graphs by e is adced to Feynmun rule a.
We Know from perturdation theor, tnabl tne contributions

¢l grapns may be expressed in the form

7 = exp Z connected graphs = exp 35RV

. (Z *}ﬁbi)v : (3.10)

where bk = the connected graphs of order A;. The rolume feactor

is put into the definition of the bﬂ. because vacuun bubble diagrams
are proportional to V due to translational invarianie (actually
*his is not quite correct because of boundary effect:, but is
approximately true in the large volume limit). The :acuum energy
per unit area (three dimensions=ltvo spuce + one time), 6 , for the

field theory is
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é - z bzx:l (b z2). (3.12)

The bl have an i{mportant connection with statistical mechanics.
They ore the cluster integrals of the Mayer expanslon.lo The

thermodynamic properties are determined by these bz. In particular

> = z "’zx; (3.124)
g=1
N )
g<p> = z blA R {3.12p)
=1 R
<k>

where ¢ is the denisty of particles, <p> = - and p is the
pressure. When AR is expressed in terms of <p> via Eq. (3.12s)
n.d substituted into (3.12b) the equation of stete is obtained.
B<p> of the statistical mechenical system is equal to the
vacuum energy density, E , of the field theory.
The smell perameter in the Mayer expansion is the function,
e (r)_ often V(r) is short renged so that e V()1 is nea-
zero only in a small region compared to V. Such a case occurs
in the very massive {(m>> %—) Yukawa gas. An immediate applicetion
would be to the massive Schwinger mode; in two dimensions at zero

Coleman angle, since, a5 previously noted, this is equivalent to
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to the massive sine-Gordon lagrengian (see Eq. [2.17]). The
charge, £, of the Schwinger model is relsated to tne mess, m,
2
J 2 .
of the massive sine-Gordor. by 23— © e . Hence one may obtuin

results in the strong coupiing limit of the muscive lenwinger

mode. by asing the Mayer cluster exzansion appliel t¢ 8 Yurawe

.4

gus.
In performing this cneck to crder A; one notices a corres-
pendence between diagramratic perturbtation thecry and the Coulozmd
gas. The vertices of Feynman diagrams are the ions and clectrons
of the plasma. In the Yukawa gas case, they would be the quanta
and .n the potential (V{r)] case, one might -all them the mole-
cules. Up to a temperature factor the propagators represent the
interactions. The number of interactions a particle undergoes
is the same as the order of the vertex. Pairs of particles may
undergo arbitrarily meny interactions and when summed these give
the Boltzman “actors. An exteru.l vertex at x corresponds to
fixing & molecule in the gas at x. In field theoretic language
it is the vacuum expectation value of the operator, @q(x)zeieqx(x).
This operator may be interpreted as producing a charge, q, at x.
Diagrams with several fixed external vertices are related to the

7,10 In field

correlation functions used in statistical mechanics.
theory they are the Green's functions of the Qq(x) fields. Finally
writing

7 = z AgZN (with ZN the partition function for N
N=o

interacting particles), one sees that the Nth crier diagrams yield
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the N-particle partition function. Thus there is a complete
cor.espondence between Feynman diagrams and the Coulomb plasma.
This correspondence is summarized in Table 1.

] There is a sense in which the usuel polynomial field
theories (such as g f; } are Coulomb or Yukawa plasmas. In a
high temperature limit consider the sine-Gordon .lagrangian whose
underlying statisticel mechanical system is the Coulomb plasma.
The potential, V=—21R:cosvfzﬁg qx: (x has been rescaled to elimi-
nate the f dependence in Ho(= %:[VX'VX), in thiselimit may be .
expanded in a Taylor series; V=21R(-1 + hneqz: %rz- (hn8q2)2: ﬁT :
+ vees), If the system is "hot" and x does not fluctuate
viclently from O, then Vz-.?AR + A\RBHBq?: 2; : - 2AR(hﬂeq2)2: é :
and hence one has & massive xh theory with mass equal to SHARBq
and a small negative xh—coupling constant, g, equal to -32K232thR.
Perturbation theory would be useful in this high temperature limit

since the coupling constant is small. Allowing arbitrary charges

and activities the potential, V, becomes
g (1)
ve- S ERL b (3.13)
i

By adjusting the A(l) and q(l) one may obtain better approximations

to polynomial self-coupled field theories. In fact Eq. (3.13) is
(i)

almost a Fourier transform. Unfortunately the A must be

positive to retain their physical meaning. This restriction ruins

the possibility of exact approximation.
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IV. THE TWO DIMENSIONAL SINE-GORDON

The last two sections have presented general methods and
techniques. A specific example, the two dimensional sine-Gordon
theory.l2 will be, for the most part, the subject of the rest of
this paper. As previously notad, this field theory is equivalent

to a two dimensional Coulomb gas. The interparticle potential is

a logarithmic one:

lR "52!
Vir) = -29;9, In —/—* (4.1)
o

with a_ erbitrary. Eq. (4.1) is also the interaction betweeu two
parallel lines of charge, one with a chrarge per unit length of 4
and one of charge per unit length of 1. Thus one may view ti.c
charges, q, as the charge densities in wires in the usual three
dimensional world. The wires are restricted to be perpendicular to
a tvo dimensional sheet. Another equivalent model is %o replace
the charged wires by currents. The magnetic interaction leads to
the seme logerithmic potential, V = -21112 1ln iL . The q's would
then be the currents, I. °

The twvo dimensional Coulomb plesma differs from the three di-
mensional version in one important way. Due to infrared divergences
a smeared charge distribution has infinite energy unless it is neu-

tral. Consider such a charge distribution, p, restricted to a finite
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? -+
region, The electric field goes like Ql‘ -Le for large r. There-~
r

-1—2 and hence the
r

fore the energy density V_og-nlo_ goes like Qg‘
B

total energy diverges logarithmically unless the total charge, Q‘I"
is zero. In dealing with this two dimensional Coulomb gas one has
two choices. The first is to require total neutrality. /b' would

become

L
z == Idﬂ seeed’R fdx ----dx exp { 8g°

|R.-R, | x.-%,] JR. =X, |

z m—d sy i gL . (4.2)
a a a.o

h ° ©
1’\1

7 is independent of ao as long as self-energies are retained.
still corresponds to the sine-Gordon field theory because non-
neutral plesmas do not contribute to the functional integral, how-
ever neive perturbation theory is incorrect. A correct vay of ob-
taining the Feynman rules is to use the massive sine-Gordon lagran-
gian and teke the limit m+0. As soon as m2V<<l the massive propa-
gator becomes 2 1n|mr|. Perturbaticn theory vhen rearranged and

partially summed gives for T
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= lin S X_: reae fdzR .e.+a2R
1;- oo :E n! :E :Z 1 n
n=o q,=%q a,=*q
x exp{8 Z a9, 1n mlRi"RJI (4.
i,d :

8 2

The non-neutral sums in BEq. {4.3) are proportional to m and
hence vanish as m*o. The Feynmen rules should use the proPagator
of Eq. (4.2) in the limit where a  goes to infinity. The technique
of adding & mass term to the sine-CGordon lagrangian end letting

the mass go to zero is not new. S. Coleman13 used it in a paper
showing the equivalence of the sine-Cordon with the massive
Thirring model. It has a physical meaning since it demands neu-
trality of the plasma system. This paper will use this ve;sion of
handling the infrared divergence. Total neutrality will always be
meintained.

An elternative approach is to enclose the system in a grounded
conducting casing. 1f there is an excess charge within V then an
equal an opposite charge will appear on the conductor. In calcu-
lating the partition function one integrates V¢-V¢ only over the
volume, V, since the conductor causes V¢ to be zero outside V. The
gaussian representation of ? would be modified to

v

4 =1 fore 7V ) (b.4)
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The equation of motion, f% sz-onsq sinBgx=o, is not valid be-
cause of surface terms due to integration by parts. These sur-
face terms represent dynamical degrees of freedom and must be
quantized, In principle this can be done using the techniques of

M. Halpern and P. Senjanovic.lh
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V. THE PHASES OF THE SINE-GORDON

This section will review the wory done on the twe dimensionail

15 : . : : .
Coulomb gass’ ’ and reiate it to the work done on the sine-Gordon

fiela theory.B’h’s’IB’lé’l7 In particular, the phase of the sys-
ten will be determined. Coleman has shown that a vacuum insta-
bility occurs when Bq2 gets too large.13 This corresponds to a
phase transition in the Coulomb system.5

Because the works of others will be referred to and because
people have used different variables to denote the parameters of
the sine-Gordon equation, there is some notational confusion.
For example, the B that Loleman uses is not the inverse temperature.
When confusion is possible I will subscript letters with the

authors initials. For example, ihe 8 of Hauge and Hemmer is

[N

the B used in this paper so that BH.H. will refer to their inverse
temperature. This paper, for the most part, conforms with the nota-
tion of Kosterlitz and Thouless. Table 2 provides the relations
between the parameters of this paper and the parameters which others
use.

The method of Kosterlitz and Thouless will be used to determine
the phases of the Coulomb system when AR is small. For B§2<<l, AR
corresponds to the density, so that small AR means a dilute system.
In fact, at Bq2=o,

2
= (V)"
j, = —+— - Consider the situation where
E n!n!
n=o
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1RV>>1 even though )R«l. 3, has & maximum contribution for n>>1.

Replacing the sum by an integral and using Stirling's formula,

2n log ARV + 2n -2nlog n - log n dn

v ﬁ

2x .V
1 R
= my (>.1)
R
L
znma.x
where f(n)=2n loghpV+2n - 2n log n - log n and noox® =

XRV. Boax ™ ARV for ARV large. The integral has been approximated

R 2v

shows AR is indeed & density. The limits ARV»l but AR«l correspond

to a situation where many .ions are presen* but the density is small

by Laplace's method. <N> = A 2 log =22V, A= & which
R ?.J\R R

which is the proper statisticel limit (in the limit AgVe<l,
1,22 ' R :
<> =2 AgY" so <k> <<l which is undesirable}.
When XR is small one can calculate the mean square distance
between an ion and an electron by assuming that the other charges

in the plasma may be neglected. In fact the exact expression for
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the meun square distance is

2n

® A -8U
o 2 2 1’2 vrealR i¥ -m 32

E TP Id )(l -3 )(N [} Bl- [+) RNle Rl) e

n=oQ

K

2
<r > = 33

© 3
o 2. 2 f,Z Y-S
Z ntat ]‘“‘1 Ay JaR TRy e

=1 (5.2)

~BU

is the energy of the configuration (see Eq. [4L.2]). The

N-1 term gives for ine mean square distance

R 2
j’ rar e-?Bq 1nrr2
r
<r’> = - > 5
f ar o-280 107
Tr
o

(Rh-esqz_r h-asqz)(e_zaqa)
= 2 (5.3)

2 2 2 ’
a0

where r, is an ultraviolet cutoff introduced to make <r2> well
defined for quzl. In fact if the charges were not point charges
but "ringlets" of charge densities of radius, r_, Eq. (5.3) would
ve the mean squere distance between ringlets. In using Eq. (5.3)

I am not implying that the N=1 term dominates. It is obvious from
the above discussion that a large value of N dominates. Using the
dominate term is, of course, like using a partition function in lieu

of the grand sum. Eq. (5.3) is inaccurate in the region r>"<x——;
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and the integrals should probably be cut off at such a value (which
is still a large number in the dilute gas _.approxi!nation). In Eq.
(5.3) I have neglected "edge effects" which occur if one of the
charges is near the boundary of the volume. Eq. (5.3) is calculated
on the basis that one of the charges is at the center of the volume.

Eq. (5.3) yields the following result for 8q2<1;

2 g small). (5.4)
)
The fluctuation in the distance between charges according to Eg.
(5.4) is large and hence for Bq2<l the Coulomdb system is in the
plasma phase, that #s the electrons and ions do not pair up to
form dipoles. At Bq2=l the same is still true since
2
<rfs PO (A, small). (5.5)
R R
2ln —
r
o

: 2 2 . R .
In the region where 1<Bq <2 <r » 1s renormalization dependent, i.e.

2
<r > depends on the parameter TS

2 r 28!12-2
<o Ba-l _; RZ(—}?)
2-8q
P h-28q2
- fiol 2(R) (5.€)
2 To\r
2-8q o

Eq. {(5.6) shows that although <r%> is not of the order of the size

of the system, it is still much greater than rg and hence a dipole
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collapse has not yet occurred. Although some dipoles may exist,
the preponderance of ions and electrons are still unbound and thus
the Coulomb plasma phase still occurs. Of course as AR gets bigger
the above conclusions mey no longer be correct since Eq. (5.3) is
based on the dilute gas approximation. 1It's conceivable that if
\R gets large enough a phase transition might occur.

Finally for Bq2=2 and Bq2>2 the dipole phase occurs since

R

2 2 2.
<r’>=2r In T, (8g°=2)

2
<r2>=__§52;1 . (Bq2>2). (5.7)
gg=-2 °

A phase transition occurs around Bq2=2 for small AR. The nature of
the phase transition is simple: as qu increases the free ions and
electrons of the Cowlomb plasma v~ollapse to form dipoles, and a new
gas of weakly interacting dipoles is formed. This phase transition
has been examined in more detail by Kosterlitz and Thouwless who find
a divergence in the polarizabilit," in going from high B to low 8
(i.e. from dipoles to the plasma). This divergence is understandable
since as the temperature increases the average separation betveen a
plus and minus forming a dipole increases. This Ecuses the dipole
moment to increase and as a result the polarizability of the system
is greatly enhanced. Using reasonable methods they obtain that

"

q°B =2,

critical
This phase transition has an important relation to the sine-



Gordon field theory. The point Bq2=2 corresponds to Bg = 8n. 1t
was precisely at this point that Coleman found a vacuum instability.

One can now understand this instability from the Coulomb point of

view: it is precisely 8 phase transition from an ion plasma to a

dipole gas.

Solitons are known to exist as solutions to the sine-Gordon
8 ses . .
equation.1 The way the critical temperature varies as AR varies

is important since it may affect the number and stability of soliton-

17

antisoliton bound states. Luther has proven quantum mechanically

2
stable bound states occur for n=1,2,-¢--, —EE—E (o<Bq2<2)

2-gq
(n=o0 always exists and is the usual soliton) with masses of the form

nfl -] 2
m = c(8) sin 5 —‘1—2 s (5.3)
2-Bq

where C{B) is a temperature-dependent renormalized constant. The
renormalization of C depends on the lattice spacing and the x-y
anisotropy (Luther used the spin % x-y-z lattice chain to obtain the
above results). This seems to indicate the number of bound states
does not depend on AR.

There are three possible phase diagrams which might occur.
These are shown in Figure 6. In these diagrams the pressure, p, or
the density, p, may be substituted for AR if the equation of state
is known. One strongly suspects that AR increases monotonically
as p or p increases for fixed volume and temperature. If Figure
(6a) is the situation, the dipole phase (AR very large) would

probably prevent the solitons from existing even though qu is lecs
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then 2. Both (a) and {c) cases require an additional purameter

enter the theory, since AR’ being the only dimensional constant,
19

has rno dimensional quantity to set the scale. It's therefore

meaningless 1o pict A versus qu. Indicetions (see section 7)

are thav for sq?'_’l a cutoff must be iantroduced due tr u.tiravio.et
singulerities. If this cutoff car be removed without iIntroducing

n new dimension into the theory (i.e. there 1s no dimensionsl trans-
mutation) then tne oniy possibility would be (b) and solitons of

. 2 . R . .
artitrary n occur For §q suffiziently close to 2. Kosterlitz and

. : - 2
Thouless obtained a curve similar to {c¢). They got co s =
“ (c). They g Beriticard

2(1 + cAR) with ¢=1.31. They used a cutoff in their potential
; [ P I =0

(L’K.T.‘r‘ 9,3, in o + 2u for r>r_ and U{r)=d for r<r0). The

reason for their reswt is simple: they view the Coulondb system

{ror the dipole side of g . Their first approximation

crit.icall:l
was to negiect the efrfects of all other dipoles in calculsting

2 N : .
<r >, the mean distance square2 between the plus and minus consti-

- : 2 :
n*s of e dipole. The - =2. ¢! ion
tue of the dipole They obtained scr;ucalq What correct s

resu.t if other dipoles are taken into consideratvion? Basically,

it will be easier to separate the plus and minus constituents be-

cause dipoles wiil interpolate to reduce the potential. <Coase-

quently, each charge is pertially screened and it will be easier

to pull them spart. The presence of Jipoles lowers the temperature

2 . cus
increases with

at which the pnese occurs (in other words ses
- vhe p ¢ (is Beritical?

}\R). They expressed the screening in terms of an eflfective dielectric

constant e(r) which depended on the separation of the plus and minus.

If possibility (c) occurs as Kosterlitz and Thouless have predicted
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.0
one would expect the number of states to be different than ic

presently predicted (& natural guess would be n=1,2,++-+,

F———H and correspondingly m = c(8) sin Pzﬂ [ - B -8] ).
critical critical

I refer the reader to their paper for their results. It may be
that the situation depends on how one modifies the potential at
short distances (to eliminate the ultraviolet singularities), and
thus Kosterlitz and Thouless's result is one possible example which

might otcur.
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VI. THE NON-LINEAR ¢-MODEL

This section will show the equivalance of a non-linear o-model
and the sine-Gordon equat.ion.‘?0 First consider the linear 0(2)

g-model with a linear symmetry breaking term:

2=1 (0% + L @m? - v(o,m, (6.1)
and
V(g.m) = —Zao+g(o2+n2-fr2‘). (6.2)

winen a=0, m121=0 (Goldstone boson) and m§=16gf§ (the usual PCAC
type relation of the o-mass being proportional to fn). When a # 0
the minimum of V occurs at N=0, o=(sign a)t"_l + $(§)+ 0(%) angd
the N-field acquires a mass, mﬁ = %JEL + O(é) "}he non—lingar
o-model with a linear symmetry break“ing term is the limit of Eq.
(6.2) as g+=. This has the effect of requiring 02+n2=f§. In fact,
if Eq. (6.1) was used in & functional integral the limit g+ would
produce a functional delta-function, 6(02#112—1']21). To enforce the
2

relation <12+l'l‘?=fII let a=-fn cos@ and l'l=-fnsina where @ is a new

rield. £ becomes

=1 ri(ae)zﬁk £ cose . (6.3)
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which is the sipe~Gordon lagrangian. Rescaling 6= ?1- x gives
n

oL = % (ax)2+23fncos( rL x)» (6.4)
n

7
of this model with the Coulomb gas parameters:

or V(x) = -231“ cos { ?'1— x) fror. which one can translate the parameters
n

Ao = Zarn
1 2 1
Lng q = = or Bq° T —=— , (6.5)
Ty une?

Since a phase transition takes place in the sine-Gordon field
theory at Bq2- 2 for AR small, a phase transition must occur in
the non-linear 0{2) o-model with small symmetry breaking term for

fnzl/\/ 8N . This complements the results of E. Brézin and
1

J. Zinn-Justin2 anc W. A. Bardeen, B. W. Lee, and R. E. Shrock22
who find transitions in the O(N) non-linear o-model in 2+¢ dimensions

for N>2.
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VII. HENORMALIZATION

S. Co].e!zua.nl3 has indicated that the only renormalization necessary
in the two dimensional sine-Gordon model is for the self-energy tad-
poles {such as in Figure 1b). These infinite contributions can be
absorbed in Ao. One should use a renorm@.liz.ed activity xR and ignore
the tadpole self-energies. S. Coleman's result is true for
Bq2<1 (egdm . For Bq2_>,1 the result is incorrecu: although there
are no divergent graphs in any finite order (in AI—( and 8) of pertur-
bation theory, there are divergences when grapns are summed. The
reader has already seen an example of this: the connected vacuum
bubbles of order '\; {the graphs of Figure 4 minus the first one).

They sum to

2 2
2 2n n
2 22
lim R 2 2 r {-879%) 2,2
s '\ 2 drE 5 i 2oyt " 27
a 1 =0
(<]
2 2
. 2x%v 284 ~28q
= ;_1 R2 de (ar * ( ) _2A§v2
[+] 28q v []
a
[+]
2, [ 2. [.-284°
= v fd r R -1] . (7.2}
v

which converges for Bq2<1 and diverges for quzl. Vacuum bubbles

are not the only diagrams with divergences which cannot be absorbed in
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A Consider the contributions to the two-point function from

the graphs. of Figure 7. They sum to

. lxezyl 2l
5{x,y) = (2) )2 Idez Iddz n —2 1p =2
R 1 2 a a

v v ] o

2 2
lzl-ze| 284 lz,-2,| -8
1 "2 (1.2)
—a - . -1 |. T.
[e] (o]

The parameter, s has been left in and naive Feynman rules have
been used in calculating Eq. (7.2). This is because the Green's
functions for the fields X(x) are ill defined. The interesting
and well defined operaiors are the oq(x)'-'equ(x). Eg. (7.2)

converges for aq2<l and diverges for Bq231 {the same would be true

if one calculated the Green's functions for the Oq(x)]. Note that

any individual graph of Figure U or Figure 7 is convergent. Thus one

has a situation 589231) where to any finite order gin Bge) graphs

have no ultraviolet divergences yet when perturbation theory is
summed to all orders ultraviolet divergences appear, implying that

non-perturbative rencrmalization methods are necessary. Of course,

one can look at 7(Eq. [4.2]) directly to see that there are ultra-
violet divergences for Sqazl.

This section will consist of showing that to all orders in
XR (as well as qu) ? is well defined when Bq2<l. I take this to
be a proof that the 0(2) non-linear o-model and the sine=Gordon

field theory are renormalizable to all order for Bge<1.23 For

Bq221 a cutoff must be introduced. Whether it masy be removed by
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wave function and coupling constant renormelizations is unknown.

If additional interaction counter~terms must be added to the theory,
then the sine-Gordon lagrangian would have to be modified and the
equation of motion would be pn inmccurate representation. An impli-
cation of this: the soliton-antiscliton doublets wculd not exist.

I suspect that renormelization should be possible at least for
1<5q2<2 since lattice methodsl-r have shown the existence of these
doublets. Tt is still uncertain how to do this in the continuum
field theory, although the equivalence of the non-linear o-model

and the sine-Gordon offers e possibility: since g has dimensions

of (mass)2 and the linear g~model {Egs. [6.1) and [6.2]) is renorma-
lizable, g acts as a cutoff for the sine-Gordon theory. If one can
show the relevant quantities are g-independent (or g dependence

can be abscrbed ;233 Ao) for large g then this would provide the
method of renormalization. The same is true in dimensions three

and fcur where the equivalence wetween the two models still holds.
Thus there is the possibility that using the linear o-model one

can renormalize the sine-Gordon lagrangian in three and four di-
mensions.

I will now present strong evidence that the partition function
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2 -
/b,(ﬁq ,Aﬂ) =
22N
R 2 2 f[o2 P 2
z NINT [d xpmeerd XNId ypreendyy expi26q
N

x z [lnlxt-xJ|+ lnlyi-yjll - z lnlxi-yjl (7.3)
i<} i,J

converges for 8q2<l. XR’ of course, is e-Bself-energr absorbed in

Ao. The method is not intended to be rigorous: physical arguments
are used to approximate 7 Eq. (7.3) contains only neutral con-
figurations because of the infrared singularity of the theory as
discussed in Section IV. The arguments of this section also apply
to the situation where neutrality is not required.

7 acquires a big contributir. whenever aa xi approaches a
yJ and Bq2 is near 1. The nature of the singularity is governed by

2-28q°

2 ~28q
VI(qu,e) = fdz'x fdzy e28a 1n|x-y| v IE >
1-8q

. (7.4)

[x-y|<e

Eq. (7.%) is the coniribution to ‘) when a plus and minus are within
€ of each other (boundary effects being neglected). If € is suffi-
ciently small the plus-minus dipole will look like a neutral obJect

and will interact very weakly with other charges and dipoles, even
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vhen these objects approach the dipole. ¢ is Just a small para-
meter., If a plus and minus are within € of each other then one

says a dipole is present in the system. Since there will be a mean
density, p, for tre plasma and in this dissociated phase charges

are randomly located, the average distaince between charges is roughly

L One can take ¢ to be a fraction of this distance, say

Vo
€= 0.1\}-1- .
p
Consider the term ir /’. with N plus charges and N minus charges

(i.e. ZN)

-BUy (3, Wy )

S SR - 2 eeeg®
Iy = Fn fd"l d*ﬂf‘“’l dyy e (1.5)

and single out the contribution due to dipoles

-8U
= i R Y]
Zy = Winn fd X d"w.[d ¥yrerrdiyy e

Ixi-yJ|<e for some i,]

~BU
+ Idaxlo.--dax_ﬂ Idzyl...-dzyu e N + esen
[xg =y, |<e
379
lx - |<e for some 11,51,12,‘12
iz 4o
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-BU.
2 eeeg? ]2 cened®
+fdx1 a7y fd7y, yy e
|x; =y, |<e for some ordering of
Hh T

ixi -y, |<e the x's and y's.
2 “2

W oenes

-v, l<e

NN

-8U
+ Idle“--dzx.u Idzyl----dzyu e N3, (7.6)

no dipoles

The first N terms in Eg. (7.6) have precisely 1,2,-***, respectively

N dipoles.

The last term is the no dipole term where no x; is within

€ of mny yJ. Because dipoles interact weekly they may be factored

out of the summands of Eq. {7.6):

where

N vt [(ea’,e) 1 20, PO (e)

bA s .
N = o (7.7}
=0
ZNo Dipole _
n
-BU (x-'y )
AT (1.8

1 1 2 2 2 2
ol ;l—lfd xl-- =d * fd yl----d Yy, e .

Do x4 within e of yJ



203

The combinatorial factor is accounted for as follows: There are
2
- renas -+ -
[N(N-1) x| (-2+1)] ways of pairing up £ pluses with £ minuses
from a set of N pluses and N mipuses. This number times N—l,- ;‘—, gives

1 R
the mof Egs. (7.7) ana (7.8). Egs. (7.3), (7.6), and
(7.7) yield

2 2
VI(Bq~,e)A s
R N
1’ e o Dlpole(c)_ (7.9)
As long as 8q2<1, I(qu,c) is small as one sees from Eq. (7.4). It
remains to show No D:.pole(e) does not diverge. Heuristically the
reason for this is as follows: 7]“0 Dipole vanishes if a plus

approaches a plus or a minus approaches a minus and hence the charges
must be evenly distributed when N becomes large. Consider a minus
charge. Sincu the plasma is neutral it will se a charge distribu-
tion of +1. Neglecting boundary effects, one can lump this +1 charge
distribution at some effective distance reﬁ.(N,s). For € small enough

Topr will be independent of € and for N large enough it will be a

ef
slowly varying function of N. For simplicity taeke Topp to be a con-

stant as N goes to infinity. Then for large N

2

i 2
No Dipole _ 1 1 -289 2N
Iy W N (reﬂ‘ ) v (7.10)

«©
end this implies 7"0 D1pole5 Z Agn Zgo Dipole converges.
n=o

To make the above argument more precise let N be large. Break

V into 2N square cells of volume Evﬂ' . The length of the side of a
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cell is % = d(N). Approximate Z:o Dipole by summing over all
ways of placing the plus and minus charges into the 2N cells:
2 2N
o Dipole z T (\/;!-N_) e8U(C) (7.11)

c

2
(‘/% ) is the area in which a charge is allowed to roam, C is

a placement of the pluses and minuses into cells, and U{C) is the
energy of such a configuration (calculated with the charges at the
center of the cells). The minimum energy configuration by symmetry
occurs when the plus and minus charges alternate as in Figure 8. To
approximate the energy of this configuration, pick a charge. It has
four nearest opposite charges (Figure 9a) contributing a factor of
(dh )—28q2 and four nearest like charges (Figure 9b) contriduting a

factor of [(V?d)h]28q2. In the next row (Figure 9c) there are

eight opposite charges and eight like charges giving a factor of
(2004128 (V317280 [(vBa)*1289°. o tnis oraer o~BU(single cheree)
= [y (%02 (%)2]26q2_ Taking into consideration all rows and neglecting

edge effects

-B8U(single charge)

- 1(-1)™*P28q°
N W (.r5—s

s N ( n2+m2)

r=0 m=1

£(N) = e

YN W
= exp z z (-1)%*Pu8q%1n(n%en®)} . (7.12)

n=o m=l
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Because the signs alternate f will be a slowly varying function of
N (for example the third row multiplies the result of the first two

2 2
by only [(%,9)2(%,‘})2(%,?)2125‘* =(1.00)289° ), The total contribution

~-gu(c . )
to e min s [I‘(N)zr‘[]l/2 (2N for each particle and a 1/2 for
double counting). One can bound Zﬁo Dipole by replacing e_aU by

its maximum value f(N)N. Since there are {2N)! ways of putting the

charges into the cells,

No Dipole o (2N)1 AR
2y Cnpr (e (2N)

Ve M 2N h
-~ (7.13)

NIN! ’

where Stirling's approximation has been used in the last step.
Since f(N) (Eq. [7.12]) is & slowly varying funciton of N, Zgo Dipole
is highly attentuate for N large and TNo Dipole converges.
It has now been shown that 7( AR,qu) is finite for Bq2<l.
7 represents the sum of all vacuum bubble diagrams (in & finite
volume limit). Since this sum converges this indicates that other
functions (such as Green's functions of the relevant operators) will
have no divergences. It is folklore that the wacuum bubbles repre-
sent the most ultraviolet divergent graphs.
The main result of this section is that the prescription of
absorbing the self energies into the activity renormalizes the
sine-Gordon to all orders when Bq2<l.

For the statistical analogue field theories discussed in this
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paper, renormalizstion may be regarded as the removal of smearing
functions. Consider the sine-Gordon. When 1 is smeared by an
appropriste f (Eq. [2.19]) a well defined non-trivial partition
function, 1(:‘) 1s obtained (well defined in the sense that no
infinities occur and non-irivial in the sense that ﬁ(f) is not 1

or e2A V’ which is the ideal gas grand partition function). 7(1‘)
is, however, non-relativistic. One would like to take the limit
f(x)*Gd(x) so as to recover Poincaré invariance. Doing this naively
causes ﬁ(f) to go to one because the N#0 terms give zero due to the

infinite self-energy. The way to avoid this problem is to let Ao‘

the bare activity, depend on f: Aosxo(f). i, becomes

'BIZ%VL + 2xo(f)Lcoqu(xaf)

fr(f) =% ﬂvxe . (7.14)

22 {f)v
Eq. (7.14) gives an upper bound on j ofe ° since the func-

tional ]coquxthV. 7 has a lower bound of 1 since the partition
v

function is a sum of positive terms beginning with 1. Ao(f) is !

lim

a
£+§
should produce & good theory. The reeder has seen one example of this,

adjusted so that 7(1‘)5 z« is non-trivial and eny such limit

the sine-Gordon in two dimensions in the region Bq2<l. If one takes
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~Bq’ [f(r)lnlr-r |e(r- yd°rd°r-
Ao(r) = Ce s (7.15)

where C is arbitrary (from Angloe-sself-energy one identifies C
with AR), then the limit f(x)-véz(x) produces a well defined "r
Ao(!') goes to infinity in such a way as to keep AR finite and pre-
vent 3. from going to 1. In the region sqezl. the Ao(f), defined
ry Eq. (7.15), would cause ’(f) to become infinite as f-62 and in
this new region one must not let Ao(!') g0 to infinity as fast as in
tae 8q2<1 region. Possibly a sequence of Ao(f)'s can be found which
affects a cancellation between self-energy and interparticle inter-
action infinities.

Green's functions (and other relevant objects) must always
be calculated using this limiting procedure. <Consider

Glx,y) = ¢ etBI(x)-iBax(y)y

-sj—vxﬁ‘ + 2) fcoqux

eiBax(x) -iBax(y) (7.16)
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Even after smearing (Icoquxtf) and using Ao(f) of Bq. (7.15),
this plus-minus Green's function is zero due to the ultraviolet
infinite self-energy produced by equx(x) and e’qux(x). The

correct way of calculating is to replace Eq. (7.15) by

_BI_‘LYB'H_Vx + 22 (1) fvcoqu(X*f)

alx,y) = & ﬂv‘e

. Z.?(f)eiBQ(th)(x)e-qu(x*.f)(y). (7.17)

where 2(f) is a wave function renormalization constant. From
physical principles one knows Z{f) must be proportional to
exp{-qujf(r) In|r-r*} £(r") a®r a%r} since G(x,y) has & physical
interpretation: G(x,y)f is the partition function for a neutral
Coulomb gas with a plus charge at x and & minus charge at y.
Non-renormalizability can be viewed as f.ollovs: As t-’éd
dipoles, triatomic molecules, moleculer rings, and other polyatomic
structures will begin to form. One must introduce renormalized
acitivites for each of these structures. If f-»sd is too singular
a limit to tske, an infinite number of polyatomic objects will form

causing one to introduce an infinit.: numberof renormalized activities.
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This infinite set is reminiscent of what happens with polynomial
field theories such as x6 in four dimensions. Here one is forced
to introduce an infinite set of counterterms, -
(68, )x°"
Bop /X -
n=1
The 532 couplings correspond to the unrenormalized activities.
In the high temperature limit of the sme—Gordon v(x)gzx
L
l 1+(hneq ) L - (bjgq ) f + (hﬂ8q2)3 é—] which is a polynomial
field theory with a x6 leading term. The high temperature sine-Gordon
being similar to this polynomial potential implies the formation
of polyatomic structures in the x6 theory. Thus one suspects that
the cause for non-renormalizability for the statistical analogue
field theories is the same as in non-renormalizable polynomial field

theories.
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VIII. TIDBITB

The correepundence betveen sine-Gordon and Coulomb gas indi-
cates that many effects are completeiy mlased In the nalve treat-
ment of the theory, Most important {8 thé structure of the vacuum.

When ). 18 very small perturbation theory 1s valid. The vacuum

R
louks like & "vacuum” since few charges are present. Yhen Ay dets
bigger, the vacuum {a full of cha=ges and the perturbation theory
vacuum s a poor approximation Lo the real vacuum vhich contains

many plug and mipus jons. Also missed 1o perturbation lheory is

the phase transition at uq;‘ near ¢. Whan uq;' is small the vacuum
{ana hence the entire Lheory) is radically different from when

ﬂq;‘ 17 large. The importance of the nature of the vacuun ls neglecleda
in must treatments of fleld theory., It will be a complicated vacuun
structure wvhich will lead Lo quark confinement, aaymplotic freedum,
and the hadron 8pectrum. A vacuum conslaling of a ghs of “quenta”
would be compatible with asymplotic freedom and quark coufinement.
When Lwo quarks are placed al small separation distance unually no
vacuum quants ¥ili be between them. The physical vacuum has little
affect on these Lwo quarks. Hence amall distance behavior vouwld be
gouverned by bare vacuum and frec interactions, AL large separation
distance Lhe quanta would interpolate betveen the Quarks and strange
affeets could occur. For example, a conaensation into another phase
might take place in the region betveen quarks eapecially if the gas

is near a phase tranaition point. Such & condensation could provide

8 confining potential. In the two dimensional sine-Gordan in the
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plusma phase (Bq2 small) one has asymptotic freedom. G{a,y)
s

(Eq. [7.16)) goes like Ix-yl-%qh for small |x-y|. Thia is the

name a8 in u free field theory (one would sws the diagrams of

figure b with the two vertices labelled by x and y). However, in

this same phase Lhere i8 charge acreening tor large distances, and

hetee Lthe upposite effect one wants in confianement: largely sepa-

rated charges have no lnteraction with each other, they merely luter-

act individually with the vacuur, In the ajpole phase, different

clfevta arise. 1P one places a number,,; Wwidely Beparated charges

st Lhe varuum, the vacuum Will lmmedlately produce (he opposite

charges Lo furm dlpoles al. Lthe coat of g per charge.  On this

physienl bLmals oune can write

1gx (e ) tgx(p )
(e Yl e Pyt (#.1)

where ]..l(x) -1;‘1-31, "y peahed aboul L and all 11 Widely dapaced.
Mecause charges are lmmeidialtely turned into dipules Lhe lreen's
runction Glx,y) {Ey. [7.16)) 1a constant fur large |x-y|, and the
two chargea will not be conflaed.

Now conglder the situatlon when rractional charges (nay o
+1/. and a -1/} are placed In the vacuum. These Fractional chargen
cannol form dfpules becsuse Lhe varuum guania are Intepral. The
fractlonal charges are not screened.  lhe interactliun between the
¢1/2 and Lhe -1/ will be ws8sentially a logarithm "itigated Ly
dipole effects. The alpole strength (which js actermined by renar-

malization} will govern how much Lhe Gipoles inrluence the interaction
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of the fractional charges. For weak dipoles, one expects the
logarithmic potentisl to remain intact. One can write
18 & x(x) ~18 2 xty)
2 2
e e >

2
~|xmy| 7288 Cxy ) (8.2)

wvith q(r) an effective charge satisfying q{(r)+1/2 for r+0
{asymptotic freedom) and q(r) slowly varying for large r. This
type of charge screening of the Green's function is reminiscent

of a similar phenomenonll found in the massive Schwinger model.

In general on: has

<eiB(N+f)Qx(x) e-iB(Nﬂ‘)qx(y))

. 2
i fxy| 2800 (x-y1) (8.3)

with 0<f<l, fgq being the fracticnal excess charge. For =0 the
Green's functions are roughly constant. One can, of course,

introduce triality operators

ig % x(x) . -8 % x(x)
oq/B(x)=e and Oq/s(x)’-'e = °—q/3(x)' The Green's

functions for these operators venish unless the number of °q/3's
- []
i the number of 's is three times an integer.
minus r O °q_/3 ger °q/3°q/3

i i f. .
configurations end Oq /3°q/3°q /3 configurations exist This resembles

the triality of the quark model. Of course, there also are n-ality
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) ig !91' x{x) .
\ .
operators Oq/n-e and .q/n(x)' .-q/n(x" It is the nature

of the vacuum that determines these unusual effects.

Fractional quante have already bcen used ss & possible quark
confinement mechanism in four dimensions. Tk~ model in mi~d is the
meron gas of Callan, Dashen, and Gross.zn where tn. charge in the
theory is not the usual charge but the topological charge, and the
particles having fractional 1/2 charge are the merons. The use of
fractional quanta is not es unnatural as one might think.

Another interesting effect is that the rel«vant operators are
of the form szein(D) {(xlpl= J’x(x)p(x)dzx) since these operators
produce charge distributions, p, in the Coulomb analogue model.
These operators are precisely the ones Coleman usea to show the
equivalence between the sine-Gordon and the massive Thirring.

Being use to perturbstion theory one usually works with the bare
vacuum and approximates the interacting fields by free fislds in
which case the interesting Green's functions are <x(x1)----~x(xn)>.
The sine-Gordon theory shows that such simplistic vacuum expectation
values may not be the interesting ones. 1In tact there is no reason
why, in & particular theory, the relevant operators are not compli-
cated functions of the fields. This conclusion may be applicable
to gauge theories.

A third unusual effect is due to the infrared divergences in
the sine-Gordon two dimensional theory. The normal Feynmen rules
gre invalid. For example, one would conclude t‘rom.(1=2.\°cos Bgx

that bubble diagrams of order lz (such as in Figure 10) contribute
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to the vacuun energy. This is incorrect since it violates charge
neutrality. Renormalization procedures would be upset if non-neutrality
15 not maintained since the use of 1ln -I;:ll- for the propagator
would make the theory depend on a vhicl:) it should not. The
modification of neive perturdbation theory rules by infrared diver-
gences may affeci four dimensional theories such as the popular
geuge theories, If such an effect occurs the usual Feynman rules
are wrong and may upset the renormalization of infrared singularities.

Fourthly, it is curious that to every finite order (in qu) in
perturbation theory there are no ultraviolet singularities; yet
when all orders are summed an ultraviolet divergence arises when
Bq231. The reader has already seen this in the bubble diagrams of
Figure 4. They have no ultraviolet singularities to any finite
order; yet vhen summed they are ~1§ jr-zsqz dar which diverges for
quzl.

Oae unanswered question still remains: since the sine-Gordon
equations has soliton solutions, whet do these solitons mean in

16

the Coulomb gas context? Mandelstam™ has constructed the soliton

operators. They are of the form

(x,t) il by ;i
wat! = ¢, expl-2nig den(c.t) X TRIERY)

01’2(1,1:) = C:,a exp‘znis;1 f"dcn(c,t) + % BMG(x,t)l.
' (8.4)
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Using B,= VB g, rescaling ¢ = ,/ 157 x  and rotating to

Euclidean space
L [* sy 7182
wl,z(x.t) = 01_2 ex-p,+ % I-. arx(g,t) ¥ 18 3 x(x.t)]

}
&;_2(1:,1:) = c;,z exp[- 21—q f_"-dci(c.t) * iﬂ% x(x,t)l .
(8.5)

5
The operator ein-Vx(x) produces & dipole of strength p since

e PPTYXX) ovplis ‘3 [x(x + % ) - x(x -% ) produces a charge E
- -+

at x + % and a charge - 'E at x - % (vhere pepa}. w;(x) hes the
interpretation of producing s charge + % at x end an imaginary
dipole string. The dipoles point in the t~direction and have a

strength density of The string is along the x~direction

-
2q8 °
and ends at x. The imaginary dipole string makes little sense
from the Coulomb point of view. Because of this complirated inter-

pretation, the Coulomb ges analogy does not seem useful.
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IX. SUMMARY
Here is a list of the main results:

A. (Section II) Certain field theories are equivalent to gases
of interacting particles, in particular
1. The sine-Gordon corresponds to e neutral Coulomb gas.
2. The "massive™ sine-Gordon and the massive Schwinger
model at zero Coleman angle correspond to a gas of

quanta interacting via Yukawa potentials.

B. (Section III) The Feynman diegrams for these theories have
a statistical mechanical interpretation. The correspondence is

outlined in Table 1.

C. (Section V) The vacuum of the two dimensional sine-Gordon
undergoes a phase transition at qu near 2. For aq2<2 there is a
plasma phase and for Bq2>2 there is & dipole gas phase. sq2=2 is

13 finds a vacuum instability.

precisely the value Coleman
D. (Section VI) The two dimensional non-linear 0(2) o-model with
linear symmetry breaking term is equivalent to the sine-Gordon theory.
Results C and D imply

l. The g-model undergoes & phase transition for t‘ns 1, Eli .

2. The g-model contains solitons and fermions.
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E. (Section VII) When Bq2<1 the sine-Gordon (massive Thirring
and 0(2) o-model) are renormalizable to all orders, i.e. they

are vell defined theories.25

F. (Section VIII) The dipole phase of the sine-Grodon completely

shields integral charges but is unable to do zo for framctlonal charges.

G. The relevant operators for the sine-Gordon ere not simply poly-
nomials in the fields. They zre Qq(x)=eisqx(x> and have the simple
physical interpretation of producing a charge, q, at x. They are

the operators used by Coleman to prove the equivalence of the sine-

Gordon and massive Thirring models.

H. (Section VIII} Operators exhibiting the quark-like triality
condition are Oq /3(2:). They have this property because of the

infrared singular nature of the sine-Gordon field theory.

I. (Section IV and VIII) Naive Feynman rules may be incorrect wvhen

infrared singularities occur. The sine~Gordon exhibits such a pro-

perty.

J. (Section VII and VIII) The sine-Gordon has no ultraviolet singu-
larities to every finiter order of perturbation theory; yet vhen

Qiagrams are summed an ultraviolet divergence appears.
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K. Callan, Dashen, and Gro:ss26 have recently shown that the instanton
approximation to 2-d charged scelar electrodyramics with massless
fermions is equivalent to a neutral Coulomb gas. The instantons are
Rielsen-Olesen vortices. The effect of the mascsless fermions is to
raise the inverse temperature, ﬂqa, from 0 to K, the number of fer-
mions. Since the Coulomb interaction is mitigated at short distances
their model has a natural renormalization. Their result together with

Result I of this paper implies their model will possibly have gsine-

Gordon) solitons. The existence of such solitons depends on how much

the Coulomb force is modified and how good the instanton approximation
is.

There is a good chance that a theory of strong interactions in
four dimensions will have many of the properties exhibited by the
two dimensional sine-Gordon theory. It is conceivable that the hadron
vacuur has a complicated structure which must be treated using statis-
tical mechanics. Strange effects can occur vhen such a vacuum hae
"lot's of quanta" in it. It would be able to support asymptotic
freedom because at short distances the quanta are ineffective and at
the same time it could provide confinement since at large distances
the many body effects of such quanta can be unusual. It is conceivable
that string like-structures or other types of extended objects could
condense out of the vacuum when other quanta such as quarks are intro-
duced. Further unusual effects created by strong interaction vacuur may

provide for the trielity condition now observed.
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Table 1: FEYMMAN GRAPH CORRESPONDENCE

Statistical Mechanics Field Theory
particles had vertices
interactions b propagators
AD.B b coupling constants
ZN R N:h order diagrams
cluster expansion L expansion in ZlR ];(cos Bax-1)
correlation functions hnd Green's functions
18qx (x)

a charge, q, produced at x hnd the operator, oq(x)-e
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NOTATION TRANSLATTON
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Inverse Dimensfonal
Reference Temperature Activity Factor
This Papcr ) '\O“R a,
2,-83_NBq>
J. Frohlich B.=B F R _
(Ref, 5) F
EF' \)GII q
Coleman ‘/— °o=8“Aqu2 1
: ) B.=V4MB q r=xu
(Ref. 13) ¢ u=8iHRSq2 Ve v

Mandelstam

7 2_ 2 1
B =VY4IB g po =8N Bq 1
(Ref 16) H Mo o
Kosterlitz & 8 -8 N .
Thouless (Ref. 15) K.T. K.T. °
Hauge & 8 =B _ .
Hermer (Ref. 15) H.H. Lo 1
1.2
87 8

Luther
(Ref. 17)

1.2
u =1~ 3 89°)

-1
copran2gq L1 o 2
Y =4T8q (lj- 7 847D
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NOTES TS TABLE 2

As previously shown, & correct definition of the energy mekes the
theory independent of a, even though the potential is 21n ﬁL . Varying
the dimensional factor redefines the self-energy (and henceothe sctivity)
at the cost of redefining interpuarticle energies. This is done in such
a way lhat the total energy remains unchanged.

The massive Thirring model, & =¢(i7-M)y- 1/2 g(E&"w)(EYuW) is
known13’16 to be equivalenit to the sine-Gordon: g= (—ig -1) N and

- Bq
2A0cos VFEEE gqx corresponds to -Maw. M, a cuto’f dependent quantity
(like AO) depends on how one renormalizes and thus may be chosen arbi-
trarily.

The 0{2) non-linear o-model w!th linear symmetry breaking term,

X = ;i: 1/2(3 0)(3%) + 1/2 (3 3M3"M) + an+g(02+ﬂz-f§)l , is also

equivalent to the sine-Gordon:
1

f = —=— and a =1 JT8 q.
b VI8 q o
-2Bug
AK 7. =€ "®'. Kosterlitz and Thouless interpret U . BS the

energy required to create a plus-minus peir at a distance of their cut-
off, r .
[}
Hauge cud Hemmer deal with a partition function so that the activity
never appears.
In Luther's paper the coupling constant corresponding to the acti-

vity comes in via the inverse lattice spacing.
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HKK

{0}
FIGURE 1. SOME FEYNMAN GRAPH COMBINATORIAL FACTORS. In (a)
there are four lines connecting the two vertices. According
to rule (e) there is a factor of —~. (b) is a three-fold
self energy tadpole. According to rule (f) there is a factor

1 1
of —3-!? .

PUE R S

FIGURE 2. THE EFFECT OF SELF-ENERGY TADPO.3S. The bare ver-
tex is replaced by a sum of terms, each one with an additiopal
tadpole attacked.

)

¢« -+ Q + V + vee =[0) orwaLizeo

FIGURE 3. THE DIAGRAMS OF ORDER Xo.

o o -+ (:::) + <§§§> + oo

FIGURE 4. THE DIAGRAMS OF ORDER ALZ, The self-cnergy tad-
poles are dropped acording to the modified (b) and (f) rus.:c.
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FIGURE 5. DIAGRAMS OF ORDER X>. Diagrams of figure (a)
have sn even number of propagators between vertices, whereas
(b) have only an odd nunmber.

!
Ag Mg \ \R
PLASMA \ DIPOLE PLASMA | DIPOLE PLASMA DIPOLE

2 g2 2 B¢ Bq?
(a) (b)

FIGURE 6. THREE POSSIBLE PHASE DIAGRAMS.

ey v Ty e

FIGURE 7. CONTRIBUTIONS TO TBZ TWO POINT FUNCIION. Although
individual graphs are not divergent, the sum of these graphs
rives a divergent contribution to the two-point function when

B2,
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FIGURE 8, WINIMUM ENERGY CONFIGURATION,

-+ -1+
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FIGURE 9. LEADING CONTRIBUTIONS TO THE ENERGY OF A MINUS
CHARGE.

&

FIGURE 10. AN INFARED-FORBIDDEN DIAGRAM.



CHAPTER V

TOPOLOGICAL SYMMETRY BREAKDOWN
AND QUARK CONFINEMENT
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1. INTRODUCTION

In a recent paperl, 't Hooft has stressed the importance of
the center of the group in non-abelian gauge theories. This has
exposed new concepts and created new possibilities for quark
confinement. The centef of SU(N) is ZN' isomorphic to the set
of integers, 0,1, 2, ---, N -1, under the operation of
addition modulo N. ZN’ with its finite mupber of elements and
unusual modulo addition property, is a feature distinguishing
non-abelian tneories from abelian ones. It may be the crucial
factor explaining why mon-abeiian theories confine though abelian
theories do not. Instantons also differentiate SU(N) pgauge
theories. However, dilute instanton gases do not co..fipe and dense
instanton gases are hard to handle. The runaway scale and density
problem has made instanton calculations virtually impossible to do.
There are now conflicting viewsz’3 on their relevance to physical
processes, problems, and confinement. 't Hooft ZN type excitations,
on the other hand, have only been discussed in a formal manner. The
calculations remain to be done and it is unknown whether they will
encounter similar difficulties. Thus, this is an important area of
research. This is what we will be discussing in this paper. In
particular, we will show how some calculations, such as Wilson
loop integrals, can be done in a manner similar to instanton ones.
We will also discuss many physically interesting ideas although no
computations will be done to support them.

Unlike 't Hooft, who used a Hamiltonian approach, we shall
use a Euclidean formulation. We find that the properties of Iy

excitations are particularly simple from this point of view,
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especially when considering Wilson loops, where the effect of the

excitations is expressed in terms of linking numbers.

Although 't Hooft had suggested attacking the problem by going
to a lattice and many people have begun considering ZN lattice
gauge theoriesA, we shall work in the continuum.

't Hooft discussed, in detail, but in a formal way, the nature
of confinement in 2 + 1 dimensions. Here is a review of how it works.
One starts with an SU(N) gauge theory. Using a symmetry breaking
Higgs potential, SU(N) is broken down to Zy- Topological
solitons can then occur. These are not so different from Nielsen-
Olesen vortices5 except that the non-zero gauge potentials are
proportional to As (for example) in the SU(3) case and more Higgs
fields are involved. Away from a Nielsen-Olesen vortex, field
configurations look like a gauge transformation, U(x), with

UG = exp (i¢), so that A, = - 1 [auU(x)] vlx) and

?

d(x) = U(x)F (see Sec. III for notation). Likewise, 't Hooft

vortices are approximately singular gauge transformations, Ux (x)

(x4 is the location of the soliton and x is the pcint where (t)he
gauge trgnsformati(;n is applied}. When Uxo(X) is written as

exp [i ¥ ai(x) —Zl] , that is, the fundamental matrix representation

i=1
is used, Ux {x) has the property that when x encircles Xy and

returns to x, Uxo(x) is an element of the center of the group. Such
a transformztion is multivalued (and globally ill-defined), however
when written in the adjoint representation (for example), it becomes
single-valued. In 't Hooft's model, gauge and Higgs fields are in the
adjoint representation so that Uxo(x) is well-defined.

1f (wi(x)) a Fi are a set of vacuum
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expectation values which minimize the Higgs potential, then the
classical configuration for a 't Hooft ZN soliton at Xy is
A = - é ’a“u"o(x)] U;i(x) and 9;(x) = U, (¥F; far from the
vortex. Of course, nearby the field configuration is non-trivial just
4s in the Nielsen-Olesen case.

In 2+ 1 dimensions the above solitons are particles
with extended structure and non-zero form factors, They are stablc
for topological reasons and carry a topological conserved charge.
‘Thus charge is governed by the group, Zys which means that charge
is conserved modulo N so that, in principle, N charges may annihi-
late. This ZN group is completely different from the one
associated with the center of SU(N) and should not be confused
with it. There are now two Z's. The ore associated with the
soliton charge will be called topological ZN' 't Hooft argues
that it may be possible that topological ZN is spontaneously
broken, a phenomenon we call topological symmetry breakdown. This
is an interesting phase in which quark confinement occurs. The
argument is as follows: 1f topolngical ZN is broken then there
are N different kinds of vacuums characterized by their
topological Z, numbers (compare this to spontaneous symmetry
breakdown of a U(l) symmetry by a Higgs potential, where, instead,
there is a continuum (2 circle} of vacuums defined by the direction
in which the Higgs field prints). In general, at any instant in
time, the physical vacuum will look like a collection of domains
each characterized by its ZN value, Separating these domains
will be Bloch walls. They carry an energy per unit length and

may be associated with a new quanta in the theory: closed strings.




232

When particles in the fundamental representation are introduced,

't Hooft argues that they will be confined. A guark and an
antiquark will have a Bloch-wall-like string between them. This

will provide a linear confining potential. For SU(3) three strings
may join so that baryons can consist of three confined quarks. This
is 't Hooft's 2 + 1 dimensional quark confinement scheme. He
derived it using simple, physical, intuitive arguments.

Several questions are generated. First is how does one extend
these notions to 3 + 1 dimensions. Following tbe same line of
reasoning there will be volumes of ZN vacua (instead of areas)
and closed surfaces separating them (instead of closed strings).
Clearly closed surfaces are unable to interpolate between quarks
and create a linear potential as in one lower dimension. For
this reason 't Hooft conjectured that confinement in 3 + 1 is
different. Instead of proposing a confinement scheme, he settled
for an operator algebra which allowed the determination of the
different phases of the theory. One of the important results of
our paper will be the extension of the 2 + 1 dimensional scheme
to 3 + 1 dimensions. The reason we are able to do this is that in
a Euclidean formulation of the 2 * 1 dimensional model we find a
slightly different picture of the confinement, which has a straight-
forward generalization to one higher dimension.

A second question is how does one do calculations. 't Hooft
has used formal powerful arguments, but it remains an open problem
as to how to do computations. Of particular interest is the
coefficient in front of the linear potential and its companion,

the slope parameter. More generally, how does one calculate in a
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theory with topological symmetry breakdown? We are able to
supply some of the answers. We treat the Nielsen-Olesen case in
Sec. III and the 't Hooft model in Sec, IV. To do these calculations
requires a new calculation method. We develop it in Sec. II. The
problem is equivalent to treating a gas of closed loops. Similar
problems arise in lattice field theories. Examples are the three-
dimensional 0(2) classical Heisenberg model and the four-dimensional
abelian lattice gauge theory discussed by Banks, Myerson, and
Kogutb. These authors must deal with a gas of monopole loops. Our
gas consists of Nielsen-Olesen or 't Hooft vortex loops. We
treat such a system by developing a field theory to describe it.
Very simple arguments then tell us about the quark-antiquak and threc
quark potentials. Although our main interest is in topelogical
symmetry breakdown and Wilson loop calculations, Sec. Il discusses
scveral field theory phenomena in this new picture. These concepts
are enumerated and briefly discussed.

A third question is what afe the essential ingredients in
't Hooft's 2 + 1 confinement scheme? Certainly topological
symmetry breakdown is one of them but are there others? We
find the answer is yes. Topological symmetry breakdown leads only
to a logarithmic quark-antiquark potential unless another
ingredient is also present. It is the monopole. The 't Hooft
model has monopoles in it. They play an instrumental role in the
quark confinement. Before topological symmetry breakdown, the
monopoles are bound together in monopole-antimonopole pairs.
These dipoles have little effect. Topological symmetry breakdown

liberates these monopoles. They, in tumm, confine charges in a
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manner not so different from Polyakov7 and hhndelstams. In Sec. VII,
we relate these ideas to Mandelstam's quark confinement scheme. The

Z,, confinement in 3 + 1 is practically the same as Mandelstam's-

N
We consider this to be an important result: two seemingly different

confinement schemes are, in fact, the same.

The remaining open problems and questions (and there are
several) are presented at the end.

II. CLOSED LOOP GAS AS A FIELD THEORY

This section will relate a gas of closed continuous loops
to a relavistic field theoryg. Connections between statistical
mechanics and field theory often prove usefullo. We find this
to be the case here and will use it to extract results in a
physical and almost intuitive manner.

We shall proceed in steps. Note, first, however, that
a continuous curve when broken into N segments, resembles a
polymer with vertices acting as atoms and line segments acting
as bonds (Fig. 1)}. Sometimes this analogy is useful. Consider an
open macromolecule (or polymer) which goes from X to x via
Xps Xps tees Xy (Fig. 1b), To enforce the condition that

h atom be near its

the curve be continuous, we demand that the it
two neighbors. This can be done by requiring two neighboring atoms
to be a distance € from each other, that is, the bonds have

a fixed length, €. The total length is Ne. 2llowing curves

of different lengths means summing over N in the partition
function. To make the model more physical, assume the atoms have

a chemical potential, yu, and interact with a "'strength” g to

an external potential, V(x). The grand partition function for
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a macromolecule with ends fixed at Xy and xp 5 Xy is

Z(xo,xf)= E exp(-BuN) ZN(xo,xf),

N=1

Ixlxgrxgd =

N

x exp |- B E gV(xi) .

i=1
‘—‘:\" the partition function for a macromolecule with N + 1 atoms
and N bonds, is a summation (integration) over all positions
oi intcrmediate atoms weighted by Bolrzmann factors,

exp ]- BgV(xi)] , with the constraint (the delta functions) that

bonds have length, ¢. The factor, —1—2- , normalizes this so
4ne
th

that given the position of the i~ atom, the integration over

the location of the (i+1)™ atom is unity. Modification of this
factor can always be absorbed in u. As long as Xg and X, are
far apart and € 1is small, the sum over N effectively begins

with the enormous value, No = -Lx—f-;—xﬂ-l— It does no harm to start

the sun at N = 1.

Eventually, we will take & to zero so as to recover
continuous curves from segmented N-step ones. In this limit,
ZN resembles a Feynman path integral. Path integrals have been
widely used to account for the statistical properties of macro-

moleculest], We shall review this. As is common in statistical
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mechanics, one must coarse-grain: write N as nm with both n and m large,
that is, break up the macromolecule into m units of n atoms.
Consider the situation where € is small, n is large, but /h e is

also small. Then

(v+1)n-1 ] 3 3/2
o s(lx - xal - - ()
i=un e Tne

X exp |- 3 fx - X ¢ .

ZnEZ \ {(vtl)n “vn-1 (2.2)
In Eq. (2.2) i=wvn to (v + 1)n -1 are the atcms in the vth
unit. Equation (2.2) is true because the left hand side represents

a random walk between x . , and x (v1)n which by the Central Limit
Theorem approaches a Gaussian. Tf /nh e is small compared to the
distance over which V(x)} varies appreciably, then V(x) may be

treated as a corstant in each unit. We oktain

o [(m-1 3- 3 mn 1)2
“éﬂd"t(zm) e’“’* 1 St
n
X exp -BZnV(x)-BZ nyy. (2.3)
v=1 v=1

The xj's have been relabelled so that X, is the average value

of x in the vth cell, As € goes to zero, Eq. (2.3) approaches



a Feynman integral. Using the variables

(2.4)

and the "bare' mass and coupling defined by

OSN
{

"|®
3>

1]
(=)

(2.3)
8 =% >

™

Equation (2.3) becomes

©~

o T Z
=5 dt ﬁf/’ x exp| - (Mi + m2 + Bg V(x(s])) ds
;7 0 [ o 0
0 x(U) = X,
x(1) = Xg (2.6)
The sum over N has become an integral over T
Remarks:

(a) A bond-vector field interaction of the form
. X. *+ X.
E alx; - x5.1) H“(fi) can also be considered (Xx; = — i-1
3 u
1
is the average value of x along the bond).

The effect is to add
T
a temm - Sqf iu(s] H"(x(s))ds to the action in Eq. (2.6).
0
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(b) Equation (2.6) resembles the Green's functions which
arise in a particle dynamics representation of a field theorylz.

(c) The factor :62' can be removed by normalizing Z
appropriately (a sort of wave-function renormalization). In any
case, physical quantities (averages) do not depend on the overall

normalization of Z .

Summarizing, the Green's functions, G(xfﬁ(c)’ which

appear in a particle dynamics representation of a field theory,

correspond to the grand partition functions of polymers with ends at

Xg and X5 - The sum is over all continuous paths of arbitrary shape

and length. The mass squared is proportional to the chemical

potential which must be appropriately scaled to obtain a continuum
limit. Other inputs are (a) that n + large so that products of
delta functions approach Gaussians, (b) that /e - 0 so that
Z V(xi) +nV(x), and (c) that e + 0 so that segmented
X unit

curves approach smooth ones.

Representations such as Eq. (2.6) are well known to chemical
physicistsll. Equation (2.6) is not a new result. We have
rederived it as a warm-up for the next step: polymers in bulk.

It is not hard to believe that a gas of polymers might be describable
asaHiclidean field theory, and we shall show this. We have known
about this correspondence for some time and have thought about

using it to obtain field theory results as in reference 10. Until
the present application, this analogy did not seem fruitful because
a gas of closed loops is a complicated statistical system of which

little is known. Fortunately, we shall not use the statistical
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mechanics side of this amalogy in an essential way.
Now consider closed polymers, obtained by setting Xg = X % x
in Eq.{(2.6). Allowing loops to be locatec an)whcre nessitates

integrating over x. There is, however, an ovcrcounting

problem. For a closed polymer of N atoms, it is impossible to
differentiate which atom was the starting point, that is, the N
different starting points cannot be distinguished. For each config-
uration that begins at X,» traces an N-fold segmented path, and
retumms 10 X, therc is one which hegins at X;, traces out the self-
sane path, and returns to x5 Thus configurations are overcounted
by a factor of XN. The partition function for a closed polymer of

arbitrary length and location is

2 =[d3x Z T exp [-su.\'] Z,(x,%), (2.7)
N=1

where :\. is giver in Eq. (2.1). Proceeding as before, we obtain

o T,
2 =f %—T‘fdsx E X exp [- (XT + mg + BgoV(x))ds].
0 x(0)=x 0 (2.8)
x(1)=x
Finally, the grand partition function for the gas of loops is
;- > a2 s exp 2
M=0
o 2 2
= f,i exp j- tr 4n [p + mo + egov]f (2.9)

(2.9) Continued on next page.
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- 72[/7& exp} f 5,090 + o2 (x) + Bg V0)62(x) | & f

‘/2 is an overall (infinite) normalization constant. We have used

f ‘1—T[exp(a'r)-exp(b'r) fdzf exp(-z-r)d-r=- E'
0

The ill-defined innocuous extra piece, j dr exp(- b*()]
0

is )7. The operator, iau, is Pu and ¢ 1is a scalar field.
Remarks: {a) As usual, the infinity in /2 is harmless since
it devides out when calculating expectation values.

(b} For oriented curves (that is, curves with a
direction for which curves of different direction are distinguishable)
a functional integral over a complex (charged) field is obtained.
The orientation direction is identified with the flow of charge.
In general, a gas of T different types of macromolecules leads to
a T-component field.

(c) With oriented curves and a bond interaction,

the action, A=f [1 (Bu - ieAu)tﬂz + nﬁ¢*¢] &% can be obtained.

(d) Interactions between atoms (and/or bonds)} can
be introduced using auxilary fields. Suppose the interactions are

of the form E gZV(xi, xj). Define

all pairs
of atoms

fc(x, YIV(y,2)d% = 63(x - y). Then
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2 1 .
4=
%

[ Ax exp 8 f X(IG(x, YIx()dkdy

X [f‘,’(x [/jft exp;-[l}u¢au¢ + mg + sgox(x)} a* f (2.103)

x exv{ f[x(X)G(x, Y) x(y)dz&dsy}

This is verified by first doing the ¢ integraticen to yield a gas
of closed loops and then by doing the x integration.

(e) In particular, a ¢4 theory corresponds to a
repulsive interatomic delta function potential.

(f) Three dimensional scalar QED corresponds to a bond-

bond interaction of the form

2 -+ =+
S b°b
& 2 B )
. bb~
paiys of .
bonds, b and b
.th

In Eq. (2.11) b= ;i+1 - ;i is the bond vector between the i and

i+ 1)th atoms, Ty - is the distance between the two bonds, and
the sum is over all pairs of bonds. The interaction is attractive

for antiparallel bonds and repulsive for parallel ones.
: 1 2 1 2.2 2 2
(8) The Lagrangian, of = - 5{3,0)" - 3 m¢" - Bg,x¢ - %(Bux)

2 2
Bm - x
- __§T__" corresponds to attractive interatomic Yukawa potentials.
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When my = 0 , Coulomb interactions are obtained.

(h) The method works in any dimension, of course.

(i) Our method can be applied to obtain local field theories
or solitonsg' 13. As reference 13 points out, perturbative expansion
about vacuum expectation values misses soliton solutions. These
extr.: solitons carry topological charges which are conserved. They
gencrate closed loops in the appropriate dimension, via a
macromolecule analogy yield partition functioas similar to
ZN(x,x) of Eq. (2.1) and Z of Eq. (2.7), and therefore result
in a field theory. Of course, the solitons interact with the
original fields. This can be taken into consideration using
auxilary fields and Lagrange multipliers (as done in reference 13).

The macromolecule technique would replace the left-hand-side of

Eq. (3.3) of reference 13 by

1 M
z: A (2.12)

M=0
with
® ) T/.2(8)
z =j d-r_deX jﬁx exp f (" sl + iQu(x(s)))'cu(s))ds
0 x(0)=x o+ 4
x(1)=x (2.13)

This would provide an alternative derivation to the one of
Appendix A of reference 13. Although the normalization of delta

functions in Eq. {(2.1) is unknown and could generate an unknown
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mass parameter, mé, our intuitive feeling is that nﬁ =0,
. although we cannot prove it. If it were non-zero, the measure factors
in going to a sum over trajectories, would determine it in terms
of the parameters in the original Lagrangian. One might think
that mé could be the missing factor cancelling self-energy
infinities found in reference 13 (Sec. IV), but we believe this is
not the case. The infinities occur because near the soliton the
Higgs field must go to zero. Expanding about non-zero Higgs field
vacuum expectation values cannot deal with such a constraint.
Regardless, the mass, mo, is geometrical in nature and has
nothing to do with the soliton's physical mass.
(j) The chemical potential per atom and m, are
proportional. For mg < 0, the chemical potential is negative
and lcops will populate the vacuum indefinitely. When a symmetry
breaking potential is used, repulsive delta function potentials
between atoms stabilize the proliferation of loops. Therefore,
spontancuos symmetry breakdown looks like a dense gas of loops
from the symmetric vacuum point of view (the “'spaghetti vacuum').
(k) Renormalization infinities eccur because the
macromolecule potentials corresponding to interacting relativistic
field theories are singular. For example, a ¢4 theory corresponds
to repulsive delta function potentials between atoms. This
extremely short-ranged singular potential consequently ruins the
c oarse-graining procedure used in going from Eq. (2.1} to (2.6).
It will no longer be true that these '‘random walks' apprSach

Gaussian distributions. A ¢4 theory is not so different from the
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self-avoiding random walk plablemll' 14. The non-Gaussian nature

of this process is well known14. This will lead to wave function
and mass renormalizatior as perturbation theory tries to approximate
non-Gaussian processes by Gaussian ones. The singular nature of
potentials can also cause other problems. For attractive potentials,
the interatomic forces might be too strong (''non-renormalizability')
and cause macromolecules to collapse into 'balls of wire".
Perturbation theory is insensitive to the sign of g and therefore
such effects manifest themselves for repulsive potentials, also.
The higher the dimension of space-time, the more singular the forces.
This is why fewer renormalizable theories occur in higher dimensions.
111 WILSON LOOPS IN THE PRESENCE OF TOPOCLOGICAL VORTICES
This section will calculate the Wilson loop in the presence of
a gas of Nielsen-Olesen vorticess. The next section will treat
't Hooft Z3 vortices. These calculations are similar to
instanton caiculations, where multiple instanton configuraticns
generate a gas. Various computational devices have put instanton
calculations on a solid foundation7. Statistical mechanics and
physical intuition determine their properties quite easily.
This is how Callan, Dashen, and Gross2 are able to determine the
magnetic properties of a dense BPST15 instanton gas. Contrast this
with a vortex gas. The vortices may vary in number, position, and
the way they are imbedded. They may twist in the most unruly
manner. These complications lead one to think that such a
system is too difficult to deal with, however, the methods of
Section II make the problem tractable. We are able to do Wilson

loop calculations. In fact, gases of vortices are as easy to
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handle as gases of instantons. We will show how calculations
involving topological spontaneous symmetry breakdown are done.
Take the Euclidean space version of the 2 + 1 dimensional

Nielsen-Olesen models. This is scalar QED with a Higgs potential.

The Lagrangian is

=1 uv i 2 2 . 22
K-IFWF +|(au 1eAu)d>| + A (D% - F9)°, (3.1)

and has vortex-like solutions along the third axis of the form

(x) = f(plexp (ip),

a(p), (3.2)

[

A¢(X)

Az(x) = Ap(x) =0

Cylindrical coordinates, p,z, ¢, have been used. Graphs of
f(p) =|¢ (p)| and H,(p) are given in Fig. 1 of reference 5.
The important properties of the solution are
i) (01,@2) points radially outward from the vortex.
ii) |#(p)} vanishes at the vortex (at p = 0) and goes to F

far from it (p ==).

iii) a(p) + e_lé' far from the vortex. This means that the

vortex contains a tube of magnetic flux. The total flux is

2n 2n
fdxdy H,(x,y) = j; Ayodods = .
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Property (i) is topological in nature and makes the soliton

topologically stable.

Property (ii) has important implications (short-ranged ones and
long-ranged ones). First, near the vortex where |®(p} | = 0, the
photon is ;ffectively massless, whereas far away it has mass because
the Higgs field has a vacuum expectation value. This is one way of
understanding why flux is channelled into tubes. There is a tubular
"mass confinement' bag. Also &(p = 0 )| = 0 indicates symmetry
restoration in the vortex, a point which we shall discuss in detail
later. Finally, we should mention that the Higgs field prevents the
vortex from collapsing to zero size and gives it a finite mass.
Secondly, the Higgs field at infinity must take on vacuum expectation
values and be covariantly constant. The latter means that A¢(p)
is determined in terms of the phase, x, of the Higgs field.
Au 1s pure gauge and x(x) - x(y) = e j; Audx”. Whenever
y 1oops around a circle and returns to x the phase, ¥,
must be an integral multiple of 2w. This causes the flux
to be quantized. We shall return to this point in Sec. VIIL

Property (iii) contains the physics: the vortices
are quantized tubes of magnetic flux. This is the key
physical characteristic.

The vortex soliton has a topological number, which
can be seen in two ways: using gauge potentials or using Higgs fieldgé

Of course, the two are interrelated. In terms of Au’ consider
y

exp [ie f A d.x]‘ Such a pure phase takes values on the umit
x

circle in the complex plane. Fix x and move y around the vortex
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as in Fig. 2. In regions where “\1 is pure gauge and the Higgs
y <

field is covariantly constant, exp [ief A" d_x| mist return
x

to 1 when y returns to x. This forms a map from a circle in

Euclidean space to the unit ccmplex circle. These maps are

characterized by winding numbers, n (S]) = Z, the set of integers.

Winding numbers count the number of times the image curve loops
around the unit circle. Regions of space with o= 1 or o=

contain a vortex or an antivortex.

In terms of the Higgs field thetopology is as follows: far

away |¢| must be F, that is, ¢(x) must take on values which

minimize the potential, A(®*¢ - FZ)Z; they form a circle of minima.

Again consider moving y around a closed curved (Fig. Z). Then
¢(y) {forms a map from a circle in Euclidean space to a circle
(of minima). Again these maps are characterized by L] (Sl) = 7.

Because winding number is invariant under continuous
deformations (homotopies), winding number can neither be created
nor destroyed unless an (unallowed?) discontinuity occurs in
field configuration. This provides the topological stability of
the vartices.

In three dimensional space-time, orient the vortex lines.
orientation indicates the direction of the flux and the flow of
topological charge. In this way antivortices act like particles
travelling backward in time. Of course, vortices need not be
straight lines. In general, they twist and curve in an arbitrary
manner. Since they may never end, they form closed loops. If

they have a positive mass, these loops will be ~71ill, will act

The
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like neutral objects, and will have few physical consequences. In
contrast, when their mass is negative, they fill up the vaucuum and
their effects can be dramatic.

Having reviewed the properties of Nielsen-Olesen vortices,
let us put a Wilson loop (with an arbitrary charge, q) in the

system (see Fig. 3a):

(exp[iq§ A-dvl> . 3.3)
t

Consider a single vortex. What is its effect? Using Stoke's
theorem (or simply physical intuition), one sees that the Wilson
loop measures the linking number17 of the two curves. If the
vortex links n times the contribution is exp (i _Zé_:: qn). Examples
with n=+1, -1, and + 2 are shown in Figs. 3b, 3c, and
3d. For several vortices thecontribution is expli 2—:3 (n, - n_)] ,
where n, and n_ are the number of positive and negative linkages.
Jdealize the situation to the case where vortices are thin (trace
out curves rather than tubes) and are not mutually interacting.
This car be rectified if the form of the interactions is
known. For simplicity set tke mess equel to zera. In the
end, we will restore a ncn-zero mass. The linking number

. 17
of two curves can be expressed as an integral”':

fx -y

n=-31?‘[d§.fﬁ_')')_"l§>’. (3.4)
G C
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Here, n is the number of times C; and C 1link. For several

curves the total linking number with C is

where

§(§)=-£,;[(’" X

AT (3.6)

Note that B(x) has the same form as the magnetic field produced
by « turrent flowing in C. Take C to be the Wilson loop and
think of the C; as vortex loops. Using the metrod of Sec. II,
the calculation of (3.3) in a gas of idealized Nielsen-Olesen

vortices is

(exp[iqu - dyl> =
M .
Tl f f fﬂx .
-v—l
M=0 - x
X ('ri) = X3

(3.7)

T.
Lyosig2 - SN
x exp{-f ((—xil_ *2"—;113"()(1)311])(151}]
0

(3.7) continued on next page
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1
rsame term with Bu = OI'

[fﬂ’ exp ’ ) f ‘(3u ) Eemﬂu)u'lzf .

= _—Isame term with B, - 0]

If the vortices interact and have a mass Eq. (3.7) would be

replaced by

o e} -G, - 1298 ) 4% + nZyry Vw0 ) -
u e i
[same term with B =7] R
(3.8)

fl,"’(w*w) might be, for example, fd3.v._/213yw*(x)w(x) Qg;[ix—u_xl—yi—ﬂl

x y*(y)y(y). This would correspond to a Yukawa interaction

between points on the vortex. In anycase 7—/omust be a functional
of ¢*(x)y(x) only. Given the interactions and mass of vortices,
the exact form of Eq. (3.8) can be determined. In principle, m2
and 1L/E (y*y) may be approximately deduced using semiclassical
methods or perhaps by examining the Lagrangians of reference 13
in more detail.

Of course ¢ is the vortex field. In fact, inserting
V¥ (x)¢{y) in the integrand cf Eq. (3.8) (with Bu = 0 so that the
Wilson loop is absent) and returning to a macromolecule description,
one obtains a gas of closed vortices in the presence of one open
one which starts at x and ends at y. Hence, ¢*(x) produces the
vortex endpoint at x and Y(y). destroys it at y.

Regardless of the detailed nature of "\ (¥*y), we can

evaluated Eq. (3.8) semiclassically for various cases. i) When
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m2 >0, y=0 1is expected to be the vacuum. This is also the

solution to the equations of motion for a non-zcero Bu and the
Wilson loop to this approximation is 1, Vortices do not contribute
to the Wilson loop as expected. This is becausc for m2 >0

the vortices are small loops and rarely link with the Wilson loop.
i1) Wwhen m2< 0, these is topological symmetry breakdown in
topological charge. The vacuum fills up with vortices. Presumably
'E_‘;‘(;r*u) contains repulsive forces which eventually stabilize

tne proliferation of loops (an example is S (9R) = gy*ev*y  which
corresponds to repulsive delta function forces between points on
vortices). ¢ then acquires a vacuum expectation value, (> = po .
Because the (denominator) Lagrangian of Eq. (3.8) is a ‘unction of
vru(x), \‘uoexp(ie) for 0<8 <2Zn are also action minima.

Consider a long rectangular Wilson loop of width, r, and length,

t(Fig. 3a). Trying ¢ = cpo as a trial solution yields

(exp[iqﬁA < dy]> -~ exp[- (lgﬂ)zfdsx Bz(x)] . (3.9)

B(x) 1is given in Eq. (3.6) and is the magnetic field created by two
parallel wires with opposite current flowing through them. The
evaluation of Eq. (3.9) is a problem of undergraduate electromag-
netism18; fdstz ~ (zl?)ZZtln(r/ro). The constant T, should

be of the order of the vortex width, since thi¢k vortices can
partially intersect a Wilson loop and our idealized approximation
breaks down. For g greater than 1, we can find screening type

solutions which better minimize the action. Let m be the
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nearest integer to 2 and set Aq = m - % . Let

v(x) = exp |ix()| v, .

e W W S S Ek B T
X(x) = mjtan I‘/'Yll tan IV_TZIS (3.10)

where (xl, yl) and (xz, yz) are the (x, v) coordinates of
the two lines comprising the Wilson loop. In Eq. (3.10) m must
be integer-valued so that x(x) is single-valued when circling around

(xl, yl) or (xz, yz). We obtain

(.exp {iqﬁ\ . dy! 7 ~ exp [- -@—gﬁt £n r_:; ] (3.11)

We expect Eq. (3.10) to be approximateiy the correct solution
for arbitrary vV (*). Only an attactive singular potential could
cause the vortices to form neutral bound objects and ruin the
picture. Our result is obtained in an almost model independent
manner.

The Wilson loop test is sensitive only to the excess charge.
This is the omipresent periodic (in q) screening effect which occurs
when the potential is due to topological éonfigurations.

Equation (3.11) indicates a logarithmic potential between
charges because of topological symmetry breakdown. Before ¢
had acquired a vacuum expectation value, there was no logarithmic
potential due to the photon because the Higgs mechanism had given

the photon a mass. Spontaneous symmetry breakdown has restored
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a two dimensional Coulomb-like force.

In addition to this topological non-perturbative £n r
potential, we expect the perturbative 2n r potential of the
unbroken U(1) gauge theory to be present also: Recall property
(ii) of the Nielsen-Olesen vortex, that ¢, the charged scalar
field, must vanish at the vortex. Along the vortex the photon is
"massless' in contrast to outside the vortex where it has mass.
When topological symmetry breakdown occurs the vacuum is filled
with vortices until repulsive forces take over. Presumably
this occurs when they begin to overlap. This means that <{¢(x)>
must be zero since vortices occupy all of space-time. The photon
must be massless, since <&(x)> # 0 was the {aztor contributing
to its mass., The original U(l) charge symmetry is restored and
another perturbative £n r potential due to the photon is
expected. The sequel is depicted in Fig. 4.

SECTION 1V Z,, VORTICES

We will now consider 't Hooft vortices. We will proceed in a
manner similar to Sec III: first reviewing the soliter solutions and
their properties and then performing the Wilson loop calculation.

The topology16 of an SU(N) vortex is most easily discussed

for N = 2. For this case, a possible Lagrangian is

Z_ 1.2 .1 . 2.1 . haa 2
A=5Ey 7l (s, - 1gA:La)0(1)l + 7 1, - igAlLYe ) |

(4.1)
*V Gyt



where

2 2
- 2 - 2 . 2 _ 2
Vieay %) = Mlay - Fay) * 2l - Fey

2
+ X3(¢(1) . 0(2)) . (4.2)

¢(1), 4>(2) are two SU(2) triplet Higgs fields, L? are the
3 x 3 SU(2) matrix generators, and A, AZ, AS, F(l)’ and F(Z)
are constants. Other Higgs potentials will also work.

Because all fields are in the adjcint representation, the
symmetry of this model is SU(Z)/Z2 or 0(3). The Higgs potential
breaks this symmetry completely, so that all three gauge fields
acquire mass. The remaining bosonic excitations are also massive.
From this point of view, there can be no long range forces.

As in the Nielsen-Olesen case, there are two types of
topological numbers, one related to Higgs fields, the other
connected with gauge fields. The solitons have both types.

Consider a static vortex at x =y =0 (Fig. 2). Go far from
it and circulate around it, The Higgs fields must take on vacuum
expectation values. In going around the circle, these values trace
out a curve in the minima, M, of the Higgs potential. Such curves
are characterized by nl(M'J. Are there curves in M not deformable
to a point for the V in Eq. (4.2)? M is the set of pairs
of three dimensional vectors, vy = 0(1)/F(1) and Vi) F °(Z)/F(2)

satisfying V(l)' MR8 V(2)=1’V(1) . V(Z) = 0. If we append
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the vector v(3) = v(l) x V(Z)' an orthonormal frame is obtained.
Therefore, M 1is the set of orientations of this frame. Fix a
reference frame vc(’n =(1, 0, 0)), V((’Z) = (0,1, 0), V?S) = (0, 0,1.
An arbitrary frame is determined by an 0(3) rotation of this
reference frame. Therefore, M is the set of orthogonal tranfor-
mations. Characterize the rotation a la Schifflg by a vector in the
direction of the rotation whose magnitude is the angle of rotation.
M becomes isomorphic to the solid three-dimensional sphere with
antipodal points identified. This space has curves which cannot be
deformed to a point (see Fig. 5). However, a path which goes twice
along the route of Fig. 5 can be deformed to a point (see Fig.6).
Physically this is demonstrated in M.T.W.ZO. The fundamental
group, nl(M), is ZZ’ and this characterizes the vortex.
The vortices carry a tépological charge conserved modulo
two. Again do not confuse this Z2 with the center of SU(2). This
is another ZZ’ topological in nature. Typical non-trivial Higgs
configurations are shown in Fig. 7.
The topological number associated with the gauge field is

similar to the Nielsen-Olesen case. Llet Au = Ai La, where 12
are the 3 X 3 "angular momentum'" matrices.

P exp‘, igﬁ Y Au . &M ” B is the path ordered product from
X to y. Asx y goes around the circle and back to the starting
peint, x, (Fig. 2), this matrix traces a curve in 0(3). Because
we are far away, in the region where the Higgs fields are covariantly

constant, this matrix is precisely the O0(3) rotation that takes

the Higgs frame at x to the Higgs frame at y. Again a closed
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curved in 0(3) is obtained which begins and ends at the identity

element. Again Z, characterizes the topological charge.

a a
. _1 a . T . . .
Letting /Au =5 Au with ~ , the Pauli matrices:

[p exy (igfﬂ\u . dxp)lue = - by (4.3)

for a gauge field vortex. The line integral is around a circle
containing the vortex.

The important local properties of the vortex are

(i) ¢(1) and ¢(2) Lbecome parallel at the vortex (Fig. 7¢)

so that the frame becomes ill-definedZI.

,(ii) For point-like vortices and Aﬁ not varying rapidly in
SU(2) space (as the vortex is approached, we expect Aﬁ to go to
zero rapidly but do not expect the color direction to vary rapidly),
there is a delta-function-like contribution to the flux in the

direction of SU(2) space parallel to ¢(1) and ¢(2):

- Fgs y)=$2(2) CELx, ) " Bsw sy, (4.4

For SU(N) we expect the following to be true:
(a) The Higgs potential is chosen to break the symmetry

completely. The Higgs fields are in the adjoint representation.
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For SU(3) two Higgs fields are sufficientzz. Let 0((’1) be the

vacuum expectation value of the ith Higgs field. Let
Vo = L2¢°’.l /F .., where Ll are the Lie algebra adjoint matrices
(1) @)@
of SU(N). The symmetry is completely broken if for any np',
2,2 :
{ n-L", v(i)} # 0 for some i.
(b) Vortices are characterized by m (SU(N)/ZN) < ZN'
. _ R 2 Wt
(c) Define V(i) (x) = ¢(i)(x)L . The "hat' over rb(j)

indicates that it is normalized to 1, so that

PEPIIN L
@5y (%) = 6 )/ (i)(x)¢(i)(x)]
Then at the vortex, there is at least one n~ such that

nl : Ll, v(i)(x)J =0 for all i, where x is the location of

the vortex. Let -} be the set of vectors, n, such that
[nﬁ' . Ll, v(i)(x)] = 0 for all i. Then an, + bnz is in - -
and [nl, nz] is in»,;’r;' , if ny and n, are in ~..-\" . The
latter is true because [[nl, ”2]’ Vi) (X)} = - [[nz, V(i) (X)] s ﬂl]
[[v(i)(x), nl], n,| = 0. The set of matrices n Ll for
ne.Fforms a Lie subalgebra which generates a subgroup, H, of SU(N}.
(d) We expect that only one np' occurs, 50 that ‘54' is one

dimensional and H ='U(1) (in SU{3), for example, the two Higgs

2 3 ‘

fields might point in the TT and TT directions so that only one
2

n occurs and nl = 618). Furthermore ng“-—AZ— has N-1

eigenvectors with eigenvalue % and one eigenvector of eigenvalue

L .
N&—l when nl . nl = ﬂﬂN——l—l and )‘T are the fundamental matrix
Pl S

representation normalized so that tr > T 7 For’ SU(3) we
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believe the set of nl satisfying this condition is of the form,

n - %: exp (ia - %) 2 2 exp (- ia . %), for eight vectors, a .

T Zz
(e) There is a delta-function-like contribution to the flux

of the form

nt P T s sy a.5)

when nz is normalized so that nz . nﬂ = —ZTNE-_IT

(f) When more than one nE occurs, the flux might rapidly
fluctuate along the vortex in different color directions. Such
fluctuations may be the color zitterbewegung phenomenon23 associated
with particles carrying an internal symmetry. There is the speculative
possibility that the particles associated with such trajectories are
non-abelian ones and the fields related <o them form a representation
of H. This is highly conjectural and probably impossible to prove.
This is a quantum mechanical effect. 1In this way a dual gauge group
may be generated24. See also reference 21.

(g) That the flux must be in the subgroup, H, is
reasonable physically. At the vortex gluonic excitations associated
with H are massless, because the symmetry, H, is restored. Out-
side, these same fields are massive. This is a sort of tubular
bag-like mass confinement mechanism of field strengths. They are
restricted to the massless regions of space, i.e. the vortices.

The important point is vortices carry tubes of magnetic flux in the

group, H.
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For the rest of this paper, we will restrict ourselves to the
relevant case of SU(3). Let us repeat the calculation of the
last section for SU(3). Idealize to zero width vortices. The
topological charge is conserved mod. 3. Thus, there are two
non-trivial types of vortices. One is characterized by
tr { P exp (igf/A . dl)] =3 exp(lg—i' , the other by
tr | P exp (1gf d.QI = 3 exp (-—gll) E(we are now dotting Ai
into the fundamental representation, lz' , the 3 x 3 matrices).
The path in the path ordered product is to be taken around the vortex.
The 3's in the above equations are trace factors and get replaced
by N for SU(N). Again, vortices will trace out particle
trajectories in three dimensional Euclidean space. If we assign
orientations, then oppositely oriented vortices carry opposite
units of flux and may be regarded as antiparticles. The vacuum
will be a gas of them. If they have a positive mass they will be
small and sparsely located. If they have a negative mass they will
fill up the vacuum. The calculation of the Wilson loop in the
presence of these vortices proceeds as in Sec. III, except that
q = % . The result is

(tr [P exp (igfﬁ\ . dx)J>~

j[’/w exp; fdz [I(a -2“‘B)w’2+mw*w+1f(w*‘“”

same as numerator with B = 0]

(4.6)
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The function, Bu, is given in Eq. (3.6). We have allowed for a
mass and for interactions. In principle, these are determined from
the original Lagrangian (Eq. (4.1) for SU(2)). Again semiclassical
methods and/or local field theory soliton methodsls’ 21 should be
helpful in this respect. The only input in Eq. (4.6) is the
commutation relations of vortex fields and Wilson loops which in
Euclidean formulation become linking numbers. The factor of 3 is
duc to color,

The solutions and conclusions are the same as in the Nielsen-Olesen
case, There is no long-range potential unless topological symmetry

breakdown takes place, in which case the potential is a logarithm.

We conclude that topological symmety breakdown of ZN vortex loops

is not enough to give a linearly confining potential.

The above calculation considered only closed loops and did
not allow for the possibility that three flux tubes could
annihilate. Charge conservation, being modulo three, permits such
events. Whether it actually happens is a question which can only
be answered by finding the effective soliton Lagrangian. It may
be that these events occur with zero probability. This question
must be answered by doing the proper analysis of the original
Lagrangian (the SU(3) analog of Eq. (4.1)). No arbitrariness is
involved. Let us redo the Wilson loop calculation making the ad hoc
assumption that three vortices can annihilate. Configurations such
as Fig. 8a as well as more complicated ones (Fig. 8c) are allowed.
We shall call these configurations triplets, As indicated by
t' Hooft they may be generated by adding a term, Ao(w3 + w‘s),

to the Lagrangian of Eq. (4.6)25:



261

A
L=lapltendm+ W) + 2 0°+ 0¥ . @

This is seen by doing perturbation theory in A ¢ zero'th

order in X o is equivalent to our prévious gas of interacting loops.
Second order (there are no first order terms) in Ao produces the
configurations of Fig. 8a. Higher order terms yield a gas of those
Fig. 8c as well as more complicated ones. Comsider the second

order term from the macromolecule point of view. Neglect interactions

{i.e. set P(y*y} = 0) for simplicity.

A
FRLY [- I(au%“w* e nlym 8 e ) =

2 -0 o )
A
- o 3 3
:0[1+Tjdx#xfj dtlf drzj d'r3
" 0 0 0
"jﬂ"m jfﬁx(2> ﬂﬁﬁ/"m

x(l)(O) =X, x(z)(O) =X, x(s)(o) = X,

()= Xg Xy ()= X X5 (730" x¢
1,2 27,2 3.2
b3 X X
n, .2 2, 2 3), 2
Xexp}-jo ['—%—)+mo} 'f ['7(1—+m0}-j [++moJ
0 0

+ ocxﬁ‘,)J (4.8)

Equation'(4.8) continued on next page.
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(4.8)
where
). (1) .
2 fx 1!’3(11'-5"1 (le a1 | e)]
2= d’x i
z_p Z -—4 [. =1J I :L:r__!; 4TTE
Nj=1 Nyl Ng=l | 1
N,-1 N (2,
2 2 -e
fdsx.(z) -ﬂ- ( ) 12 ! )
1,71 2 i1
(4.9)
Ny-1 N, (Ix(3) (3»)1 I-E)
ATl fdsxw 7 s
s 13 AL 4ne
13— 13—1
N
expi— ‘,_J Bu ZBu- EBU-
ip=1 ip=1 ig=1

Coinments :

(a) 30 is the previously discussed grand partition function
for a gas of non-interacting 't Hooft vortex loops. Zp is the
partition function for three macromolecules which all begin at X,

and all end at Xg (Fig. 8b). The endpoints, Xy and Xg, are
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arbitrarily located in three dimensional Eucidear spacc, hence the
integrals, fd3xofd3xf. There is also an arbitrary number of atoms,
Nl’ NZ, and NS' for each macromolecule; ng) is the position of

the sth atom of the jth macromolecule. The chemical potential is

b= __&, where B 1is the inverse temperature and € is the
leng*h of a bond. The latter is the cutoff parameter in our
segmented line approach to a continuous curve.

(b) The three macromolecules in Eq.(4.9) are 't Hooft
vortices. Reintroducing #(y*v)}, they undergo the same monomer
or bend interactions as loops. Each carries Z—g"- units of flux from
X, 10 Xg.

(c) Because (.30 multiplies Zp, the second term, jozp.

is a system of an arbitrary number of closed loops and one triplet

configuration. Let

2
by 3 2
A = - (%) z (A’}g) (4.10)

be a renormalized triplet activity (the subscript p stands for
pair since there is a pair of vertices in Figs. 8a and 8b). Higher
order tams in )‘p will gerera. multiple triplet configurations and
will lea. to jo ( z :T" )\z Z;i ) , a grand partition function for

a system of closed M=0 loops and triplets. The combinatorial factors
in Feymman rules precisely give the B% factor necessary for a
grand partition function (vacuum bubbles exponentiate).

Let us redo the Wilson loop integral test, allowing for

triplets and more complicated configurations. Both loopsand'triplets
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lead to phase factors dependent on linking number. Figure 9
illustrates some possibilities.

Trouble arises in trying to repeat the calculation of Sec. III.
Equation (3.4) is no longer val'a. It works only for clesed loops
and not for those of Fig. 8. Fortunately, Egs. (3.4) and (3.5) are
not the only ones for linking mumber. Suppose
B is replaced by Bu + aux, where ¥ is an arbitrary smooth

function. Then, according to Eq. (3.5), n =Z / Bu(x)dxu -
i C.
i

f Z

/ T y

(Bu + aux)dx / Bu(x)dx . The effect of aux
. C. .

i C.

1 1 1

disappears because of Stokes theorem; there is a kind of ''gauge
invariance'" in defining Bp. Does this arbitrariness affect the
conclusions of Sec., I111? The answer is no as seen from Eq. (3.8).
4 A change in B1J by aux can be absorbed in the solution for ¢
by multiplying ¢(x) by exp [ i zzﬂ x(x): . This leads to the same
action and the same 2n r behavior of the povential. The
Lagrangian of Lq. (3.8) has a global U(1) invariance which allows
a redefinition of B1J to be absorbed in a redefinuition of ¢ -
Previously, the 't Hooft vortex lagrangian (without the
)\o('b3 + w*3) term) had this U(1l) invariance also. The charges
%- n  and - %—n were absolut-~ly conserved. Such a system looked
like ordinary charge. Only when U’S type terms are added can one
"'see" charge conserved modulo three. This is why the conclusions
of the 't Hooft model were similar to the Nielsen-Olesen case.

Now that triplets are present we expect different conclusions.
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We can use the ''gauge invzriance" to define a Bu which works.
let S be any two dimensional surface warich spans the Wilson
loop; the boundary of S is the Wilson loop. For simplicity

take S to be a surface of minimal area. Let

3 3 ,

B, (x) = [ §7(x-y) ds"(y). (4.11)
S

Here dSY is the surface element directed normal to the surface

(the sign of the normal is determined by the orientation of the

Wilson loop). As a clarifying example, take the Wilson loop in Fig.9a:

Bu(x) = - 6u36(z)9(x)9(1. - x)8(y)8(L - y). (4.12)

If a curve, x(1), pierces the surface then fd’r Xu(t)Bu(x(t)) is
plus or minus one depending on the piercing direction. Roughly
speaking, B (x) of Eq. (4.11) points in the direction nommal to
the surface, acts like a delta function in this direction, and
vanishes away from the surface. 1.is Bu(x) is cbtainable from

the old one by a gauge transformation. The old Bu(x) [of Eg. (3.6)]
is in the ''Lorentz gauge', BHBLl = 0, The new one is in a "surface
axial gauge'. Both Bu's have the same curl. The new Bu,

however, can handle triplets. This follows from the above discussion
when one does perturbation theory in )‘o and returns to che

macromolecule analog gas.



We proceed as in Sec. IIl. The result is
(tr [P exp (igﬁA . di)} > -

Ly 2 2.2 [P S {

Loty S - - &8 L Py

S et exp {f (3, - 3 = B W™+ mury + Lo(e”,why v)]}
term as numerator witn Bu = 0]

(4.13)

Because of the singular nature of B,, the aciion in the numerator
is infinite unless ¢ vanishes on S. The solutions are as follows:

(a) When mg >0 and <(yd>=" ¢ =0 3s thre s~lurion and
there is no c~nfinement due to 't Hooft vortices.

(b) VWhen mg

< 0 and {y> ¥ 0, the equations of motion
must be solved with the constraint that ¢ vanishes on S. This
meass that ¥ will have non vacuum expectation values near S,

the action will go like the area of S, and the potential will

grow with r. Spontaneous symmetry breakdown with triplets present

gives linear confinement.

We now make some observations:
(1) The effect of choosing a general gauge for Bu is
as follows: Suppose the Bu of Eq. (4.11) is replace by
B]J + a_ux. When expanding Eq. (4.13), the macromolecules in a
triplet, going from X, to xp, get multiplied by
ea(p[Six(xf) - Six(xo)J‘ . This transformation is innocuous

only if x(xo) and x(xf) are multiples of -23“— Because there

is a gas of triplets, whose position may L2 anywhere, general gauges
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are not allowed. The arbitrariness in the triplet's location
constrains x(x). A gauge transformation causes triplets to be
multiplied by unwanted phase factors and ruins the Wilsc. loop
calculation. A singular surface gauge must be chosen.

(i1} What happens if a non minimal surface 1s chosen? Docs
the actior gzu as the area of this surface? Consistency demands tha:
the physics be independent of S. Suppose another non minimal
surface, S', 1is chosen. The minimal surface, S, and the non
minimal surface, S', form a closed surface (Fig. 10). Let \ be

t=- enclosed volume. Redefine y by

i) — v ep 3 5 3 0], (4.14)

where x\.(x] is the characteristic function for V, that is,
)‘.{(x) =1 if x is in V and xv(x) =0 is x is outside V.

Plugging into Eq. (4.13) with Bu given by Eq. (4.11) one sees that

. 28’ , i 21 oS, P
(cuw R ]-}]'J w} -»(auw i Buu). {(4.15)

The surface may be moved around by deing a step function gauge

. . x i
transformation where steps occur in multiples of —23— . According

to (i), such a gauge transformation is allowed. In Eq. (4.15)

S'
B“ is the Bu of Eq. (4.11) for the surface, S', and Bﬁ is

the B, for the surface &, Thus, for 2 non minimal surface,

i
the solution is the one for the minimal surface multiplied by a

step function phase factor and leads to the same action. The Wilson
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loop action again goes as the minimal spanning surface area.

. (iii)} The solution is periodic in q = 2mn: when a higher
dimensional representation is used so that the effective charge is
q = 2mn, “screening'' occurs and the action no longer goes like the

arca. The Lagrangian

L= [, - iqu)wlZ T TR {4.16)

for ¢ = 2nmn  has trivial solutions wherc the phase of y jumps by
2rn  across the surface, 5. The singularity in taking the derivative
of this phasc cancels the singularity in Bu' Since the phase of
is defined modulo 27, there is no mismatch of phases in ¢ when
going around the line of a Wilson loop; there are no global
difficulties with this soiution. For q = 2mn z%;., a similar
procedure yields solutions whose action is the same as q = 2 %;
Quarks will be confined but gluons will be screened. Going back to
the original macromolecule partition function, one sees trivially
that the Wilson loop is 1 for q = 2nn. However, it is non-trival
that classical solutions reproduce this phenomenon since saddle point
is an approximation. This gives confidence to our methods.

(iv) The solution is virtually independent of T/P(w*w,ws w*s)
although a strong potential between vortices may cause them to form
dipole-like objects and ruin confinement, an unlikely possibility

we feel. Thus confinement is a general phenomenon {almost)



independent of the forces between vortices  However, m” being
less than (or equal to) zero must be the reason that ¥> ¢ 0
because of our reliance on the analogy with a gas of loops. By m
we mean the physical effective mass which includes the energy per
unit length as well as entropy embedding effects. There are other
wiays 1n which m: > 0 but <;;).f 0 {seec the potential of Fig. 1li,.
Jhese potentials result in a liquid-gas type phase transition discussed
by Lungcrzo and Colcman27. Bubbles of truec vacuum form rather than
a Jense spaghetti vacuum. The phase transiton occurs via barrier
penictration instead of vacuum instability.

(vy The diffcrence between having and not having triplets
1 the difference between having and not having a Goldstone
phenomenon with a broken invariance. Without triplets the
Lagrangian of Eq. (4.7) (with Ao = 0) has a global U(1) symmetry,
because, as we have noted, topological charge, unable to be created
or destroyed, behaves like ordinary charge. Ordinary charge is
assoclated with a U(1} invariance. When spontancCous Symmetry
breakdown takes place, a Goldstone boson occurs. We conjecture
that this massless particle creates long-ranged forces which ruin
confinement and lead to only a logarithmic potential, although
we cannot explicitly demonstrate this. Constrast this to when
triplets occur., Charges in threes are creuted and destroyed; the
symretry is Z, a discrete group. In this case, no Goldstone

boson occurs to disrupt the linear confinement.
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Proving triplets exist will be difficult. We know no obvious
way to use semiclassical methods to calculate 2o- 1T 15 also
ca .y to overlook such configurations usmg Hsrdakci’s and Samucl's

13, 21

iocal tield theory formulation becausc of the powers of ¢ 1n

b, (4.9,

ivi) we conjecture that when <(¥> # 0 the symmetry
wubproup, i (which s probably U(l)), is restored. Along the
vootces the ihges fields are ineffective in breaking H, the
gauge taelds associated with Hooare massless, and the symmetry s

jresent. At the vortex the symmetries associated with the
L]
Lenerators commting with “parallel” Higps flelds are not broken.
2
wien wm” - 0, the vacuum is filled with vortices, so that, virtually,

I oevery square centimeter of space the symmetry is restored. ke

conclude that topological symmetry breaking will restore at least o

(1) subgroup of the original color group. Hence, in addition to

the lincar confinement there will be a logarithmic potential due to
theswe pluons,  This logarithmic potential will be analytic in g
and calculable via perturbation theory, whereas the topologically
gencrated linecar potential is non-analytic in g.

(vii} What do our solutions look like in a Hamiltonian approach?
In particular, how do our ideas relate to 't Hooft's and are there
any differences?

Let us first reproduce his result that tr P[exp (i%,;\ : dl)}

creates a region of vacuum with {P(x)> = wo exp (zz%ﬁ for x

insidc C (throughout our discussion L is the vacuum cxpectation

value of ¢ and C is a closed loop contained in a time slice of



2N

three dimensional Euclidean space). In a Euclidean formulation this

1s seen as follows: consider the propagator of two Wilson loops

ctrop exp (- igf//\ . di)] rr[P exp (1gf/,\ . dg])
) C C CaT

~< U‘EP exp (- Jgﬁ.’:\ : dia]) (tr[P exp (ngﬁ\ : dii}
£

o

where (' occurs at a much later time than € (see Fig. 12). o
evisuate ey, (4.17), resort to the ''gas of loops' analogy used to
caleulated 4 single Wilson loop EScc Eq. (3.8)] . Choose B,

:I,q. (1.11)} to be a sum of two terms, one resulting from using the
mipirmal surface of € and one resulting from the minimal surface of
¢'. On each of these two survaces v must vanish, For t large,
the solution to the equations of motion is approximately the sum of
the solutions of each Wilson loop. When the vacuum expectation
vialue of each is subtracted off as in Eq. (4.17), the contribution
cancels. There are, however, other surfaces which span a pair of
Wilson loops, which are not the union of two surfaces, one for C
and one for C' (see Fig. 12). They look like "hour glasses".

They occur when  Y(x) ~ Y, exp (ﬁj) inside the "hour glass", in
which case, the singularity in Bu on C and C' 1is cancelled and
reappears on the "hour glass' surface. The contributions from these

do not cancel in Eq. (4.17). The new ¢ must vanish on this new

surface so that the action goes like the hour glass's surface area.
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Classically, the hour glass will try to be small-necked. This, of
course, is the instability of a classical closed string. Quantum
mechanically, there is a sum over all surfaces, cach weighted by
its surfacce area (the Nambu action). FEquation (4.17) will result 1in
the propagator of two closed strings. These new solutions yield

a ¢ with the extra phase factor, exp(ggg), inside. This
coincides with 't Hooft's conclusion; the physical interpretation
of this process is that tr[P expligf*m - dlﬂ produces a region
of Yy ©XP <EF§J vacaum whick propagates until

tr [P exp (- igjfsh . dlq destroys it. The Wilson loop operator
does, indeed, produce regions of topological Z3 vacuum.

Now let us deal with a quark-antiquark system or equivalently
put a Wilson loop in the system., Choose a non-minimal -urface,
$', as the surface in the surface axial gauge. By looking at a
time slice, we can relate our solutions to a Hamiltonian picture.
Figure 13 shows, in this time slice, the curve ¢', which is the
intersection of S with this slice, and the curve C, which is
the interscction of the minimal surface, S, with this slice. ¢’
and C enclose a region, R, The classical solution has
w(x) = ¥y far from R, ¢(x) = by exp (E%}; well inside R, and
¢ (x) =0 on C. In this sense we reproduce 't Hooft's
conclusion; across the line, (, ¥ undergoes a continous phase

change. Unlike 't Hooft, we have the cxtra constraint that ¥=0

on C. This constraint is extremely important.
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There is a possible misconccﬁtion concerning how one might
calculate the force between quarks. The following, although it leads
to a linear potential, is incorrect; it gives the wrong coefficient
in front of r. As 't Hooft noted, there are Bloch walls separating
regions of topological 23 vacua (Fig. l4a). Their energy per
wiit length can be calculated by going to one lower dimension
(1 +1) and looking for static solutions, that is, solutions to the
equations of motion which depend on x but not on y or t. They
look like one dimensional solitons which go to wo as x + - = and
B0 1oy exp(gié) as x » = (Fig=34R). An incorrect
concliusion is that these selfsame solitons form strings between
quarks so that the potential is m.x [ms is the soliton's
mass)}. As demonstrated the correct solution requires y¢(x) to
vanish between the quarks. It is most likely that the Bloch
wall solitons do not satisfy thiszs; ¢y can undergo a phase
change without going to zero.

What should be done is to find solutions, independent of y and
t but x dependent, under the constraint that at x =90, ¢ =0
(Fig. l4c). They will have an energy, m_. The potential between
quark and antiquark will be m.r. This m. differs from mg
since the equations are solved using different constraints and
boundary conditions. Although this distinction may seem
unimportant, it is crucial in extending our ideas to one higher
dimension.

By using a spatially dependent chemical potential, it is seen

that {Y*(x)¢(x)> is proportional to the density of monomers at x.
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Topological spontancous symmetry breakdown give Cw*(xyu(xiy

a classical vaiue indicating that the vacuum 1s filled with 23

vortices.  The quark antiquark solutions have (v (X)wixj p = 0

along a string between them. Hence, this region Contains no vortice: .
KWe would say that the confining string ohtains 1ts energy not f{rorm
being o Bloch wall ssliton but by expelling topological vortex
viacatgh, The essential physical property 1s not that . undergoces
a phase change but that it vanish on (.

he conclude that, technically speaking, 1t 1s not a Bloch
wiall soliton which ties the quarks together. The potential energy
poes as the distance, because equations of motion arc sclved

wilic vonstriaints.  As pointed out in the introduction, there are no

solston-type vortices to bind quarks in four dimensions; the Bloch
wiil seritions are surfaces and cannot serve as confining structures.
1he ¢rucial point, however, is that Wilson loops will still induce
coi traints that lead to confinement. The saive extension of the
't Hooft 2 + 1 dimensional model to one higher dimension will yield
a similar ype of continement.

(viii) The confinement criterion for baryons 1s different

il
from mesons“3 What replaces the Wilson loop is (see Fig. 15a)

b . - b !
. . ' A . il
LaBAtat A P exp(ig) A dl)l{ . ‘,' p exp(lg’, A d?.)j -
J L E
Cla Cza
- (4.18)
| b 1
x |Pexp (ig A ode) g
[ axr.
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Take C] far from C: and L'3. 1f the action decreases
exponentially with arca then confinement in baryons occurs. Figure
153 resembles the *dual" of a tripler. Similarly, an arbitrary
gauge for b» 1s not possible. One, thercfere, might think that
even without triplets topological <;mmetry breakdown would confine
yuaras an baryons. This is not true, though: Farst cﬁoosc u
gduge wnich 1s singular on three surfaces such as an Fig. 15b.

A gaupe transformation, Bu -~ B - aux, can be performed as Jong

o

- e
as L auj F '? n and (b) = % {(a and b are the endpoints 1in
Fig. 15). Hence, a gauge can be chosen for which B, is smoothed

out. If a and b are far apart, it can be made to look like the
lorent: gauge an the region far from both a and b. This will

lead to only u logarithmic potential. Triplets arc needed for baryon

confinement also. Concerning the restrictive effect on gauge choice,
the difference between baryons and triplets is that the latter form
a gas. Endpoints of triplets can be located anywhere; given any
space-tinc point there is a configuration in the statistical
ensemble with a triplet vertex there. This forces x to be a step
function in units of -237'— everywhere. On the other hand a baryon
constrains x at only two points, a and b.

In the presence of triplets and topological symmetry
breakdown baryons will be confined. A gauge for Bu singular on
surfaces (Fig. 15b) must be chosen. One most solve the y

equations of motion with ¢ = 0 constraints on surfaces to determine

interquark forces.
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Assuming constituent quarks are far apart and that the enery.
goes as the area of the singular surface, we can see how a stat;
haryon Jooks. In dual string models, there were severai speculats o
{a) three quarks at the ends of three strings with the other thres
Stran,, vndpmnta._)mnc-d (Fag. 16a), {h) one guark 1n the middle o
aoangle string with the other two quarks at the endpoants viag. .
wil oy quarks tn i triangular ctrang configuration (hig, 6. o
tor cannot ocoar anoour formalism. Case fhy 1s a special casc ot o
when one of the three string has zero length,  When does (a)
occur and when does (b)) occur?  As an example of what happens,

constran the third quark to be equidistant from the ather twe

(g, 16a). The energy of this configuration s
: = > ST
Etd) = m, (“ e gt ey - d). (4.1,

The notation is as in Fig. 16a and me is a constant. The point
d is determined by sctting %57= 0, for which we find that tor

d the third quark sits in the middle casc (b) , whereas for
. s

. A
V3
d-a{i three strings form icasc (a)] . This is reasonablc
ph;§;cally: as the third quark moves farther away, encrgetically
it becomes favorable to pull new string out, rather than stretch
two strings.

Because of the different baryon string picture, baryon
Regge trajectories might behave Aifferently from meson ones. It
may be that at low energies the third quark sits in the middle.

This would give similar Regge trajectories and slopes. At higher
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eacrgies third quark excitations might form causing baryon
trajectories to become di.ferent from meson ones.

it us summmarlze the key points when topological symmetry
Sreardowl in U Hoeft vortex charge takes place:

i. A logarithmic potential 15 obhtained in the shsence of
tripiets and a lincar potential 1s obtained 1n their presence.

11, The potentiai is triality dependent. Representations
witioSntegral hypercharge are screened.  Representations with

fractaond, ypercharge are ¢l dhe potentaal s peroodic oo

1. Criginal color symmetries are at least partially restoered.
V' MONCPOLES

in this section, we shall show how monopoles arise in the
t'oreoft I model.  The important conclusion will b° that, in the
presence of triplets, the phase transition from (y)> = 0 to
«.> #u is atransition from an ensemble of monopole - antimonopclc
pairs (magnetic dipoles) to a liberated plasma of monopoles and
antimonopoles. This phase transition might be compared to that of
a4 two-dimensional Coulomb gaslo’ 29 except that the interaction
between monopoles gets changed from a linear one to a non-confining
one, most likely a Yukawa, %exp (-wr), potential (the expected

1

o
T

Coulomb-1ike potential probably gets screened due to plasma

8,

Two points need clarifying: In 3 + 1 dimensions for

e[fe:-cts7'

an abelain theroy, we know what a monopole is: We compute f B - dA
S
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over a closed surface, S. If Ze—" results, there is a monopole of
strength —Zel. First, what is a monopole in 2 + 1 dimensions?
Solitons in 3 + 1 dimensions are instantons in 2 + 1 dimensional
Euclidean space. The monopoles in the 't Hooft model will be
instantons (like Polyakov's, for exari'ple7). Secondly, what is a
monopole in an SU(3) gauge theory? Without Higgs fields, we don't
know how to precisely define one, but with Higgs fields we can.

A classic example is the 't Hooft - Polyakov rm‘mopcle30 in the
Georgi - Glashow model. Recall that 't Hooft defined a gauge
invariant F,, which, in the presence of the "hedgehog' solution,
behaved as a monopole field. The Higgs fields were an essential
ingredient in Fuv' Likewise, we can define an FW. but only when
H = U(l):{':l (H, described in Sec. 1V, is the subgroup in which the
flux points). When this happens, there is a vector, n [Eq, (4.5)]
constructed out of Higgs fields which indicates the color direction
of vortex flux. This vector transforms in the adjoint representation
under gauge transformations. Hence n - l-;N will be gauge invariant
and can be used to measurc the fluxsz. Normalize n so that

n = ﬂ?‘l’-—ﬂ- = % for SU(3). Definition: There is a monopole of

N Dirrs. units if

/B -g , (5.1)

where S is a closed surface and B = %— eljknz F;k.
With this definition triplet configuiations are monopole-

antimonopole instanton pairs. Perform the measurements, / B °dA,
S



279

over a sphere enclosing one end of a triplet (Fig. 17a). Since each
vortex acts like a delta function of flux, we will measure three
contributions of flux of -ZEE units. The total flux emanating from

the cndpoint is 6—; . Triplets are monopole - antimonopole pairs.

Iach has three Dirac units. Ordiuary vortex loops are not monopoles
hecause _:'g; units enters at one point but exits at another (Fig.175;.

Without Higgs fields it is difficult to know what constitutes
4 monopole. It is important to kmow whether it can be defined in a
pure  SU(3) pgauge theory. Acsthetically, one would like to Jo
away with the Higgs fields. They are only being used as a crutch.

One might try the follwing. Take a sphere, S . Break it
into swall regions, Ri' Each region, Ry, has a closed boundary,
;. Make measurements {tr P exp (jgéc.A 'dg)} Define é times
the phase to be the "flux™. Add up all‘the fluxes to obtain
the total flux. Several problems arise: first, 8 units of flux
is indistinguishable from 2w»n + 8 umits. In treating triplets,
one might conclude that the first two vortices contribute %1 while
the last contribtes —-%“- so that the total is zerc. This procedure
would give an incorrect result. Secondly, it is unclear what is
being mecasured because there is no Stoke's theorem for non-abelian
gauge thecries33. We are not really measuring the rotal flux.
Because non-abelian flux is not additive like abelian flux, this
procedure will almost always y’eld a non-zero result. Although

gauge invariant, it is uSeless. Another attempt chooses a vector,

VE(x), appropriately normalized. If
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1 2 k
3 f Ve Fi S 7 0, (5.2)
S

onc might say there is a monopole. For an arbitrary Vg', this is
not gauge invariant so that Eq. (5.2) is also meaningless.
Fortunately the ZN 't Hooft model has Higgs fields and we are able
to circumvent these difficulties. We shall return to this point in

Sec. VIIL.

Z, 0, the three string of a monopole

when<¥> =0 and m
carry eanergy per unit length (these strings are the analogs of
superconductor vortices). This means that a monopole must always
be paired very closely to its antimonopole partner. Detection of
monopoles is difficult unless the sphere, S, in Eq. (5.1) is
miniscule. Dipoles will also have little effect on confinement as
the calculati~ns of Sec. IV demonstrated. A dipole's three strings
can link with a Wilson loop only when it is near the quark
trajectory. This produces only a perimeter effect and a mass
renormalization. Next consider what happens when m2< 0
and topological spontaneous symmetry breakdown takes place. The
chemical potential per atom (in the macromolecule analogy) is
nepziive and vortices of large size are favored. One can see
that the monopole- antimonpole constituents in a dipole are liberated
by considering a triplet with endpoints far apart. Focus on one of
the monopoles. There are three flux strings emanat® ; from it.

Unlike the previous case, these strings do not head directly for

the partner antimonopole. lInstead they more in arbitrary directions.
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The partition function (or the Feynman path integral in a particle
dynamics description)sums over all these directions. Consider

measuring the flux, f B * dS, flowing through a small disk, A,
A A

of a sphere enclosing the monopole (see Fig. 17a). In doing

this measurement only a fraction of the time will a string pierce A.
This averaging effect spreads the flux. Symmetry demands we measurc
% ﬁ,—, where A is the area of the disk and r is the radius
of the sphere. In short, averaging over all vortex paths gquantum
mechanically spreads out the flux so that a '"normal' monopole with

a radial magnetic field is observed. Since the action of the gauge

3 that these monopoles will

fields i1s - % J‘Fﬁv d3x , We expect
interact very much like ordinary ones, with Coulomb-like potentials.
In a semiclassical approximation to the Lagrangian of Eq. (4.7),
the monopole's activity is % )‘o (w)s. As it should, the
nonopole's density goes to zero when the vacuum expectation value
of u goes to zero. This picture of confinement in the 2 + 1 ‘7‘3\'
model is similarto Pdyakov's instanton one7.
Vi FROM 2+1 TO 3 +1

This section extends the ideas in 2 + 1 dimensions to
3 + 1 dimensions, relates the 2 + 1 model to the 3 + 1 one,
and indicates that proof of confinement in 2+ 1 is probabl
sufficient to prove confinement in 3 + 1. This means that the 2 + 1
Z’N model is more than just a toy laboratory. It is important to
calculate the vortex properties and find the effective Lagrangian.
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Once these are known, we will probably know whether gauge theories
in 3 + 1 dimensions confine via the Zy mechenism.

Just as instantons in 1 + 1 dimensions are solitons
in 2+ 1, the Z solitons in 2 + 1 are strings in 3 + 1. The
vortex solution, which is x and y dependent in Euclidean

1+ 1, becomes t indeperdent in 2 +1 and t and 2z

independent in 3 + 1. It respectively looks like a point, a
ling and a sheet. The latter two manifest themselves as loops and
closed surtdces and their associated quanta are particles and
closed strings. The ideas in Euclidean 2 + 1 are relevant for 3 + 1
dimensicns because a time slice of 3 + 1 1looks like Euclidean 2 + 1.
The solitons in 2 + 1 which were particles tracing out trajectories

now become stringy tracing out surfaces. Hence, in the physical world

the topological objects are closed strings manifesting themselves ..

Euclidcan space as "2,q surface solitons.™

The key defining property is linking number. In 2 + 1
dimensions two non-intersecting loops can link and linking number
is well-defined for oriented curves. In 3 + 1 dimensions a
closed surface and a loop can link. Again, for oriented surfaces and

oriented ioops the linking mumber is well-defined. Figure 18

> and

illustrates usiag ''time lapse photography” how a sphere3
a loop can link. Because of this, a ZN topology characterizes
"surface solitons". It works just like it does in one lower
dimension. An idealized, that is infinitely thin, surface soliton,

S, satisfies



2ni

-
[tr P exp (ig f A -] =sexp (B9, (6.1)
C

whenever C links with S. Far from the surface where potentials
arc pure gauge, Eq. (6.1) is valid. Near the surface of a smeared
or physical surface soliton, Eq. (6.1) is incorrect. We shall
always use ''idealized" solitons. Whenever a loop, C, links
with §, there is a map from C into the gauge group (as discussed
in Sec. 1V). These maps are characterized by-“PI(SU(S)/ZS) = Z;.
Eq. {0.1) says this map is a non-trivial element of_“—l. Similarly,
the topology can be discussed in terms of Higgs fields. Far from
the surface, the Higgs fields take on values in the minimum, M,
of the potential. Moving along C traces a closed curve in M.
Again, these are characterized by 1T;(M) = 23' As long as C and
S arc kept away from each other, there is no way to unlink them.
" Likewise, as one moves C, the toplogical element 1T1(h0 or
7Ti(5u(3)/23) cannot jump since such continuous movements are
homotopies. The topology is virtually the same as in one lower
dimension.
The topological surfaces will have properties similar to the
2 +1 dimensional case:
(i) On the surface the Higgs fields become "aligned"
so that at least one generator commutes with them. We expect only
one generator, nili.
(ii) For "idealized" surfaces, there is a delta function
contribution to the flux in the n direction. Let e(l)(x) and

\
e(z’(x) be twc orthonormal tangent vectors to the surface at x. Then
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nt) ein(x) eéz)(X) %F:U (eygun =

Blw. 6.0

The vector, ng’ is normalized so that z:hlnl = g- and ﬁf(x)

is a delta function in the variables perpendicular to the surface.

More accurately,

2 4.9 4 1
= 22 ” § -

FS\,LX) s _{3 ) 67(x-y) 7 £4p,,95,¢- (6.3)

over

surface

soliton

{iii) The mass of the soliton in 2 + 1 1is (roughly) the

energy per unit length of the string. The engineering dimensions of
the parameters that give the mass in 2 + 1 have dimensions of
mass squared in 3 + 1; couplings acquire different dimensions in
different dimensions. For example, the mass of the Nielsen-Olesen

2 4 In 2+1,

vortex due to the Higgs potential goes like (@)
<+>Z has dimensions of mass, whereas in 3 + 1, it has dimensions
of mass squared.

Linking number formulas ir four dimensions also exist.
Reference 17 gives

g (y-x),
dS in 7 Capuv —-—z-l |

xeS ycc

Equation (6.4) continued on 58
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1 1 1
1 ] IY(S)'X(O’T)] dy,(s) "dx (o,t) dx_(0,7)
—~fdo [ dr { ds 3¢ - a 8 p? y o
Zﬂfn fo jro Z “aBuv |Y(S)'X(O.T)Iz ds do dt

%] (6.4)
J i BLN (x)dsw(x) ,
where
1 (y-x), 4
Buv(x) = ;‘n—z CaBuv W )’B . (6.5)

In Eq.(6.4) S 1is a closed oriented surface, dsuv is the surface
element, C is a closed oriented curve, dyB is its line element,
and Eiz is the volume of the three dimensional unit sphere. In
the second form, the curve, C, is parametrized by s so that y(s)
is the location at "time", s, y(0) =y(1), and _day_g is the
"velocity". The variables o and 1 parametrize the surface in the
same manner as in dual string theory. They take on values in the unit
square, and X(G,T) is the location of the surface at that (o,71)
value, Beczuse the surface is closed, x(0,d) = x(1,A) = x(1,0)
= x(2,1) = a constant for 0 < A <1, that is, the boundary of the
square is mapped to the same point. The linking number is an integer.
If one were deing static electromagnetism in 4 + 1
dimensions, the Buv(x) of Eq. (6.5) would be the magnetic field
at x produced by a unit current flowing through C. It has a

"vector field" gauge invariance:
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B, "BW G + 3,0, (x)- dx,6x). (6.6)

Under the tranformation of Eq. (6.6), Eq. {6.4) is unchanged. This
means that there are many other permissible forms for BW.
There is alsc a guage invariance for the gauge since X, Kt aux
leaves Eq. (6.6) invariant.

The vacuam will be a gas of ZN closed surfaces. This
will be an interesting statistical mechanics ensemble. Such a
gas might yield 8 field theory for strings for which the methods of
sections II, III, and IV could be mimicked. Even in the absence of
interactions between points on the surface, where a free field
theory cf closed strings'is expected, constructinpg such a field theory
will be di:"ficultse. Ve are, therefore, unable to calculate the

Wilsen loop. Such a calcilation involves surming over the gas of

2%i

surfaces, weighting each surfacg, S, by the factor
w0 [ % f

%medsw(y)] . (6.7)
S

with Buv given by Eq. (6.5) for C being the Wilson loop. Instead,
we make the following observations and conjectures: Assume that

the soliton in 2 + 1 dimensions has a positive mass so that in

3 + 1 the surfaces carry a positive surface energy. The topological
sector generates a theory of strings. Suchclosd strings do not
carry quantum mmbers. They occur &s space-time events: a point
sudden appears, sketches into a ringlet, and shrinks away. These
ringlets are restricted to be small and to last for trief
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durations because of the,large surface action generated. An
exception to this might be the tachyons in the duval string model.
These two low lying states, as minute closed strings,resemble
particles of negative mass squared. They trace out long trajectories
which because there is no conserved quantum number can begin or end
in the vacuum. As long thin cyiinders, they have little effect on
Wilsoa loops except for possibly a mass renormalization; such thin
tubular configurations are unlikely to link. All in ail, such a
system does not produce confinement.

Because of the Z3 structure of the topology there may exist
other types of surfaces. These are the analogs of the 2 + 1
triplets. Figure 19 shows a 'triplet surface' imbedded in the slice,
2= 0. The temporal evolution of this configuration is shown in
Fig. 20. Time slices sometimes yield triplets and sometimes ringlets.
These string configuration$ are verydifferent from interacting dual
strings. The latter interact by breaking or by joining ends as well
as a "four point" interaction where two strings touch in
the middle and exchange string halves.
These interactions occur at a specific location at a particular tinme.
Figure 20 shows that triplet surfaces look like an open string
circumscribed Ly a closed one or more accurately three open strings
joined at the ends; the three are in constant interaction. Thus, this:
string theory is unlike anything previously considered in dual models.

Triplet surfaces contain, of course, monopoles. The inter-
section of the three surfaces is a curve which is to be identified
with the monopole's trajectory. Like closed soliton surfaces,

triplet surfaces must also be assigned an orientation. This
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induces an orientation on the boundary, that is, for the monopole
loop37. Hence, as should be the case, the monopole trajectories
are oriented and closed, indicating a conserved quantum number
(monopole charge). Since three surfaces span the monopcle loop, the
system at a particular time looks like a monopole-antimonopole
pair joined by three vortices (Fig. 8). Because these three
vortices carry a positive erergy per unit length, the monopole-
antimonopole pair are inexorably bound by a linear potential.
Triplet surfaces, comprised of the monopole loop and three spanning
surfaces, must be small anc hence monopole vacuum loops are rare
cvents. These "neutral' objects have few physical effects. is in
onc lower dimension, there is no confinement. The interesting
case of topological symmetry breakdown, where confinement is
expacted, will be discussed shortly. We first must show how ]linking
nunb<r can be defined for triplet surfaces.

Equation (6.4) no longer works for triplet surfaces. This
is the higher dimensional analog ol tle problem discussed in Sec.IV.
The resolution is similar: a singular ''surface axial gauge’ for BLV

must be used. Let Sc be any surface which spans the Wilson loop,

C. Then

Sc 1 4
BC) = | 3008 om0, (6.8)

S¢

S
works. This BUS, when substituted into Eq. (6.7) and integrated

over the triplet surface, S, yields the correct phase factor. The

surfaces SC and S should not be confused; the former is any
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surface whose boundary is the Kilson loop while the latter

is the triplet surface. It is not hard to find a gauge transformation
which moves Sg: Let Sé and Sg be twr Wilson loop spanning
surfaces. They form a closed surface. Let V be any volume, i.c.,a
three-dimensiona, manifold, whose bcundary is their union. For yo \,

let nu(y) be the vector orthonomal to V at ¥ in four spacc. “hen

n (¢ (x-y)d’
yeV

X, (x)

[%T €, xVIQ ), (0.9,
yeV

when used in Equation {6.6) affects a gauge transformation from
l -

S S
B_pt to B S . Actually, we have n(} defined hgw the sign of - 1>
3 b S S- -
2C .
tgzbe ch05en.l One choice gauges B, into ,;US ; ine other gauges

h‘ut into BLS . The fact that V  is not unigue (therc arc many
volumes, \, whose boundary is 9 USq C‘ reflects the fact that the
gdupe transformation is not unique (a gauge invariance for the gauge',
as previously discussed.

What would happen if a gencral gauge was chosen in Eq. 16.7)7
Take the BW of Ey. (6.8) and perform the gauge transformution

B - + 3 ~ . i .
v B‘.N Xy 3 Then, each of the three surfaces comprising

a triplet surface would contribute an extra factor
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sf (3% - 205,

f X, 9% 9( X,

35 Gy

(6.10)

The boundary cf each surface is CM' the monopole loop. Triplet

surfaces would get multiplied by the unwanted phases

erp (31 fxudx“) ] (6.11)
S

This is innocuous if ¢ xudx“ = %’1 n, For a gas of triplet surfaces,

7

we must require that

¢xudxu =Za, (6.12)
C

for all loops, C. By shrinking C to a point in a plare, P,
Ea. (6.12) implies that auxv - E)\J)(‘1 must be singular on the plane,
PL, perpendicular to P. Hence gauge transformations can only
move SC around and Eq. (6.8) is the most general form for Bw;
one cannot smooth BW out.

Tre interesting case is when topological symmetry breakdown
occurs, that is, when the vortices in 2 + 1 dimensions have a
rcgative (or perhaps zero) mass squared. Then, topological surfaces
are expected to have a negative surface action density and will populate
the four-dimensional world. This implies that the closed topological

strings will lave a negative Regpe slope, a thought that, at first,



291

seems preposteious because of the infinite number of ta: yons.
However, the situstion is not as bad as it appears and even las a
simple physical interpretation. First of all, a total collapse is

not expected, The same repulsive vortex forces which stabilize the
proliferation c¢f closed loops in 2 + 1 dimensions will be present

in 3 + 1 dimensions and will stabilizc the vacuumss. Secondly,
triplet surfaces will become moncpcles with their magnetic flux spread
out. Consider, for example, a large monopole loop with its three
topological Z3 surfaces. Unlike the case, m2 > ¢, where the
surfaces are the ones of minimal surface area, the surfaces can be
anywhere. The quantum mechanical sum over all possibilities will

make the {lux evenly distributed rather than being focused in tubes.
We conjecture that a negative slope parameter fcr these types of
strings results in ''fields'. By this, we mean a string theory gets
transformed into a field theory. There is another example of this
rhenomenon which -nould clarify what we mean, namely Wilson's lattice
gauge theorysg. Keep tte lattice specing finite. In the strong
coupling limit the electic field is focused into tubes. States of two
quarks connected by an electric flux tube,or a torus of fluxsare
permissible. The theory hes strings with positive slope parameters.
As the coupling constant is lowered, the electic flux begins to spread
out more and more until a phasc transition occurs where it spreads out
uniformly in the usual Coulomb-like manner. At the phase transition,
spontaneous symmetry breakdown of electric strings has occurred.

The effective surfacc action density (including entropy contributions)

has become zero. We conjecture that the phase transition
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from (y> =0 to <¥» # 0 is the same phenomenon except with
"*dual'* magnetic fie]ds' (see Table 1). This is wh:t we mean by strimys
of negative Regge slope being metamorphosed into fields. When this
happens typological surfaces become magnetic fluctuations and monopoles
bcund in dipoles become liberated. These monuples will now be

. . - 2 .
instrumental in confining quarks. If m"< 0 f{or 't Hooft vortices

and triplets exist in 2 + 1 dimersicns, then jn 3 + 1 dimensions

monopoles, previously confined in monopole-antimonopole pairs by

magnetic flux tubes, get libcrated resulting in a monopole plasma.

We conjectire that the phenomenz exhibited in 2 + 1
dimensions will be present in 3 + 1. Already discussed are
magnetic fluctuations due to close surface sclitons znd monoples
cdue to surface triplets. Also guaranteed is that the ncn-perturbative
potential will be "periodic in charge' because of Eqs. (6.4) and (6.7).
This screening pleromenor. means that integral hypercharge multiplets
will not be confined. Any approximation scheme to a Wilson loop
calculation should be able to reproduce this phenomenon. Next, we
cxpect that torological symmetry breakdown will restore the symmetry
associated with H. The reeson is tle same as in one lower
dimension: the ZN surfaces will fill up the vacuum wntil overlap
repulsive forces take over. Since H is restored on these surfaces,
H will be restored virtually everywhere. Finally, several arguments
show why confinement in 3 + 1 dimensions will occur:

(i) The vacuum is a gas of monopoles. Roughly speaking,

such a system confines because of a "dual Meissper effect"B’w.
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Just as a gas of current loops confines moropoles in a s perconducter,
a gas of magnetic current loops confines cherges.

(ii) Although there is ncw no interpolating scliton as there
war in 2 + 1 dimensions, confinerent is still erpected. Physically,
surface solitons are expelled from a region (the surface, SC) be-
tween the quarks. This ceates a tube of “'abnormal vacuum'' which
carrics energy. A linear potential results.

(i1i) The Wilscn loop calculation involves a system with an
crea constraint (the '"surface axial gaupe' constraint of Eq. 6.8).

{ 4 non-trivial situation exists, the action must go as the area.
(iv) A time slice of 3 + 1 1looks iike 2 + 1 Euclidean

space. Confinement in 2 + 1 might indicate confinement in

3 + 1. Putting a cuark locp in a time slice aprears to recuce

thc calculation to onc lower dimension. Let us define the temm,

imensional reduction, as when a Wilsen loop in such a time slice cof

3+ 1 cen be calculated in 2 + 1 as a static situation. Dimensional
reduction does not always occur. Consider, for erample, the lower
dimensional analog: a corpparison of the J + 1 instantou gas of
Nielser-Olesern vortices to the Nielsen-Olesen madel in 2 + 1 with
vorter topological symmetry breakdown. The former looks aprroximately
like &« time slice cf the: latter. However, Sec. 1II obtained a
logarithmic potential for the 2 + 1 model, whereas a linear
potential occurs in 1 + 1 dimensions. The reasca for this is clear.
When _the Wilson loop is placed in a time slice, the Bli of Eq. (3.6
is non-zero for all times. The Wilson loop affects the vortex gas

throughout the 2 + 1 uimensionzl world and not just at one time.
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Dimensiorial reductien does not happen. If, however, B, were
zero outside the time slice it would happen. This is the: case for
the 't Hooft model with triplets. The PR, of Ec. (4.12) has its
support in the time slice containing the Wilson loop. This is why
linear confinement occurs: The calculatior dimensionally reduces tc
tte 1 + 1 instanton calculation, which is known tc confine.
Returning to the physicai world with triplet surfaces abrcent, tte
By, of E¢. (6.5) is ron-zero for all times. For this sitvaticn, the
calculation does rot c¢imensionally reduce. If B,, were forced to be
in a geugc with the suppert ¢f B,, in a time clice, then tcpological
syrmetry breckdown would yield the logarithmic potential obtained in
2 + 1. But this is not the case. Our guess is that the action will
go like IPE., d4x so that closed surfaces yield only a 1/r
pctertial. Wher there are triplet surfaces the situation is
completely cifferent; B,, 1is forced to be in a "surface axial gauge”
such as Ec. (6.8}, tte calculation dimensionally reduces,and a linearly
confining potential (the same cne as in Sec. IV) is obtained. With
triplet surfaces present, a time slice of the rezl werld dees
indecd look like tte Z + 1 Zy model witlh triplets and confinement.

VII RELATION TO MANDELSTAM'S STHEM'
There is a similarity between Mandelstam's confinement

sscheme8 end tcpological symmetry breakcown with triplet surfaces. We
she11 touch upon the cormmon points and differences. Hare is a quick
review of his quark confinemer.t:

(a) The Coulomb gauge cortains a term E‘i . E‘f in the

Hamiltonian where

-1
=y [vza“" - gfuBYAgVinY . (7.1)
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The: imerse operator, [V [ gf° Ai Vi} , akin to
lax-b['l in a one-dimensional quantum system, will produce infinities
unless the vacuum is suitable chosen.

(b) 1In the Az = 0 axial gauge, thjs problem becomes
equivalent to vhether local (x, y) dependent (but =z-indeperdent)
gauge transformations annihilate the vacuum. The bare vacuum
fails tc do this and makes a poor starting point to perturt around.

(c) A vactum comprised of manopoles hes the right properties:
the Dirac tubes (in AZ = ( gauge, the Dirac strings become tubes
for finite-sized smeared-out menopoles) produce random gauge
rotaticns. Such a state will be a singlet uncer local (x, y)
dependent gauge transformations. It is a cendidate for the vacum
state.

(d} Such sz moropole gas confines in not so different a
wa)y from the Polyakov model7.

In shcrr, Mandelstam’s gas results in (i) a restcration
of SU(X) geuge symmetry and (ii ) querk confinemert.

Likevise, we have shown similar results when topological
symmetry breakdown occurs in the presence of triplets: a monopole
vacuum is gererated anc¢ at least a globzl U(1) color symmetry
is restored. We have been uncble to prove the restcration of the
complete SU(3) gauge inveriance. Like Mandelstam's vacuum,
confinement is a consequence. The ideas of Sections IV, V, and
VI neatly jell with Mandelstam's.

We Fave given support to Mandelstam's work in showing how
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monopoles naturally arise in an SU(3) gauge theory., The type of
monopoles Mandelstam has been using (Wu-Yang ones“) are probably
different from those in an SU(2) gauge theory. For SU(3) our
monopoles carry f’g—n units of flux. We have also elucidated on the
dynamics of the system; in particular, how negative Regge slopes
transform magnetic flux tubes into magnetic fields. We have not
shown why topological symmetry breakdown takes place. If Mandelstam
is correct then he has given us the reason: such a breakdown occurs
because of the lax~b]'1 problem. It is a matter of symmetry,
monopoles, and disorder. 1n essence, the difference between no
confinement and confinement is the difference between an ordered
system with a broken symmetry and a disordered system with monoples
acting as the symmetry restoring agent.
VIII OPEN QUESTIONS

A. How does the phase diagram look for a 't Hooft SU(N)
gauge theory? In particular, how many phases are there? In
Figure 4, we have drawn three phases, corresponding to (a) a normal
boson potential, (b) a Higgs boson potential, and (c)} a Higgs
soliton potential. 't Hooft conjectured that phases {a) and (c)
are the same. He argues that the soliton's mass squared must be
proportional to the “iggs mass squared, the proportionality sign
being negative since when the Higgs bosons are tachyonic the solitons

have a pusitive mass. Analyticity implies that the solitons are tachyons
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when the bosons have a positive mass squared. We
feel this argument needs further justification since
phése transitions Jnduce ncn-analyticities. This
remains an oper question. In general, it is important
to determine the phase diagram sc that tle confinerment
phzse (if it erists) and tle coupling constant values
which yield this phase can be foundaz.

B. Can a string field theory be constructed to
deccribe the statistical ersemble «f topelogiczl surfaces?
As previously discussed, wit! such a construction the
calculations «f Sections II, III, ancd IV could be performed
in 3 + 1 dimersions.

C. Whet effects do instantons have? Callan,

Dashen. and Gross have shcwn thet insti:ntens crecte a
paramagnetic vacuum which tends to expcl electric fieldsz.
This will surely affect the dynamics cf topological surfaces
Instantons might aid in (or even cause) the topclogical
symretiy bieaking. Rcughly spezking, the curfaces
should cotPle to instantons because monopoles and
associated magnetic fields are long-ranged. They can
contribite to

Fququ4x , (8.1}
in contrast to short-ranged field configurations which
cennct due tc the fact that Eq. (8.1) cen be written as
a surface integral.

..
D. Are Higgs bosons necessary? As indicated in
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Sections IIIl and IV, tépological vortices can be
cheracterized solely in terms cf gauge poterntials by
using path orderecd prcducts. This suggests that,
rerhaps, they exist independently cf tle Higgs
fields. We feel tlis may ke tlke case for an SU(N)
gauge theory but certainly not for a U(l) tleory.
The Higgs bosonms in the 2 + i dimention:l Nielsen-
Oleser mocdel scrve two important purposes:

(i} they smooth out the short distance singu-
larities which would otherwise occur.

(ii)} thkey cnsure that expr (ie ]-y A C dg)
returns to 1 wher y loops around thexvorter and

returns to x.

Purpose (i) is not as important as purpcse (ii)
for the existence of vortices. Puvrpese (i) is a short
distance pheromenon whick might be cured quentum
mechanically or through rerormalization.

In trte ahsence cof Higgs fields, tlere are still finite
erergy vortex configurations (obtained by using the
classical values ¢f A,(x} when the Higgs fields were
present) although they are not energy minima. In
cortrast purpcse (ii) is essential. With Liggs bosons,
the Higgs fields must take on values in tle minima of
the potential and be covariantly constant far from the

y
vortex. This means that exp (ie j' A ° d2) 1is precisely
X
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the 1otation (in this case, phase) which transforms the
classical Higgs field at x to its value at Y.

As one goes around the loop ard returns tc x, this
guarantees tlat i};A todr o= E%E . This mears that
magnetic flux gets quantizecd. Withouvt Higgs fields,

configurations such zs A¢(x) = a(p)/p, with a(p) = 0
c

: far away, heve finite

at thc vortex and a(p) =
energy. Here, ¢ 1is an artitrary corstant. This
means thet flux is not quantized and jrA Todr o= 255
i~ arbitrary. The solitcns lose their identity as tubes
cf conscrved quantized flux. Instakility occurs teczuse
tubes of %; urits can dissolve intc mary smaller tuvbcs,
say 1© tuhes cf %% vnits. Thus purpose (ii) is tle
ecsertial stabilizing effect cf Viggs bosons in the
Nielsen-Olesen U(l) mocdel.

In the ron-abelian cese, purpose (i) sfill
functions but it is pcssible that property (ii),'whjch

is row modified to

[P exp(ig ggﬁ\ : dRJJ =
A oB (8.2)

[a center of the group element]cs,

for locps, C, which ercircle the vortex, halds even
in the ahsence of Higgs fields. This is because Yang-
Mills therries are self-interacting. These self-

interactions pcssibly act as a ‘replacement for the Higgs

1
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boscn - gauge field interactions. If a flux tube, at

somc instance, pcints in the 2z direction, thus

cortributing to nng, two of the three gauge potentials
might act like the two Higgs fields while the third is
the flux gererating gauge potential. This point nceds
furthcr clerification, but Yang-Mills theories offer the
aethetically pleasing poscibility of eliminating Higgs
fields withcut ruining any of the physical resuits
cdiscussed in this paper.

I{f the Higgs fields arc eliminated, the rroblen
of defining a monc¢pole returns. Previously, the vector,
nl, constructed out of Higgs fields, was usel. We now
must nanufacture ar n2 using gfauge potentials. There zre

mary ways cf do‘ng this: at each point, x, attact

a closcd loop, C,. Definc

r 2 ]
| exp (n* () iT)J - [r exp( §/A : df:L . (8.3)
af T 8
X

In Ea.(8.3) the path crdering starts at », nroceeds along

Cy» and cnds at x. Beginning at any otler startirg

point is nct poss.ble. The vecter, n%x), transforns

in the octet repiese¢ntation under gauge transformations,
. . R _ 1 L. gR

Using the magnetic field, Bi(x) == Fijf (x,%k {x),

onc carn ''test"” for monopcles by integrating B * dS

over closed surfaces. Of course, this method generates
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an infinite number of magnetic fields, all of which are gauge invariamt.
Only a prudent choice of the Cx will yield a Bi(x) with the

desired properties, that is, that this magnetic field be the one
contained in vortex flux tubes and be the one associated with the
monopoles contained in triplet surfaces.

E. Is there a non-abelian dual group? Implicit in our
discussion is the dualities between magnetic fields and electric
fields, monopoles and charges, etc. Table 1 illustrates some of
these. When there are Higgs bosons and a unique nl, i.e.
H=U'1), the symmetry group of the surfaces (and monopoles) is
cither U(1) or Z3 depending on whether triplets exist. If
the Higgs fields can be eliminated will there be a non-abelian
dual group? This question will be hard to answer because of the
quantum mechanical effects inherently associated with an internal
symmetry group, namely, color zitterbewegung23. This goes beyond
our discussions which have been classical in character.

IX SUMMARY

To prove confinement the following must be shown:

(a) that ti.e 't Hooft ZN splitons in 2 + 1 dimensions
have a phase with m2 < 0 and that there are repulsive
forces which stabilize the vacuum.

(b) that A (¥°+y*?) (or similar) temms exist, that is,
triplet are present.

(c) that & time slice of the four dimensional world is
described by the physics of the 2 + 1 dimensional

model.
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When the above are satisfied,we expect
(i) confinement
(ii) restoration of some or all of the original color
symmetries.
without (B topdlogical symmetry breakdown gives only a &n r
potential in 2 + 1 and (most likely) a % potential in 3 + 1.
Showing(a) and (b) is the next calculational step. These problems
can be approached by using:

(i) Semi-classical methods®>. These can determine how the
soliton's mass depends ol the parameters in the Higgs
potential.

(ii) A field theory for solitons'3+21. This should be
useful in determining the forces between vortices

and whether the vacuum stabilizes for mZ < 0.

(iii) Mandelstam's operator methodsa.

These should be
applied to ZN type monopoles. These methods might
be useful in determining vacuum instabilities and
hence why the soliton's mass is negative.

{iv) Halpern's dual field strength fom-;lation“. This
approach might exhibit the topological solitons and
their properties directly. It might also be helpful
in determining whether vacuum instabilities exist.

Most difficult will be showing (b), that triplet configuratims

exist, although there is no a priori reason (in the sense of a

conservation law) why they shouldn't.
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Additional problems particular to four dimensions are:

(a) whether the closed soliton strings have negative
Regge slopes and whether this makes sense as this
paper suggests.

(b) whether triplet surfaces occur. A new type of dual
string model is needed.

(c) whether the Higgs potential can be dune away with. Are
there singular but stable topological solitons in pure
Yang-Mills theories?

(d) If {c) holds, there are no mass scales. How does
dimensional transmutation45 come about?

We wish to emphasize the following points:

(a) The nondbelian (and to a lesser extent non-perturbativc)
nature of the confinement. The sclfsame method can at
most yield a &n r potential for a U(I)} theory.
This is because monopoles, i.e. triplets, cannot occur
in an abelian theory and they are essentiai in the
linear confinement.

(b) The potential between quarks is expected to hav= (i)

a linear piece due to triplet surfaces, (ii) most
likely a 1/r non-perturbative large r piece due to
closed surfaces, and (111} a (possibly screened or
antiscreened) perturbative piece which dominates the

short distance physics.
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Let us conclude by summarizing what we have shown:

(i) In 2+ 1 dimensions we have exhibited how to do
calculations when topological symmetry breakdown
occurs by using a macromolecule analogy. Ve
believ> this will form the prototype of future
topological symmetry breakdown calculations.

(ii) We have ~xtended 't Hooft's confinement scheme
in 2+1 to 3+1. Previously, only an operator
algebra yielding dii.crent phases was obtained.

(iii) We have discussed the dymamics of quark confinement,
namely, how monopoles naturally arise in a non-abelian
gauge theory; how negative Regge slopes make sense,
change Z.\' strings into magnetic field fluctuations,
generate the usual 1/r radial monopole magnetic field,
and liberate the monopoles (of the bound monopole-
antimonopole pairs) which are so instnumental to
quark confinement.

(iv) We have cornected the physics of che Z,, models to
Mandelstam's confinement scheme.

In short, we believe we are at the verge of proving confinement

in non-abelian gauge theories.
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Wilsca Lattice Gauge Theory
Electric Fields
Quarks
Closed Electric String + Electric Fluctuations

Positive Slope ++ Zero or Negative Slope

SU(3) Gauge Theory
Magnetic Fields
Monopoles
Closed Magnetic String ++ Magnetic Fluctuations

Positive Slope ++ Zero or Negative Slope

Table 1

ol
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Figure 1. The Macromolecule Approximation. (a) A continuous curve
between X5 and Xg o (b} the macromolecule approximation
of (a), (¢) a closed curve, and (d) its macromolecule
approximation.

Figure 2. A Vortex. This is a cross section of the vortex in the 1-2

rd axis is out of the paper.

plane. The 3

Figure 3. Linking Mumbers. (a) The Wilson loop. Its width and
length are r and t. Figures (b), (c), and (d) show a
vortex linking with this Wilson loop with linking numbers
+1, -1, and +2 respetively.

Figure 4. The Fhases of the 2 + 1 Dimensional Nielsen-Olesen
Model. (a) The symmetric phase. (b) The Higgs phase
(¢) The Topological Symmetry broken phase.

Figure 5. A Non-trivial Path. Here is a solid sphere with antipodal
points identified. This solid is topologically equivalent
to 0(3). A closed path is said to be trivial if, via
continuous deforrations, it can be shrunk to a point. The
path shown here begins at A, makes its way through the

sphere, and ends at A'. The path is closed since A' is



Figure 6.

Figure 7.

312

the same point as A. Because when A is moved A' must
move so as to be opposite A, it is impossible to bring
A to A' so as to shrink the path to a point. This path
is non-trivial.

The Product of Two Non-Trivial Paths Equals a Trivial One.
Multiolying two paths, P1 and PZ’ which begin and

end at the same point is defined to be the path,

p

=P, Pl, formed by first traversing P and then

3 2
traversing PZ. (a) Here is a path which begins at A,
goes to A' via P, where it "reappears" at A. It then
goes to A' via Q, hence back to the starting point, A.
This path is the product of two 'Figure 5" naths. (b) We
deform the curve a bit. The new path again starts at A,
but instead goes to a point, B, nearby A'. It '"reappars"
at B', whence it goes to A' via Q. This closes the
path since A' 1is identified with A. (c) Move the

point B (and hence the point, B') around the sphere

until it comes to A. (d) Shrink the two loops 1o the
peints A and A'. Since we have continuocusly deformed
this path to a point, it is trivial.

Non-Trivial Higgs Configurations. Figures (a) and (b} show
the behavior of two non-trivial Higgs configurations far
from the vortex. They carry the topological Z; charge.
Figure (c) shows what happens near the vortex: the Higgs
fields become almost parallel but still rotate when going

around the vortex. At the center they become exactly

parallel.
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Triplets. Figure (a) is the simplest triplet and Fig. (b)
is its macromolecule approximation. Figure (c) is a morec
complicated structure.

Linking Mumber of a Triplet With a Wilson Loop. - ‘a) The
Wilson locop. It has dimensions L x L and sits in the
x-y plane. The z-axis comes out of the paper. The
nearby triplet does not link with the Wilson loop so
n=0. (b) A linking configuration yielding the phasc
factor exp(E?)and (c) a linking configuration
yielding the phase factor exp(--%ﬂ) .

Spanning Surfaces. The dark line is the Wilson loop. The
non minimal surface, S', is the 'cup-like” surface
below the ioop. The minimal surface, S, forms a'lid".
Together they enclosed the volume, V.

A "Bad'" Topological Symmetry Breaking Fotential.

The Propagator of Two Wilson Loops, C and C'. There
are two types of spanning surfaces giving contributions;
the ones where each Wilson loop annihilates into the
vacuum and the "hour-glass' ones.

A Time Slice of a Wilson Loop. Atan instant in time, the
non minimal gauge surface, S', and the minimal surface,
S, will look like the curves C' and C. The classical
solution has the phase factor en(—z—?) inside the region,

R, enclosed by C and C'.
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Figure 15.

Figure 16.

Figure 17.
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Bloch Wall Solitons. (a) A region of exp(g?

vacuum surrounded by normal vacuum. The physical ground
state will cantain such domains of 2Z; vacua. The

objects separating them are Bloch walls. Their
excitations are associated with closed strings. (b) The

mass per unit length of the Bloch wall is culculated by
considering a straight one at x = 0. Then the problem
is similar to finding a one-dimensional soliton. (c)
The correct constraint for calculating the cenfining
potential between quarks.

Quark Trajectories in a Baryon. (a) A baryon
consisting of three quarks is produced at a and
destroyed at b. In between the three quarks travel
along paths, Cl' CZ’ and CS' (b) A singular

gauge surface. It consists of three disks, each of which
is bounded by a quark trajectory and the line from a

to b.

The Shape of Baryons. (a) Quarks at the ends of Three
strings. A time slice of Fig. 15b would yield this
configuration. (b) A quark in the middle of a string.
(c) A triangular quark and string configuration. The

numbers 1, 2, and 3 label the quarks. The dark lines

arc the strings.

Monopoles. (a) A sphere of radius, r, surround:ng

the endpoint (monopole) of a triplet. The total magnetic
flux emanating is %’- . The region, A, is a disk on the

sphere. (b) For a vortex the total flux emanating is zero.
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Figure 18. Linking of a Sphere and a Loop in Four Dimensions. These
three figures show a temporal sequence in which a sphere
and a loop link. Each t = n value represents a time
slice. In general, a time slice of a loop and a sphere
yiclds respectively two points and a loop. Lxceptions to
this occur when the loop or sphere are contained within
a single time slice, in which case they respectively look
like a loop (Fig. (c) at t = 3) and a sphere (Fig. (b)
at t = 3). Figure (a) shows the generic case: a puair
of "particles' and a small '"closed string' are produced
out of the vacuum. Onc of the particles shoots through
the loop, which subsequently shrinks and disappears.
The particles then anninilate. In Fig. (b) the spherc is
contained in the t =3 slice. Again, a pair of particles
is produced and the two separate. One of them is
instantaneously surrounded by the sphere, which sub-
sequently vanishes. The two then annihilate. In
Fig. (c) the loop is contained in the t = 3 slice. A
closed string is produced. It expands; then with the
sudden appearance of the loop, it links. The loop
instantly disappears and the closed string shrinks and
vanishes.
Figure 19. A Triplet Surface. This surface is contained in the
z = () slice of space-time, hence the 1z direction is
not shown. The object is like a smaller bubble stuck to
a bigger one.

Figure 20. The Temporal Sequence of Fig. 19.
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