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The nature of mesons in the 0** nonet is studied. In particular we discuss the param-
etrization of the /= 0 S wave in terms of the $* and possible ¢ mesons. The S* param-
eters arsg_dctgnzlincd by fitting to 7 a* and K~K* production data. In particular we
find (;.'KK/gmr) 4.0+ 0.6.

1. Introduction

Recent high statistics experiments have provided much new information on the
0** meson nonet. The /= 1 member, 5(970), is scen as a peak in the 71 spectrum
just below the KK threshold and also as a threshold enhancement in the K™K spec-
trum (see ref. [ 1] for recent data and reterences to earlier observations). The broad
K resonance is seen as the rise through 90° of the. approximately elastic. /= Kn $
wave in the region ot 1200 MeV |2]. The structure in the 77 § wave at the KK
threshold [3] is attributable to an /= 0 $* resonance, and it has been argued [4] that
there is in addition a broad e resonance in the /= 0 nw S wave whose mass
(m, ~ 1300 MeV) is consistent with the Gell-Mann-Okubo muass formula for the (6.
K. ¢, S*) nonet.

In the L excitation quark nodel the 0°* mesons are an L = | nonet. Apart from
the L =0 ground state 0 " and 1~ 7 nonets. the only other nonet for which all the
members are observed is the L = 1,27" nonet. The nature and symumetry properties
of the 0" nonet are therefore of considerable importance, particularly as many de-
cay channels are experimentally accessible: €, $* = mn, KK, nm: 6 - mn. KK and
k = Km, Kn. The fact that both the $* and § resonance poles occur just below the
KK threshold increases the difficulty of obtaining reliable couplings. For the $*
there is the additional complication of the large (€) background.

The muin purpose of this paper is to perform a coupled channel (rm. KK) anal-
ysisof then " p—nm n'nandn p— K K'n datain the region of the KK threshold.
and thereby to obtain a reasonable description of the $*, ¢ ettect in the /=0 S wave.
The most satisfactory procedure [4] that has been used to describe these overlapping
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resonances is to parametrize the Jost function (denoted by d(s) in sect. 2 below). In
ref. [4] this is done by writing d(s) as the product of an $* contribution and an ¢
contribution (essentially model IV of our sect. 4). Such a parametrization is hard to
interpret from the dynamical viewpoint, and so we consider several alternatives for
d(s) motivated by different possible structures of the resonances and see to what ex-
tent the data can distinguish between them. This should help illuminate the nature
of low-energy resonances.

There is no doubt that one of the most important questions of elementary par-
ticle theory is whether the low-energy mesons, for example. are predominantly qq
composites as in the simple quark model or whether some. or all, are predominantly
meson-meson <= qqqq states, as in the old *bootstrap’ type models, 1t could. of
course. be the case that they are ‘mixed’ so that neither extreme is realistic [S]. It
the mesons are qq states then in a many-channel model which ignores the quark
channels they would have to be inserted as CDD poles. This is obvious and well
known if the quarks are real particles whose non-appearance is due to their large
mass. It the quarks are permanently confined (as in the MIT bag model. for example
ref. [6]) they will never enter into an S-matrix description so their bound states
should again appear as elementary particles. i.c. require CDD poles. However. be-
cause we have no real understanding of confinement theories, it may be possible to
take a contrary view here: see Gustafson et al. [7].

In the work on baryon resonances by the above group [7], who explicitly calcu-
late the left-hand cuts, it is claimed that the low-energy states are meson-baryon
composites and that no CDD poles are required. Except for the proviso noted above,
this appears to rule out the possibility that those baryons are 3q states as in the sim-
ple quark model.

Even within a particular realisation of the quark mode] this problem is not solved.
For instance in the MIT bag model of mesons, in addition to the qq states there are
qqqq states with similar masses and indeed the suggestion has been made |8] that
the 0" mesons considered in this note are of such a type.

It is worth noting that the same problem occurs in the study of the pomeron. In
one scheme [9] the non-planar diagrams (the cylinder, ete. of the topological ex-
pansion) simply renormalise the f upwards to make a pomeron, whereas in the other
(generally referred to as the Harari-Freund scheme, also a property of the dual model)
the cylinder itself has a new singularity so that in addition to the (qq) f. etc. there
is a (qqqq) pomeron.

The plan of this paper is as follows. In sect. 2 we briefly recall the analytic struc-
ture of the S matrix in the two-channel situation and in sect. 3 we consider the pa-
rametrization of the & resonance. In sect. 4 we study the more interesting case of
the description of the 7 =0 S wave in the region of the KK threshold. We consider
three parametrizations which appear to arise naturally in: (1) a model with a nm
state (€) and a KK state ($*) together with a coupling between them, (11) a model
with a 77 state () and a (g state (S*) with no signiticant force in the KK channel,
and (1) a mode! with no significant forces in the 77 and KK channels and two
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states (e, S*) in the qq channels. In a sense that will be made explicit in sect. S the
results of the analysis of the data appear to rule out Il and to favour 11 over L.

In sect. 5 we describe the coupled channel (77, KK) analysis of the 77 p=>n"n'n
and 7 p = K~K*n in the region of the KK threshold. We analyse the data in terms
of §, P. D partial waves ot the produced di-meson system. We study various param-
etrizations of the /=0 § wave, including those mentioned above, and determine the
S* resonance parameters. In particular, the (sheet I1) resonance pole is found to be
well determined and independent of the parametrization of the S wave. A discussion
of the results is given in sect. 6, together with comments on the status of SU(3) for
the 0"* nonet and our conclusions.

2. The S-matrix

Consider a two-channel situation, for example 7w and KK, and denote the thresh-
olds as s; = 4m? and s, = 4m?. with channel momenta k; = 505 - 5;)"/2. The elements
of the § matrix, Sy, have right-hand cuts in the s plane starting at 5, and s,. As we
are only interested in the S wave we omit the subscript / from S. We refer to the
physical sheet as sheet I; the physical amplitudes are evaluated on the upper side of
the right-hand cuts on this sheet. We can define sheets 11, I and 1V by continuing
analytically through the cuts as shown in fig. [, where, for clarity, we have shown
the cuts displaced just below the real axis. Sheets I, 11, 11, IV correspond to (Im k&,
Im ky) =++, -+, — _+- _respectively.

A convenient way to guarantee the singularity structure and unitarity properties
of §is to introduce [10] a real analytic function d(s) = d(k, k) with square root
branch points at &, = 0 and k, = 0. Then if we put

_d"(s) _d( k. ky)

S‘Il_-[ =T . (])
dYs)  diky,ky)

_d™N(@s) _dky. k)

e (2)

Syy=—g—== .
2 dYs)  d(ky, k)

d"™(s) _d(_ky. -k2)

iy SR (3)
d'(s) d(kl‘l‘2)

SiS2 - St

we find that S has the correct analytic structure and is unitary * in the physical re-
gion. This method is easily generalised to many channels [10]. The poles of the S
matrix are caused by the zeros of d'(s) = d(s).

We will use the multichannel N over D method and write the S-wave amplitude

T=ND ',

* This requires also that [d( &y, ko)l < idtky, kq)i.



A.D. Martin et al. [ nw and KK amplitudes 517

Complex S plane

tig. 1. The sheets reached from the physical sheet, sheet I, by continuing through the right-
hand cuts. The cuts are displaced just below real axis for clarity.

where N has the left-hand cuts and D the right-hand cuts. We normalise T so that

ImT=T*pT, 4

pij = 0(s spkdy . )
hence

ImD=--pN . (6)

The real analytic function d(s). introduced above, can be taken to be det D(s). On
the physical sheet d(s) does not have the left-hand cuts of S.

3. The o resonance

We first apply this formalism to the simple case of a single two-channel resonance:
the /=1 S-wave & resonance in the 71 and KK channels. We consider the parametri-
zation of this resonance supposing it to be (a) a meson-meson state (we call this ex-
change model ™) and (b) a qq state (the quark model).

{a) Fxchange model. In this model we assume that the 71 and KK exchange
forces are responsible for the § meson. In particular, suppose that forces in the KK
channel are predominantly responsible for the &, then we may parametrize D,, by a
linear function of s and the other elements by constants. We add the threshold terms
multiplied by constants. This approximation gives

! A - iBk,
D= (7
C- IDk2 SR N I.L‘kz

in the resonance region, where 4, B, C, D, E and sy are real parameters. The corre-
sponding N is given by

[0 mi
N= ' (8)
D E|
* This is not an ideal name but we follow Gustafson et al. [7] who, like us, were unable to
think of a better one.
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and the symmetry condition Ty = T, requires

D=0. B= FC. (9)
We therefore obtain

d(sy - detD=m?* s im Iy im0, (10)
with

m?=sg  AC. ml'y = EC%, | mly = Fk, . (n

This form of d(s) is the two-channel Breit-Wigner formula.

Note that the torm of d{s) would not be different if we put the ‘uncoupled’ § in
the ww channel rather than in KK channel. However, if we tried a linear form in both
Dy and Dy, (as in model I for the S*, e in the next section). the fit would require
SRy OF Sk to be large. so that d(s) would reduce essentially * to form of eq. (10).
This is because the data indicate there is no S-wave “buckground” to the § resonance.

(b) Quark model. In this model we assume that the meson-meson forces are weak
except vig the quark channel. MM > g = MM. In this cuse we have

(1 0 A- iBk, Wl

D='0 1 C Dk, ‘ (12)
_i !
W F sk s

where the elements in the third row are real, since we are interested in a region well
below the qq threshold. It is straightforward to show that d(s) = det D is once again
of the form of eq. (10).

Thus we see that the two models for the 8 are indistinguishable and both lead to
the Breit-Wigner fonmula

ro
= " ’~.’-“_{<EA (13)
d(s)
where d(s) is given by eq. (10) and I'; = k,g2. This expression for T}, has poles on
sheet 1T and on sheet 11 (or sheet 1V). We can get an idea about the location of the
poles if we ignore the s dependence of the I';. Of course. this is not a reasonable ap-
proximation when the poles occur near threshold and so in practice we must solve
exactly. However for the purpose of discussion we take Iy = I; = I'y(m). Then the
pole nearest the physical region on sheet 11 is at

s=m? - im(I"y + T, , (14)

* The amplitudes are unchanged if d(s) is multiplicd by a real constant.
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and that on sheet II (or, if I’y > 'y, sheet 1V) is at
s=m* im(T, - T,). (15)

There are also the more distant complex conjugate poles. When the resonance oc-
curs well above both thresholds only the sheet 111 pole is important. However the 8
resonance occurs just below the KK threshold and the ‘nearby’ sheet Il pole is
manifest in the 7 mass spectrum.

The 7n mass spectrum has been fitted [1] by this two-channel Breit-Wigner for-
mula with the coupling constant ratio g,zm/gf(,z fixed at the SU(3) value of 2. The
parameters of the § were found to be

m=974 + 9 MeV . l‘,m:7'_‘i5| MeV . (16)

These values give a KK mass spectrum which is in good agreement with the data,
when allowance is made for incoherent background effects [1].

Flatté [11] has shown several other Breit-Wigner fits to these 7n and KK~ mass
spectra and concludes that the data can be fitted almost as well by larger partial
widths, l_‘,m ~ 300 MeV. Even with large partial widths the sheet I pole can occur
close to the real axis. However, the fall-oft of the § contribution to the KK mass
spectrum is a crucial indicator of the sheet T pole position. Although the statistics
are low, the KOK ™ spectrum [1] above 1060 MeV suggests that the sheet 111 pole
is closer to the real axis than is permitted by Flatté [11].

For completeness we mention an alternative description of a resonance occurring
just below the second threshold, which is based on a constant inverse K-matrix and
which has been frequently discussed in the literature [12]. In our notation this pa-
rametrization is

« - iky Y 1
D= ,
LY B~ l'sz

and therefore AV is the unit matrix. For § small and negative this leads to a sheet 11
pole just below the (second) KK threshold (£, = i]k,|) at

(17)

kol =- B+ vy (a - iky). (18)
This pole manifests itself as a resonance in channel 1, which may be called a KK
bound state resonance. [t is casy to show that such a resonance is effectively de-
scribed by two of the parameters, the third being associated with a background con-
tribution. There is no nearby sheet I pole in this parametrization and so the reso-
nant amplitude T, dies away more slowly (~1/k,) than in the Breit-Wigner descrip-
tion in contradiction with the indications of the data.

4. Parametrization of the S* and ¢

Like the &, the S* resonance occurs just below the KK threshold and the sheet 11
pole is manifest in the structure of the 7w spectrum. However in this case the de-
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scription is complicated by the presence of a large, possibly resonant (¢), background
in the /=0 S wave. We discuss possible parametrizations of this partial wave in the
7w, KK channels in the region of the KK threshold *.

(1) Exchange model. In this model we assume that the amplitudes are dominated
by forces in the 7w and KK channels. together with a coupling between them. We
parametrise the diagonal elements of D by linear tunctions of s and the off-diagonal
elements by constants. We add the appropriate threshold terms multiplied by arbi-
trary constants. Thus,

(s.- s—iyk, A-iBk, ]

D= v (19)

L C- IDk2 SR N I72k2J
which corresponds to an N given by

r‘71 B jI

N-= [ (20)
LD 72J

We calculate 7= ND~! and impose the condition that T, = T,,. This yields
B=D, C={v1A - B(s¢ - sy, - (21)

Thus, for det D we have the 6-parameter form

disy=detD=(s,- s- iv,k)(sp - s~ iyaky)

1
- (A iBk) (7 A - Blsc- sg) -~ iv2Bk,) . (22)
2

In the limit in which the 77 - KK coupling is ignored this model permits a reso-
nance in 7w and one in KK. The former, which we identify with the e, gives the
background to the S* state in the KK channel.

(11) Mixed model. Here we permit an € background in the 7w state as vefore, but
we do not include any forces in the nmr = KK or KK - KK amplitudes. Instcad we
include a qq channel in which there is a bound state. Thus

rse - S i')’lk] O A IBkl
D=0 1 C- iDk, . (23)

l
Lk‘ Fos; s J

We have ignored the threshold terms in the qq channel since we assume that these
arc sufficiently distant not to affect the results.

* Here we neglect the RYK ™ and KOK¥ mauss difference. When detailed threshold mass spectra
are available, it will be interesting to study this cftect.
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When we impose Ty, = T, we find
B=0, D=-v,AF/E. (24)

We can therefore write

d(s)y=detD=(sc -5 ~ iy k)(sp s =~ ivaky) AL, (25)

which has five effective parameters (s, sg (=53 — CF), 71, 72 (Ev, AF*[E), AE).

We see that this model is identical to model I except that it has the additional
restriction that B of model | is zero.

(111) Quark model. Here we ignore all forces in the meson channels and we treat
the nm = qq coupling to lowest significant order. It is convenient to include two qq
channels (e.g. a | and 8 of SU(3)) and parametrize cach as a linear function of s.
Thus we put

I 0 A+iBk, C+iDk,)

0 1 Evifk, Gk, |

D= } (26)
! J $3 S Y

K L X S4—§ J
Provided we do not go beyond second order off-diagonal terms, we obtain
dis)y=det D=(s>+as+b +ik,(c +ds) + ik,(e + f5)), 7

where a, b, ¢, d, e, f are six real constants. Although they both have six parameters,
(27) and (22) are different. In particular (27) does not allow any term of the form

(k) (k). j
In sect. 5 we analyse 7" p > 7" n"n, KKn data in an attempt to distinguish be-
tween the above parametrizations. We also compare with the description obtained
by the following parametrizations used in earlier analyses [4,13,14].
(IV] Breit-Wigner and background. In our notation this description means that
the S matrix is given by egs. (1)- (3) with the factorizing form [4]

d(s) = dR(s)d®Gs) , (28)
where d® is a two-channel Breit-Wigner form for the $* resonance,

dR(s)=sp = s = briky - ivaka (29)
and d® is the background to the resonance. We take

dB(s)=e " 1% (30)

that is we assume a background phase, § 3 = k,¢p, only in the 77 channel. The de-
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tails of the fit are found to be independent of the parametrization of 85 provided it
approximates 90° in the S* region. We choose to parametrize Sy in terms of a broad
T resonance.

(V) Constant inverse K matrix. In this description the § matrix is calculated using

d(s)=(a- ik)(B- iky)- 2. (31)

see eq. (17), where a, 8, y are the elements of the K =1 or M matrix and are real. If
@, B,y are taken to be constant we can get a 3-parameter description of a resonance
and background. For example,

iy + K + ik
S”:('_z i‘_R_)(E ’_l) (32)

1.k2+KR o - lk]

where kg is the value of |k,] given in eq. (18). This expression for Sy is in the form
of resonance (sheet 11 pole) multiplied by background, where 8y ~ 90° provided
la) <<k,.

5. Analysis of data in the S* region

In order to study the properties of the S* we performed a coupled channel anal-
ysis by fitting 77 and KK production amplitudes direct to 77 p = 7~ 7" n and
7" p > K K*n data. For cach reaction we describe the observed moments { Y4,
withJ <2, M < 1, of the produced di-meson system in terms of S, P and D waves.

Forn~p = a7 n"n we used the t-channel moments obtained by the CERN-
Munich collaboration [15] (see fig. 2). We fitted to data (with ¢ <0.15 GeV?)in
20 MeV bins through the range 0.8 <M, < 1.2 GeV using the ‘Ochs-Wagner’ meth-
od [16,17]. That is, the #N - naN amplitudes, L,,. for producing a #m system of
spin L, helicity X by * exchange naturality, are assumed to satisfy (i) 1L, = L, |.
(ii) Zys =0 for A > 1, (iii) L, _ /Lo =EL(L + 1)/C where Cis real. We parametrized
C as a quadratic function of M,,. The observed moments, with J <2, are then ex-
pressed in terms of Ly, with L =0, 1, 2, and C(M,).

For n7p -» K™ K"n we used the 7-channel moments obtained at 6 GeV/c by the
Argonne EMS group [18] (=7 <0.08 GeV?) and at 18.4 GeV/c by the CERN.-
Munich collaboration [19] (- t <0.2 GeV?). The exchange mechanisms are more
complicated in this reaction and to study the My g dependence it is desirable to
consider data extrapolated to the m exchange pole. Such a cross-section extrapola-
tion has been done by the CERN-Munich group [19] and so we have normalized all
the observed moments to these values. The moments obtained in this way are shown
in fig. 3, and are analysed in terms of amplitudes by the ‘Ochs-Wagner’ method for
My <1.15GeV.

The observable 77 and KK moments are expressed [15 17]in terms of the pro-
duction amplitudes Lo(mn) and Lo(m "7t = K K*) for £, =0, 1, 2. which, in turn,
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\ nT n' MOMENTS

255 R (-t <015Gev’)

08 08 ) 1 08 [oX:] 1 3|

Mmr (GeV)
Fig. 2. The mass spectra of the unnormalized ¢ channel ar moments in the region
0.8 < My < 1.2 GeV. The data were obtained in the CERN-Munich 17.2 GeV/c " p — n n'n
experiment [15] and correspond to —¢ < 0.15 GeVZ2. The curves are the fit using model 1.

are given in terms of the S, P, D coupled channel (7w, KK) partial wave amplitudes.
We investigated the / =0 S wave parametrizations discussed in sect. 4 by fitting to
the data keeping the other partial waves fixed. For the / =2 7w S wave we input the
values of 83 used in ref. [ 17] (for example 2 = 22.4° at M, = 1 GeV). For the P
and D waves * we used p and f resonant forms with the relative 77/KK couplings
fixed at their SU(3) values.

The curves on figs. 2 and 3 correspond to the best fit ¥ obtained using the model
[ parametrization, eq. (22). The parameters obtained are

sg=0.94+0.08 . v, =094 +0.03,
Se=1.4"0% . 71 =9"%,

A= -022+042. B=0.06+0.55. (33)

"_' The small contribution to an production from the g resonance tail was also included.
T To allow for the excess of om, as compared to KK, production data, we reduced the contribu-
tion to x2 from the fit to the nw data by a factor of 4.
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MOMENTS OF K'K® ANGULAR DISTRIBUTION
400 T
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<Y <>
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[ CERN-MUNICH ﬁ
EXTRAPOLATED
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® NON-EVASIVE

—L
10 1
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Fig. 3. The ¢ channel moments of the K K" angular distribution in the reaction n " p -+ K’ K'n.
The data for ¢ Y8> are obtained by the CERN-Munich collaboration by extrapolating the cross
section to the n exchange pole (see fig. 6 and ref. [19]). All the other moments shown are nor-
malized to these (non-evasive) extrapolated values. The curves correspond to the fit of model |
(the dotted line for ¢ Y(l)) is obtained if the p phase is input). The dashed line for ¢ Yg) is the fit
using the constant K matrix, model V.

in units of GeV. There are systematic discrepancies in the description of some of the
77 moments which may be due to using fixed Breit-Wigner forms to describe the
tails of the p and f resonances. Similar'systematic misfits in this region were also
found [16] in the CERN-Munich phase-shift analysis based on resonance parame-
trizations. It is interesting to note that if the fit is compared to preliminary Argonne
4 and 6 GeV/c 7~ p—n 7*n data [20] that these discrepancies are reduced *. In
the it we allowed the P wave phase & p(mm - KK) to be free. We found that it was
in agreement with that predicted by the tail of the p resonance just above the KK
threshold, but by Mg = 1.1 needed to be some 30° larger. If & p(7m = KK) is as-
sumed to be given by the p tail, and the other parameters left unchanged, then the
dotted curve is obtained for ¢ Y§) for KK production, see fig. 3.

The values of four of the six parameters of model 1, eq. (33), are poorly deter-

*In particular the ANL data show evidence for the structure indicated for ¢ Y(2)> at the KK
threshold.
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[=0 S WAVE

TTTt+» KR

>

097 1125

1002

1125

Fig. 4. Argand plots of kT and (k lkz)l/zTn, respectively. The continuous curves, with the
mass marked in GeV, are the S wave amplitudes obtained in the fit using model 1. Models 11 and
IV give essentially the same amplitudes. The dashed line corresponds to model V. The unmarked
points for nm — KK correspond to Mg = 1.02, 1.0375, 1.075 GeV respectively.

mined and suggest that the / = 0 S wave is over-parametrized. s, is badly determined
because v, is large and the parameters are strongly correlated. As expected from the
values of B in eq. (33), model 11, which has this B = 0, gives essentially the same fit.
Moreover model 1V, eq. (28), with four effective parameters sg = m(S*)2, vy, = g2,.,
v, =gkg and &y * also gives an essentially identical fit, with

m($*)=0978 £0.005,  v,=0.199 +0.014,
5p(1 GeV) = 86.5° v, =0.792 + 0.099 , (34)

in units of GeV.
That such different parametrizations are likely to lead to similar fits can be de-

monstrated as follows. Since the background phase, 8, in model 1V is approximate-
ly 90° we have

d(s) = -i(k) (g — s — Iv1ky ~ iv2k2) . (35)

The introduction of the slowly varying factor (k) is irrelevant to the fit, but is re-
quired by unitarity. On the other hand for model I the values of the parameters are
such that

d(s) =~ —iv\k,(sg --s  iv3ky) C'. (36)

*In practice 8 g was parametrized in terms of a broad elastic nn resonance. The best values were
m(e) = l.l,gf"r = 3.7 with very large, strongly correlated errors.
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Table 1

The S* pole positions and couplings

Model Sheet 11 pole (GeV) Sheet 11 pole (GeV) ERx/eam?

1 Exchange 0.997 --10.017 0.837 10.148 4.0
(:0.002) (+0.002) (£0.013) (+ 0.008)

II' Mixed 0.996 0.017 0.835 i0.146 39
(£0.002) (+0.001) (20.008) (£(.0085)

1V Breit-Wigner 0.996 --i0.016 0.876 i0.077 4.0
(+0.003) (£0.002) (x0.010) (20.008)

V Constant 0.988 - i0.012 (8.7)

K1 matrix (£0.003) (+0.002)

201 4

nn 'S WAVE' PRODUCTION (ARBITARY UNITS)

09 1-0 1
M(n ") GeV

Fig. 5. The x " n" mass distribution observed in K'p-—~n 7T (A, 20) in the S* region with the
background and p resonance events subtracted [21]. The continuous curve corresponds to the
prediction for model I (II, IV) and the dashed curve to that for model V. The curves are propor:
tional to k| Mpy 1Ty 212 and are unnormalized.
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To the extent that k| is constant over the region of interest, the parametrizations
can be seen to be equivalent: v, =v5, v, = C'/k37).

We find that model 111, eq. (27), is ruled out by the data since it is unable to re-
produce the necessary background in the 77 channel. Also the constant inverse K
matrix, model V, is unable to give a satisfactory fit to the data. The best fit, using
eq. (31), has

«=0095, f= 0.045. y=0.163 (37)

in units of GeV, but leads to the behaviour of (Y9 for KK production shown by the
dashed line in fig. 3. There is only a nearby sheet Il pole, and the absence of a near-
by sheet I11 pole does not allow (Y9 to decrease rapidly enough with increasing
Mgk [4,14].

The / =0 S wave amplitudes obtained in the fits are shown in the Argand plots
of fig. 4. There is no ambiguity in the sign of the S wave amplitude T, since the
interference with the resonance tail contributions is compatible with the KK produc-
tion data provided gi /g5 is positive [4]. In table 1 we show the S* pole positions
corresponding to the various parametrizations. We notice that the sheet Il pole posi-
tion is very stable to changes of the parametrization. We also give the ratio of the S*
coupling to the two channels, defined as | T,,/T ;i at the sheet 11 pole position.

The S* is also evident in the mm spectrum obscrved in the reaction
K p- 7~ n*(A. Z% [21]. The data, with the p° tail subtracted [21}], are shown in
fig. 5 together with our predictions for the shape of the spectrum.

6. Discussion and conclusion

We have proposed a form of parametrization ot tue coupled channel (n7, KK)

1 =0 S wave which allows for the presence of overlapping S* and ¢ resonances and
which permits an investigation of the nature of these mesons. We found that mod-
el 111, which we called the quark model, is not able to fit the #*7~ and K*K~ pro-
duction data. This does not mean, of course, that the S* and € are not predominant-
ly qq states, but it does mean that such a description is not simple and that forces
in the meson sector are also important. There has to be a significant admixture of
meson-meson (qqqq) states in the wave functions. Of course it is not obvious that .
this makes these resonances any different from the better known ones such as the p,
since, for example, the observed coupling of the p to mx inevitably mixes a (qq4q)
component into its wave function. However, the necessity for such a component has
not previously been required experimentally.

Models I and 1 give satisfactory fits to the data. In the fit with model I a partic-
ular parameter turns out to be essentially zero, a fact which is predicted by model I1.
This gives some evidence in support of model II. However this evidence is very weak
as indicated by the errors in (33). The fact that an equivalent fit can be obtained
with the four effective parameters of model 1V indicates that the S wave is over-pa-
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Fig. 6. (a) The n "n" -+ K K" cross section obtained by the CERN-Munich collaboration [19]
by extrapolating their 18.4 GeV/cn p-+K~ K*ndata to the = exchange pole. The open (closed)
points correspond to evasive (non-evasive) extrapolation. The curve is the S wave unitarity limit.
(b) The S wave inclasticity, 1.S;;1 = n, obtained from an S, P, D partial-wave analysis of
n p—K ‘K*n data [19] normalized to the cross section obtained by the non-evasive extrapola-
tion. The two open points for n are the values obtained assuming only the S wave contributes
to the m " n* = K K" cross section. The curve corresponds to the model 1 (11, IV) parametriza-
tion.

rametrized in models [ and I1. Since four S wave parameters suffice to describe the
structure of the data in the S* region (three of which are associated with the S*) we
are unable to determine meaningful parameters for the €.

Recent 7~ p = K2K2n data [22], which contain only even-L nm - KK partial
waves, show evidence for a large S wave under the f resonance. A detailed study of
this effect will require a partial wave analysis of data extrapolated to the 7 exchange
pole. Of the recent experiments, the only extrapolated values presently available are
those given in the upper part of fig. 6, which shows the 7¥7~ = K*K~ cross section
obtained by the CERN-Munich collaboration [19] by extrapolation of their
‘n”p—> K~ K"'n data. We performed an S, P, D wave analysis of the K"K~ moments
[19] for —¢ < 0.2 GeV? and calculated the S wave contribution * to the cross sec-

* We show the solution with the larger 151 as required by a study of the KgKg production data
{22].
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tion. The results are shown in the lower part of fig. 6. The curve corresponds to the
model I (11, 1V) S wave parametrization. The data indicate that there exists some
additional S wave effect for Mgg = 1.2 GeV.

If the large S wave under the f resonance is associated with the e then it is at
variance with our expectations for SU(3) for the 0** nonet. The SU(3) couplings
for the decay of the 0** mesons into two pseudoscalars are given in terms of g, gg
and 0, the € - S* mixing angle, in ref. [4]. Note that we define I'; = k,g? whereas
in ref. [4] I'; is essentially 2k,g? . Using the 8 width to determine * gg, and using the
S* couplings found above, we obtain

£g5=0.76%02, g =117:02, fg=68"+15°.

The € — S* mixing in the 0** nonet is far from ideal [4]. If we use the above values,
then SU(3) predicts a broad € resonance in the 7w channel with a very small coupling
to the KK channel.

Cerrada et al. [23] have recently discussed mm and KK scattering in the S* region
using a different parametrization. They claim that they do not require any nearby
resonances. However it is clear that they do not fit the mm > KK cross section near
threshold as shown in our fig. 6 (compare n of their fig. 1). These data are crucial
in determining the S* parameters. The claim, that the KK - KK left-hand cut is im-
portant, is incorrect since it does not contribute to either Ty, or | Ty,12. In fact this
can be scen explicitly using their parametrization: putting v,, =0 in their eq. (8) is
found not to affect the results in the S* region.

In summary, we have determined the properties of the S* resonance using n* 7~
and K' K™ production data below 1.2 GeV, but are unable to say much about the
possible ¢ state in this mass region. The behaviour of the KK production data just
above threshold are invaluable in determining the S* parameters. Similarly the
(KK)* spectra will be crucial for studying the 8. We note that recent KK production
experiments are finding interesting S wave structure in the region of the f resonance.
The high statistics data [24] on the line-reversed reactions 77 p > K K'n and
m*n > K~ K*p will be invaluable for investigating exchange mechanisms, S* - § in-
terference and for establishing whether the S wave structure under the f is associated
with the 7w - KK channel.

It is a pleasure to thank Drs. P. Estabrooks, D. Morgan, M.R. Pennington, J.L.
Petersen and T. Shimada for helpful discussions, and for their interest in this work,
and to thank Drs. N.M. Cason, E. Lorenz, A.J. Pawlicki and A.B. Wicklund for com-
municating and discussing the results of their experiments prior to publication. One
of us (E.N.O.) thanks the Turkish Government for financial support.

* The value of gg is constrained to be compatible [4] with the behaviour of the Kn / = % S wave
phase.
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We perform an amplitude analysis of 10 GeV/c n"p — K“Kgp data as a function of K"K mass from threshold up to 2
GeV. We find that the A, and g resonances are produced dominantly by natural and unnatural parity exchange, respectively
and we determine their resonance parameters. We present further evidence for the / = 1, 4% state A;(1900), in particular by
isolating interference effects. The structure of S-wave K”K9 production suggests an 7 = 1, 0% state just below 1300 MeV of

width about 250 MeV.

The high statistics data for the reaction 77 p
- K~KO% allow a study of the meson spectrum that
is more selective than that for KYK~ production. The
K~KO9 channel has isospin 1 and is thus only accessible
to even spin states of odd G-parity (such as the §(0%),
A,(2%)) and to odd spin states of even G-parity (such
as the g(37)). The data that are available on K“K‘S)
production therefore complement the information
available *! from the high statistics KYK—, K(S)KO,
a*7~ and 7970 production data.

The even and odd G-parity K—KO states are pro-
duced by different exchange mechanisms. The al-
lowed natural and unnatural parity exchanges (denoted
by NPE and UPE) are shown in table 1. From studies
of the SU(3)-related reactions KN - (Km)N we expect
isoscalar NPE (pomeron, f, and w exchange) and iso-
vector UPE to be dominant [3]. The possibility of
pomeron exchange (P) means that at high energies
even-L K~KUO states should be more copiously pro-
duced than those with odd L.

Here we analyse the 10 GeV/en7p — K‘K(S)p data

! present address: CERN, Geneva, Switzerland.
! Recent reviews are given, for example, by Petersen [1] and
Cohen [2].

Table 1
Allowed exchanges for spin-L K~K® production.

L even L odd
NPE P, f,p w, Az
UPE B,Z3) ™ Aq

) Z is used to denote the possible 2~ exchange trajectory.

obtained using the University of Geneva two-arm spec-
trometer [4] . We use the moments Re(Y}W), of the K~
angular distribution in the #-channel K~KO helicity
frame in 50 MeV intervals over the mass range 1

< M(K-K0)< 2 GeV, integrated over the ¢ interval
0.07 < — < 1(GeV/c)2. Only the J < 8, M < 2 mo-
ments are found to be significantly different from
zero ¥ and these are determined by the constrained
linear fit described in the preceding letter [5]. The re-
sulting mass spectra are shown in fig. 1. These may be
compared with the moments, shown in ref. [5], ob-
tained from the same data by a maximum likelihood

*2 In the mass region of the A, resonance there is evidence
for a small, but non-zero, (Y 3 signal; we discuss the impli-
cation of this below.
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method, but integrated over a somewhat smaller ¢ in-
terval.

The moments can be expressed [6] as the sum of
bilinear products of amplitudes, L, , , describing, to
leading order in the energy, the production of a K-K°
system of spin L, helicity X by NPE and UPE, respec-
tively. In terms of the helicity amplitudes H , , we
have Ly, = [Hp 5 + (-DMIH, _\]/7/2 for A # 0;
and Ly = H, , that is only UPE for A = 0. We will use
the abbreviated notation L, =L ,. A summation over
helicity flip and non-flip at the nucleon vertex is im-
plicit in each bilinear product, that is [L]2 = [Lg|2
+ Ll 2, The interference terms can be written in the
form

Re(L'L™) = |L'|*|ILI(§ cos ¢ ,

where £ is the degree of nucleon spin coherence (0

< £ <1)and ¢ is the relative phase between amplitudes
L and L'. We note that the observed moments do not
contain interference terms between NPE and UPE am-
plitudes. That is, terms of the form Re(Ly, L} _) do
not occur.

The number of observed moments is insufficient to
determine the magnitudes and phases of all the ampli-
tudes L, .. Fortunately, for a given L, not all (+-chan-
nel) helicity components are important. The study of
the # structure in the A, and g resonance regions [7]
(as well as the amplitude structure in the SU(3)-related
reactions {3] K*p - (Kn)*p) shows that the domi-
nant NPE amplitudes are L, and that UPE proceeds
mainly via L. This can also be inferred directly from
the observed f-channel moments as a function of mass
(fig. 1); we see that the <Y}J’2)moments are, in general,
larger than those with M = 1.

For other related dimeson production processes
(such as m*n~ [8],K~7* [9],K*K~ [10], KOx* [3],
K97~ [3]), it is found that the #-channel moments
with M > 2 are compatible with zero, indicating that
the amplitudes with A 2 2 can be neglected. However,
for 7=p > (K~K%p in the A, mass region a definite
signal is found [7] in the (Y2> t-~channel moment. Owing
to the dominance of D, in this mass region, this signal
can be attributed to DD, interference. In fact an
amplitude analysis [7] of A, production as a function
of t shows that |D,, 1 ~ 0.1|D, |, on an average over
the relevant # range. We therefore conclude that the
L'+L’§+ interference terms will, in general, contribute
to the M = 1 moments at least as strongly as the L(')L*_

PHYSICS LETTERS
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interference terms. The data are unable to determine
both L _ and L, . However, these small amplitudes
only contribute quadratically to the M = 0 and 2 mo-
ments and so it should be reliable to use these mo-
ments to determine the more dominant Ly and L, am-
plitudes.

For these reasons we use the M = 0 and 2 ¢-channel
moments with J < 8 (fig. 1) to determine the magni-
tudes and relative phases of the amplitudes in the NPE
sector (P, D,, F,, G,) and in the UPE sector
(Sg, Py, Dy, Fy, Gg) as a function of the produced
K~KY mass in the range 1 <M < 2 GeV. For example,
for each mass bin above 1.8 GeV, where amplitudes
up to L =4 are required, we use 16 moments to deter-
mine 9 amplitude magnitudes and 7 relative phases. In
principle, this assumes that, within each sector, the
amplitudes have a common coherence factor £. There
is no certainty that this is correct. However, in prac-
tice, at a given mass, often only one interference term
is important within each sector, and then the data give
a reliable determination of the corresponding spin-
phase coherence ** £ cos ¢. For example, in the A,
mass region the data determine £ cos ¢ for SyD and
P, D, interference.

Even then the amplitude determination is not unique
The data determine only (cos ¢); ; -, and not the rela-
tive phases ¢; 7+, and so there remain discrete ambigui-
ties. At each K~ KO mass M we obtain all possible solu-
tions by using a similar technique to that proposed by
Gersten [11] and Barrelet [12] . We write the ampli-
tudes, describing n—p— K~KO% by UPE and NPE, in
the form

L

A(UPE) = a(M) I_]l @ -z),

£-1
A(NPE) = ¢'(M) sin ¢ sin 0 ﬂl @ - z)),
o

with z = cos 8, where 8 and ¢ are the angles specifying
the direction of the K~ in the (#-channel) K~KO rest
frame. £ is the maximum value of L included in the
partial wave decomposition of 4(UPE) and A(NPE)
into the L and L, amplitudes, respectively. The
“Barrelet” zeros, z(M) and z;(M) are complex. The
ambiguities arise because the data do not determine

*3 The value represents the spin-phase coherence averaged
over the ¢ interval of the data, 0.07 < —t< 1 (GeV/c)2.
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NPE in v p— K Kop (007<-t <1 (Gevic))
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Fig. 2. The (z-channel) amplitudes describing K™K produc-
tion by NPE obtained by analysing the moments of fig. 1.
Representative errors are shown. The curves through the

L = 2 amplitudes correspond to the Breit—Wigner resonant
fits of table 2. Only the coherences between significant ampli-
tudes are shown.

the signs of Im z; or Im z;. Thus there is a 2.L-fold am-
biguity within the UPE sector and a 2£~1-fold ambi-
guity with the NPE sector. From a given solution we
generate the other solutions by first determining the
z; (z}) and then making substitutions z; > z;
(z; = z") for the various combinations of the zeros.
We find that the amplitude G, describing L = 4
K~KO9 production by UPE, is compatible with zero.
This can be anticipated by inspection of the J = 8,
M =0, 2 moments. In the results presented below we
have therefore set Gy = 0. For K K9 masses below
1.7 GeV we fix G, to be given by the tail of a spin 4
resonance and fit only moments with J < 7. For
K~KY masses below 1.5 GeV we fix the L = 3 ampli-
tudes, ' and F, to be given by the tail of the g reso-
nance and fit only moments with J < 5. The resonance
forms are normalized to fit the amplitude determina-
tions in the higher mass bins.
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UPE in 'p—» K K'p (007<-t<1(Gevic)?)
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Fig. 3. Same as fig. 2, but for UPE K™K° production.

We tabulate all the allowed solutions in each mass
bin. In the majority of mass bins these solutions give
an essentially exact description of the data. In all but
the mass bin about 1.325 GeV (see the data fluctua-
tions in fig. 1) and those above 1.85 GeV the fits have
an acceptable x2. In figs. 2 and 3 we present the solu-
tion that is selected at each mass by requiring

(i) the dominance of S, just above the K-KO
threshold. (P and higher waves are suppressed by fac-
tors of (qu)L),

(ii) the continuity of Im z; and Im z; as a function
of the K~KO mass,

(iii) amplitude behaviour consistent with the pres-
ence of the A, and g resonances.

Leading resonant waves are essentially unchanged in
magnitude by Barrelet transformations and the third
criterion is mainly helpful off resonance. The first two
criteria eliminate an alternative solution with Py simi-
lar in magnitude and structure to that shown for S
below 1.4 GeV (see fig. 3) and with Sy smaller and
structureless.

From the results, we see that the A, resonance is
dominantly produced by NPE, whereas g resonance
production proceeds mainly by UPE. This is consistent
with the exchange expectations of table 1. The curves
shown through the A, and g amplitudes correspond
to Breit—Wigner fits and lead to the resonance produc-
tion cross sections given in table 2.
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Table 2
A, and g resonance parameters and cross sections a),

PHYSICS LETTERS

17 April 1978

Quantity fitted Mass interval

fitted
(GeV)

Ay Mass spectrum 1.0-2.0
2 RE 1.15-1.45
|Dol?

g Mass spectrum 1.0-2.0
|F,l?

[Fol? 1.50-1.95

Mass Width ob)

(MeV) MeV) (ub)

1316 £ 1 104 + 2 5.00 = 0.04

1318 + 1 113+ 4 4.6_2i0.06
0.20 + 0.06

1697 + 4 177+ 11 0.93 + 0.06
0.08 £ 0.03

1698 £ 12

199 = 40 0.51 £ 0.06

) All errors are statistical only. The systematic error of the mass scale is 4 MeV (st. dev.) and the uncertainty of the cross-section
normalization 8%. The interaction radius in the centrifugal barrier factor of the Breit—Wigner shape is taken to be R = 3.5 GeV ™1,

b) o is the production cross section times the branching ratio for decay into K%K, corrected for the unseen KO decays. The cross
section is calculated in the 7 interval 0.07 < —¢ < 1.0 (GeV/c¢)?, and mass interval 1.2 <M < 1.4 GeV and 1.55 <M < 1.85 GeV

for the A, and g, respectively.

Above 1.8 GeV we see the emergence of L =4
K-KO© production. Unfortunately, the data do not al-
low reliable partial-wave analysis above 2 GeV so as to
establish a resonance shape for G, . However, support
for resonance identification comes from the behaviour
of the DG, interference contribution. This is the
dominant interference term in this mass range and,
moreover, both L = 2 and L = 4 K—K09 states have sim-
ilar production mechanisms. The behaviour of
(¢cos ¢)p, G, should therefore reproduce cos(6, —8,),
where 8, are the /=1 KK phases. Assuming §, is giv-
en by the tail of the A,, we see that the behaviour of
£cos ¢, as a function of mass, gives further confirma-
tion of the spin 4 resonance of mass M ~ 1.9 GeV re-
ported in the preceding letter [5].

Another new and surprising feature of the results is
the importance of S-wave K~ KO production in the A,
mass region. The 0** states are an outstanding prob-
lem in meson spectroscopy, and this result has crucial
implications. It is true that lower partial waves are, in
general, less constrained than leading waves, and more-
over that S is dominated by D, . However, another
place where such structure should manifest itself is in
K*K~ and KgKg production. There the problem is
not the dominance of NPE, but the separation of
I=0and/=1KK effects. We recall that the S-wave
spectrum obtained from K*K~ and KgKg production
data [10,13] do in fact show, besides the S* threshold
enthancement, a significant bump at 1.3 GeV. This
bump was originally attributed to a state in the /=1

KK channel [13], but a more recent analysis [2] fa-
vours an I = 0 assignment. However, the present analy-
sis shows a clear S-wave structure just below 1300 MeV
in the 7 = 1 KK channel. Such information on the

K KO channel will be invaluable in separating / = 0
and I = 1 effects in K¥K~ and KgK? production data.
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We present the results and the analysis of a high-statistics experiment to study A, and
g production in the reaction n7p - K"Kgp at 10 GeV/e. In each resonance region we per-
form a moment analysis of the data, and from the moments we determine the production
amplitudes as a function of r. We find A, production proceeds dominantly by natural-
parity (pomeron and f) exchange. We compare A, and diffractive K*(1420) production.
We find g production proceeds by 7 and w exchange; we determine the g -~ KK branching
ratio.

1. Introduction

We study the reaction ™ p > K’Kgp at 10 GeV/c using the University of
Geneva two-arm spectrometer [1]. We collected 40 000 such events. We determine
the moments of the K™ angular distribution, and from these the production ampli-
tudes, as a function of ¢, in the A, and in the g resonance regions. The information
we obtain for 77 p = A5 p is complementary to that obtained for the reactions
K*p - K*(1420)*p by the same apparatus at the same energy [2,3]. A study of
this set of diffractive processes is invaluable in determining properties of pomeron
exchange and in attempts to unravel the pomeron- and f-exchange contributions.
Recent studies can be found elsewhere [4,5]. On the other hand, g production is
non-diffractive and proceeds via 7 and w exchange. We shall see that the difference
between A, and g production is strikingly evident in the data, and in the structure
of the underlying amplitudes. The prominence of 7 exchange in g production
allows the determination of the product of the 77 and KK branching ratios of the
g resonance.

* Present address: CERN, Geneva, Switzerland.
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The organization of the paper is as follows. In sect. 2 we present the moments
as a function of ¢, firstly, in the A, mass region, and, secondly, in the g mass region.
The allowed exchanges for A, and g production are given in sect. 3, together with
the definition of the amplitudes we use to describe 7~ p - K~K%p production.
Sect. 4 describes the determination of the amplitudes in the A, mass region; and
in sect. 5 we compare A, and K" (1420) production and discuss the implications
for pomeron and f exchange. In sect. 6 we perform the amplitude analysis in the
g resonance region; this is complicated by the presence of non-negligible L =
4 K™K production [6,7]. In sect. 7 we study the interference between the
resonant L = 3 and L = 2,4 natural parity exchange (NPE) amplitudes in the g
mass region. We find that g production by NPE is consistent with w-exchange
expectations, and we estimate the g > KK branching ratio by relating the -ex-
change contributions for g and p production. In sect. 8 we study the m-exchange
contribution to g production. We extrapolate to the 7 exchange pole and calculate
the g - KK branching ratio. We summarize our results in sect. 9.

2. Data selection and moment analysis in the A, and g regions

We have measured the reaction 77 p > KgK_p with a seen Kg - 7t7~ decay
using the University of Geneva two-arm spectrometer. The apparatus consisted of:

(i) a beam spectrometer to measure direction, momentum, and mass of the
incident particle;

(ii) a proton arm at large angle (38° to 70° in the laboratory), to measure
direction and momentum of slow recoil protons in the range of momentum trans-
fer 0.07 < —t < 1.0 (GeV/c)?, using multiwire proportional chambers (MWPCs)
(6 planes) and a high-precision time-of-flight system;

(iii) a forward arm, consisting of MWPCs (8 planes), to record the directions of
forward emitted charged particles within a large solid angle (0.3 sr). There is no
magnetic momentum analysis.

A detailed description of the spectrometer can be found in ref. [1].

Channel identification is done first by requiring a second vertex at least 30 mm
downstream from the wp vertex to select the Kg - n*n~ candidates. Events of the
correct topology are then processed by a kinematical 2C-fit, and accepted if
P(x*) > 5%. Finally we require Mg -, > 1.9 GeV to eliminate Y contributions
and their kinematical reflections at high KgK_ mass.

The quality of the data sample can be checked by estimating the background
under the unfitted K® mass peak, or independently, by inspecting the shape of
the P(x?) distribution. In both cases, we find a background of 4%.

Fig. 1 shows the KgK_ mass spectrum of the final sample of 40 000 events,
and illustrates the dominance of A, and g production in this mass region. The
sensitivity of the data, corrected for unseen K° decays, is

N/o(z"p > K°K~p) = 7670 + 600 weighted events/ub .
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Fig. 1. KgK_ effective-mass spectrum, for 0.07 < {7} < 1.0 (GeV/c)2. The spectrum is shown
before (histogram) and after (points with error bars) acceptance correction. A constant factor
of 5.8 due to the azimuthal aperture of the proton detector is not included in the correction.

Our cross-section normalization is in very good agreement with other A;” > K%K~
production data [8].

We have calculated the moments of the angular distribution of the K™ in the
t-channel helicity frame of the KK ™ system. We have corrected for geometrical
acceptance of the spectrometer, efficiencies, and absorption and decay of incident
and outgoing particles, using the linear method described in ref. [1]. Fig. 2 shows
the unnormalized moments N Yg”) in the A, mass region (1.2 <M < 1.4 GeV) as
a function of ¢, as obtained by fitting the terms J < 4 and M < 4. The normaliza-
tion of the spherical harmonics is such that (Yg) =1].

Fig. 3 shows the momenta in the g mass region (1.55 <M < 1.85 GeV), result-
ing from a fit of the terms J < 8 and M < 2.

3. Amplitudes and allowed exchanges inn™ p > K™ KOp

To extract the w7 p > K™ Kgp amplitudes from the experimental moments it is
convenient to use combinations of helicity amplitudes with definite asymptotic
exchange naturality. The moments can be expressed [9] as the sum of bilinear
products of these amplitudes Lj s, where Ly .+ describe, to leading order in the
energy, the production of a K™ Kg system of spin L, helicity A by natural and
unnatural parity exchange, respectively. In terms of the helicity amplitudes, Hy ,,
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Fig. 3. As for fig. 2, but in the g-mass region 1.55 < M(K™K%) < 1.85 GeV.

we have
Las =VIH £ COMVHL 4], A#0, (1)
LO EHLO >

That is only UPE occurs for A = 0. We will use the abbreviated notation L, = L ..
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Fig. 3 (continued).

The amplitudes are normalized so that their moduli squared give the contribution
to do/dt, that is
do

Elj:|50|2 "‘|Po|2 +|P+|2 +.... (2)
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A summation over helicity flip and non-flip at the nucleon vertex is implicit in each
bilinear product, that is

|L1? = |Lel® + | Logl® .
The interference terms can be rewritten in the form
Re(L'L*)= |L'||L|(& cos ¢)1, , 3

where £ is the degree of nucleon spin coherence (0 < £ < 1) and ¢ is the relative
phase between amplitudes L and L'. We note that the expressions for the observed
moments do not contain interference terms between NPE and UPE amplitudes.
The observed moments, (Yy ) of figs. 2 and 3, show immediately that the pro-
duction mechanisms are different in the A, and g mass regions. In the spin-2 A,
mass region we observe strong negative ¢ Yg) and (Y2) moments, whereas in the
spin-3 g mass region we have a positive signal in (Yg) and a weaker negative signal
in (Yf,,). Retaining only the A < 1, spin-L resonant amplitudes, these moments are

(YO =CilLol* — CIL_I* +ILs1?),

<Y§L) = C3(|L—|2 - |L+12) ’

where C; are positive known coefficients. This implies that A, production is domin-
ated by NPE (D, ), whereas g production proceeds mainly vig UPE (Fy), and to a
lesser extent via NPE (F.). We also notice from the J = 8 moments that the L = 4
NPE amplitude (G, ) cannot be neglected in the g-resonance region.

The difference between g and A, production is due to the restrictions of
G-parity at the meson vertex. For the production of a K~K° system of spin L the
allowed exchanges are given in table 1.

From a study of the SU(3)-related reactions K*p -~ K" *p we expect isoscalar
NPE and isovector UPE to be dominant. The pomeron (IP), ¢, and f exchanges
contribute dominantly to overall single helicity-flip amplitudes, which vanish as
\/—_t' in the forward direction. For UPE, 7 and B couple to overall helicity-flip
amplitudes, whereas A; and Z quantum number exchange couple to overall non-
flip amplitudes. Z is used to denote the possible 2~ ~ exchange-degenerate partner
of the A,;. The m-exchange pole is extremely close to the physical region so 7

Table 1
Allowed exchanges in n 7 p — K‘Kop for the production of a spin-L K KO system

L even L odd
(e.g. Ay) (e.g. 8
NPE P, f, p w, Ay

UPE B(Z) m(Ap)
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domiantes A; exchange in the forward scattering region. The relative strength of
the amplitudes with the quantum numbers of B and Z exchange are not so well
known. There is evidence [10,11] from related reactions to suggest that non-flip
Z exchange is larger for — $ 0.2 GeV?, while B exchange dominates for —z 2 0.2
GeV2.

The effects manifest in the data indicate that A, production proceeds domi-
nantly by pomeron and f exchange, and that g production is due to 7, and to a
lesser extent w, exchange.

4. Amplitude analysis in the Ay mass region

The z-structure of the observed K~K° #-channel moments in the A, mass
region, 1.2 <M < 1.4 GeV, is shown in fig. 2. The explicit relations between the
moments and the production amplitudes L, Ly and L _ are given in table 2. The
five largest moments ¢ Yg,z,o), (Yﬁ ,? shown the dominance of the NPE amplitude
D, and indicate that all other amf)litudes will be much less reliably determined.
The non-zero (Yz) moment is attributable to interference of D, with the helicity-
two NPE amplitude D,.. The structure of Yg’2) can be accounted for by P, D,
interference and shows no evidence for a PyDy effect. The UPE amplitudes are
much harder to isolate. The moments (¥}) and (¥3), taken together with (Y2,
imply small DoD_ interference, but a larger SoD_ contribution. There is no
evidence of either a Py or P_ effect, except possibly SoP, interference in the
first ¢ bin of (Y9).

As a result of these observations, we performed an amplitude analysis of the
J <4, M <4 moments in the A, mass region in terms of the magnitudes and
coherences of the NPE amplitudes D, D54, P, and of the UPE amplitudes Dy, D_,
So. Neglect of Py and P_ means the moments (Yé,1> are not included in the analysis,
and as (Yg) is also compatible with zero we do not determine the P, D,, coherence.
Moreover, the data cannot determine reliably the individual coherences in the weak
UPE sector. We therefore assume nucleon spin-coherence and, motivated by n-B ex-
change degeneracy, (cos $)pyp_ = —1.

The results are shown in fig. 4. We see the expected dominance of the NPE apli-
tude D,. The clear (Yi) signal is described by a D, contribution of approximately
10% the magnitude of D,. The suppression of the UPE D-wave amplitudes (associ-
ated with B and Z exchange) is to be compared with their relatively stronger m-ex-
change structure in K*p -~ K*(1420)*p (see fig. 4 of ref. [2]).

We may compare the values of |Dg] of fig. 4 with those obtained from charge-
exchange (CEX) Ag production. Data are available for ntn - Agp at 4 GeV/e [12],
and form " p—> Agn at 12 and 15 GeV/c | 13]. We interpolated the measured #-chan-
nel partial cross sections P(?o do/dt using the form pz—za with a(t)= -0.2 + 0.8 ¢.
To convert to | Dg|? we included a 4.7% A, - KK branching ratio [14], we multi-
plied by % due to isospin, and corrected to a 1.2 <M < 1.4 GeV mass interval. The
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The unnormalized moments \/41TN(Y_j]W) in terms of the amplitudes Ly, L _, and L, defined

in the text ¥

R S I O R SR LA T PR SR G A A O
TN YD) = ISeBe ¢ LTBUPI, + LAIWD B+ P s D75, ¢ LoSoi - Db+ 17H0E e+ LoButE_G_ + F G 3
SITNCAYD = LASeP_ v 1L080Ps - 0L0REP_ Dy Ll F - i0TIThFy ¢ 0.970156 - 60750 F G,
VITN O = et -0 Tt s phy R EEN L A P PR R S B L RSN IPEC [
LS F RN L R P I P = 1Tt ¢ FASHP b P e L6306+ DG
VITN YD) s TSR ¢ LaatPal e LTI = TR g e el s L T0TDeG - URONE g ¢ 0L 2B E ¢ 0,225 Gyt
AR F L A L e e L P T N R L RN PR LR TE R R BRSPS LU U Rt S N TO A 0 U [N R TR DS U
VITN Y35 2Sgkg v 1LTRTPgly ¢ 1 THOPots - Lo LR D P D) ¢ L3BOP_G_ + PG ¢ 1.19305F, « 001220 F « BF )
+LLOALEGy ¢ TR G+ F G
FTTN ) = TSl e LTI D s LUEIP Iy ¢ L D3PG - 1L TROD Gy ¢ o 03S0F . ¢ L sl g+ 0 daBEe. ¢ 0L 1201 Gy
|
DTN Y = ni20tPh] = Pl - 0UETRIP D - DG e STRIDE = D T e S LI G - G E
POTEN (YD) = 0ldaT - a0 sTHinE v [ R R I N e S B PR T T RV R VP B R NI I
L S o B S B L A O T D T D T
POVESN QYD = LSS, L0ePel e 0ol Ty e LL0THe « 0088, + L2250 4+ 1L BISELF e 03 Gyl
)
I S L T (L S IR PR L T T I S BRI T G BN LT T
ATNCOEY = TP - LLELPLG, P Tl Fe - L20LE e DT p o 1LeE2 G ¢ CL00BE G+ F U,
IV N YD) = 1200050« 0L8ERP U ¢ LT+ LLUTAD B o+ 0,57 + 0,131 1 _Gy
YITN YR = UTIBRO - P U e 8T E - B ) v RIS G = F L
§OTTN YY) = Ledllaty - L35I G0 ¢ b6 s 0U8ED - DLe30 (1R . SRR A PR
AT N GYEY = LURADR0_ ¢ 1L0R5D Gy« 1U112E,E. 4+ 51Tl
EUNC(YD) = 083G, - DG, e 031 - P2y 0 a8 - 62y
VITN (YD) = 0TlReUe - LLUS(F G+ |G,
VITNC(YRY = LUI3LEGC_ + 1.095)_Gy
VITN YDy = DLBdsE G - F
COVIT N (Y]) = OL8BIGE - 0.005i07 + G2
VIN (YLD = 11506
YITN (D = 0 e - 6l

We use the abbreviated notation LL’

= Re(L*L"). A summation over helicity flip and non-flip

at the nucleon vertex is implicit in each bilinear product, that is Re(L *L') = Re(LfLs + L gL np)-

) These coefficients have been checked with those calculated by W. Minner. We thank him for

providing a table for comparison.
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Fig. 4. The 10 GeV/c n 7 p— K_Kop amplitudes in the Ay mass region, 1.2 < ME K% < 1.4
GeV. The curve for |Dgl shows the prediction obtained from CEX Ag production. The coher-
ences of SDg and —SD _ are assumed equal, and are denoted by SD. The SD and D Do+
coherences are not well determined and the curves only indicate the trend of the results.

values obtained for | Dyl at p. = 10 GeV/c are indicated by the dashed line in fig. 4.
The agreement between | Dy} obtained from CEX and non-CEX reactions means
that there is no evidence for isoscalar UPE in 77 p > A7 p.

An interesting feature of our analysis is the importance of S-wave K™ K® produc-
tion in the A, mass region (see fig. 4). In general, it is difficult to extract lower
partial waves, and to study the reliability of this determination of Sy we repeated
the analysis with Py included, together with P_ = —0.5 Py, but with Sy omitted.
The description of the moments was again reasonable, though not quite as good as
that with Sy, included and P, omitted. Essentially the only change in the amplitude
components shown in fig. 4 is that {Sg| ~ | Pyl and, of course, no SD interference.
The same ambiguity was present in the analysis of the moments as a function of
the K~ K° mass [7]. There we argued, from the expected dominance of §¢ (rather
than Py) just above threshold and from the continuity of the solution as a function
of mass, that the solution with the large Sg in the A, region was favoured. There
are other indicators that this is the physical solution. Firstly, by comparing 7 and w
exchange for Kp - K*(890)p, and by comparing the P-wave background in the g
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region (see below), there are indications that | Py| < |P.]. Secondly, by comparing
K*K~ and K(S)Kg production data [15] (in particular the equality of the (Yg) mo-
ments) it has been noted that the P-wave m-exchange amplitude is small in our mass
range. Quantitatively we find this Py cannot account for the required UPE contribu-
tion needed in K~K° production. For these reasons we favour the K~ K° amplitude
solution with the relatively large S and a small Py contribution. Even if the two
most forward points shown for | Sy are overestimated, owing to the omission of a
possible Py contribution which peaks at small ¢ (m exchange) and to large accept-
ance corrections, the ¢ structure still implies a strong non-flip component (Z ex-
change) in S at small z. The analysis of the data as a function of the produced

K~ K° mass showed an S-wave enhancement in this mass range [7]. This coincided
with the bump previously seen in K*K™ and K$KJ production [15] and suggests
that it should be attributed partly to /= 1, and not solely to / = 0, S-wave KK pro-
duction. The importance of the non-flip exchange component for /= 1 S-wave pro-
duction considerably complicates the extraction of w7 — KK partial waves from
KK production data, particularly the determination of the /= 0 S-wave.

5. The relation between A, and K*(1420) diffractive production

A, production by NPE in the process 7~ p = A p proceeds vig pomeron and f
exchange. We may write the dominant amplitude

Di(Ay)=TP+f. (4)

This contribution to the differential cross section for A, production, [D.(A;)|?, is
shown in fig. 5. It is obtained from D, (K~K°) of fig. 4 after correcting for (i) the
unseen A, decay modes (using an A, - KK branching ratio of 4.7%), and (ii) for the
finite mass interval (1.2—1.4 GeV) using an A, Breit-Wigner form.

This may be compared with K*(1420) production isolated from the related
K*p > K%7*p reactions. High-statistics data for these latter processes have been
taken, with the same spectrometer, at the same beam energy. These data were ana-
lysed [2] to determine the K°7* production amplitudes in the mass region 1.34 <
M < 1.5 GeV and K*(1420) production was also found to proceed dominantly via
the NPE amplitudes D, (K**). The differential cross sections for K*(1420) produc-
tion, or more precisely |D, |2, are also plotted in fig. 5, after correction for the un-
seen * K*(1420) decay modes and for the finite mass bin. The crossover at —f = 0.3
(GeV/c)? has been interpreted in terms of the pomeron-, f- and w-exchange contri-
butions [3]:

Di(K™*) = 1P+ f(f ¥ ) ,

where the coefficients v and § are introduced since we have used /P and f to denote

* We include a factor of% to allow for K* = K##90 and use a K* - K branching ratio of 56.1%.
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Fig. 5. The NPE cross sections |D|2, for 7—p ~ A3 p and K*p — K*(1420)*p at 10 GeV/e.
The cross sections are corrected for the unseen decay modes and for the tails of the Breit-
Wigner distributions outside the fitted mass intervals. This latter correction is a factor 1.23
and 1.27 for the A, and K*(1420) mass intervals, respectively. The ratio R is discussed in
sect. 5.

the exchange contributions for A, production, see eq. (4).

Here we wish to compare pomeron and f exchange in A, and K*(1420) produc-
tion. Before confronting the data, it is informative to anticipate values of the coeffi-
cients y and 8. From SU(3) invariance and magic f, f mixing we expect § = % To
estimate the relative coupling y of the pomeron, we may use the f, f' dominated
pomeron hypothesis {16]. According to this scheme [4,5]

-«
y=3(1+r), with rit) = b e S , (6)
ap — ¢’

where o; (¢) are the usual trajectory functions. In the symmetry limit # = 1 and the
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pomeron is an SU(3) singlet. The departure of  from 1 represents the effect of
SU(3) mass breaking.

To facilitate the comparison of A, and K*(1420) production we plot, in fig. 5,
the ratio

R= [o&K**) + a(K*')j, 12 ’

10(A,)
versus t, where we have used the differential cross sections, o = do/d¢ |D, |2, shown
in the upper part of the figure. We have used the sum of K™ and K™~ cross sections
to remove the interference contributions between the even (IP, f) and odd (w) G-
parity exchanges. If we assume |w|? is small compared to [IP +f|2, then R is an
indicator of the relative strength of the pomeron and f contributions. If the pro-
cesses are dominated by pomeron exchange than we expect R =~ 1 +r, whereas if {
exchange is dominant we expect R ~ I.

From fig. 5 we see that R = 1.25 * 0.03 for —t < 0.4 (GeV/c)?. Assuming that
r(r) 0.5 at —¢ = 0.2 (GeV/c)?, and that the relative pomeron-f phase is 60°, this
value of R implies that the pomeron relative to f-exchange contribution is 1:1 in
n7p—> A, p,andis 1.5:1 in Kp > K*(1420)p at 10 GeV/ec.

Before closing this section it is appropriate to comment on the observed P.D,
coherence in the A, region (c¢f. Fig. 4). This gives information on the behaviour
of the relative phase ¢pp =8 + 6 — 6p — O0p, where 8 and & are the appropriate
K~K? production and decay phases, respectively. If we assume that the produc-
tion phases 0p and 6y are in accordance with Regge expectations this would give
information on &p in the A, region. However, the P, D, coherence observed for
the related K*(1420) reactions indicated anomalous behaviour for p in the
K*(1420)* region; see, in particular, fig. 12 of ref. [3] *. We therefore cannot
obtain a reliable estimate of §p.

(N

6. Amplitude analysis in the g resonance region

The ¢ structure of the moments of the K™K angular distribution in the g mass
region, 1.55 <M < 1.85 GeV, is shown in fig. 3. Clearly the data do not allow a
full amplitude determination (cf. table 2). We use the f~channel moments (Yy)
withJ < 8, M =0, 2 to determine the magnitudes and coherences of the NPE
amplitudes L, and of the UPE amplitudes Ly, with L < 4. We are led to this
simplification by the results in the A, mass region. From the A, analysis we
expect that L,L%, interference terms will contribute to the M = 1 moments at
least as strongly as LyL'_ interference terms. The data are unable to determine

* Here Op denotes the P-wave K~KO production phase; it corresponds to the phase of the odd-
signatured K* production amplitude of fig. 12c of ref. [3].
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both L_ and L,.. However, these small amplitudes only contribute quadratically
to the M =0, 2 moments and so it should be reliable to use these moments to
determine the more dominant L and L, amplitudes.

As mentioned before, the J = 6, M = 0 and 2 moments show that g resonance
production proceeds mainly by UPE (#), and to a much lesser extent by NPE (F,).
The dominance of the (Yﬁ) and (Y%) moments, as compared with the other M =2
moments, indicates a very strong D, component in the g region. Moreover, the J = 8
moments suggests that L = 4 KK production by NPE exchange (G, ) must be
included in this mass interval. The presence of sizeable D, and G, amplitudes make
the determination of |F, | very difficult. The difficulty is apparent from the expres-
sion for the J = 6, M = 2 moment:

(Y2)=—-0.431]F,|* —0.258/G,|* — 0.844 Re(D,G) .

The *“background” waves, D, and G, are associated with pomeron exchange and
are therefore enhanced relative to the (w-exchange) resonant amplitude F,. On the
other hand, since P, D, , and G, are expected to be nucleon spin coherent, the
data give valuable information on the relative phases of these amplitudes.

There is no evidence for the L = 4 UPE amplitude G, either from fig. 3 or from
the moments as a function of the produced K~K° mass [7]. This is in agreement
with the exchange expectations of table 1. We therefore set Gy = 0, and forJ > 7
include only moments with M = 2 in the analysis *.

In each ¢ interval we use the J < 8, M = 0, 2 moments to determine the magni-
tudes and relative phases of the amplitudes within the NPE sector (P, D,, F, G4)
and within the UPE sector (Sg, Pg, Do, Fp). For each t interval all the solutions are
enumerated using the Barrelet zero technique [17] and the solution selected to cor-
respond with that obtained as a function of mass in the g region [7]. The ambiguity
is essentially only in the lower partial waves; in particular for the S, P, and Dy ampli-
tudes. We note also that the analysis assumes, within each sector, that the amplitudes
have a common coherence factor £. Within the UPE sector there is no reason why
this should be correct and so only the dominant UPE coherence, £ cos ¢, may be
meaningful. F is the dominant UPE amplitude and the other UPE quantities are
much less reliably determined. To sum up, we note that the analysis should be
reliable and unambiguous for (Dy, F, G.) and F.

The results for the g production amplitudes and the background D- and G-waves,
together with their respective coherences, are shown in fig. 6. The lower partial
waves are, in general, not so well determined and depend on the Barrelet solution
that is selected [7]. For our solution the magnitudes of Sy, Py, P, are approximately
1.0, 0.6, 0.7 \/ub/GeV, respectively, at — = 0.15 (GeV/c)?, and 0.3, 0.1, 0.2
\Vub/GeV at —¢ =0.5 (GeV/c)?. The coherence of SoF is positive for all 7, that
of PyFy is ~ —0.4 for —t < 0.3 (GeV/c)? and that of P, D, is negative for all 7.

* The data for the ¢ Y%) moment were smoothed at —r = 0.13, 0.38, and 0.45 (GeV/c)2.
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Fig. 6. The 10 GeV/c n7p > K_Kop amplitudes in the g mass region, 1.55 < MEK K9 <
1.85 GeV, obtained from the data of fig. 3. The extreme fluctuations seen in the 3 <J <5
moments at —¢ = 0.29 (GeV/c)2 were removed before amplitude analysis. Only representative
errors are shown for IDgl and the DyFy coherence.

The difference of odd-L and even-L K~ K° production mechanisms is strikingly
evident in fig. 6. For UPE, the g production amplitude Fy (7 exchange) dominates
the background Dy amplitude (B, Z exchange). On the other hand, for NPE, g pro-
duction proceeds vig F; (w exchange) which is smaller than, and of different ¢
structure from the even-L background D, and G, amplitudes (pomeron, f exchange).
The expected single helicity flip character of the NPE amplitudes is clearly apparent
for D, and G,.

7. g production by NPE: @ exchange

Although the presence of the relatively large D, and G, background waves com-
plicate the determination of [F. | they do yield valuable phase information. To inter-
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\

IP+f

Fig. 7. An Argand plot of the phases of the NPE amplitudes, D, Fy, G4, in the g resonance
region. 6 and & are the K~ K° production and decay phases, respectively. The sketch is for
~t ~ 0.1 (GeV/c)2; for —t ~ 0.5 (GeV/c)2, Fy is rotated clockwise by about 90°. The
observed coherences (cf. fig. 6) favour 6 ~ 110°. ‘

pret the observed behaviour of the NPE coherences (D F,, F,G,, D,G,), shown
in fig. 6, we write the relative phase of each amplitude pair in the form

Grr =0, t6, ~0p -8,

where 0 are production phases and 8 decay phases of the K™K° system. Both D,
and G, arise from pomeron and f exchange. We therefore expect their production
phases, 6 = 0, to be increasing relatively slowly from just above 90° as —¢
increases from ¢ = 0. Now in the g resonance region we are above the A;(1310), 2
resonance (8p approximately 120—160°) and below the A5(1900), 4* resonance
[6,7] (5 approximately 20°). Moreover, for the resonant F* amplitude we have
8¢ =90° and, assuming it is produced by w exchange, we expect, up to asign, 0 to
change from about 50—60° at £=0, to 0° at — ~ 0.4 (GeV/c)? where Im c changes
sign *. This latter cross over is generally associated with the w nonsense-wrong-
signature-zero at ¢, = 0 arising in the exchange-degenerate picture. The rapid phase
change associated with w exchange is manifest in the behaviour of £ cos ¢ for D, F,.
The observed NPE coherences (cf. fig. 6) lead to the phases shown in the Argand
plot of fig. 7, which appear consistent with the above expectations. However SU(3)
and exchange degeneracy require the exchanges for 77 p - (K"K ptobelP+ fand
—w. That is the above values of 8 should be increased by 7, in disagreement with

+

* This expectation is based on an analysis of K* production [3]; there we found an w contri-
bution somewhat modified from the exchange-degenerate form, 1 — exp(—ina).
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the sign of the observed D, F, coherence.

do,(p) _ do do _ _ do _
-_%;;_—:%(pll+p1»1)5(77+p")p+p)+a‘(7r p=>p p)—a(ﬂ p*p‘)n)}

(8)

Following Hoyer et al. [18] we apply finite-mass sum rules and two-component
duality to relate the w-exchange contributions to these resonance-production reac-
tions at a given energy:

do,(p)/dt _ (m2 )—2%(0 ' ©

do,(g)/dt B mg

From our results for | F, | (see fig. 6) we can estimate g production by exchange
at 10 GeV/e, provided we are given the g -~ KK branching ratio,

dog,(8) _
dr

Taking a,, = 0.4 + 0.9¢ in eq. (9), we then calculate da,(p)/dt. In fig. 8 we compare

our prediction with 6 GeV/c p production data [9], after allowing for the different

beam momenta using the usual pi’z"‘w dependence. The curves, shown for two dif-

|F+|?/[BR(g - KK)] . (10)

1 T T T T T T ™
n dg,/dt(p prod.) .
i 6 GeVic 7
+ ~
I
>
3
=z 01 - .
3 BR. (g—KK) = 1%
€

=15% i

001 s l ! ll I ‘ | L

0 02 04 06
-t (Gevic)?

Fig. 8. Data for p production by w exchange at 6 GeV/c, taken from ref. [19]. The curves are
the finite-mass sum-rule predictions, obtained from the g production amplitude F of fig. 6,

for two different values of the g — KK branching ratio. The arrows at the bottom of the figure
indicate data points off scale.
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ferent g > KK branching ratios, result from the curve through | F,| on fig. 6. The
comparison, which is most relevant * for 0.1 < —¢ < 0.2 (GeV/c)?, favours a branch-
ing ratio
(g ~>KK)
(g~ all)

The 16 GeV/c data for isospin-zero NPE p production [20] have larger errors, but
a similar comparison yields compatible results.

~0.015. (11)

8. g production by UPE: n exchange

The structure of |Fy| of fig. 6 is indicative of 7 exchange, and the values may be
extrapolated to the 7 pole (¢ = u?) to give a more direct determination of the
g—> KK branching ratio than that we obtain from |F,|. To do this we use the
Chew-Low form

do 1 g (—teb(’_“z)) M,
—= — 2L + 1) — M, 12
e e s G 12
with L = 3, where M is the produced K=K mass, ¢2 = }—‘Mz —u?, and
Mg, Tg

fL_M§~M2—iMRF'

We integrate over the experimental mass bin, 1.55—1.85 GeV. The total width of
the g resonance is I' =T, + 'k + Iy, where

_ {49\ D@}R)

I; (M) 7t(q§{) D@R) s
with a barrier factor D(z) = 225 + 4522 + 6z% + 2% and interaction radius R = 3.5
GeV ™!, We take the mass and width of the g resonance to be Mg = 1.69 GeV,
v =0.18 GeV; and the momentum of the other decay channels, in addition to the
7w and KK channels, to be represented by go =gg. We fit [Fgl? to eq. (12) with
(Y=Yx) and the slope b as free parameters. The fit ** is shown by the curve through
|Fgl on fig. 6 and corresponds to

VYK YxlY=0.056 £0.017,
b=45%1.1GeV™2,

* Recall that the amplitude analysis for 0.2 < —t < 0.5 (GeV/c)? revealed a relatively large G+
contribution, which made the extraction of F; particularly difficult. It is therefore not sur-
prising that the anticipated dip in do,(g)/dt is very shallow.

** We omit the first point owing to the large acceptance corrections in the near forward direc-
tion.
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If we take the particle table [14] values of the 7 branching ratio, y,/y = 24 1%,
then we find the g > KK branching ratio is

Yk/Y=13%04%.

This determination is in agreement with the independent estimation, vk /y ~ 1.5%,
which we obtained in sect. 7 from the NPE amplitude F,.

The above numbers yield a ratio of the KK and 77 decay modes of the g reso-
nance of

Yk/Yn =0.056 £ 0.017 .

This is to be compared with the SU(3) value

1/gR\7
15:—(q—§) =0.13.
Yo 2

™

Note that SU(3) comparisons are better satisfied without including barrier factors
[21]. To agree with SU(3) we would have had to input 7y, /y = 16%, which would
have led to yg /vy = 2%.

9. Conclusions

Here we summarize the main results of our study of A, and g production by
the reaction 77 p -~ K~K°%p at 10 GeV/ec.

9.1. The A5 mass region

(i) We find A, production proceeds dominantly by NPE. The z-channel D
amplitude is dominant, but a non-zero (Yi) signal leads to a D, contribution
which is, on the average, 10% of | D,|.

(ii) The UPE amplitude Dy is consistent in magnitude and ¢ structure with that
found in CEX Ag production, and lends support to the assumption that UPE is
dominantly isovector in 77 p = A5 p.

(iii) S-wave K=K production is important in the A, region, the ¢ structure
implying a strong non-flip component at small # (Z exchange). Combined with the
K~ K analysis as a function of mass {7], and with K"K~ — and KgKg production
data [15], this suggests the existence of an 7= 1, 0" state under the A,.

(iv) There is relatively little P-wave K~ K° production, although the P, D,
coherence is well determined.

(v) A, and K*(1420)* production are related using the f, f” dominated scheme
for the pomeron. We estimate the pomeron relative to f exchange and find, for
example, at —z ~ 0.2 (GeV/c)? at ratio 1:1in 7~ p > ASp at 10 GeV/ec.
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9.2. The g mass region

(i) We find g production proceeds dominantly by UPE (r exchange).

(ii) We extrapolate to the w-exchange pole and find \/y,vx/v = 5.6 * 1.7%, where
Yaly and yg/y are the 7 and KK branching ratios, respectively, of the g. Taking
YalY = 24% this gives yg /vy = 1.3 + 0.4%.

(iii) The resonant NPE amplitude F, is reasonably consistent with w exchange.
It is, however, poorly determined, because g production by NPE (w exchange) is
masked by the production of L =2 and L =4 K~K° systems, which can proceed by
pomeron and f exchange.

(iv) Finite-mass sum rules and duality allow a comparison of the NPE amplitude
F, with p-production data. This hypothesis leads to an estimate of the g > KK
branching ratio of yg/y =~ 1.5%.

Finally, we note that at higher energies 7~ p > K~K°p will be dominated by
even-L K~K° production by NPE. Information about the odd-Z states will be ob-
tained mainly through interference with the even-L production amplitudes. The
study of the reactions 7*p - K*KJp and K*p - K37*p at SPS energies will, when
combined with 7N and KN elastic-scattering data, provide a powerful probe of the
properties of the pomeron. '
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The high-statistics data for the various K'K”, KgKg, KK$ production reactions are
analysed. In particular we study both the isospin-zero and isospin-one KK S-wave in
the mass region from threshold through the observed structure at 1300 MeV. The
implications for the scalar mesons are discussed. We also determine branching ratios,
and study interference of the produced f, f' and A, resonances.

1. Introduction

High-statistics data now exist for the following KK production processes [1-5]

7 p>KK'n, = p->K¥Kn,

7' n>KK'p, = p->KKSp.
These are valuable for particle spectroscopy. The KK channel can have states
JPE=0%",177,2"", ... of both isospin 7 =0 and 1. The subset with J+1 even can
be produced by pion exchange, and so can be also studied in 77 production. The
S-wave (0*") is sizable, and shows interesting structure, throughout the mass region
from the KK threshold to 1.5 GeV.

JF¢=0"" mesons are of unusual importance; however, they continue to be a
centre of controversy [6~12], both theoretically and phenomenologically. The
reasons are clear. In the quark-gluon approach we expect a rich spectrum of 0"
states below 1.5 GeV. In addition to the conventional P-wave q4 nonet, it has been
proposed [12] that there could be a low-lying qqdq nonet. A third possibility for
0" mesons are states built entirely from gluons [13]. On the phenomenological
side the identification of 0" mesons is far from easy. This is true despite their
strong coupling to the readily accessible 070~ channels, such as 7w, KK, 7K. The
resonances either appear very broad, or near the KK threshold, or hidden under
the leading peripheral 2" states. In each case they are prone to ambiguity.

Here we use the observed KK angular distributions to carry out partial-wave
analyses, paying particular attention to the production mechanisms of the KK
system. After defining, in sect. 2, the production amplitudes that we shall use, we
begin (sect. 3) by re-analysing 7 p K K°p data [4, 5]. This reaction is valuable in

520
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that only /=1 KK states are allowed, but suffers from the disadvantage that it is
dominated by natural parity exchange (NPE). Our motivation here is to show that
the data do contain an unnatural parity exchange (UPE) component and to isolate
the amount of S-wave KK° production.

In sects. 4, 5 we analyse K"K production data. These charge-exchange reac-
tions are dominated by UPE. First we study the KK D-wave in the f, A, and f'
mass region, determining resonance branching ratios and studying interference
effects. Then in sect. 5 we perform various partial-wave analyses of the K"K data,
and compare with the ANL analysis [14]. For K'K" both 7=0 and I =1 S-wave
production are allowed. We find that even with data for the four KK processes the
isospin assignment of the S-wave structure at 1300 MeV is confused.

Finally, in sect. 6, the information on the 77 » KK S-wave is combined with
that for the elastic 7r > 7o channel and a coupled-channel analysis is performed.
The implications for the scalar mesons are discussed. In sect. 7 we present our
conclusions.

2. The wN-KKN amplitudes

To analyse the data for the various #N-KKN reactions we use the amplitudes
Ly =VHHp £(-1D"""HL ), (n

for A #0, and Lo=H; for A =0, where H;, are ¢t-channel helicity amplitudes
describing the production of a KK system of angular momentum L and helicity A.
To leading order in the incident energy, L, . correspond to KK production by
natural and unnatural parity exchange (NPE, UPE) respectively; A =0 production
proceeds via UPE alone. We will use the abbreviated notation L, =11,.

The moments of the KK angular distribution can be expressed [5] as a sum of
bilinear products of the form Re(L}.LY). A sum over helicity flip and non-flip at
the nucleon vertex is implicit in each product*, for example

RC (L,/\’le\‘) = Re(Lf},+;,\'Lf+;)‘ +LI+~;,\’LT._;,\) . (2)

The observed moments do not contain interference terms between NPE and UPE
amplitudes. That is, terms of the form Re (L}, L¥_) do not occur.

We normalize the N - KKN amplitudes so that their moduli squared give the
contribution to do/ds dM, where M is the mass of the KK system. Thus the
exchange contribution may be written in the form

Lo=NQL+1)C.f}(mm>KK), (3)
with
2

, 2 (g) (=8 apepry M
= —_— e -_,
mipt \am/ (1-u?? qn @)

* The available data for #N—- KKN is for unpolarized initial and final nucleons.
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where mn, u, M are the nucleon, pion, KK masses respectively; (g_2/47r) =14.6, pr
is the pion laboratory momentum and g% =4M?—u* The mm KK partial-wave
amplitudes, f1> =f(7wm - KK), are normalized such that

flz—%‘/_iel(a e ) (5)

where assuming only two channels (7, KK with k=1,2)
1,
fkk=?(7l ek ~1). (6)
i

For simplicity the labels, I, L are omitted from f;, 1, 8. Due to Bose statistics, 7
exchange can produce only even-L isospin-zero, or odd-L isospin-one, KK systems.
Further only I =1 states occur in 7 p-> K K°p and only even-L states occur in

7 p-K3Ken. For 7 p->K K*n the isospin coefficients in eq. (3) are

_ {x/%, foreven L,
=

1

2 forodd L. @
For 7 p-K K’ we have C; =3, 0dd L only, and for wfp»KgKgn we have
C = é, even L only.

For resonant KK production we factor the 7N ~»KKN amplitude into a term
describing the production of the resonance, A, (¢), which contains the ¢ depen-
dence, and a term describing the decay into the KK channel which contains the M
dependence. For example, the production of an A, (I =1) resonance of helicity A is
described by

D{™V=A,()B(M), (8)

where we expect A, (f) to be of the form appropriate to, say B, p, or f exchange
(depending on A and the charge configuration), and the decay factor to have a
Breit-Wigner resonance form

M( RFKK 1/2
- 9
BM)=—> e )

where the widths, I'r, are M -dependent

2L+1 DL(Q: R)

10
DL(q:R) ( )

ZFR M)= ZFR(mR)( q: )

where gF is the value of the decay channel momentum, g;, at the resonant mass
mg. For a spin L =2 resonance we take the barrier penetration factor to be
Dy(x)=x*+3x%+9, and the radius to be R =3.5GeV ™"
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3. KK® production

Information on the =1 K K° channel has come from the analysis of the
10 GeV/c = p~K K°p data obtained by the University of Geneva spectrometer
group [4, 5]. The NPE amplitudes are dominant and are well determined by the
data, but the UPE amplitudes are harder to extract unambiguously. In the original
analyses [4, 5] some simplifying assumptions were made, and of the two solutions in
the UPE sector, the one with the sizable S-wave structure in the 1300 MeV KK°
mass region was favoured over a solution with Py> S,. In view of the spectroscopic
implications of this result, we repeat these analyses with a more complete ampli-
tude determination in the UPE sector, paying particular attention to the So—Po
ambiguity.

We first reanalyse the 7 p-»K K data in the A, mass region (1.2<M <
1.4 GeV) as a function of ¢, the momentum transfer at the nucleon vertex. Here we
perform a ¢-dependent analysis rather than fitting the moments in each ¢ bin
independently. We parametrize the amplitudes in terms of Regge forms (as
described in appendix A of ref. [15]), though any suitably flexible form would
suffice. We describe D, D, in terms of pomeron and f exchange, and P, by w
exchange using the forms given in ref. [16] with x, = 0.2, but with a,, # a;. The
UPE amplitudes Py, P_ are described by pion exchange (with absorptive cor-
rections) and similarly So, Dy, D by B (and Z*) exchange forms. We allow a free
normalization constant for each amplitude, L, ., except for P_ which we relate to
P, by an absorbed pion exchange form. We fix the Dy, D_ phase difference to be
m, and we take the B and Z trajectories as in ref. [17]. In addition to the ¢-
dependent) Regge phase, we include, as extra parameters, constant decay phases
between the amplitude pairs Do— Po, Do—So and D, — P..

Considering that K"K production in the A, mass region is dominated by NPE,
in particular by D,, it is natural to ask how well the data determine the Sy and Py
amplitudes; especially since these amplitudes only contribute to (Y7') with J <3,
M <1, and that these moments have, in addition, contributions from the other
amplitudes. We therefore proceed in stages. First we describe the higher moments,
J=4, M<4and J=2,3 with M =2, in terms of P., D., D,., Dy and D_. Fig.
1b shows that a satisfactory fit** is obtained. Next we predict the contribution of
these amplitudes to the lower moments; the result is shown by the continuous
curves in fig. 1a. We see, for example, that (Y3 ) is well-described by P., D,
interference indicating that either P, is negligible or Py, Dy are incoherent. The
evidence for non-zero S and/or P, is seen by the discrepancy between the curves
and the observed (Y9), (Y3) and (Y3) moments. A non-zero S, contributes to
these three moments via ISolz, SoDo and SoD_ interference, respectively, whereas

* We use Z to denote 27 quantum number exchange [17]. B and Z exchange contribute
respectively to the flip and non-flip components of Sg and D,,.
** We do not include in the fit the first 7 bin, centred on —z =0.09 (GcV/c)z, due to the
‘large acceptance corrections in this ¢ interval.
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P, contributes via |Po|’, |Po|* and PoP_, respectively. These alternative ways of
removing the discrepancy are the origin of the So/P, wave ambiguity. Now we see
that we need contributions which increase as |¢| decreases and this suggests a (-
exchange) P, contribution, rather than S,. However, the inclusion of just P, would
underfit {(Y9) and overfit (Y3), and secondly it would have a magnitude in excess
of that permitted by comparing 7 'n->K K*p and 7 p-KgKn data. P, is
forbidden in KSK$ production and so 2N(Y3) for this reaction should equal
N(Y9)—0.894|P,|* for 7*n->K K*p. The 6 GeV/c data are compared in fig. 2.
The line is obtained from the K"K data assuming the mass dependence of P, is
given by the tail of the p resonance decaying into the KK channel*. Increasing Py

>
3 200
~
L0
1
ow 100
)..
N
o|5 0

JaT

-100

-200

| | |
14 1.2 13 14

M (K K) Gev

Fig. 2. The solid points, taken from ref. [14], are obtained from the (Y3) moment for T p->
KK Sn for —1<0.2 GeV? (ref. [3]) by normalizing to 7= n- K K*p data for —<0.08 GeV>.
The continuous line is the prediction for the KgKg points obtained by subtracting the P,
contribution from the 77 n—K K*p (Y3) moment (the open points). The dashed line cor-
responds to the P, which would be needed to describe the K™K° data if the S, contribution
was omitted.

* We take the form used in ref. [14] (see footnote 26), but do not use SU(3) for the normal-
isation. Rather we normalize the p tail by requiring that p-f interference describes the (Y9
moments for the K'K* production reactions[1].
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destroys the agreement between the line and the KSK$ data. We take this to be the
maximum P, allowed.

Including this Py contribution in K"K production leads, after allowing for the
different beam energies and ¢ values, to the description given by the dotted lines on
fig. 1a. The residual discrepancy is attributed to So. However it does not have the ¢
dependence expected of B exchange and it is necessary to include a Z-exchange
contribution to So. The best fit to the moments is shown by the dashed curves in
fig. 1a and the ¢ dependence of the K K° production amplitudes is shown in fig. 3.
We note the dominance of D., the ‘cross-over’ zero in P, ; and that D, is compa-
tible with the values obtained from charge-exchange A? production [18], see ref.
[5].

Now we need to consider the Mk dependence of the K”K° amplitudes. We
repeat the analysis described in ref. [4], except that we fit all non-zero moments
and include P_, D_, D, effects. We fix P, (and P_) to correspond to the p
resonance tail form described above, and we take D,, =0.1D. as found in the A,
region. The results for |So| are shown in fig. 4, together with the input value of |Py).

Tp— K K°%p 10 GeV/c
T T T T T T T 1T 7T 17T 71T T
4l -
NPE UPE
I,__ —

. ]
=~ % [P_| _
33 n D]
(43
::,L oll 1 1
= T T T T 17T T
" |D+|
> 21 2
1 ]
[0
P=3
=+
" ]
=2
[
a - .
=
=4

|PH
A1
0] 02 04 O0s 0 02 04 06

-t (Gev?)

Fig. 3. The 10 GeV/c = p-K K’ amplitude magnitudes in the A; mass region, 1.2<M <
1.4 GeV, normalized so that their square gives the contribution to do/d.
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Fig. 4. The mass dependence of |S,| obtained from the 10 GeV/c = p-K K°p data for the ¢
interval 0.07 < —¢<1 GeV?, shown together with the input P,. The amplitudes are normalized
so that their moduli squared give the contribution to do/dM. The § tail prediction is that of
subsect. 5.1.

4. D-wave K*K~ production

The data [1] for the reactions
7 p>K K'n, (11
7 n->K'Kp, (12)
allow a study of 7 =0, 1 KK states. In contrast to K"K° production, only / =1
exchange contributes to these reactions and UPE dominates in the forward direc-

tion. First we use the observed J =4 moments of the KK distribution to determine
D-wave production in the f and A, mass region.

4.1. f- KK branching ratio

We analyse the sum of the observed (Yﬁ" ) moments for the two reactions, as a
function of ¢, in terms of the amplitudes Dy, D, describing I =0, and Dy describ-
ing I =1, KK production. We use the data in the mass bin 1.25 <M <1.3 GeV to
determine the f > KK branching ratio. We take the pion-exchange form of egs. (3)
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and (4) for the dominant f-production amplitude D{~°. We integrate M°|f1|*/q.
over the mass bin using

mev T}"Tg(K

f(z): 2 2. >
me _M —lmfFf

(13)

where T¢(M), T{(M) are given by eq. (10), m;=1.275 GeV and I';(m;)=
0.180 GeV. The parameter to be determined by the data is the product of the
f- 7 and f> KK branching ratios,

K 2
x:F;ﬂng( /Fflemf~

The other I =0 amplitudes are parametrized by conventional forms

2
[N
D_=-c—Dp ',
D+ =eAb*tD—— .

We fix ]D{):l| in terms of the known behaviour [18] of UPE A, production as
found in the charge-exchange process 7 p- An and in the K'K° analysis. To
correct to the 1.25-1.3 GeV mass interval we integrate over an A, resonance form
with ma =1.31 GeV, [a(ma) =102 MeV and A, > KK branching ratio of 4.7%.
The best fit to the J =4, M <2 moments for —¢ < 0.4 GeV? is shown in fig. 5, and
the amplitudes are shown in fig. 6. The corresponding parameter values are

¥=0.019+0.003, ¢_.=0.6+0.1GeV ",
b,=3.0+£07GeV 2, b,=3.1+0.9GeV >. (14)

The value of 4. is typical of one-pion exchange, and taking the f- 7o branching
ratio to be 81%, the value found for x implies

B.R. f>KK)=(2.4+0.4)% . (15)

This result is in agreement with other independent determinations [2, 11, 19], but is
smaller than the ANL value [1] of (3.8+0.7)% obtained from the same data. The
ANL determination [1] compares N(Y§) of K’K™ and #*# production data over
the interval 0.08 <~t<0.4 GeV>. There are two reasons for the discrepancy
between these results. First, we find D~ °, D, have a sizable effect, particularly at
the larger ¢ values. Second, we renormalize the ANL 77~ production data so that
they extrapolate to the 7 exchange pole prediction in the p mass region*. If we
were to omit this renormalization factor for the # 7~ data our result for the
branching ratio would be increased by a factor of 1.25.

* The ANL group found [20] that the p production amplitudes, extracted from their = 7~
data, fell below the 7 exchange prediction by a factor 3.2/3.6.
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Fig. 5. The fit to the sum of the J =4 moments of the 6 GeV/c data [1] for reactions (11)
and (12), for 1.25<M(K K" <1.3 GeV.

4.2. f,f and A3 interference in KK~ production

The (Y'$) moments of the ANL data for reactions (11) and (12) show interesting
structure, as a function of M, which has been interpreted [1, 21] in terms of inter-
ference between f, f' and A, resonance production. The sum and difference of these
moments for processes (11) and (12) may be symbolically expressed in terms of
these resonance production amplitudes:

YD)~ P+ P+ 2 Re(f*) +]A2S,
AY$)~Re (fA%)+Re (fA¥).

The 3(Y3) data shows clear evidence of the f-f' interference effect and allow a
determination of the f' - 7 branching ratio. On the other hand, the data for
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Fig. 6. The K"K production amplitudes resulting from the fit shown in fig. 5.

A(YY) show little evidence for f-A, interference, but do show structure (at least for
the ¢ band 0.08 <—t<0.2 GeV?) which may be attributed to f'-A, interference.
This is surprising, since we would have anticipated f-A, interference to dominate
the f'-A, effect, and implies that f' and A, production should have important
contributions from, respectively, the 7 =0 and 1 non-flip amplitudes* D, 4.y —o
(recall that f production proceeds dominantly via the pion-exchange amplitude,
D._.5—0). On the other hand, we have noted that the general properties of A
production, and in particular the : dependence [18], are consistent with the
dominance of the flip (B-exchange) amplitude, rather than the non-flip amplitude,
for —t<0.15 GeV>. However, this is not a firm conclusion and so we allow the
A(Y?) data to decide the flip, non-flip character D&Y

In our study of these interference effects we analyse the data for the sum and
difference of the (Y3') moments with M <2 as a function of M (KK). We
parametrize the amplitudes as a function of ¢ and M(KK) (see egs. (8)~(10)), and fit
to the data in the three available ¢ intervals (bounded by #i,, —0.08, —0.2 and
—0.4 GeV?) simultaneously. In this amplitude analysis we include both D ..\ —o
for both =0 and =1 K'K™ production. The observed moments indicate that,

* We may assume A =0 since there is no evidence of f'-A, interference in A(Y}') with
M #0. The notation D, ... is that of eq. (2).
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for —1<0.4 GeV>, the A # 0 amplitudes are small; and so we retain only contribu-
tions from D, _._ (absorbed 7 exchange) and D, (A, exchange) for I=0K K~
production. We assume that A =0 f production is dominated by 7 exchange, and
we include a small contribution [5] from the tail of the g resonance, F,-.,-o.

For A, production we can factor the amplitudes as in eq. (8)

D™l =AM (B (M), (16)

but for I =0 K"K production we must extend the formalism to include both the f
and f' resonances. We use the mass matrix approach to describe these overlapping
resonances. For 7 exchange the structure of the I =0 D-wave amplitude is given
by eqs. (3) and (4) with

flrm>KR)= % g&[PM)rrgR’ (17)
where the summations R and R’ are both over the f and f' resonances, and where

(giR)ZE mgrI'k are functions of M, the KK mass, as given by eq. (10)*. The mass
propagator is given by

2 2 .
_ -M -—tmfFf b
P(M ‘=[mf ]
[P(M) ] i) (18)
with
S§=A—igl"gr " —igi gt ", (19)

where A is the mass mixing parameter.

We base the parametrization of the ¢ dependence of the production amplitudes
on Regge exchange forms. Even with very flexible parametrizations** we are
unable to produce a sizable f'-A, interference effect in A( Y?$) and satisfactorily fit
the data. The reason is clear: the f'-A; interference occurs via

Re (DIZ°DYZ" +DI°DIT ). (20)
The first term arises from 77-B exchange and is limited in the f' mass region by the
absence of significant structure in the data in the f-A, mass region where this term
would be much larger. Also from our knowledge of A3 production [5, 18] an upper
bound exists for D13, and to produce appreciable f'-A, interference requires non-
flip f' production to be so large as to be in contradiction with the 3( Y3) data.

In the original ANL analysis [1, 21] of the (Y$) moments alone, they did not
consider the individual production amplitudes***; if, as the data implies, f'-A,
interference occurs mainly via A =0 amplitudes, then it can be seen that their
results violate the Schwartz-type inequalities |f'| - |A,|=Re (f'A3).

* For the mass dependence of the total widths, I'g, the decay channels other than 7, KK
are collectively associated with the momentum of the nn channel.
** For example, allowing the amplitudes to have free (z-independent) phases, in addition to
their Regge phase.
*** Also they did not attempt a simultaneous description of the data in the three available ¢
intervals.
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Although the fit does not show significant interference structure in A Y9), it
does reproduce the observed structure in X( Y3) through f-f' interference in the
dominant 7-exchange amplitude, Dy. The observed interference structure selects
the negative sign of the coupling ratio g7 gt /g% gt ", corresponding to an f-f'
mixing angle less than the magic angle [21]. The resulting description of the S(Y3)
data is shown in fig. 7 for the two extreme values of the f'-> 77 branching ratio,
namely 0.5% and 1%. Here we have fixed the f- 77, f > KK and f' - KK branch-
ing ratios to be 81%, 2.4% and 70% respectively, and set me=1.515 GeV, Iy =
60 MeV and A =0. The fit is not sensitive to small variations of the latter three
parameters.

400

8

(ub/Gev?)
8

ViR I <Y?> d’o/dt dM

M (K'K") GeV
Fig. 7. The sum of the J =4, M =0 moments for the two K"K" production reactions (egs.
(11) and (12)) at 6 GeV/c, for three ¢ intervals: (a) —1<<0.08, (b) 0.08 <<—1<0.2, (c) 0.2<
—1<0.4 GeV>. The data are from ref. [1]. The continuous and dashed curves correspond to

an f, f', A, description of the data with an f' > 77 branching ratio of 1% and 0.5% respec-
tively.
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Fig. 8. The D-wave 77 - KK amplitude showing the f and f’' resonant structure. The numbers
on the curve are the c.m. energy in GeV.

The ' 77 branching ratio result of 0.75+£0.25% is consistent with the upper
limit of 0.9% obtained from KK production by Beusch et al. [22]. The dis-
crepancy with the ANL determination [1] of (1.2+0.4)% arises simply from our
different input values of the f > KK branching ratio (see subsect. 4.1). In fig. 8 we
show the Argand plot for the L =2, I =0 f(sm - KK) amplitude, as given by eq.
7.

5. = > KK partial-wave analysis

The partial-wave analysis of KK production data is more complicated than that
of w7 production. States of both even/odd G parity can be produced via odd/even
G-parity exchange (for example /B exchange). Thus for each partial wave both
I=0and I =1KK systems can be produced; states with I + L even (for example
S*, £, {') by 7 exchange and states with  + L odd (for example, 8, A,) by B
exchange. The latter possibility is forbidden in #N - 77N processes.
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As noted in sect. 4, in order to help unravel the I =0 and 7 = 1 production

amplitudes the ANL group [1] studied both

7 p>KK'n,

7 n>K K'p,
for which the KK production amplitudes are of the form (L' ~°+L"™") respectively.
However, even with perfect data on both processes further assumptions are neces-
sary to carry out a 77 > KK partial-wave analysis.

At small ¢ only the (Y})) moments of the KK angular distribution are found to
be appreciable, as anticipated from sr-exchange dominance. It therefore appears
reasonable to follow the procedure adopted for analysing 77 production [23], and
to assume that only the nucleon flip amplitudes are non-zero. We will return to this
point later, but for the moment we suppose it is true. The sum and the difference
of the even-J moments for the two reactions can then be expressed in terms of
bilinear combinations of (A =0) amplitudes containing only terms of the form

SY9):  Re(L"L'™), Re(LPL™®"),
AYS):.  Re(LL™), 1)

and vice versa for the odd-J moments. The amplitude superscript, which denotes
the expected exchange mechanism, distinguishes between 7 =0 and I =1 KK
production. The 7-exchange amplitudes, L”, produce KK systems with 7+ L even,
whereas the odd /+L KK states may be associated with B exchange. In the actual
analyses the M # 0 moments are included to take account of the small contributions
from the L. amplitudes.

The ANL group [14] have used their data for the  interval —z<0.08 GeV” to
determine the amplitudes L™ and L® in the mass region from the KK threshold to
1.6 GeV. To distinguish between the possible Barrelet-related solutions, they
consider other information. In particular by comparing with KSK$ production data
(3] to limit the size of P”, and by studying the ¢ dependence of the amplitudes, they
clearly select the physical solution to be one which contains an S enhancement
around 1300 MeV. Moreover by requiring P” to be consistent with the behaviour
expected for the high-mass tail of the p meson they resolve the remaining phase
ambiguity in favour of the solution in which the phase of $™ advances slowly in the
1300 MeV mass region. The resonant D-wave is taken to be the reference ampli-
tude and is assumed to be dominated by the m7-exchange contribution to f and f'
production.

We have repeated the above partial-wave analysis with the same assumptions,
but using the sum and the difference of the moments for the two reactions rather
than considering the reactions individually. From the Barrelet-related solutions we
are led to select essentially the same solution.

To a very good approximation we also obtain the same results for the L™ ampl-
itudes by analysing only X( YY) for even J and A(Y}") for odd J, in terms of just
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the 7-exchange amplitudes (together with small contributions from L.). Again we
use the data [1] for —¢<0.08 GeV>. We relate the amplitudes to f; (77 - KK)
using eqs. (3) and (4). The magnitudes of the partial-wave amplitudes, f;, are
shown in fig. 9. The neglect of B exchange is found not to distort the analysis. For
example, although the A(Y() moment shows that S® is non-zero, we have |$°|* «
IS™* for —¢<0.08 GeV>.

For the above analysis we required the value of the slope parameter, b, of eq.
(4). Some idea of the value of b is obtained by fitting the observed J =0, 4
moments [1, 24] to the form

- At ezb(zﬂﬂ)

(t-p’ ’

for —t<0.4 GeV?. The results are shown in fig. 10. For 3(Y3) (dominated by D
at small 1) and for 3(Yg) in the S* region (dominated by S™ at small ¢) the values
of b are typical of pion exchange. However the results for 3(Yg) suggest a shal-
lower slope for the S-wave in the 1300 MeV region. In the detailed amplitude
analysis we found that the pion-exchange contribution has a slope b, =3 GeV™?
and so we used this value for P7, D™ and F". However we allowed the slope of

Y9 =733 (22)

T T T T T T T T T T T T T T T
R R Tl = ‘
- .
ol t
§ + +++ sl T ol
i B YT t -
g My Tl W
e+ Tl +++ E
% g
< 02— 1%
Ix<
x
br 5 OO%MVDI _l
E ol oot
L t+++‘!/°"“w—1
0 12 AT e T
M (KK) Gev M (KK) GeV

Fig. 9. The magnitude and phase of the w7 - KK amplitudes determined from the 6 GeV/c
ANL K“K" production data [1]. The reference phase, ¢p, is taken from fig. 8. The L =3
amplitude corresponds to the tail of the g resonance [5]. For clarity the large errors for ¢p
near threshold are not shown. The results for ¢p are compared with the p tail phase.
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the S-wave to have the mass dependence necessary to account for the behaviour
shown in fig. 10, even though this only gives a small effect on the partial-wave
amplitude (fig. 9) resulting from the —z<0.08 GeV? data. We return to this
anomalous S-wave behaviour in the 1300 MeV mass region in a moment.

To summarize at this stage, we see that the S-wave is important throughout the
mass region, with a threshold $* behaviour and structure at 1300 MeV. Provided
we assume the dominance of nucleon—flip production amplitudes (for —s <
0.08 GeV?), this structure is to be attributed to the =0 KK S-wave, S™. The
amplitudes P™ and D7 are consistent with p and f, f’ resonant forms respectively.
We now study the crucial KK S-wave in more detail, first in the mass region just
above the KK threshold, the $* region, and then in the 1300 MeV region.

5.1. The 8% region

To illuminate the S-wave production mechanism we analyse the sum and the
difference of the moments, (¥Y5) with J <2, of reactions (11) and (12) as functions
of ¢ and M in the threshold region, M <1.1 GeV. We input P”, P®, D™, D®
amplitudes in terms of p, ¢, f, A, Breit—-Wigner forms. We parametrize the larger

! T I r T T

3 @z vg

' | n ‘
3 1
v4—l _
Q [
() T¢¥2s
3 ¢ -
'
‘
o + ]
tyat
= b
1 [ !
0% 12 14
MKR(GEV)

Fig. 10. The slopes, as defined by eq. (22), determined from the (a) (Y$) and (b) (YD)
moments for the sum of the two K"K production reactions at GeV/e, for —t<0.4 GeV>.
The effect of ¢ production is seen in the slope found at 1.02 GeV.
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amplitudes, §™ and s B in terms of S* and & resonant forms taking explicit account
of the K'K™ and K"K mass difference*. For example, the S-wave 77 >K K"
partial-wave amplitude is of the form

flam >K K =vV5(q.q0)" g3 g8 [m3 — M? ~ig, (g2")* - igo(g55)?)/A
with
A=[md M ~ig. (@I~ iG(g F I Im% - M?—iq,(g2")* - ig(g¥* )]
+[3(ge— g0)gSF g KR 2,

where 4., qo, 4=, ¢, are the c.m. momenta in the KK", K°K°, mm, 7 channels
respectively, and g4 =%(go+qc). We take the § parameters to be ms =970 MeV,
F =50MeV and (g5%)>=3(g3")°. For the $* we input ms+ =980 MeV but let
gs* and gs~ be free parameters.

We assume that ¢+ dependence of the amplitudes is given by = and B Regge
exchange, with a,, =0.83 (t—u®), ap=-0.25+0.831, with r in GeV?, but we allow
a free normalisation parameter for $® (and for P®). The S™-S®relative phase is
fixed; the production phases by the = and B exchange forms and the decay phases
by the $* and 8 resonant forms, with an additional background phase of about 85°
for §7, coming from the 77 - 77 channel [8].

This simple 7-B exchange parametrization is able to describe all the features of
the data** in the threshold mass region, M <1.1 GeV, The ¢ dependence of the
amplitudes at M =1.02 GeV is shown in fig. 11. We do not quote the $* couplings
since they are dependent on the choice of the S* mass; the K"K~ production data
alone are insufficient to determine the mass and the partial widths of the S$*. The
mass dependence of the 7 =1 amplitude, S, is compared with the prediction of the
K K° data in fig. 4, after integrating S® over the ¢ interval 0.07 <—r<1 GeV? and
allowing for the increase in pp to 10 GeV/c.

5.2, The S-wave in the 1300 MeV region

The S-wave KK mass spectrum obtained from K"K~ (and from KSK9) produc-
tion data shows a significant bump at 1300 MeV. This structure was originally
assigned [3] to the I =1 KK channel, but the above analysis and that of ref. [14]
attribute it to the I =0 channel. In fact the mass dependence of |fs|, fig. 9, is
reminiscent of an 7 =0 S-wave resonance on a smoothly falling $* background;
however the phase of fs does not match this description. Also we remarked that

* The formalism is very similar to that used [25] to allow for the K p, K°n mass difference
in low-energy K™ p scattering.
** The agreement of |$®| from the ANL data with the & tail contribution has also been noted
in ref. [26].
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Fig. 11. The ¢ dependence of the 6 GeV/c K K" production amplitudes at M(K"K*) =
1.02 GeV.

the ¢ dependence of the S-wave suggests sizable contributions other than
exchange in this mass interval (see also the KSK¢ data of ref. [3]). This effect can
alternatively be seen in fig. 12 where we plot the S-wave contribution, |S” =92+
|S"='P?, isolated from K"K~ data, using (Y$?) and 2(Y3) to estimate the D-wave
contribution to { Yg), and assuming the P-wave contribution is negligible. We also
plot —A(Y3) since the higher moments indicate that this is dominantly due to
I=0, 1 S-wave interference. There is a striking difference between the S* region,
where we found the 7, B exchange description satisfactory, and the 1300 MeV
region.

Also in sect. 3, we saw K"K° production provided independent evidence of non-
pion-exchange S-wave contributions in the 1300 MeV region. Moreover the ¢
dependence indicated that the non-flip amplitude, which we denote by S%, is more
important than the flip amplitude, §, at small «.
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S WAVE KK~ PRODUCTION (ANL 6 GeV/c DATA)
T T "* T T 1
-1£008 GeV? 008<-t<02 02<-t<04
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k -SUM] np—-KK'n
T n-KK'p
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Fig. 12. The S-wave K"K™ contribution showing the different r dependence in the threshold
and 1300 MeV mass regions. The solid points are obtained from the 6 GeV/c data [1] for
(Y92, 3(Y3), 3(YD). The open points are —A(Y ).

Recall that a crucial assumption in the # p~K K'n and #"'n->K K'p partial-
wave analysis [14] was the dominance of the flip amplitudes $™ and $®. While this
is a reasonable assumption for I =0 production, §”, we see that it is dangerous for
I=1KK production for —¢<0.08 GeV>.

To demonstrate the inherent ambiguity that this can introduce in such analyses,
we repeated the whole analysis but now including a fixed contribution |$%| as
determined by |So| of the K™K data in the 1300 MeV region. We find that |fs| is
reduced to a value indicated by the dashed curve in fig. 9, while the other ampli-
tudes do not change appreciably. This is not surprising as, to a crude approxima-
tion, the data determine the sum |S™|*+|$%)%,

In summary we see that the evidence for the structure in §'~° at 1300 MeV
is not compelling and that their exist arguments to assign the bump to §'="
production.

6. The scalar mesons

The KK channel is a valuable source of information on the controversial 0"
meson states. These mesons are of unusual importance in particle spectroscopy
because in addition to the conventional P-wave, qq nonet of the quark model, it
has been proposed [12] that there is a low-lying nonet of S-wave qqqq states. If
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Fig. 13. The quark content of the qqqq nonet.

multiquark states exist we can expect two nonets of 0° " mesons below about
1.5 GeV.

For a 07" nonet let us denote the isotriplet members by 8, the isodoublets by «
and , and the isosinglets by € and S. Suppose that the S and e mix magically in
the conventional qd nonet, then € and & will be degenerate in mass, with the S
state (which contains the s§ pair) at a higher mass. On the other hand, if the S and
€ states are magically mixed in the qqqq nonet, then the quark content is as shown
in fig. 13. That is, the S and § and degenerate in mass and the € lies at the lower
mass. The resulting mass spectrum is sketched schematically in fig. 14. It was the
approximate degeneracy of the observed $S*(980) and §(970) which prompted Jaffe
[12] to assign these states to the qqdq nonet, together with broad e(7) and «(K#)
states. Indeed, the only obvious problem with this identification is the observed
width of the § » 7y decay; since qqdq—> qd+qq are ‘fall apart’ decays, it should be
much broader. Of course this approach raises the problem of observing another
nearby 0" nonet (¢, 8', «', §' of fig. 14).

The spectrum described above represents an idealized situation. We expect some
violation of magic mixing. For example, in a qqqq state one qg pair spends a frac-
tion of the time in a colour octet state [12] or in a 0 state. In either case this will
lead to violations of magic mixing. Also the members of the two nonets can mix by
gluon exchange.

All the non-strange 0" mesons can couple to the KK channel. This highlights
the importance of the isospin identification of the S-wave KK structure at 1.3 GeV.
If an I =1 state (§') is confirmed in this mass region it will be clear evidence for the
existence of two nonets.

MASS
S —
K— (a@),
€ — —§& NONET
S — —6
* — 949493
NONET
E ———

Fig. 14. Schematic mass spectrum for 07" states.
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Some time ago Morgan [6] reviewed the scalar mesons and attempted to
accommodate them in a non-magically mixed qg nonet. In this description the I =0
wave contained an S* resonance near the threshold of, and strongly coupled to, the
KK channel, and a broad €(1300) resonance coupled dominantly to the 7 chan-
nel. The recent data showing the narrow S-wave KK structure at 1300 MeV, with
the possibility of an I =0 component, opens the way to further (or different) I =0
states.

The present knowledge of the magnitude and phase of the I =0 S-wave in both
the 7mr - 7w [23,27] and 7w ~ KK channels means a quantitative resonance
analysis is possible [10]. We have attempted such a coupled channel multiresonance
analysis in the 0.8-1.5 GeV mass region. Even allowing the ambiguity* in |fs| in the
1300 MeV mass regions, we are unable to obtain a satisfactory description of the
data. We considered overlapping resonances using the mass matrix formalism, and
also M -matrix parametrizations. Only the latter types of parametrization are able
to reproduce the approximately constant behaviour of ¢g below 1.3 GeV. A typical
(12 parameter) M-matrix fit is shown in fig. 15. In this example, the amplitudes
have poles** on sheet II at E =0.986-0.007:, 1.07-0.33; GeV, and on sheet III at
E=1.37-0.17i, 1.42-0.21i GeV; the S$* is associated only with the first sheet-1I

280°

2407

L S WAVE m-KK AMP |
oI - 1601
—— M MATRIX
F ~-- S"BREIT-WIGNER ]
ol 1 11| | L1
10 12 14 10 1.2 14

M (KK) Gev

Fig. 15. The description of the S-wave 77 -» KK amplitude in a coupled channel M-matrix
analysis (continuous curves); and a S* Breit-Wigner plus background description (dashed
curves).

* To do this we do not fit |fg| in the 1.25 <M < 1.35 GeV mass region.
** The notation is as in ref. [8].
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pole. Note that in a constant M -matrix (or constant scattering length) approach the
S* is represented by a sheet-II pole alone. The behaviour of ¢s near threshold is
not reproduced by a Breit-Wigner S* description which has nearby sheet-II and
sheet-III poles [6, 8, 28].

A major problem in all fits* is the matching of the rapid decrease in |fs| just
above the S* with the behaviour above 1.1 GeV. The slow variation of the phase,
&s, is found to rule out narrow structures (~200 MeV) in the 1.1-1.3 mass region.
Recall that there is a solution for the K"K production amplitudes in which s
advances rapidly (ahead of the f resonance phase**) in the region, but this is surely
unphysical since it requires the S®, P™ amplitudes to have the same rapid phase
behaviour as §”.

It is instructive to look at a simple S* Breit-Wigner resonance plus background
fit to |fs| up to 1.15 GeV together with the 77 > 7w data. The form used is

£ ggs-Vaq
T mg —MP—i[(g5)q + (g5 q;)

where ;, j label the 77, KK channels. We include a linearly rising elastic back-
ground phase (8g) in the 77 channel [8]. The result is given by the dashed curve
on fig. 15, which also shows the prediction for ¢s assuming no background in the
KK channel. Note the discrepancy in ¢s; a satisfactory description of both |fs| and
¢s is difficult and requires a complicated amplitude structure. For completeness we
give the parameter values corresponding to the fit:

me+=1.005+£0.003GeV,  8g(at 1 GeV)=89.0°,
(g37)7=0.198£0.009 GeV, (g55)*=0.277+0.018 GeV,

which lead to a sheet-II pole at E=1.012—; 0.030 GeV, and a sheet-III pole at
E =0.985—7 0.065 GeV.

7. Results and conclusions

We have performed partial-wave analyses of KK production data in the mass
region from threshold to 1.5 GeV. The S-wave is important throughout the mass
region showing, besides the $*, interesting structure at 1300 MeV. The higher
partial waves are well described by p, f, f, A, resonance forms.

We attempted to resolve /=0 and 7 =1 S-wave contributions. We first analysed
K~K° production to estimate the I =1 component. Although the amplitudes in the
UPE sector are not well-determined, and have an S/P wave ambiguity, we found
that the data imply a significant non-flip S-wave amplitude.

* The description of ref. [10] has the same difficulty.
** The observable is |¢s— dp).
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Turning to K”K* production, we first studied the D-wave contribution. We
determined the f > KK branching ratio to be (2.4+0.4)%. Contrary to an earlier
analysis [1, 21] we found that we could not describe the A(Y$) data in terms of
f'-A, (or f-A,) interference. From the observed f-f' interference structure we
determined the f' - 77 branching ratio to be (0.75+0.25)%.

We repeated the detailed ANL partial-wave analysis of K"K data, using their
assumption of the dominance of flip amplitudes, and found essentially the same
results. In particular the I =0 S-wave, fs, had, in addition to the $*, a significant
bump at 1300 MeV, together with a slowly advancing phase ¢s.

We stressed that the flip-dominance assumption is dangerous for the /=1 S-
wave contribution at small . We showed this explicitly; we repeated the K'K™
analysis with an S-wave non-flip contribution as given by the K"K° data. In this
analysis |fs| was found to be smooth at 1300 MeV. We concluded that the isospin
assignment of the S-wave structure at 1300 MeV is not resolved.

The implications of the KK analysis to the status of scalar mesons was discussed.
The possibility of 7 =0 and/or I =1 states at 1300 MeV encourages the speculation
of the existence of a second nonet of 0" states; namely the qqqg nonet proposed
by Jaffe. However, even allowing the full ambiguity in |fs| at 1300 MeV we were
unable to find any satisfactory multiresonance description of the I =0 S-wave. The
major problem, assuming the 7 - 77 amplitude is known, is to correlate the
behaviour of |fs| and ¢s for the 77 > KK amplitude.

We thank N.M. Cason, D. Cohen, A.C. Irving, R. Jaffe, D. Morgan, C. Nef and
A.B. Wicklund for valuable discussions and communications. We acknowledge the
support of the British Science Research Council. One of us (E.N.O.) thanks the
Turkish Government for support during a part of this work.
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The high-energy behaviour of a double discontinuity of the six-point amplitude is
studied in the dual-resonance model and in a hybrid Feynman-diagram model. This
discontinuity imposes, through unitarity, a bound on the intercept of the bare-pomeron
singularity. It is shown that in both models the ordinary Regge trajectories which couple
to two-body amplitudes decouple from the discontinuity. The origin of this decoupling
is discussed. The asymptotic behaviour of the double discontinuity is controlled by sister
trajectories in the dual-resonance model, and by the genuine three-particle Regge poles
in a Feynman-diagram model. Insofar as the intercepts of these trajectories are lower
than those of the usual Regge poles there is no strong constraint on the pomeron.

1. Introduction

The (bare) pomeron singularity in the topological expansion (or dual unitarisation)
[1—-3] *** is given by diagrams which have the topology of a cylinder. The domi-
nant region of phase space which gives rise to the pomeron singularity corresponds
to the production of two heavy clusters, both masses of which are of the order s.
The same region of phase space is also responsible for the new, pomeron-like, singu-
larity in a twisted dual-loop amplitude [4].

The asymptotic behaviour of the pomeron amplitude is closely connected with
the scaling properties of the two-cluster production process. It is straightforward
to show that if the amplitude for cluster production scales (i.e., if it depends only
on scaling variables like M?/s where M; are the cluster masses), then the correspon-
ding unitarity integral gives a pomeron singularity of intercept one.

These scaling properties appear to be very natural if the cylinder contribution is
interpreted in a parton language. The pomeron in this picture corresponds to the
(double) scattering of two fast valence quarks, unlike the reggeon amplitude which

* On leave from NORDITA, Copenhagen, Denmark.
** On leave from Institute of Nuclear Physics, Cracow, Poland.
**%* The papers [ 3] are review papers.

409



410 P. Hoyer, J. Kwiecinski [ Double discontinuity and the bare pomeron
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Fig. 1. The unitarity equation relating the double discontinuity of the six-point amplitude to the
two-cluster production.

contains an additional damping factor due to a wee quark. It is this picture which
underlines the QCD model for the pomeron singularity [5,6]. Explicit calcula-
tions done in two dimensions [6] showed, however, that the pomeron singularity
was cancelled in the complete sum of diagrams. This cancellation may be a feature
only of a two-dimensional model and might not appear in four dimensions [5].
The two-cluster production amplitude is related by unitarity to the double dis-
continuity of the six-point function, as shown in fig. 1. In the topological expan-
sion scheme the six-point amplitude is the planar one and Regge-pole dominated
(fig. 2) for high s, M} and M2, Tt has been shown by Veneziano [7] using Schwartz
inequalities that the amplitude corresponding to two heavy cluster production
would scale (or, more precisely, would be bounded from below by some function
which scales) provided that the ordinary (planar) Regge trajectories coupled to the
double discontinuity of the six-point amplitude. There are no obvious reasons (like
Steinmann relations [8] etc.) which would require the vanishing of the double dis-

5
Fig).2 2. The kinematics of the six-point amplitude; s = (p; + ps)?, M% =(p3 +Pa)>, M% =+
Pe)”.
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continuity of fig. 1 or the decoupling of Regge poles from it. Nevertheless, as
observed by Veneziano [7] this decoupling does occur in the dual resonance model.
A clarification of the reasons for this decoupling could lead to a better understand-
ing of the bare-pomeron singularity in the dual unitarisation scheme.

In this paper we give an intuitive argument for why the ordinary reggeons
decouple and show that there are contributions from other exchanges characteris-
tic for multiparticle amplitudes. In sect. 2 we briefly discuss the relation between
the 6-point amplitude and the two cluster production which follows from unitarity.
In sect. 3 we discuss the double discontinuity of the six-point amplitude in the
dual resonance model (DRM) and a hybrid Feynman diagram model. We exhibit
the decoupling of the ordinary Regge poles within the DRM. A similar decoupling
takes place also in the hybrid Feynman diagram model where the Regge poles are
generated using two-particle amplitudes. We argue that the decoupling may be easi-
ly understood by inspecting the energy flow in the cut diagrams. We find that the
high-energy behaviour of the double discontinuity in the DRM is governed by sister
trajectories [9,10]. Within the hybrid Feynman diagram model the non-vanishing
contribution is given by three-particle Regge poles [11]. Finally, in sect. 4 a brief
discussion of the results is given.

2. Unitarity bound on two-cluster production

In order to demonstrate the relation between the double discontinuity of the
six-point amplitude and the pomeron let us first consider a one-dimensional model
with simple factorisation. The unitarity equation of fig. 1 takes the form

1, . _ 2 2 242
o dlscM;; 5 dlSCM% Ae =gM?) g(M3) A(s, M, M3) , 2.1
where A is a two-cluster production amplitude and g(M,?) are coupling constants of
a system of mass M; to the external particles. The couplings g(M,?) can be obtained

from the two-body amplitude. Regge-pole behaviour of this planar amplitude yields
for large M?:

gM?) = c(MP? 2.2)

where o is the Regge-trajectory intercept. The same Regge trajectory also contributes
to the asymptotic behaviour of the 6-point amplitude for large s and for M% =X,
M2 =x,5 (fig. 2). Assuming that this contribution has a non-vanishing double dis-
continuity one obtains:

. |
5 d1scM% 5 d1scM% Ag =Blxy, x) 5% . 2.3)

Combined with (2.1) and (2.2) this implies scaling of the two-ctuster production
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amplitude A:
A@s, M2, M%) = 720y x0) "2 Blxy, x3) ZAMX ), X)) . (24)

Such a scaling behaviour gives a bare-pomeron singularity with intercept equal to
one:

Im A, (s) = cosnStffdedMglA(s,Mz,Mg)l2 =g const ffdxld.xz IA(xq, x2)1% .
2.5)
This factorisable model illustrates in a simple way how the scaling properties may
originate from unitarity and Regge behaviour. The simple factorisation is not, how-
ever, expected to hold, in general. The asymptotic (Regge) behaviour is built up
from peripheral states rather than from states on parent trajectories. The peripheral
states are expected to be highly degenerate and therefore arguments based on simple
factorisation alone are not convincing. One can, however, apply Schwarz inequali-
ties to the planar unitarity equation of fig. 1 [7]. It then follows that the two-clus-
ter production amplitude is bounded from below by some function which scales,
provided that ordinary Regge trajectories couple to the double discontinuity of the
six-point amplitude. The Schwarz inequality is (fig. 3):

[(1/20) discy2 (1/2i) discysz 4g 2 .
[ImA,(M?, t=0) - Im A4(M2, t =0)]

Assuming Regge behaviour for Im 44 and for the double discontinuity in the nume-
rator with the same Regge trajectories in both i.e.,

AWM, M2, 9)I* > (2.6)

Im A4,(M2, t = 0) = c(M?)X? 2.7)
1. 1 _ ©
El—' dlSCM% El— dlSCM% A6 = B(xl, X2) 5 , (28)
one obtains
IAM2, M2, 5)12 = ¢ 7202 (xq, x,)(x; - %)~ O (2.9)

When combining with (2.5) (assuming some intrinsic cut-off in transverse momen-
tum) this gives [7] a lower bound on the pomeron:

Im Ay(s, t =0) > const.s . (2.10)

2 2
3 ! H 1
I I < 2
g <
A ™ i 6
mny ! 5 ! mn,

Fig. 3. Schwarz inequality which follows from the unitarity equation for the double disconti-
nuity.

2 , \
3 31 | 1
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To conclude, the bound (2.9) requires two independent assumptions:

(1) planar unitarity, which leads to inequality (2.6) where all the amplitudes on
the r.h.s. are the planar ones;

(2) the asymptotic behaviour for the double discontinuity and for the four-point
amplitude is the same (s%).

3. High-energy behaviour of the double discontinuity

In sect. 2 we showed that the possible scaling behaviour of the two-cluster pro-
duction amplitude depends upon whether the ordinary Regge trajectories couple
in the double discontinuity of 44. In this section we discuss this question within
two models for A4.

The kinematics of the 6-point function is defined by fig. 2. We are interested in
the asymptotic limit where the following invariants are large:

s =s;5=(py tps)?, s3a5 =(p3 +Pa — Ps)*
Mi=53,=(p3 tpa)?, $234 = (P3 tPa — P2)* ,
M2‘561 (p1 +P6)*

The asymptotic behaviour of the 6-point amplitude is given by single Regge-pole
exchange. We consider the configuration which is relevant to two-cluster produc-
tion with ingoing and outgoing particles as in fig. 2. In this configuration s, M% and
M22 are positive while 5345 and s,34 are negative.

The double discontinuity of the six-point amplitude is defined by

discy, discg,, Ag = Ag(s34 ti€, 561 T i€) — Ag(s34 — i€, 561 — i€) 3.1)

In the dual-resonance model, the Regge-pole limit of the B¢ function takes the follo-
wing form when all large variables are negative [12]:

1 1
B6~fdxlxl_alz_l(l‘xl)—a23_l fdxzxz_a“—l(l—xz)‘a“s_l
b 0

X [—azq(l —x W1 —x3) — ag1%1X; — p34%1(1 — X3) — azqs(l —x1) x,]%123

(3.2)

where a;j, a;; are the linear Regge trajectories. The evaluation of the discontinuity
(3.1) requires, however, knowledge of B4 in limits where some of the variables (a34
and ag ) are positive. Besides the contribution B(“) obtained by analytic continua-
tion of the expression (3.2) there is, in this reglon a contribution B(ﬁ) from sister
trajectories [9,10].

Let us first compute the double discontinuity of Bg“) in o34 and ag; for negative
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0534 and a345. The singularities of Bg"‘) in a34, 0y are generated by the factor
(—2z)*123 in the integral (3.2) where

2(034, 0g1) = a34(1 —x1)(1 —x3) + @61 x; X7 + 0p3ax1 (1 — x3) + a3a5x2(1 —x1)
(3.3)
The phases of the various terms in (3.1) are determined by:

(—2z(a3q + i€, gy +i€))*123
= [e771230(z) + 6(~2)] l217123,
(—z(azq — i€, agy +i€))*123
= {6(z) [™1230(x; +x, — 1) +e7™1236(1 —x; — x5)] +0(—2) Hz[*123,
(—z(asq + i€, ag, — i€))*123
= {0(z)[e 771230 (x) +x, — 1) +e™1236(1 — X — x2)] +0(=2) }|zI*123,
(—2(asq — i€, @y — i€))*123 = [e71230(z) + 0(—2)]|z/*123 . (34)
Substituting this in (3.1) and (3.2) gives
discy, 2 discyz BEY =0. (3.5)

The decoupling (3.5) of ordinary Regge trajectories « holds only in the configura-
tion relevant for cluster production i.e., for negative s534 and s345. In the configura-
tion which corresponds to a cascade decay that is for positive 5534 and s345 the
double discontinuity of Bg"‘) is non-zero.

The contribution of the sister trajectory § to the double discontinuity may be
obtained using the results of refs. [9,10]. The amplitudes Bg(s34 — i€, s¢1 + i€) and
Bg(s34 + i€, g1 — i€) are given by analytic continuation from the region where all
large variables are negative, keeping

=52345345 _ |
536561
during the continuation. Hence the @ trajectory does not contribute to these ampli-
tudes. The two other amplitudes in the discontinuity (3.1) have a non-vanishing 8
contribution given by eq. (B.21) of ref. [10] and its complex conjugate. The expres-
sion for the double discontinuity in the DRM is thus

discy, , discs, Bg
_ —? s Qp3q\P123 7923 34| “P123 7127023
RO a3A23 — 7 1 —
2B1230'(B123) Q345 Q34

— -8 + +ai
« I:(— 0‘345)&23 a4s5 (1 _a345) 123145 "‘56:| 36
CG3q Q34 ’ '
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Fig. 4. The hybrid Feynman model for the six-point amplitude.

where f;,3 = %(a123 — 1). Because the « trajectory does not contribute (cf. eq.
(3.5)), eq. (3.6) gives the leading contribution to the double discontinuity in the
single-Regge limit.

Let us now consider the hybrid Feynman diagram for the 6-point amplitude as in
fig. 4. We show in the appendix that the amplitude corresponding to this diagram
may, in the single-Regge limit, be expressed in a form very similar to the dual-reso-
nance amplitude (eq. (3.2)):

1
By = f HMAg - Ag)[—MaAcS34 — ApAaS16 — AaRdS3a5 — ApAcS234] *123 1—Ld)\i .
° (3.7

The parameters ; (i =a, b, ¢, d) are Feynman parameters corresponding to the lines
(a)—(d) in the diagram of fig. 4. The exact form of the function ¢ is irrelevant for
our purposes. The vanishing of the double discontinuity of A4 follows exactly as for
the dual-resonance amplitude. It is again essential that the variables s,34 and 5345 are
negative. :

The physical origin of this decoupling which was difficult to see in the DRM is
more transparent in the Feynman-diagram model. Taking the discontinuity in one
of the variables (say s34 ) implies that all the cut lines in the diagram are put on-shell
and that their energy components have a common sign. This is illustrated for a simple
ladder representation of the reggeon in fig. 5, where the arrows indicate positive
energy flow. The (common) direction of the arrows is dictated by energy conserva-
tion in the part of the diagram to the left of the cutting.

It is now clear why the double discontinuity must vanish in the kinematic region
under consideration. Taking a further discontinuity in s¢; would require the arrows
on the lines (b) and (d) also to be directed to the left. This would violate energy con-
servation in the right-hand part of the diagram. In a “cascade” configuration on the
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Fig. 5. Discontinuity of the single ladder amplitude in the variable s34. The arrows indicate the
energy flow.

other hand, where the directions of the lines 1 and 6 are reversed, there is no conflict
with energy conservation and the double discontinuity is non-vanishing.

The above argument for the decoupling of ordinary Regge poles from the double
discontinuity is evidently quite general. It applies to any diagram which has the struc-
ture of fig. 4, i.e., when the Regge pole is generated through insertions of four-point
amplitudes.

A non-vanishing double discontinuity may be generated by two-particle irreducible
insertions. This is realised in amplitudes with three-particle Regge poles [11]. As
shown in fig. 6 the doubly cut three-particle ladder diagram is kinematically allowed.

4. Summary and discussion

Our study of the double discontinuity of the six-point function was motivated
by its relation to the bare-pomeron singularity. We showed that if the asymptotic
behaviour of the discontinuity in the single-Regge limit (fig. 2) is determined by the
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Fig. 6. Double discontinuity of the three-particle Regge pole.
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ordinary Regge poles, then the intercept of the pomeron trajectory must be equal
to, or above, one [7].

In both models that we considered, the dual-resonance model and a hybrid Feyn-
man-diagram model, it turned out that the ordinary Regge poles did not contribute
to the discontinuity. Moreover, we traced the reason for this decoupling to the pat-
tern of energy flow in the two-particle insertion that generates the asymptotic beha-
viour. Taking the discontinuity in either s34 or s, fixes the direction of energy flow
in the cut lines (fig. 5), and the direction is opposite in the two cases. Consequently,
the decoupling of the ordinary Regge poles is quite general, and there are no strong
constraints on the pomeron intercept.

The fact that the discontinuity receives no contribution from ordinary Regge
poles does not mean that it vanishes, however. In the DRM we found that the asymp-
totic behaviour is given by the first sister trajectory, 8= Ja — 1. This trajectory
decouples from two-particle states and appears only in six-point, and higher, ampli-
tudes [9,10]. While there were some indications previously * that the 8 trajectory
is linked to the pomeron, the present relation is much more direct. It implies, in par-
ticular, that if the § trajectory has a higher intercept than the ordinary « trajectory,
then the bare pomeron intercept is above one. This is not the case in the standard
DRM, where § is the leading trajectory only in the region a < — 1. (In the Neveu-
Schwarz model, on the other hand, it has been shown [13] that 8, >« for o <
+1)

In the hybrid Feynman diagram model we saw that Regge poles that are generated
through two-particle irreducible insertions should have a non-vanishing double dis-
continuity. Such multiparticle Regge poles have been studied previously [11], and
the present work suggests a relationship between them and the sister trajectories of
the DRM. However, it is not clear that the Regge poles generated through multi-
particle ladders have the rather unusual analytic properties exhibited by the g tra-
jectory. For example, the 8 trajectory contributions to asymptotic limits in which
the large variables have different signs are not in general related by analytic continu-
ation (of the asymptotic form). Furthermore, the § trajectory does not couple to two
particles, The multi-ladder Regge poles of course do contribute to four-point ampli-
tudes [11]. However, in these amplitudes the poles will be renormalised by two-par-
ticle insertions. Since such iterations do not contribute to the double discontinuity
we studied in this paper, it could indeed turn out that the Regge pole governing the
high-energy behaviour of the discontinuity is different from those seen in four-point
amplitudes. In this case it should have a lower intercept than the ordinary Regge
pole, as it lacks the two-particle insertions. This agrees with the bound given by the
pomeron intercept.

Our results may also be compared with the calculations of the bare pomeron in
two-dimensional QCD [6]. In that model, apparently due to the absence of transverse
dimensions, the two-cluster production amplitude does not scale and there is no bare

* The papers [3] are review papers.
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pomeron. Because of the simple factorization property of the states this implies that
the “Regge pole” a decouples from the double discontinuity (2.1). This is consistent
with the above results.

One of the authors (J.K) would like to thank Gabriele Veneziano for discussions
and Joe Weis for discussions and useful correspondence. Both of us are grateful to
Roger Phillips and Chan Hong-Mo for the hospitality of the Theory Division of the
Rutherford Laboratory.

Appendix

In this appendix we derive the representation (3.7) for the hybrid Feynman dia-
gram. The amplitude corresponding to this diagram is given by the following expres-
sion

ho x9123
Ag~ [a*kay [ ——— 1P, Al
o~/ of(x—(kw) i (A1)

where P; are the propagators corresponding to the various lines of the diagram. Intro-
ducing Feynman parametrization [14] and performing the loop interpretation we
obtain:

N « Md\B(EN, - 1)
fdx N f DL (A2)

where

D=2 [x _ NaAuS34 * ApAaser ; )\2)\‘18345 + )\bKCS234:| FEENG[x — w] +8.
(A3)

A and B are equal to a sum over A parameters corresponding to the upper and lower
vertices respectively, after neglecting terms O(\;) which are negligible in the single-
Regge limit. The function Din (A.2) depends on the parameters X and upon invari-
ants which are not large.

Rescaling the variable Ag, for w <0,

N = Nglx — )7, (A4)

one arrives at the formula (3.7) after integrating over x and Xg,
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Abstract: We consider a single-Regge limit of the amplitude for the processa+b—c+d +e.
In this limit the amplitude is proportional to the reggeon-particle amplitude fora +i -
c + d, where { is a reggeon. We study the analytic structure of this amplitude using the
dual resonance model and a perturbation theory model. We conclude that finite-energy
sum rules can be derived, which relate the absorptive part of the amplitude at low
W+ pd)2 to a part of the double-Regge vertex function of the original five-point
amplitude. We discuss some phenomenological applications of the sum rules.

1. Introduction

In this paper we shall investigate the structure of the amplitude for the process
atb—>c+d+e, where a, b, c, d and e are scalar particles, in the high-energy limit
where s, = 0, 54, = © while 5 4 is kept fixed***, fig. 1. In such a limit the five-
point amplitude is proportional to the reggeon-particle amplitude fora +i—>c +d,
where i is the exchanged reggeon. Although the singularity structure of the five-
point function is rather complicated in general [1, 2] T, one may hope that its
structure is simpler in a high-energy limit like that of fig. 1. This would then make
possible the derivation of finite-energy sum rules [3; 4], which would be useful in
the analysis of data for three-particle final states.

As was recently shown, there is an analogous situation in the case of inclusive
reactions. The cross section for a + b = ¢ + X is given by a discontinuity of the

* Supported partially by a grant from the University of Helsinki, Finland.
** Present address.
*** We use the notation sy, = (p, + pb)z, S,c= (0, - pc)z, etc.
t In ref. [2] the problem of formulating finite-energy sum rules for five point amplitudes
that relate the low-energy region in s, to the single-Regge limit is considered. This paper
also contains a discussion of the general analyticity structure of the amplitude.
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c
a

d
b e

Fig. 1. The single-Regge limit of the processa+b—c+d +e.

amplitude fora + b+ T = a+ b + ¢ in the forward direction [5], fig. 2a. In the
limit when the missing mass is much smaller than the total energy, i.e. sab/sab-c- >
1, the six-point amplitude is proportional to a reggeon-particle elastic amplitude
(fig- 2b). In dual and ladder diagram models it turns out that the reggeon-particle
amplitude has the singularity structure of a normal four-point function. Hence one
may write down finite-mass sum rules [6], which connect the low missing-mass
region with the triple-Regge limit. First applications of the FMSR to inclusive data
are quite encouraging [7-9].

g ¢ <
(a) (b)

Fig. 2. (a) The six-point amplitude which is related to the inclusive reactiona + b— ¢ + X,
(b) A high-energy limit (s,p/s - o with sz fixed) of the amplitude in fig. 2a.

abc

The reggeon-particle amplitude that we shall be concerned with here (fig. 1) is
somewhat more general than the one encountered in inclusive distributions (fig.
2b). In the case of fig. 2b there is only one helicity amplitude contributing to the
leading term, namely the one corresponding to a maximum helicity flip of the
reggeons [10]. By contrast, there are many helicity states of the reggeon contribu-
ting [11] in fig. 1. The dependence on the helicity in this case can alternatively be
seen as a dependence on the variable k = 5_454./5,,- The reggeon-particle amplitude
in fig. 1 also depends on the momentum transfer s,z In the case of the inclusive
reaction in fig. 2 the corresponding variables are equal to zero.

The structure of the amplitude fora+ b = ¢ +d + e in the double-Regge limit
(sgq = °°in fig. 1) is already well-known [10, 11]. In this limit the amplitude
decomposes into a sum of two terms, with cuts in s 4 and in s4,, respectively. We
shall in the following be concerned only with a part of the five-point amplitude
which in the double-Regge limit gives the first term (with a cut in s_4). This is also
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the part which contains the poles in s,z (when the reggeon is on-shell) and, accor-
ding to the Steinmann relations [12], the normal threshold singularities and
resonances in S.4.

We investigate the singularity structure of this part of the amplitude in the
single-Regge limit (5.4 finite) using the dual resonance model (DRM) and a pertur-
bation theory model. We find that when k = 0 the reggeon-particle amplitude has
the singularity structure of a normal four-point amplitude.

The FESR which follow from this analytic structure relate the absorptive part
of the low s 4 region to the first part of the double-Regge vertex. In the same way
one can relate the other part of the double-Regge vertex to the low s, region.

When « # 0 the reggeon-particle amplitude has singularities which are not present
in normal four-point amplitudes. These singularities do not, however, contribute
to the leading term in the discontinuity as s.4 —> 2. The effect of the new singulari-
ties in the FESR is therefore that of an additional term which is independent of
the cut-off.

In sect. 2 we discuss the structure of the amplitude in the double Regge limit.
The single Regge limit is considered in sect. 3, where we investigate the analytic
structure of two models, the dual resonance model and a perturbation theory
model. The structure of the two models turns out to be very similar. In sect. 4 we
discuss the modifications due to left-hand singularities and signature. All essential
properties found in sect. 3 remain unaltcred for the signatured amplitudes. The
FESR are derived in sect. 5 and some applications are considered in sect. 6.

2. The double-Regge limit

We shall begin our investigation of the analytic structure of the five-point
amplitude by considering the double-Regge limit (fig. 3). This is defined by letting
Sabs Sed» Sde > P Keeping s, Spz and K = 5.454./5,, fixed. The structure of the
amplitude in this limit has been investigated by several authors [10, 11, 13]. It has
been shown that an amplitude with only right-hand cuts in the asymptotic variables
takes the form*

T = (—5,5)*0% (~-54)*8T 7 *0C ¥ (Spg, Syc3 %)

+ (= 5,5) %2 (= 54¢) BT T AT V(855 S 1K) (n

where ap = a(syg ), etc. The vertex functions ¥} and V), are entire functions of k.
The important feature of the decomposition of T in eq. (1) is that only the

first (second) term has a discontinuity in 54 (s4)- If, according to duality, the

Regge terms in eq. (1) are “built up” from resonances in s.4 and 54, we therefore

* This is true for amplitudes corresponding to planar Feynman diagrams and for planar dual
models. For an example of the structure of a non-planar model see ref. [14].
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Fig. 3. The double Regge limit of the processa+b—c+d +e.

expect the first term in eq. (1) to be connected with the resonances in 5.4 and the
second term with resonances in sg,. In fact, the residue of a resonance in 54 is a poly-
nomial in s4, and thus cannot contribute to the discontinuity in 54, (i.e. to the sec-
ond term in eq. (1)). The first term in eq. (1) also contains the poles in oz when the
reggeon i goes on-shell. From the point of view of duality in the systema+i—>c+d
we therefore should consider only a part of the five-point amplitude T, which in the
double-Regge limit gives the first term in eq. (1).

In deriving the FESR we shall start from a dispersion relation in 54 keeping
Sabs Sac Spe and « fixed (note that the limit 5, = <° has already been taken as in
fig. 1). The reason for keeping k fixed is that we want the high-energy limit of the
reggeon-particle amplitude (s .4 > °°) to be related to the double-Regge limit of the
five-point function.

The variable 54, can be expressed in terms of the independent variables as

K Sab
Sde = Scd ; (2)

substituting eq. (2) into the expression (1) for T we get

T'=(=555) 08 (—59)*8% = *€ [V (g, 5,0:K) + (—K)*DE = ATV (s,0, 51,53 4)].
(3)

Both terms in eq. (3) now have a cut in sy, due to the relation (2). However,
as discussed above only the first term can be dual to resonances in s_4. The second
term can be eliminated in either of two ways:

(i) By extrapolating to k = 0. If apz — @, > 0 the second term in eq. (3)
vanishes. As we shall see below the situation is analogous in the single-Regge limit.
Thus at k = 0 the reggeon-particle amplitude has only normal four-point singularities
in s 4 and a FESR can be derived. The FESR can be continued to apz — a,c <0
by subtracting out the term which is singular when « = 0.

(ii) By considering the amplitude T:

1

C 2isinm(apgy — o,z)

[ei"(abE - aaE)T(sde +i€)

_ e—imnlapg - aaE)T(sde —ie)] . 4)
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Ineq. (4), T(sy4, * i€) is the amplitude obtained in the single-Regge limit
letting s 4, = o above (+i€) or below (— 7€) its cut. All other variables are to be
evaluated in their physical limits. It follows from eq. (1) or eq. (3) that in the
double-Regge limit

T= (- sub)abe (_scd)aaE — ahg Vl (sbé , saE;K) . )

In the next section we consider the singularity structure of T'in the single Regge
limit. It turns out that T has certain singularities in S.4 Which are not present in
normal four-point amplitudes. These come from the term T'(sy4, — f€) in eq. (4),
where the amplitude T is evaluated in an unphysical limit. Such singularities cannot
be determined from experimental data.

The additional singularities do not, however, contribute to the leading term (5)
of T in the double-Regge limit. This term is built up completely by the ordinary
singularities in s.4: The only effect of the extra singularities in the FESR is there-
fore to introduce a constant (i.e. cut-off independent) term on the Lh.s. of the sum
rule.

This term vanishes in the limit k = 0, so that consistency with (i) is achieved.

3. The single-Regge limit

In this section we shall discuss the properties of the DRM and a perturbation
theory model in the single-Regge limit shown in fig. 1. We consider amplitudes
with only right-hand singularities, signature being introduced in the next section.

3.1. The dual resonance model

In the single-Regge limit of fig. 1 the Bs amplitude can be expressed in terms
of the hypergeometric function* F(a, b;c; z)

Bs = T'(— 0z ) (— 035 )*0% [By(— g, — 0pe + )

K K \ abe - az
X F(_ N e aag;s—d) + (i) *be = %t
C C

X B(— g, =g toue) F—0p, —agq — @ Yoyt 1 —ayg

+abe-;é)1 . (6)

From this expression we can see the following.
() Ifk =0and o,z —,z >0,

B = T( - oz ) (= 0, )" By(— g, — @z + 0,5 - @)

* See ref. [15]. The definition of the hypergeometric function is given in ref. [16].
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Fig. 4. The singularity structure in s.q of the amplitude 7' in the dual resonance model. The
crosses correspond to poles and the thick line to a cut.

In this case the reggeon-particle amplitude is given by a B4 function. The derivation
of the FESR can be done as for a four a four-point function. If oz — ,z <0 but,
say, Qg — Q,z > — |, we can consider the amplitude

BSI = B5 _(S_K(;)abc aac[f‘i(_ Qyes = Opg Y0y ) I’( C“bé')(_ O‘ah)mbé (8)
C

As k = 0 we find that 135' reduces to a B, function as in eq. (7). The FESR
which were derived for apz - @,z > 0 can thus be continued to o — @,z <0
by substracting out the terms which are singular when k = 0. In the double-Regge
limit (3) this means that only the first (V) of the two terms is present. The FESR
are therefore going to relate an integral over the absorptive part in 5.4 to the first
term in the double-Regge limit, as we already anticipated above.

(ii) When k # O we can use the definition (4) to calculate T". The expression (6)
for T is real when the variables &, and ay, are negative. Continuing ay, to positive
values, using eq. (2) and the * i€ prescription at the branch point a4, = 0, we get

T = (= apg ) (- @) *¥ By(= g, — e + e )

XF(" U~ %cqs 1 — Ope +aaL_‘;sL)' 9)
cd

From eq. (9) one can directly sec the singularity structure of T in scq (fig. 4).
There is a series of poles corresponding to resonances at a g =n,n=0,1,2, ...
In addition the F-function gives rise to a cut 0 <54 < «. This cut corresponds to
a singularity of Bs on an unphysical sheet in s 4. Thus it cannot be determined
directly from experimental data. However, we may still derive a useful FESR from
the singularity structure of fig. 4. The cut 0 <s_4 <« gives in the FESR rise to a
term which is independent of the cut-off. It can therefore be eliminated by varying
the cut-off.

3.2. The perturbation theory model

Consider the five-point function 7T generated by a sum of Feynman diagrams in
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a o, ¢
S
o,
o —-0d
S2 q’
b X e
(a) (b)

Fig. S. (a) Diagrammatic representation of the perturbation theory model considered in the
text. The internal lines correspond to scalar particles and the blobs T} and T, represent sums
of planar Feynman diagrams. (b) The same amplitude as in fig. Sa; the thick lines indicate the
encrgies which are dispersed in.

¢3 theory*. We may describe the amplitude by the diagram in fig. Sa, where the
blobs T} and T, represent sums of planar Feyman diagrams. We assume that the
amplitudes T} and T, satisfy unsubtracted dispersion relations:

= 01(51, 55¢)ds,
Ti((py t K2, 86)= | ———, (10)
1 a ac J (pd+k)2 _s]

and similarly for the amplitude T,. We shall also assume that T} and T, are Regge
behaved at high energy. Thus as sy = 0,

0151, Saz) = Br(Sag)sT2° an

with a similar relation for g, when s; = .
The five-point amplitude T of fig. Sa can now be expressed as (we take the mass

of the propagating particles to be u)
T= —igf{ol(sl,saé) 02(52»%6) d51d52d4k}{[k2 - #2] ((k+p, —Pc)2

W) [k +Pg —pp)? — 2] [(k +p)? - 51 [(k—pyp)? =51} (12)

Apart from the integrations over s, and sy, T has the structure of a simple box
diagram (fig. 5b). Converting to the a-representation [1], the integration over the
loop momentum can be done. We get then

s 5
01(51.547) 92(52,8p5 ) dsy dsy [ 1 daia(z o — ‘)
i=1 i=1
T=2gn? s (13)
[d +i€e]3

* For a review of the high-energy behaviour of Feynman diagrams, see ref, [1]. Models similar to
that presented here have been studied by, for example, Drummond et al. {11] and Sanda {6].
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a d‘ c
S,
(X| QI
b o, d
e

Fig. 6. The single-Regge limit of the amplitude shown in fig. 5.

where
d =008, ¥ 01Q3S,5 T az04S.q T 5S4, + 04058,

2

+ajay mf + ayayms 2

+ a2a3 mg + 03(!5 mg + 011 (15 mb

— () tay taz)pu? —oys; —ags, . (14)

To find the structure of T in the single Regge limit of fig. 1 we let s, > —o°
and 54, = —oo keeping 54, /5,;, fixed. When —1 <oy <0 the leading contribution
to the integral in eq. (13) comes from large s,. Substituting the Regge expression
(11) for 0, we find (the derivation is given in the appendix)

4
- 1 5(Za,~— 1)
T=g7r3&(—s—bif ds)0y(sy,3, f ﬁ
0 0

SINT e i=1 (d' +ie)?
X (= 0y 5ge — Qg S,p)*bT (15)
where d’ is obtained from d by putting ag = 0:
d'=ajays,s +ajagsys + 305,y + a0y mg t+ay0y mg
toagagmi — (g + oy +az)u? —aysy (16)

The structure of the amplitude T in eq. (15) is essentially that of the box dia-
gram in fig. 6, the reggeon being treated as a scalar particle. The only difference is
that the integrand is multiplied by a factor (— a; 54, — a4 5,,)*P€, which describes
the correlations due to the Reggeon spin. It is interesting to note that the ampli-
tude (15) looks very similar to the DRM in this respect [17].

Consider now the limit k - 0. This implies s4, —~ 0 in eq. (15), so that the extra
factor in the integrand reduces to (— a4 s,;,)*E. The singularity structure of T is
then determined by the zeroes of the denominator function d’ in eq. (15). Hence
the reggeon-particle amplitude in fig. 6 has the singularity structure of a normal
four-point function.
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We must still verify that the integral over s; in eq. (15) converges. The behaviour
of 0y(sy,s,; ) at large sy is given by eq. (11) and ensures convergence of the re-
presentation (15) when ez - o,z > 0. If o5 — o, <O there is a singular term
in T when k — 0, proportional to (--k)*b® ~ *at The singularity does not depend
on sy and is therefore the same as the singularity in the double-Regge limit, eq.
(3). As in the case of the DRM above we can subtract this singularity from the
amplitude. The amplitude has then, for all values of a7 - - @,z , only the singulari-
ties which come from the vanishing of the denominator function d’ in eq. (15).

If k # 0 it can readily be seen that the amplitude 7', defined by eqs. (4) and
(15), has singularities in s 4 which are not associated with zeroes of the denomina-
tor furniction d'. However, as in the case of the DRM these new singularities are not
present in the leading term when Seg 7 In this limit the structure of T is given
by eq. (3). The only singularities of T (eq. (5)) are those of the first term in eq.(3),
and correspond to normal singularities in s 4 (i.c. to zeroes of the denominator func-
tion).

If follows that also when k # 0 the properties of the perturbation theory mod-
el (12) are similar to those of the DRM. An FESR can be derived, to which the
new singularities contribute a term which does not depend on the cut-off. This
term goes to zero in the limit k » 0.

4. Signature

Before we can write down the FESR we should construct amplitudes with
definite signature in the be and ac channels. Such amplitudes are most conveniently
described using variables which are symmetric (or antisymmetric) under crossing.
We shall begin be defining as set of such variables. We then discuss the effects of
signature in the double Regge limit. Finally we use the DRM to study the proper-
tics of the signatured amplitude in the single-Regge limit.

4.1. Crussing-symmetric variables

In the double-Regge limit (fig. 3) all the large variables have simple properties
under crossing. For example under line reversal in the ac channel (i.e. 2 <> C) sy, =
--$zp- This is no longer true in the single Regge limit (fig. 1). The three large varia-
bles 5,y,, Sz, and s4, are related through

Sge = Sab t Soo a7

(we ignore terms like s 4/s,, which vanish in the single-Regge limit). From eq. (17)
we can see that s4, is symmetric when a < C.. Instead of s, we shall choose as
our independent variable the combination o, which is antisymmetric when a <> ¢

0=3(s,, — Scp) - (18)
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Both 54, and o are antisymmetric under b <> e.
In analogy with four-point amplitudes we shall use the crossingodd variable v,

V=(pa+pc)'pd=scd+%(sai ~ Spe -2m3 _mg)’ (19)

to describe the reggeon-particle amplitude (instead of s4). Finally we define the
variable

USge
Ke=- — 20
£, (20)
which is symmetric both under a <= ¢ and b <= €, and replaces k =5_454./5,1, used
above.

4.2. The double-Regge limit

Let T, ;, be an amplitude with signature 7 in the b channel and 7, in the ac
channel. This amplitude can be constructed by adding four terms as in fig. 7, where
a cross indicates that the reggeon line is to be twisted. The double-Regge limit of
the amplitude in fig. 7a is given in eq. (1). The other amplitudes in fig. 7 are similar.
except that they have left-hand cuts in some of the large variables. The full ampli-
tude is then [13, 18, 19]

TTI Ty = [(_ g)“be— +T](0)abe_] l(_v)aaé T obE + ] 7'2(”)0‘:1E —abg] V] (sbg, Sqc 1K)
#[(~ 0)75% + 1 (0)7aT | [ 14,)%bC ~ e

t7 TZ(Sdc)ab€ - Qa?] Vz(satw She s K). (21)

The structure of T, in the double-Regge limit is similar to that of the ampli-
tude T (eq. (1)). There are two terms in eq. (21), the first of which has cuts in ¢
and v, and the second in ¢ and s54,. As before, only the first term in eq. (21) can be
dual to resonances in v. The second term may be eliminated either by taking the
limit k; = O (which implies s, = 0 in eq. (17)) or, if k; # 0, by defining a new
amplitude 7‘”72.

Analogously to what was done in sect. 2, we define 7‘7 -, by an analytic con-
tinuation in sgy,. In the physical limit of the amplitude L. .., all variables approach
their cuts from above (+i€). We denote this limit of 7, . by T . (s4¢ +i€). We
now define the limit T, (sq, —#€), where all variables approach their cuts from
above except s, which approaches from below (—/e). Tn n (s4e — 7€) can be ob-
tained from the physical limit by continuig s 4, along a circle, keeping o and v
fixed. This is illustrated in fig. 8 for the case of a term with a righthand cut in s4,.

When continuing sy, we have to take care not to encircle the branch points at
S,p = 0 and s, = 0, as these variables would then be evaluated in an unphysical
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Q c q [4 a ¢ a c
d d ., d
b e b e b e

Fig. 7. The four terms which have to be added to obtain a definite signature 7; in the be chan-
nel and 7, in the aC channel. A cross indicates that the reggeon line is to be twisted.

limit. It follows from eqs. (17) and (18) that this is ensured if |s4,/01< 2 during
the continuation. This restriction is of course, only relevant in the single-Regge
limit.

The definition of 7', . is the same as that of 7, given by eq. (4):

72

1

nr 2isinm(apg — @,z) [ei"(“bE ) aas)TTlfz(sde ti€)
—-e‘i"(“bﬁ"“af’i;],n(sde-—ie)]- (22)
In the double-Regge limit only the first term of 7, . (eq. (21)) contributes to
Tn .
Tr vy = (- 0)0F + 7,(0)*6 ] [(--v)at ~ @bE
+ 7 7(V)*aT T BT |V (spg, Sap 1K) (23)

We therefore expect that the »-discontinuity of T
singularities (resonances) in v.

r, iN€q. (23) is dual to normal

4.3. The single-Regge limit

We shall now investigate the structure of 7‘7112 in the single-Regge limit (fig. 1)
using the DRM. In this model Tr, 7, I8 asum of four By functions as in fig. 7. A
twist on a reggeon line indicates that the ordering of two particles is to be reversed.

The amplitude for the diagram in fig. 7a is given in eq. (6), and the other three
amplitudes can be obtained by replacing a < ¢, b <= €. All amplitudes consist of
two terms, of which only the first contributes to Tn ' The expression for T
in the single-Regge limit is thus

T172

T = I'(— e ) [(— 0)*PT + 7, (0)*bT]

T17)

1%s “bE '(s/u \
X [(1 *5;) By(—acq,—Qc +ope)F (—aba,—aw] —pg toug _—‘)

B+ ko
1 Ks\ *bE KU
Ty (] 3y By(—a,g,— 0,z topg)F (_o‘be'"o‘aa;]—abE Yoo ——71 -
L—iKs/vl

(24)
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S

Sq,e it

WSG'-‘C

Fig. 8. The path of continuation in s 4, used in the definition of T.,I.r (sqe — i€). The singularity
structure is that of an amplitude with a right-hand cut in s4,. Note that the branch point of an
amplitude with a left-hand cut in s 4, is similarly encircled.

Fig. 9. The singularity structure in sy of the signatured amplitude 7' m the dual resonance
model. Crosses correspond to poles and the thick line to a cut.

d d
a a
[ c
«Th
b e b e

Fig. 10. The two Bs functions given by eq. (25) in the text.

If in eq. (24) we let k; ~ O we find that T, - reduces to a sum of B, functions.

The only singularities of T , invare then the resondnce poles. When k; #0
7, has, in addition, a (,Ut m v for - 4 K, <v < Jk(see fig. 9). Hence the

properties of the signatured amplitude are very 31mllar to those of the non-signa-
tured amplitude that we discussed in the previous section.

There are two more Bg functions which contribute to the single-Regge limit, in
addition to the four shown in fig. 7. They are shown in fig. 10. Denoting their
combined contribution by Bs(s,u) we have
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Ks

BS(s’u) = F(_abE)[(_ O)QbE + 7'1 (U)QbE] (1 + %—;) *be

Kelv
X34(“%1,—%3)1’(—%6,—acd2—°‘cd—O‘aé;—) : (25)
1+ 3KV

The singularity structure of Bs(s, u) is the same as that of T,m in eq. (24) and
shown in fig. 9. Bs(s,u) is symmetric under a <= € and vanishes exponentially
[19] in the double-Regge limit. It must therefore be superconvergent.

We have now investigated all amplitudes that contribute to the single-Regge
limit in. the DRM. The properties of the amplitudes with definite signature in the
bt and a¢ channels are completely analogous to the properties of the amplitude
with only right-hand singularities, discussed in sect. 3. The conclusions about the
singularity structure which we reached in that section are therefore valid for the
full amplitude with right- and left-hand singularities.

A similar analysis can be done using the perturbation theory model described
in sect. 3. The conclusions reached are the same as for the DRM.

5. The finite-energy sum rules

We define the reggeon-particle amplitude f; (v, 5,z, Sz, &) for the process
a+i—c+d(fig. 1) by the relation
T e inai{spg)

T= e ) o) s

sin 7Sy )
In eq. (26), 7} is the amplitude related as in eq. (22) to the amplitude T; for the
process a + b = c +d + e, the reggeon i being exchanged in the be channel (fig. 1).
B{)E is the reggeon-particle-particle vertex function, and the definition of the varix
ables 0, v and « is given in eqs. (18), (19) and (20).

From our discussion above we expect that f;, as a function of v, has the normal
singularities of a four-point function when x; = 0. If k; # O there are additional
singularities which do not, however, contribute to the limit jv|— o of f;. In the
DRM these additional singularities take the form of a cut — § k, <v <1 K, (see
fig. 9).

According to (23) and 26) the behaviour of f; as v —> e is

_ ; 7,7+ exp [—im(a;(s,e) — % (spe))]
fi= 41\: Baz ac) sin 7 [o;(spz) — 4(5,5)]

X p%(sat) — @i (Sbe) Vi;'j(stvsaE;") , (27)
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where Viq is the part of the reggeon (i) -- reggeon (j) — particle (d) vertex which is
multiplied by v (i.e. V] in eq. (21)).

The FESR for the amplitude f; can now be derived in the standard way [3, 4].
They are

N
e (Spg s Sye i kg) + f dvw" Im [fi(v+ie)+ (- )" f(—v - i)
vo
= 22 (=)™ 5] Bl (5,0) Vi (v 5455 )
j

A/(X,'(Sazﬁ) - a,‘(&‘ha) +n+1

aj(sac) a;(spg)tn+l 7
where

. . | I . iy
Imf;(v tie)= ’—i[/’(y €, S 0, Spe» Ke) — (VT i€, 5,5, Spe, Kg)]

The integral in eq. (28) is over the normal four-point singularities of f; (i.e. pole
terms, resonances, etc.). The additional singularities of f; contribute the term
Cz(")

As discussed in the previous sections, cI(")(sbE , 8,61 Kg) vanishes as k. = 0. In
the DRM it is readily seen that

c',(n)(sb€ s SaE s Ks) & (Ks)n 1 as KS ~>0. (29)

For small k the higher moment sum rules are thus Jess sensitive to the unknown
()
term ¢;

6. Applications

At present the only way of obtaining Im f; (v) in eq. (28) from experimental
data is to assume that the absorptive part is dominated by the resonance contribu-
tions. The consistency of eq. (28) with the data can then be tested by varying the
cut-off V. This should be done at several values of k; and n, so that the restriction
(29) can be applied.

Such an application of the FESR is analogous to a recent analysis [8] of quasi-
two-body reactions using the inclusive FMSR. However, it should give considerably
more information, as not only the total production cross section of the resonances
but also their decay distributions can be correlated. In addition, one can avoid
certain resonances whose production mechanisms are not clearly understood (e.g.,
Q may contribute to K + f = anything but not to K + f > K + ).
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In general the two parts of the double-Regge vertex have to be generated
separately by summing over resonances in 5.4 and in s4, (and their crossed chan-
nels). In some applications, however, the two parts can be related to each other
by exchai.ge-degeneracy arguments. This happens in particular when particle d is a
n-meson and the reggecns exchanged are any of the four meson trajectors f-p-co-
A,. As we think this case may be of practical interest we shall discuss it in some
detail here.

Consider the system abcde = K™ K*K*7~ KO in the double-Regge limit as in
fig. 11a (all particles are treated as incoming). As in sect. 4 we shall assume that
t{le ?ontribution of a given exchange (&;(sy,z), aj(sag)) to the amplitude T is of
the form

T(i,/) = [(~0)%PF +7;,0%b ) [(~»)*aT ~ 0T 4 7,7.%aT = *bE] V, (i, j)

+[(-0)%® +7;0%T ] [(—5q,)°bT 7 T 4 1703 €] Vy(0). (30)

The full amplitude is
T=T(A5, D)+ T(A3, ")+ T(p", ) + T(o", AD). 31

By drawing the duality diagrams it is easy to see that the only planar diagram
is the one where the particles a, b, ¢, d, e are ordered as in fig. 1 Ia. This means that
the full amplitude 7 should have only a right-hand cut in each of the variables o,
v and s4,. Hence six of the eight terms in eq. (30) have to cancel in the sum (31).
This gives six relations between the vertex functions V,(i,7), k = 1,2. .

Six further relations can be obtained by considering the system abcde =
K*K" K% K* (fig. 11b). Combined with isospin invariance these relations imply
that all non-zero vertex functions V(i) are degenerate (k = 1, 2):

Vi(AS, D) = Vi (0", w) = Vi (A}, p°)
=—V,(f, AD) = — V(w, p*) = = V3 (0°, AY), k=1,2
Finally, observing that the process in fig. 11a is identical to the one in fig. 11b,
— +
Vi(AY, ) = Vy(AS, ).

It follows that all the vertex functions are related.

The degeneracy of the veitex functions means that the full double-Regge
vertex can be obtained by summing the resonances in only one system, e.g. ins 4.
Consistency with the sum of resonance in the other system (s 4. ) then requires
that the two sets of resonances must be related. These predictions make the applica-
tion of the FESR particularly interesting to reactions where f, p, w or A, are the
dominating exchanges.



P. Hoyer, J. Kwieciriski, Analyticity and a finite-energy sum rule 41

We are grateful to all our colleagues for helpful discussions. One of us (J.K.) is
indebted to Dr. R.J.N. Phillips for his kind hospitality at the Theory Division of the
Rutherford Laboratory, where this work has been done.

Appendix

In this appendix we shall derive the explicit expressions for the perturbation
theory amplitude 7 in the single- and double-Regge limits. The definition of T in
the non-asymptotic region is given by eqgs. (13) and (14). We shall assume that
~1 <ayg, @,z <0. 1t is straightforward to continue the expressions to arbitrary
values of the momentum transfers.

In the single Regge limit s, = —oo, 54, = —oo while s4./5,4, 5.4, Spz and §,¢
remain fixed. The leading contribution to the integral in eq. (13) comes from
large 5. Substituting the leading behaviour of g5,

OZ(SZ)Sb‘T):Bz(SbE)Sgbév 52 >0, (Al)
in eq. (13), the integral over s, can be explicitly done. We get

e~ imape

T=g77332(3b3)abe_ (abg - ]) W

5
- 1 s 6(§a,.—|)a;°ha -1
X 0,(sy, 8, ) ds [1 doy;—= . (A.2)
(f 1321 °ac 1(_)/‘ i=1 a’ [dll+l~e~|2——0b§

where

"o_
d” = as(0gsge t 0ys,) + A Ay, a)Sys
+ 008 g+ 0 QM2+ 0P + ayaame + ayeam?
3048cq + QoM+ apamC + cpagmy + agagm;

2
tajagmg — (o) + oy taz)u? —ays; . (A.3)

Because the large variables s 4, and s,;, both are multiplied by as in eq. (A.3),
the leading contribution to T comes from small a. If we scale as,

X

as = - ——+ H
QrS3e T X45ap

(A4)

the integral over x can be extended from zero to infinity. The expression for T is
then
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le(Xbe

T=g7r3ﬁ2(sb§)ab5(ab€ 'l) Sin Tatpg fds 01(51.5,%)

-1

1 4 4 o —aps
X f I1 daié(E o; — l) (-ap84e — X85, )*0E f dx x -
0 0

i=1 i=1 [d' - x +ie] =~ *bE
(A.5)

where the expression for d' is given in eq. (16). The integral over x in (A.5) can
be done explicitly and we then obtain the expression (15) for T in the single-Regge
limit.

Next consider the double-Regge limit. We have to let 5.4 ~ oo keeping s, =, Sz
and K = 5,454/, fixed in the expression (15) for T. Again, the dominant contri-
bution comes from large s, . Substituting the Regge behaviour (11) of 0, we get

B1(526)B(spe . I 4
T= _gn4_1(__z£bi)- e—maaEaaEf [T de, (EOL, .1)
sin o ¢ sin oy 4 i1
a; aze — 1
———1—&——-(—0(2%e — a45,,)%0¢ (A.6)
(d" + ie)! ~2az
where

d" = az045.4 * @y 0p8,c ¥ 0 Q355 +ala4m2

+ a0y mf + a0y m(Z1 - (o) oyt a3)/.12 . (A.7)
If we define the new integration variable z by

(12'(
&4 =z

» (A.8)

’

we get for the leading term in T,

By (54c)Br(spe) —_—
T= _gnt L 2CT 27087 o yeaT (s, )*bE ~ %l e iM%l
B gin ma,g sin mag g (--853)72¢ (= 5qe) ac

<
0

3 3 o s

- 1 +z)*be
[1 do;d (Z}lo.i— 1) agbe ~ at f dzz~%ac ! ( )
i=1 i= 0

i= d +o,03KzZ +ie)1_"‘aé ’
(A9)

where
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K#

-

RO
() (b)

Fig. 11. (a) The double-Regge limit of the process K™+ K* - K™+ n* + K°. All particles are

treated as incoming. (b) The same reaction as in fig. 11a, but with a change in the particle

ordering: a «-» b, c ~—e.

d =ajays,c t o assp, +a2a3m§ —(a) toy +a3)u2 (A.10)

The denominator (d + QayazKz + ie)! ~@at jp (A9) can be changed into an exponen-
tial using the formula

1 e imu

Az+ie)yu—1
_ e X dxa. (A.11)
(z +ie)* () 0

The resulting expression for T can then be expressed in terms of the confluent
hypergeometric function* ¥ (a, b; x). This function can be written [20] as a sum
of two entire functions ¢(a, b; x), which establishes the structure (1) of T in the
double-Regge limit. The explicit expression for the vertex function V; in eq. (1)
is

4 B1(sae) Balspe) Tlaye — ay¢)
sinma, o sinmoy s T(a,z)

Vi(Spe,Sagik)=—gnm

)

1 3 -
X f 11 de; 6 (Z} o — ]) a‘;aé - apg f dA A" obE e}\(J +ie)
0 i=1 o

i=1
X o(—opz, 0,z — opz +1; — ayag Ak). (A.12)
The amplitude T being symmetric, V| and V, are the same functions in this

model.
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Generalized finite-energy sum rules (FESR) for kaon-nucleon scattering are evaluated to determine the
¢ dependence and other properties of the relevant Regge-exchange amplitudes: P, P’, 4, p, and w. The
FESR’s have been evaluated (a) with the available phase-shift analyses for the low-energy KN system as
input and (b) in the resonance-saturation approximation with all the appropriate resonances of which J? is
known. For the K*p system, the phase-shift analysis of Lea ef al. has been used; for the KN system, the
multichannel effective-range analysis of Kim, and the résonance-plus-background -analysis of Armenteros
et al. Matching energies of /s=2 GeV and 4/5=2.15 GeV have been used for the cases (a) and (b), re-
spectively. In terms of the definite helicity flip amplitudes, 4 (which is the full forward amplitude at
t=0) and B, we find that assuming the p contribution to be known, the non-spin-flip contributions for the
various Regge poles are similar to those deduced from high-energy fits; however, the spin-flip contributions
of the high-energy fits are inconsistent with our FESR results. For example, the factorization ratio (vB/A)
for the 4., P, P!, and w contributions, where » is (s-u)/4M, is found to have the opposite sign to that used
in previous high-energy fits. As far as our results go, the FESR’s are consistent with the usual explanation
of the crossover phenomenon in terms of a single genuine w Regge pole, though we cannot regard this con-
clusion as very strong, because of the poor available input data. We find no evidence of a wrong-signature
nonsense zero in a, for —¢50.8 (GeV/c)%; we find (vB/A),=+ (1-3) for —¢50.6 (GeV/c)2 There is some
evidence for an exchange degeneracy between the w and the P’ for this ratio, because we also find evidence for
(wB/A)p,pr=~--1. There is some evidence for the no-compensation mechanism for the P/, with ap,=0 at
—1~0.5 (GeV/c)?, which, however, would make the w and P’ trajectories quite nondegenerate. For the
Aq, we find vB/A~++10, which would be expected if the 4, were degenerate with the p. Our determination
of the signs of the spin-flip amplitudes B allows us to predict the K=p polarizations semiquantitatively;
our results agree with the available K~ polarization data, while the previous Regge models gave the wrong
sign of this polarization. Our new signs for the B amplitudes also improve the agreement of the conventional
Regge model with the available K*n charge-exchange cross section without invoking a p’ contribution.
On the basis of getting good agreement between the FESR results and the Regge expectations, we are able
to choose a particular set of low-energy input data as our favored one: We prefer Kim’s coupling constants
ga2and gz? for the Born terms, a negligible ¥;1* (1385) coupling (as also found by Kim), and the nonresonant-
type solution IV for the K+p phase-shift analysis. We have also considered FESR’s for amplitudes with the
wrong crossing properties, generalizing the Schwarz superconvergence relations. A simple model to remove
the infinities expected in the case of Schwarz FESR’s is seen to be in good agreement with the low-energy
data, at least at #=0.

25 NOVEMBER 1968

1. INTRODUCTION

F an amplitude decreases sufficiently fast with in-
creasing energy, one can use dispersion relations to
derive superconvergence relations (SCR) for this ampli-
tude.l? One may use a Regge-pole parametrization for
the asymptotic behavior of the scattering amplitude in
question. It has been shown recently, however, that one
can generalize SCR’s to cases in which the amplitude
does not superconverge [i.e. behave as (energy)—'¢
where ¢>0 as energy — |; one essentially subtracts
the supposedly known asymptotic part (given, for ex-
ample, by Regge poles) to write an SCR for the re-
mainder (full amplitude minus Regge part). These
Reggeized superconvergence relations or finite-energy
sum rules (FESR’s) which relate integrals of the full

1See, e.g., V. de Alfaro, S. Fubini, G. Furlan, and G. Rossetti,
Phys. Letters 21, 576 (1966).
2 G. V. Dass and C. Michael, Phys. Rev. 162, 1403 (1967), and
references therein,
175

amplitude only over a finite low-energy region to Regge-
pole parameters are very important tools in detecting
inadequacies of either the low-energy data or the Regge-
pole parameters (as determined by fits to high-energy
data alone) depending upon which of the two is known
better. The FESR’s can predict® some features of the
low- (high-) energy data, given only the high- (low-)
energy data. Itis this aspect of the FESR’s that interests
us in this paper.

It is instructive to trace the essential history of the
origin of the FESR’s. De Alfaro ef al.! pointed out that
if an analytic function (for example, a scattering ampli-
tude at a fixed momentum transfer) f(v) satisfying a
dispersion relation

Jo)=- M

T) !

[ 4

1/‘°° Imf(»")dv'

8R. Dolen, D. Horn, and C. Schmid, Phys. Rev. 166, 1768
(1968).
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is subject to the asymptotic bound, for energy » — o,

lf(”)l <V7; 7<—1y
it must satisfy the SCR

)

/ " Imf(s) dv=0. 3)

For amplitudes that are odd under crossing symmetry,
this SCR takes the form of an integral over only positive
energies

/ " I f()dv=0. @)
0

One can, of course, also derive similar SCR’s for the
amplitudes »** f(»), where 7 is any positive integer, pro-
vided the asymptotic behavior permits that derivation.
Appealing to Regge-pole theory for the asymptotic be-
havior, if one chooses the appropriate crossing odd
amplitude which corresponds to the exchange of a
trajectory that lies sufficiently low to satisfy the condi-
tion y<—1[Eq. (2)], the SCR gives a sum rule for the
imaginary part of the amplitude. Hopefully, the high-
energy part gives a negligible contribution to Eq. (4)
which, therefore, gives a condition on the low-energy
imaginary parts only. Such sum rules have been studied
quite extensively.? If the leading Regge term allows only
v>—1, but is known from high-energy fits, one may
study the difference [f(v)—the leading Regge term].
For instance, the P’ Regge pole was predicted by Igi¢ by
a study of the difference of the 7NV (+) amplitude in the
forward direction and the P Regge pole contribution to
this amplitude. More recently, Igi and Matsuda,
Logunov, Soloviev, and Tavkhelidze,® and Dolen, Horn,
.and Schmid® have employed this technique further for
mN scattering. The FESR’s can be derived,? for ex-
ample, by starting with the SCR for the amplitude from
which the sum of all the Regge contributions with
v>—1 has been subtracted. These FESR’s hold quite
generally for any analytic function that can be expanded
at high energies » (> a certain number »; at which one
believes this asymptotic behavior to have been estab-
lished) in terms of a Regge-pole parametrization. These
FESR’s take the form?

1 & Biv1™
/ v Tmf () dy=3" )
0

pyri 7 (aitnt1)’

where the contribution of a single Regge pole i is given
by
Bi(t)res®

sinma; (2)

( . 13.) Igi, Phys. Rev. Letters 9, 76 (1962); Phys. Rev. 130, 820
1962).

K. Igi and S. Matsuda, Phys. Rev. 163, 1622 (1967) ; Phys.
Rev. Letters 18, 625 (1967).

8.A. A. Logunov, L. D. Soloviev, and A. N. Tavkhelidze, Phys.
Letters 24B, 181 (1967). .

Tregze(,1) = (FE1—eirait),  (6)
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the various symbols having their usual meaning. For
meson-baryon scattering, we have chosen » to be
v=(s—u)/4M, where s, t, and % are the usual
Mandelstam variables and M is the nucleon mass. It is
important? to realize that the point y=—1 does not
have any special role for the FESR’s; every Regge-pole
contribution, irrespective of whether the trajectory lies
high or low, occurs in the same form in the FESR.
Also,® the various Regge poles contribute to the FESR
with the same weight as in the amplitude f(»). This
makes the FESR’s particularly suited to investigate the
properties of the Regge poles as they occur at high
energies by evaluating only low-energy integrals. One
should remember, however, that the derivation of the
FESR’s assumes that for »>v1, f= fregge poles only; if
the function f cannot be expanded in terms of a Regge-
pole parametrization, one has to reexamine the whole
issue all over again. For example, Regge cuts would have
to be represented approximately as a superposition of
poles, etc.

There is another side of development of the history
of the FESR’s. So far, we have mentioned finite-energy
integrals over only Imf. It is possible to consider
FESR’s for Ref or for combinations of Ref and Imf
also. Gilbert” wrote down a similar dispersion relation
some years ago. More recently, Liu and Okubo® and
Olsson? and Barger and Phillips®® have investigated such
FESR’s for =V scattering. The idea is to consider a
function G(»,) which has analyticity properties very
similar to those of f(»,f) and which also depends on
another parameter m. For special values of m, ImG
reduces to Imf; otherwise, ImG involves both Re f and
Imf in general. For example, for {=0, one can use
G= (W*—v?)™f, where u is the meson mass and G has
the same singularity structure as f. The FESR’s for G
have exactly the same form as for f above. We evaluate
these generalized FESR’s involving both the real and
imaginary parts of the scattering amplitude for various
moments 7; the added advantage of these FESR’s for
mzeven integral is that they provide information on the
phase of the high-energy amplitude also.

Kaon-nucleon scattering, in its various charge and
hypercharge modes, is more complicated than pion-
nucleon scattering from the theoretical point of view; it
has the added disadvantage of poorer experimental
information. Regge-pole theory for KN scattering is less
well determined than for 7V scattering; more types of
Regge poles are possible and less information at high
energies is available. FESR’s are, therefore, of special
importance in determining those characteristics of KN
Regge poles which cannot be determined otherwise,
from high-energy Regge fits alone. The absence of high-

7 W. Gilbert, Phys. Rev. 108, 1078 (1957).

Y. Liu and S. Okubo, Phys. Rev. Letters 19, 190 (1967).

® M. G. Olsson, Phys. Letters 26B, 310 (1968).

0V. Barger and R. J. N. Phillips, Phys. Letters 26B, 730
(1968); C. Michael, Phys. Letters 26B, 392 (1968) gives further
evidence on B,
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energy data on polarization in any channel in elastic
KN scattering has led to ambiguities in the phases of the
Regge-pole amplitudes (especially the spin-flip ampli-
tude B) because data on high-energy do/dt alone cannot
determine these phases; this has led to predictions of
K—p— K—p polarization of the wrong sign as compared
to the recent polarization data' (though the energy of
this experiment is rather low for comparison with a
Regge-pole model). Our FESR analysis brings out this
inadequacy of the previous Regge fits, predicts the
phases of the amplitudes at high energies, and this then
leads to the correct sign and magnitude of the expected
polarization. The present analysis also confirms some of
the notions in current Regge phenomenology and pre-
dicts some new ones.

In Sec. 2, we summarize some information on the
Regge poles relevant to the KN system. In Sec. 3, we
discuss the FESR’s that we want to evaluate and also
our low-energy data input. In Sec. 4, the results of
evaluating the FESR’s are discussed along with some
relevant information from meson-meson scattering
FESR’s. Section S is devoted to the discussion of some
other sum rules related to the Schwarz? superconver-
gence relations. Section 6 gives our predictions for
polarization in K*p elastic scattering and for the K+n
charge-exchange cross section, both of which have been
regarded as weak points of Regge-pole phenomenology.
The conclusions are given in Sec. 7. Some preliminary
results have been published elsewhere.®

2. REGGE POLES FOR KN SCATTERING

The usual invariant amplitudes™ 4’ (which we call 4)
and B receive contributions from different Regge poles'®
in the ¢ channel (KK — NN):

f(E=p— K=p)=fetfort fot fot fa,, (Ta)
f(&+p— K+p)=frt for— fo— fot fa,  (7D)
f&=n— K~n)=fp+ fpr+ fo— fo— fa5,  (70)
f&*n— K*n)= fpt+ for— fot fo—fa,, (7d)
JEp— Kn)=2f,+2f4,, (7e)
f(K*tn— K%)=—2f,+2f4,, (76)

where f stands for either 4 or B; the subscripts refer to
the contributing Regge pole> We shall use the
amplitudes

fO=3[f(K—p— Kp)+ f(K+p— K*p)]
= fp+ fp+fa,

11 C, Daum ef al., Nucl. Phys. B6, 273 (196

12 J, H. Schwarz, Phys Rev. 159, 1269 (1967), 162 1671 (1967);
Nuovo Cimento 54A, 529 (1968).
(‘3G) V. Dass and C. Michael, Phys. Rev. Letters 20, 1066
1968

4 W, Rarita, R. J. Riddell, Jr., C. B. Chiu, and R. J. N. Phillips,
Phys. Rev. 165, 1615 (1968)

LR, J. N. Phllhps and W. Rarita, Phys. Rev. 139, B1336
(1965) ; Phys. Rev. Letters 15, 807 (1965).

(8a)
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and
fO=3f(E~p— K~p)— f(K+tp— K*p)]
= fp‘*‘fm (Sb)

which receive contributions from Regge poles of positive
and negative signature, respectively. If one had good
experimental data on all the amplitudes on the left-hand
sign of Eq. (7), one could invert Eq. (7) to extract
information on all the four Regge contributions (P+P’),
w, p, and 4. One gets

A(fetfr)=frvt frtot frnt frtn,  (92)
4fa,= frot fr*o— fx-n—fr*n,  (9D)
Af,=fr-p—frtp— fr-wtfr*a,  (9¢)
4fo=fr-p— frx*p+ fr-a—fr*n, (9d)
4fy=f& p+Bon— fE*nsK', (%)
4f4,= fr-p>Ront fR*nskpe (9%)

Since the amplitudes for K*n scattering are not suffi-
ciently well determined, we cannot very reliably sepa-
rate the Regge contributions beyond that in Eq. (8).

The zeros of the amplitudes 4 and B as a function of
¢ for a definite Regge pole are very conveniently studied
by the FESR approach. These zeros may arise from the
trajectory passing through some special o values for
which the amplitude develops special properties (for
example, the a value may be physically impossible or the
amplitude may develop a ghost and so on). The FESR
determination of the ¢ dependence of the amplitudes,
therefore, could help one to determine the behavior of
the trajectory near these zeros: whether it chooses sense
or chooses nonsense, what is the ghost-eliminating
mechanism, etc. Depending on which amplitude one is
considering, one may also determine whether or not the
relevant Regge trajectory goes through zero in the ¢
region studied by finding whether or not the appropriate
integral over the relevant amplitude passes through zero
as a function of ¢; this is useful only if (a) the zero of
B:() on the right-hand side of Eq. (5) [if B.(¢) be
proportional to some positive power of a;(f)] is not
cancelled by the factor (a;+#-1) in the denominator
at the ¢ value for which a;(#)=0, and if (b) the contribu-
tion of the particular pole for which a;(f) passes through
zero is not masked by that of the other poles in the
Regge summation. The various possible modes of be-
havior of the trajectory couplings have been given by
Chiu, Chu, and Wang!®; we use their notation for the
different mechanisms of coupling.

Let us summarize some relevant information on the
different Regge poles:

(a) w. At a given lab energy, the experimental do/dt
for (pp— pp) and (K—p — K—p) near the forward di-
rection is bigger and steeper as a function of ¢ than the

16 C, B. Chiu,

S.-Y. Chu, and L.-L. Wang, Phys. Rev. 161, 1563
(1967).
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do/dt for (pp— pp) and (K+p— K+p), respectively,
and therefore the pp and pp (and similarly, K—p and
K*p) do/dl’s cross over near the forward direction at
t=t,~—0.13 (we use units GeV=1, #=¢=1). The usual
explanation!#15:7 of this crossover phenomenon in terms
of the w Regge pole can be shown, when combined with
the factorization theorem for the Regge-pole residues
and the real analyticity for the unfactored residues, to
lead to the conclusion that the w would essentially
“decouple from all physics” at ¢=1{,; i.e., the w-exchange
residue functions vanish at ¢=¢, for every helicity ampli-
tude in every reaction. This explanation has been
shown!” to lead to difficulties in #® photoproduction,
vp — w°p, because the data do not show any sign of a
dip in the measured do/dt at i~f,. A recent FESR
calculation’® for yp— #% confirms this difficulty. It
would be of interest to see what evidence the FESR’s
give for KV scattering. The crossover phenomenon only
requires that the imaginary part of the helicity-nonflip
amplitude A4 for the w should vanish at {=1,; the usual
explanation, however, puts a much stronger constraint
on the w contribution; it requires the real and imaginary
parts of both 4, and B, to vanish at {=¢. It is of
interest to study the behavior of the real part of 4 and
both the real and imaginary parts of B for the trajectory
corresponding to the w quantum numbers in the ¢
channel (=0, G negative, and J?=1-). The FESR
calculation, if the input low-energy data were complete
and reliable, is capable of giving all this information and
also may determine the trajectory function , (). If, for
example, one finds that at ¢{=¢, only Im4,=0, but
ImB,#0, ReB,#0, and Red,>0, one would tend to
believe the conjecture that the usual'® » Regge pole is
an effective mixture of a genuine w Regge pole and some
other contribution & such that Im(4,+45)=0 at t=+¢,;
no such restriction being placed on Re(4,+A4;) or
Im(B,+ Bs) or Re(B.,+ Bz), all of which may be non-
zero at !=1{. If the effective w contribution in the
process yp — 7% and in NN and KN scattering were
indeed from a genuine single Regge pole, the absence of
the zero at =1, in the first process and the presence of
this zero in the later two processes could be understood
if one were to give up the factorization theorem. A
recent FESR study?® of the w Regge contribution in KN
scattering within the resonance saturation approxima-
tion shows, as partly expected, that the sum-rule
integrals for the amplitudes Im4,, and Im»B,, do have
this zero at i~1,. A possible suggestion of Ref. 19 was to
cast doubts on the factorization theorem. It seems
unjustified to conclude from this evidence of a zero in
only the lowest-moment sum rules for Im4, and ImB,,
at ¢=1, that the factorization theorem could be over-

(11976‘7/5 Barger and L. Durand, III, Phys. Rev. Letters 19, 1295
1P Dj Vecchia, F. Drago, and M. L. Paciello, Nuovo Cimento
55A, 809 (1968).
19 P. Di Vecchia, F. Drago, and M. L. Paciello, Phys. Letters
26B, 530 (1968).
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thrown. The point is that one should study the behavior
of Red, and ReB, also (and preferably, the higher
moment sum rules also for all the amplitudes Red,,
ImA,, ReB,, and ImB,) near =/, in all the relevant
processes to arrive at such a conclusion. If one finds that
at 1=1,, Red,#0 and/or ReB,#0 for KN scattering,
one already knows that the effective w is more than a
single pole and that one should not expect factorization
to hold for such a mixture. Unfortunately, the resonance
saturation approximation does not give any reliable
information about the real parts of the amplitudes. We
return to our evaluation of the FESR’s in Sec. 3; we
hope to do better than the resonance approximation.

To our knowledge, the only high-energy Regge fit!®
(to KN scattering) that takes the w contribution into
account is unable to determine it very well; actually,
B,=0 was used.’® An FESR calculation for KN scat-
tering, therefore, becomes very important for a study of
the w contribution: in particular to find whether B, is
really very small; also, one might learn something
about 4.,

Contogouris et al.® have determined the w trajectory
(2o =0.4540.9¢) by studying, as a function of ¢ and s,
the quantity

do do
X(s)=—(@rp— ptp)+—(m"p—pp)
dt dt P
o

—E;(W_P — o),

which receives contributions from w-like Regge poles.
The w contribution to X(s,f) has a dip at t=—0.5
and this mainly determines the position of a,=0.
While this is the only direct determination of a,(f)
(using high-energy data) known to us, the position of
0,=0 (¢=—0.5) needs confirmation. A careful analysis
of the 7V — pN data shows that the dip in X (s,£) which
could arise due to a peak in do/dt(x~p — p’n) or a dip
in do/dt(r%p — p*p) arises mainly from the 4-GeV/c
data for do/dt(rp — p*p); one would normally expect
it to show up also in the (7—p — p~p) data which, how-
ever, do not go to large enough |¢| to allow the con-
clusion of such a dip; the (#—p — o) data also do not
have a peak at about {=—0.5. Their analysis® also
shows this dip at only 4 GeV/c. A detailed Regge-pole
analysis of 7V — pN and KN — K*3oN by Dass and
Froggatt® shows that the evidence for this dip is not
strong, though the X2 does get reduced slightly by using
a,=0.4540.9¢. One would like to get some confirmation
about this type of w trajectory. Actually, our FESR
analysis does not show this zero in a,,.

Since one cannot very reliably separate the p and w
contributions in our FESR calculation because of the

© A. P. Contogouris, J. T. T. Van, and H. J. Lubatti, Phys.
Rev. Letters 19, 1352 (1967).

}:1 G) V. Dass and C. D. Froggatt (to be published in Nucl.
Phys.).
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unsatisfactory state of the Kz data, we shall deduce the
properties of the w contribution from the difference
fO—f,, taking the p to be well-known from the high-
energy KN fits® which make use of the (7—p— 7%)
and (7~p — 7°z) data and factorization constraints. We
believe that the p Regge pole is well-determined by
high-energy fits, assuming that factorization is good for
the p contribution and the effects of p’ contribution are
not very large.

(b) A.. This is the well-known Regge trajectory which
contributes to the process n~p — .

Most of the 7V — 9N and KN — KN Regge fits use
a curved or a rather flat (slope ~0.4) 4, trajectory with
no zero of ay, in the region —¢=0— 0.8, while a recent
KN — KA Regge analysis?® used a much steeper tra-
jectory (slope =2 1). The occurrence of zeros in a4, causes
a ghost in the amplitude 4 4, and raises the question of
how this ghost is eliminated. Also, one can have many
choices for the behavior of the amplitude By, near
a4,=0. Matsuda and Igi* evaluated FESR’s for the
KN system for the A, contribution in the resonance
saturation approximation. In the resonance approxima-
tion, however, f4,= fp [see Egs. (9b) and (9c)] because
one does not include any K+p and K+» resonances. This
approximation Imfp=Imjf4, (no S=+1 resonances)
directly leads to results based on the argument of ex-
change degeneracy between the p and the 4,. However,
experimentally, Im(fx *,— fx *») is not identically zero;
this makes Imjf,—Imf4, nonzero. The differences be-
tween the p and the A, arising because of this will
therefore not be reproduced by the resonance approxi-
mation. For the w contribution, on the other hand, the
resonance approximation seems more reliable because it
only assumes that the background contribution to
Im fx-,+Imfx-, equals Imfx+,+Imfr+,.

The high-energy fits to do/di(wxN — nN) and
do/dt(KN — KN) do not determine the phase of the
amplitude By,. Because of a lack of polarization data in
these reactions, as pointed out in Sec. 1, the FESR’s are
very useful in predicting the phases of 44, and By,
Indeed, the sign of (B/A)a4, turns out to be opposite to
the one used in some high-energy fits. This, combined
with the further ill-determined signs of (B/4),,, from
the high-energy fits led to a negative polarization for
K—p— K—p scattering. With the signs we suggest for
B/ A for the different contributions, one gets a positive
polarization which agrees with the available experi-
mental data.l!

(¢c) P and P'. For the vacuum exchanges again, the
high-energy data do not determine the sign of B/4 and
our FESR analysis is able to pin down the sign of
(Bp+Bp)/ (A p+Ap:), though we cannot separate the
P and P’ contributions unambiguously.

While the P trajectory is always assumed to be rather
flat, some recent analyses'®-'¢ indicate that ap should go

2 A, Derem and G. Smadja, Nucl. Phys. B3, 628 (1967).

28 M. Krammer and U. Maor, Nuovo Cimento 52A, 308 (1967).

24 S, Matsuda and K. Igi, Phys. Rev. Letters 19, 928 (1967) ; 20,
(E) 781 (1968) ; CERN Topical Conference, 1968 (unpublished).
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through zero at i~—0.55 and the no-compensation
mechanism should be followed to parametrize the
amplitudes 4 p- and Bp; this gives double dips (zeros)
in ImAp and ImBp at a=0. Though our analysis
allows one to study only f™ and not fps directly (ex-
cept in the resonance approximation), a dip in f will
result (and indeed, it does) if P’ did choose the no-
compensation mechanism.

(d) p. We assume that the p contribution is correctly
given by most of the high-energy fits and we do not take
into account any possible p’ Regge pole.

3. THE FESR’s
A. Generalities

For the FESR’s, one needs amplitudes having definite
crossing symmetry and the f& are suitable for this
purpose. The amplitudes »4 ™, BB, 4O and vBS) are
all odd under crossing; we consider the generalized
FESR’s for the amplitude

a(v,t,m) = (M/47T2) (V02_ Vz)mle(Vrt) ) (10)

where m is a variable which could be nonintegral and
vo=p~+t/4M. The energy dependence of F(»,f) at high
energies is parametrized in the form

Fn)=2"; v(vo?—p?)[as0=00i2x () | (11)

where F(v,f) may be one of the four amplitudes »4®,
B®, A9 and vB for which §=0, 2, 1, 1, respectively,
X;(f) is a real function of ¢, and a;(f) is the Regge
trajectory function; the sum runs over the relevant
Regge terms [see Eq. (8)]. At high energies, the
parametrization in Eq. (11) resembles the usual Regge
expansion,'41% so that one can directly use the high-
energy Regge parameters in Eq. (11). If one writes a
superconvergence relation for the difference of the full
amplitude and the Regge contribution and uses ana-
lyticity to match the amplitudes evaluated below »
with the Regge parametrization evaluated above »;, the
set of generalized FESR’s takes the form

Vi Imai(yl,t,m) (V12"' 1102)
/ dv Ima(vt,m)=3 ,
0 © az(t)+m+2—6 V1

(12)

where we have chosen the matching energy to be
»1=1.53 (which corresponds to+/s=2, p1an=1.46). The
derivation of these FESR’s in Eq. (12) runs closely
parallel to the derivation of the sum rule Eq. (5) in
Sec. 1. For computational convenience, we have con-
sidered only integral m= —2 to 3 at =0 and m=0to 3
for #%0. In principle, one could consider nonintegral
values of m also. Indeed, we have evaluated some
special sum rules for nonintegral moments; we come to
these in Sec. 5. For even m, the left-hand side of the
FESR (12) requires (—)™2 ImF from the Ax threshold
to »; together with the A and = pole terms. For odd ,
(—)tm+D/2 ReF is required in the region above the KN
threshold and the A and Z pole terms and ImF below
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this threshold. For K+p scattering, there are no contri-
butions below the physical KN threshold. Indeed, no
real parts are needed below the physical threshold ; this
motivates our particular choice of vy and of the
weighting factor in Eq. (10). The above FESR’s have
the advantage that by varying m one can study the
phase of the Regge amplitude; this is not possible in the
usual narrow-resonance approximation.

For m= —2, t=0, our sum rule for the amplitude 4
is the usual forward dispersion relation2s; the sum rule
for B is the spin-flip dispersion relation considered, in
some way, by Igi* (for =V scattering) along with his
dispersion relation for the 4™ amplitude to predict the
P’. Note that these dispersion relations require the
amplitude evaluated at threshold and involve the
evaluation of a principal-value integral. Some of our
m=0, {=0 sum rules have already been considered.2®
For example, Lusignoli et al. have considered the sepa-
rate amplitudes »(4dp+Ap/), vA4,, A,, and 4, at t=0;
Razmi and Ueda have evaluated the sum rules for m=0,
t=0 for the »AP and 4 amplitudes and also for the
amplitudes A g +a3=A x5 and related them to the Regge
parameters of Phillips and Rarita!®; Chan and Yen con-
sidered the t=0 sum rule for 4 ,, used SU(3) symmetry
to relate the pKK vertex to the prr vertex, and made
use of the 7V charge-exchange data in addition to the
KN data to predict finally the coupling constants
gaxn® and gzxn?; Yoshimura also considered the forward
amplitude to investigate the symmetry of the factorized
residue functions for the p and the (w,¢) trajectories. To
our knowledge, FESR’s for the other 7 values have not
been investigated for KV scattering so far.

For m=0 and 0, however, the FESR analyses for
KN scattering have been used only in the resonance
saturation approximation wherein one can explicitly
separate the w,' p,2* and 4, 2* contributions. In addition
to the other difficulties mentioned in Sec. 2 about the
resonance approximation, one would always prefer to
use a more exact form of the low-energy amplitudes 4
and B on the left-hand side of Eq. (12).

B. Input Data

We use phase-shift analyses for (K—p— K—p) and
(K+p— K*p) scattering up to the matching energy
A/s=2. For K*p scattering, Lea et al.?” have found
several solutions in this energy region; we used a solu-
tion of type I which suggests an inelastic Py; resonance
and also a nonresonant solution of type IV. Solutions of
type II gave amplitudes 4 and B very similar to those
for type I, while solutions of type III are not favored by
the authors.?” The forward-dispersion relation for the

% J. K. Kim, Phys. Rev. Letters 19, 1079 (1967); N. Zovko,
Phys. Letters 23, 143 (1966).

% M. S. K. Razmi and Y. Ueda, Phys. Rev. 162, 1738 (1967);
Nuovo Cimento 524, 948 (1967) ; C. H. Chan and Y. L. Yen, Phys.
Rev. 165, 1565 (1968) ; M. Lusignoli, M. Restignoli, G. Violini, A.
Borgese, and M. Colocci, Nuovo Cimento 51A, 1136 (1967); M.
Yoshimura, Tokyo Report, 1967 (unpublished).

*7A. T. Lea, B. R. Martin, and G. C. Oades, Phys. Rev. 165,
1770 (1968), and private communication,
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amplitude 4 for K*p scattering is already built into
their analysis because they used Red (¢=0) calculated
from this dispersion relation as part of the data in their
X? minimization. For K—p scattering, the situation is
complicated by the presence of the Born terms (A and )
and inelastic channels (rA and #Z) below the KN
threshold. Fortunately, Kim?8 has done a multichannel

“analysis of KN, 7A, and »2 data using a K-matrix-

effective-range parametrization for the partial-wave
amplitudes; he used data from threshold up to P
=550 MeV/c. In the unphysical region, we use the
direct extrapolation of his parametrization though we
allow the ¥1*(1385) coupling to have its broken SU (3)
value?® as well as the almost negligible value found by
Kim. This gives us an idea of what sort of errors to
expect from uncertainties in the parametrization of the
unphysical region.® For the A and Z pole terms, we use
Kim’s values?

g/4r=135, g/4r=0.2, (13)

or alternatively, Zovko’s values?® of 5.7 and 1.7, re-
spectively, for these couplings. We take Zovko’s values
to be typical of some® of the KN forward dispersion
relation results.®—3¢ For the region 780-1220 MeV/c,
Armenteros et al.*® have a preliminary phase-shift
analysis using simple backgrounds plus (finite-width)
resonances. This still leaves the gaps (550-780 MeV/c)
and (1220-1460 MeV/c¢). Lacking any better procedure,
we extrapolated the energy-dependent fits of Armenteros
et al.* to the region 550-1460 MeV/c¢ and confirmed that
they still reproduced the experimental K~ total cross
sections.® This extrapolation is wrong for each partial
wave separately because some of the background ampli-
tudes exceed the unitarity limit; for the full amplitudes
4 and B which are resonance dominated, however, we

28 J. K. Kim, Phys. Rev. Letters 19, 1074 (1967).

» R. L. Warnock and G. Frye, Phys. Rev. 138, B947 (1965).

% Also, we do not include any D waves below the KN threshold.
Otherwise, we construct the partial-wave amplitudes and the full
amplitudes 4 and B directly using his tabulated parameters
(Ref. 28).

3 See, e.g., M. Lusignoli, M. Restignoli, G. A. Snow, and G.
Violini, Nuovo Cimento 45A, 792 (1966).

21In principle, one could extrapolate the older constant-
scattering-length parametrization of Kim (Ref. 33) into the
unphysical region instead of using the more recent effective-range
parametrization (Ref. 28). It has been shown, however, (Ref. 34)
that by using the stability of the couplings ga? and gz? as a criterion
for the compatibility of the extrapolated amplitude in the un-
physical region with the known total cross sections in the physical
region, one can reject the older parametrization (Ref. 33) in favor
of the new one (Ref. 28) which we use.

8 J. K. Kim, Phys. Rev. Letters 14, 29 (1965).

( ;460). H. Chan and F. T. Meiere, Phys. Rev. Letters 20, 568
1968).

% R. Armenteros, M. Ferro-Luzzi, D. W. G. Leith, R. Levi-
Setti, A. Minten, R. D. Tripp, H. Filthuth, V. Hepp, E. Kluge,
H. Schneider, R. Barloutaud, P. Granout, J. Meyer, and J. P.
Porte, Nucl. Phys. B3, 592 (1967).

% In order to study how crucially our results depend on this
extrapolation, we changed the matching energy to \/‘2‘= 1.9 which
coincides with the higher-energy end of the experiment of
Armenteros ef al. (Ref. 35) and also we changed the point where
the Armenteros e/ al. parametrization takes over the Kim
parametrization to 670 MeV /c. Making both the changes does not
introduce any significant changes in our results.
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believe this extrapolation to be a fair approximation.
This is better than the narrow-resonance saturation
approximation which does not even reproduce the ex-
perimental total cross sections. The parametrization of
Armenteros et al. agrees approximately with the experi-
mental K—p polarization of Cox ef al.¥ from 1100 to
1350 MeV/¢, which already involves an extrapolation.
This shows that our extrapolation may not be very bad
for the total amplitudes 4 and B.

The K—# analysis of Armenteros et al. is less reliable
since it does not reproduce the total cross sections as
well. Also, the only K+» analysis is 0-813 MeV/¢ so
that, as pointed out above, we cannot appeal to the
neutron data to separate the isospin contributions
beyond those in Eq. (8). We do evaluate FESR’s for
moments m=0, 2 for all the four contributions (P+P’),
A, p, and w in the narrow-width resonance saturation
approximation taking all the known resonances (of
which J? is known) from Rosenfeld ef al.3® This takes
one up to an effective cutoff energy 4/s=2.15.% If one
believes in the conjecture? that the Pomeranchuk
trajectory is mostly built from the nonresonating back-
ground at low energies, one can regard the P+ P’
results in the resonance approximation to be a repre-
sentation of the P’.

Let us remind ourselves of the various possibilities in
the input data: (a) coupling strength of ¥1*(1385)
[the Kim value or the broken SU (3) value]; (b) solu-
tion I or solution IV for K*p scattering; and (c) Zovko’s
or Kim’s values [the latter are very similar to SU(3)
values] for the pole-term couplings. Actually, we use the
SU(3) values for f=0.36 for the resonance-approxima-
tion results instead of the Kim values.

These variations in the input data set mean eight
different evaluations of each FESR at each ¢ value. We
use the difference, if any, of the results for different data
sets to estimate the errors shown in the figures, the
central value shown being the one for our favored data
set, to be discussed later.

C. Choice of vy

One would, in principle, like a high value of »y,
corresponding to say Pian~5 GeV/c, for the assumption
of the Regge behavior having become established at »;
to be valid. We have no alternative to choosing »
corresponding to 4/s~2 GeV because the low-energy
data do not allow one to do so either with the phase-

37 C. R. Cox et al., in Proceedings of the Heidelberg International
Conference on Elementary Particles 1967, edited by H. Filthuth
gIsréterscience Publishers, Inc., New York, 1968) Contribution No.

38 A. H. Rosenfeld, N. Barash-Schmidt, A. Barbaro-Galtieri,
L. R. Price, P. Soding, C. G. Wohl, M. Roos, and W. J. Willis,
Rev. Mod. Phys. 40, 77 (1968).

39 This is different from 4/s=2 which is our matching energy in
the case of the complete data input. The reason is that we have
included some resonances higher in mass than 4/s=2. At the point
4/s=2.15, the higher known resonance next to the highest (in
mass) one that we have included should take over.

40 H. Harari, Phys. Rev. Letters 20, 1395 (1968).
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shift analysis or in the resonance approximation. Though
it is certainly desirable to choose a comparatively high
»1, one need not wait until phase-shift analysis for kaon
nucleon scattering extends to momenta as high as §
GeV/¢. Our value of »;=1.53 is not too unreasonable if
one were to keep in mind the fact that the extrapolation
of the Regge amplitude down to »; should represent only
a local average of the amplitude and the wiggles
(resonances) start appearing only below 4/s~2. Some
other calculations'®244 have also used low matching
energies like 4/s~2. A high »; would ensure that the
right-hand side of the FESR [Eq. (12)] did represent
the amplitude at that v;. The choice of a low »; would
give one only the extrapolation (to »1) of the high-
energy Regge amplitude; this may or may not be the
amplitude at »; because the low-energy wiggles might be
important at a low »;. Furthermore, lower-lying Regge
trajectories could be important for a low »;. In our case,
it seems that both these effects are rather small because
the agreement of the sum-rule results with the extrapo-
lations of the high-energy Regge amplitudes is quite
good in general [see Sec. 4 (A)], at least so far as the
question of the over-all normalization is concerned.

D. Sum Rules with Different Moments

The FESR’s of Eq. (12) are not equally useful in the
form given above for all values of 7. In principle, the
ones with large m are also equally valid, but their
usefulness decreases with increasing m because the
higher the 7 value, the greater is the weight given to the
input data immediately below »; in the evaluation of the
FESR integral. One cannot make 7 too small either.
With m very small (negative and large), the low-energy
data around »=w», would be weighted heavily and the
sum-rule integrals would be far more sensitive to the
low-energy data than to Regge poles; such ones, for
example, might call for an accurate knowledge of high
partial waves near threshold and in the nearby un-
physical region. Since one has to resort to an extrapola-
tion procedure to know the amplitudes in the unphysical
region, it is better not to try to learn something about
Regge poles from the high-inverse-moment sum rules.
From this point of view, the choice vo=pu-+t/4M is
better than »o=0 because with the latter accurate in-
formation of the amplitude in the unphysical region
(e.g., analog of scattering length) would be required
down to »o=0 as an input datum for the low-m sum
rules; with the former, this information at only the
physical threshold is needed. One needs to know the
amplitude at threshold for the m= —2 sum rules. Since
one does not have this information except for {=0 (#%0
is unphysical at threshold), we considered m= —2 only
for t=0. Summarizing, therefore, one should consider
sum rules with > 0 as appropriate for giving informa-
tion on Regge poles. Also, in general, the m=even
integral sum rules should be more reliable than the

41§y, Chu and D. P. Roy, Phys. Rev. Letters 20, 958 (1968).
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m=o0dd integral ones because the latter (former) re-
quire real (imaginary) parts of the amplitudes in the
physical region.

E. Different ¢ Values

In principle, fixed-¢ dispersion relations are valid for
all physical 7 and because the FESR’s are derived from
these, one should expect the FESR’s to be valid for all
the physical ¢ values for which the high-energy Regge
expansion holds. Since the Regge poles in question are
the mesonic ones in the ¢ channel, one expects the range
of validity to be approximately =0 to —1. This im-
mediately requires one to know the input amplitudes
out to —¢~1. While for comparatively high s, —¢~1 is
in the physical scattering region where experiments can
give information on the scattering amplitude, one has
to resort to extrapolations in the case of the low-s
amplitudes that are input data for the FESR integrals.
At the physical threshold, for example, —¢=1 is well
away from the only physical point {=0. Similarly, in
the unphysical region (below the KN threshold), one
has to resort to extrapolation in order to get the —¢=1
amplitudes. While the {=0 extrapolation into the
unphysical region can be put to some test?* by forward
dispersion relations, no such reliable test exists for the
1#0 extrapolations. As —¢ increases, the range of s
values for which this extrapolation to unphysical #
values becomes necessary increases. This range is small
for #~0. Lacking any subtler method of analytic con-
tinuation in cosf,, we have used the common Legendre
expansion of the scattering amplitudes to extrapolate to
unphysical ¢ values the low-s amplitudes which are input
data for the sum-rule integrals.

There is a further complication, however. Suppose one
were to use »o=0. It so happens that with the physical
masses, the effective » value for some terms can vanish
for quite low —¢ values. The A pole term has »,=0 for
—1=0.23 approximately; the Z pole term has »s=0
for —#=0.59 approximately; at —¢=2, va, vz, vy, *qsss),
and py,*u0s are all negative. This leads to apparent
difficulties for the nonintegral and the inverse-moment
sum rules. Actually they can be circumvented in the
case of genuine FESR’s by a proper treatment of the
relevant contributions, but they do weight the input
data in a rather sensitive manner. For the sum rules to
be described in the Sec. 5, however, one cannot avoid
this problem and one has to have some prescription to
stay away from the ¢ region where such things happen.
The choice vo=p-+#/4M (and not vo=0) is very welcome
in this respect because now the difficulty due, for ex-
ample, to v4=0 does not arise; »4 cannot become equal
to »o for any real £. The »o=0 troubles creep in again at
t=—4Mu, but this is at —/~1.9 and quite far away
from the region of interest to us. This point needs
special treatment in 7N scattering because of the small
pion mass. There is another possibility, however.
vaA’—w»¢® can vanish when »y=—w,; this happens at
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—#~1.05 and calls for a special treatment of the pole
term for this £ value ; we have not gone beyond —¢<1in
practice. Not all sum rules (for any m), therefore, are
equally simple and valid in their innocent form of
Eq. (12) for all ¢. For the genuine FESR’s which we have
dealt with so far, the trouble due to »y=—w, can be
circumvented by a proper analytic treatment of the
pole; this can be seen by looking at the contour along
which the original FESR is evaluated, and deforming it
in a harmless manner. For some other sum rules (see
Sec. 5), one has to stay away from this point and also
use proper definitions of the sum rules; luckily, this does
not happen for —¢< 1. One should note that the A pole
term is the lowest-s contribution and creates difficulties
at the lowest —¢ value. If one can take care of these
difficulties or if one does not go as far as the point at
which the A pole term starts calling for a sensitive
treatment, one has automatically guarded oneself
against the similar troubles from the other (higher s)
contributions.

4. RESULTS AND DISCUSSION

Before coming to results of our evaluation of the
FESR’s of Eq. (12), we record some formulas which we
have used. The spin-flip amplitude B and the usual
non-spin-flip amplitude A are given in terms of the
partial-wave amplitudes f;, referring to J=1I41 for a
given s-channel isospin state as®

dr

B(s,)
[A (s,t>]=k7 2, P (cosd) { (EAM) (f1-(5)— fu(5))

X I:M—l— W]+ (E—M) (fa-v+(s)

——f(HD—(S))[Mj-W]} , (14)

where % is the c.m. momentum, 6 is the c.m. scattering
angle, s=W?, and E= (k*+M?"2 The amplitude A’
(which we have called 4 throughout) is related to the
amplitudes 4 and B by the equation4 ,

A=A"=A+vB/(1—x), x=t/4M2. (15)

In terms of 4 and B, experimental quantities are given
byl4

a'tot(s)z (1/P) ImA4 (S, t=0> ’ (163‘)

HE T o PR

sinf Im(4B*)
16m/s do/dt
4 See, e.g., Ref. 2.

P(st)=—

(16¢)
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where p is the pion lab momentum and P(s,t) is the
polarization defined relative to the normal (q:Xqy) to
the scattering plane, q; and gy being the initial and final
pion momenta.

Coming to the contributions of the various Born
diagrams [A, =, V¢*(1405), and ¥,*(1385)] to the
amplitudes 4 and B, one gets*?

gAKN2 (M - mA) gAKN2
NW=——— Bp= ,  (17a)
mp2—s mAZ—s
gzxn* (M —ms) gskN®
=———, Bi'= ,  (17b)
mst—s msP—s
grorn (M ~+myq)
Ayyrs05°= ’
mYo*Z— N
(17¢)
gYo*KN2
Byyr1a05’=—",
my0*2~ N

where the normalization of the coupling constants is
gn-n?/4r=14.6 and the superscripts refer to the total
isospin in the s channel. The coupling constants gzxn®
and gaxa? are for a pseudoscalar-type meson-baryon
vertex and their SU(3) symmetry values are given in
terms of gr»% and the F-D mixing parameter f by

ga?=gaxn?=5(1421)%.n?,
gt=gzxn?= (1—21)gn?,

(18a)
(18b)

where the currently quoted value of f is ~0.36. The
effective Lagrangian for the YV *KN vertex is

L£= gYO*KNYo*NK-I-H.C. ,

where the constant gy,*x»?/4r can be determined by
relating the Lagrangian calculation with the dispersion-
theoretic calculation. In the latter, one introduces a &
function in the appropriate absorptive parts appearing
in the dispersion relation and can compare the pole
residue obtained in this way with the coupling constant.
In the case of ¥o* however, one has to extrapolate
below the physical KN threshold. Warnock and Frye*
did this with the Dalitz-Tuan model and we use their
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2} + o q2
. vA“) A( )
1} + 41
S /],
-1f (a) ® T (b) 1+
-2 ! S + 12
4t B(+) - \’B(~) 14
2t 1 /\ 1,
0 . l | U/I ’
2t 3 \k/ 1 (d) 12
-hr T -6 to-12 T
-20 )
-2 0 2 -2 0 2
Moment m

Fic. 1. Evaluation of Eq. (12) (units, GeV=1) at ¢=0 for
different moments . and amplitudes F. This is the same as Fig. 1
of Ref. 13. The points are the sum-rule results for our favored data
set [Kim’s corrected (Ref. 43) coupling constants and unphysical
region and a nonresonant K*p solution], with the error bars
showing the extent of the values obtained using the other choices
discussed in the text. The continuous curves represent the extrapo-
lations (to our matching energy 4/s=2) of high-energy Regge fits
of solution 2 of Phillips and Rarita (Ref. 15) for A™, 4O, and
B® (Bw=0). For B, we use the FESR result of Barger and
Phillips (Ref. 10) and the Regge fit of Derem and Smadja
(Ref. 22).

value gy,*/4r=0.32. For the ¥,*(1385), we use their
broken SU(3) value, gy,*xn?/4m=1.9/M?, where the
relevant Lagrangian is

gv,* &y (Y1¥),No . K+H.c..

Again, the structure of the ¥1* Born term could be de-
termined by means of the dispersion-theoretic calcula-
tion. One gets

B *l=
n (’mYl*Z—— S)\Z ' 6my1*2
grixn’ (1 LM +my ) —p*]
A yl*l = ——*(-f (M+mY1*)+
(mYl*Z— S) 2 6mY1*2

ng"‘KN2 /LLI:(mYl*"*"M)Z_l"z][('mY]*"M)z—”

) ) (19a)

X (M+my.*>[<my,*—M)huﬂ]—mm(ww-mwz)}) . (19b)

43 The conventional Born terms used in many calculations on KN forward dispersion relations have a factor M »/My for the A
and = pole terms, relative to the usual definition of the coupling constants. This has been noted, among others, by Chan and

Meiere (Ref. 34).

4 Thelt¥,*(1385) contribution to 44, and A4, in Ref. 24 has the wrong / dependence. See S. Matsuda and K. Igi, Phys, Rev.
Letters 20, 781 (E) (1968). On reevaluation, their 44, sum rule results change.
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The values of the ¥¢*(1405) and ¥,*(1385) coupling
constants that we use may not be extremely accurate,
but they are sufficiently good for our purpose: (a) We
have used both of them in the resonance approximation
calculation (of which the results are only qualitative
anyway), and (b) we have used the ¥;*(1385) con-
tribution also to provide estimates of errors due to
parametrization of the unphysical region in the calcula-
tion with the phase-shift analyses input.

In order to evaluate the contributions of the reso-
nances decaying physically into the KN channel, one
has only to use Eq. (14) above along with the following:

et sing,,
Jig=—, (20)
k
To1/2k wle1
B(M—' \/s) ’
2k

Imf, (s)=Im

(21)

1.
- 71-‘[‘ tot

d:+ being the elastic-scattering phase shift for the ap-
propriate partial wave.

2 T T T T T T T T 6
tmpaft

Refo-dfoal? Re(d-f B
{c) m=1 (d) m=1
Imiot ) oA Im(JS-3) 8"
2te m=2 4 m=2 42
1 5 (d
L]
d L]
ok===
(e)
-1 1 1 1 1 1 1 1 1 ’
0 -02 -04 06 -08 0 -02 -04 -0.6 -08

t(GeVic)*

Fie. 2. Evaluation of Eq. (12) (units, GeV=1) for m=0, 1,
and 2 for the amplitudes 4™ and B for 0<—¢<1. The points
and error bars have the same meaning as for Fig. 1. The dashed
curve is the A, contribution as deduced by an extrapolation (to
v/s=2) of solution 1 of Ref. 22. The full-line curves represent the
expected Regge contributions to the (+) amplitudes at 4/s =2, our
matching energy. For 4 p, Ap we used solution 1 of Phillips and
Rarita as such; for Bp, Bp, we used (vB/A)p,pr=1.
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F1c. 3. Evaluation of Eq. (12) (units, GeV=1) for m=0, 1,
and 2 for the amplitudes 4 and B®™) for 0< —¢< 1. The points
and error bars have the same meaning as for Fig. 1. The dashed
curve is the p contribution as deduced by an extrapolation (to
A/s=2) of solution 1 of Ref. 22. The full-line curves represent the
expected Regge contributions to the (—) amplitudes at 4/s=2, our
matching energy. For 4, we used solution 1 of Phillips and Rarita
as such; for B, we used (vB/4),=1.5.

Now we turn to our results. We first discuss the case
of the data input involving the phase shift and then, the
resonance saturation results.

A t=0

For 1=0, we plot the results of evaluating the left-
hand side of Eq. (12) versus m; this gives one a feeling
for the relative importance of the different moments
and the phase of the amplitude in question. We recall
that FESR’s with m odd involve the real part and those
with  even involve the imaginary part of the ampli-
tude. For even m, the sum rules for the amplitude 4
could be evaluated directly by using total cross sections
when a higher matching energy might be employed.
Some earlier work for the m=0 sum rules has been
mentioned already in Sec. 3. The vertical error bars in
Fig. 1 give an estimate of the difference arising from
using different input low-energy data, the central dots
are for our favored set which has the Kim couplings for
the A and Z pole terms, a negligible ¥'1* coupling (as in



1784

Kim’s solution?®) and a nonresonant K+p solution. This
notation has been followed in Figs. 2 and 3, also. The
smooth curves in Fig. 1 represent extrapolations to 1.53
GeV of high-energy Regge fits to the 6-20 GeV data. We
used solution 2 of Phillips and Rarita.!® (Using solution
1 would make very slight differences in the comparison
of the Regge curve with our points.) For »4™® and 4,
the Phillips-Rarita parameters show a good agreement
with our points remembering that a confrontation of
data below 1.53 GeV and above 6 GeV is what is being
presented. For »B©), the Phillips-Rarita solution had
vB/A=+11 for the p and B,=0; these fit with our
results approximately, the real part (m odd) results not
being in good agreement. As pointed out earlier, the
reason for their®s choice B,=0 is that the high-energy
data were not good enough to determine it well.
Hopefully, the agreement could be improved by taking
B,#0. Indeed, we do use (vB/4),=1.5 as a typical
expected sample value in all the subsequent comparisons
of the sum-rule results with the extrapolations to »; of
the high-energy Regge fits; we were led to this choice of
(vB/A), by a comparison of the sum-rule results for
B and the known p contribution. For B™, reasonable
agreement can be obtained only by using the more
recent? result of an analysis of the process K—p — K%
that vB/A=+48.3 for the A, (rather than ~—8 as in
the Phillips and Rarital® analyses) and also the recent
FESR result? in 7V scattering that vB/4 =1 (rather
than negative as in the Phillips-Rarita analyses'®) for
the P and P’. The fact that our results require »B/4
= positive for all the contributions to the (4) ampli-
tudes is very important (especially for the 4,) and we
return toitin Sec. 6. That high-energy data alone cannot
determine the sign of vB/4 is clearly brought out by the
four solutions that Reeder and Sarma?® obtain for the
A\ trajectory couplings. This ambiguity in the determi-
nation of the sign of »B/A is removed by our analysis
and we are able to pick out their solution 3 (which
resembles the Derem-Smadja solution,? but differs from
the Phillips-Rarita solutions'®) as our favored one. As
noted by Reeder and Sarma, this has definite experi-
mental consequences for the polarization in K—p — K%
(and actually, also for the K*p — K*p processes which
are more easily accessible for polarization measure-
ments; see Sec. 6) ; their®® neutron polarization near the
forward direction is about —509%, for solution 3 as
compared to about — 1009, for the solutions having the
opposite sign of »B/4.

One sees that the agreement of our results with the
extrapolation of the high-energy Regge fits is not very
good (especially for the B amplitudes) for m= —2 and
—1. For m=—2, the FESR for 4© (which is the
forward-dispersion relation evaluated, for example, by
Kim?5) is much more sensitive to low-energy data and to
coupling constants (ga? and gs?) than it is to the Regge

4D, D. Reeder and K. V. L. Sarma, Phys. Rev. 172, 1566
(1968).
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contribution. Indeed, we regard our FESR’s for m= —2
and m=—1 (which we evaluate only for ¢=0) as
providing a consistency check on the input data set
rather than teaching us something about the relevant
Regge poles. Actually, Fig. 1 shows that there is some
inconsistency in our data set since one can see that our
m=—2 results for the B amplitudes cannot be at-
tributed to lower-lying Regge contributions, but imply
some error in the P waves near threshold, or in Kim’s
treatment of the unphysical region which we adopt, etc.
It is precisely these B amplitudes which are much more
sensitive to the Born-term coupling constants than are
the A amplitudes.

B. Favored Data Set

One should consider several independent sum rules in
choosing one’s “favored data set” and, in particular, in
determining the coupling constants ga? and gs* because
of the sensitivity of different sum rules to different
aspects of the input data. For example, the forward
dispersion relation (the 4 sum rule for m=—2, t=0)
is nearly as well satisfied by Zovko’s coupling constants
plus a “broken SU(3)” value for ¥1*(1385) coupling as
with our favored set. Our choice of the favored set was
based on a study of the whole family of our sum rules.

It is obvious that since total cross-section data are
ingredients of the K*+p phase-shift analysis that we use
as our data input, one does not expect our results using
the K+p solutions I and IV to be significantly different
for the A amplitudes. For ImA4®, especially at {=0,
this is strictly true because of the optical theorem; for
Red™® also, it is true because of the fact that the
forward-dispersion relation was built into the K*p
analysis of Lea ef al.* Indeed, we find that the FESR
results for the two K*p solutions are essentially the
same for the 4 amplitude. From our point of view, the
main difference between the two K*p solutions is in the
B@® amplitudes and we use this difference to select our
favored data set. Also, the difference between the Kim
and Zovko-Born couplings is more important for the
B® amplitudes than for the 4™ amplitudes. The
reason for this becomes clear if we consider, as an
example, the A contribution in Eq. (17a) which shows
that while the coupling constants have their full
strength in the B amplitudes, their contribution to the 4
amplitude is weakened by the factors M —my and v
(the value of » for o/s=m,), both »x (in the region of
interest to us) and M — M, being much less than 1 in
our units. One has

A= (M —my+ry/(1—2))By°. (22)

The B amplitudes, therefore, are more important
than the 4 amplitudes as a guide to the choice of the
favored set. The third type of variation that we have
considered [¥,*(1385) contribution] can contribute to
both the A® and B® amplitudes almost equally
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strongly, and the variation it causes depends in detail
upon which sum rule one is considering.

For choosing between the different input data sets,
we compared our predictions for these different data
sets with the expected (extrapolated down to »;=1.53)
Regge contribution. Let us restrict our attention to t=0
because this comparison is more reliable for =0. In
fact, the ¢ dependence of the results with different data
sets is quite similar and, if anything, the data set which
we favor on the basis of our considerations at =0 is
also the favored one for our {0 results. For the B
amplitude, for example, our FESR results for m=—1,
1, 2, and 3 have the same and the opposite signs to that
expected from the Regge extrapolation for the K*p
solutions IV and I, respectively ; for m= —2, our results
are quite different from the expected one possibly be-
cause of the extreme sensitivity of this sum rule to the
very-low-energy data; for m=0, the magnitude is in
much better agreement with the Regge expectation for
solution IV. The B™ results are not completely in favor
of solution IV; solutions I and IV are better for m=2
and 3, respectively; m=0 and =1 results are about
equally good for both the solutions; m= —2 results are
not good for either. On the whole, therefore, the non-
resonant solution IV is preferable to the resonant solu-
tion I. As for the difference between the Kim and Zovko
couplings and the presence or almost absence of the ¥'1*
contribution, one has to consider the 4 sum rules also.
For the A results, the results are surely better for the
Kim couplings than for the Zovko ones for m=0, 1, —2,
—1, the results for 7 =2 and 3 being about the same for
both the cases. In some cases, the combination (Zovko’s
couplings + full ¥1* contribution) is only slightly worse
than the choice (Kim couplings + almost no ¥* con-
tribution), though the latter is, in some other cases,
much better (for example, the m=0 result for the 4™
amplitude). When the combination (Kim couplings
+ full ¥1* contribution) is significantly different from
the combination (Kim couplings + almost no ¥,*
contribution), it is generally worse than the latter (for
example, the m=—2 case for 4°?). On the whole,
therefore, the preferred choice is (a) Kim’s Born
couplings for the A and the = contributions, (b) almost
zero ¥ 1*(1385) contribution, as found by Kim,? and
(c) the nonresonant K+p solution IV. We hope that
when future analyses of low-energy kaon-nucleon scat-
tering become sufficiently well determined, one would
not have to rely on a comparison with the extrapolation
of the Regge result; under the present circumstances,
we found this to be a useful possibility. It may very well
happen that only two or one or none of the three choices
that we have preferred is the true one and that the
combination of the three is only a close approximation
to the true representation of the data; this must await
better and more complete phase-shift analyses than
those available at present. It is unfortunate that, as
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found by Queen et al.,*® all recent parametrizations of
the low-energy KN scattering amplitude are incon-
sistent with the remainder of our knowledge of the KN
interactions because they do not satisfy the important
constraint that the Born coupling constants g,? and gs?
defined by the dispersion relations be energy-inde-
pendent. Queen ef al.4® have suggested that future
parametrizations of the experimental data should in-
corporate more theoretical constraints (for example,
their important consistency requirement of the con-
stancy of ga? and gs?). As mentioned in Sec. 3, Chan and
Meiere®* have shown, in a somewhat related context,
that the constant-scattering-length extrapolation (with
Kim’s®® parameters) into the unphysical region leads to.
inconsistencies because the coupling constants g, and
g2* tend to vary wildly and even become negative for
different allowed values of a certain parameter g.
Hopefully, things will improve in future and a future
FESR analysis of KN scattering will be more informa-
tive than it is now.

C. t#0

The results carry information in the form of dips and
zeros in the various Regge contributions as a function
of t. For ¢70, one should rely upon the results of only
those FESR’s which agree reasonably well at =0 with
the Regge expectation. We have shown the results for
the (+) and (—) amplitudes for m=0, 1, and 2 in
Figs. 2 and 3, respectively. The smooth full-line curves
in these figures are the sum of all the relevant Regge
contributions (extrapolated down to our matching
energy) and the dashed curves are for the p (for Fig. 3)
contribution in the case of the (—) amplitudes and the
A (for Fig. 2) contribution in the case of the +)
amplitudes. The p and 4, contributions are extrapola-
tions from the results of Derem and Smadja.22 For the
A2, we have used their solution 1. Their other solution
is very similar. The 4 p, Ap and 4, contributions are
taken from solution I (which is very similar to their
solution II which we have used only for our Fig. 1) of
Phillips and Rarita.! Bp, Bp/, and B,, are determined by
using our qualitative (for all #) conclusions (confirmed
for the P and P’ by the N FESR results of Barger and
Phillips®) that »B/A=+1 for P and P’ and »B/A
=--1.5 for the w. The curves do not represent, there-
fore, true high-energy Regge fits; they are partly
motivated by the FESR results. With the high-energy
Regge fit'*!5 extrapolations taken as such, even the
signs of the spin-flip amplitudes B would not agree with
ours. The curves are meant to represent what we believe
the extrapolation of high-energy Regge fits should look
like. Detailed Regge fits to high-energy data incorpo-
rating our FESR “prejudices” about the phases and

% N. M. Queen, S. Leeman, and F. E. Yeomans, Birmingham
University Report (unpublished).
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magnitudes of the various contributions are in prog-
ress.

For A® and m=0, we find [Fig. 2(a) ] slight evidence
of a dip (presumably due to the P’ contribution) at
—¢=0.5; this agrees with the conclusions of Barger and
Phillips,!® who studied the =V sum rules. From high-
energy fits, it appears that the P’ trajectory is less
strongly coupled to the KN system than to the =V
system; Phillips and Rarita!® found that at ¢=0, for
example,

(Axn/Awx)pr=(Bry/Bxn)p=0.29.

Indeed, we find a less pronounced dip than in the 7V
case. This dip is consistent with its interpretation as a
double zero in A pr according to the no-compensation
mechanism if ap- =0 at this ¢ value. Such a dip could not
be attributed to the P contribution because the P
trajectory is rather flat and is not expected to go
through zero at such a low value of —1. Also, it could not
be due to the 4, contribution because the latter is much
smaller than the P and P’ contributions to 4. The
m=1[Fig. 2(c)] results for the A® (involving Re4 )
are also consistent with the presence of this dip in the
P’ contribution; here, however, the 4, contribution is
not negligible and the conclusion cannot be definite
because the same dip could be attributed to the 4.
contribution. The extrapolations of the Regge fits down
to our matching energy seems to be systematically
below the FESR results for the 4" amplitude. This can
be due to a number of reasons. (a) The extrapolation of
the Regge fits to as low an energy as+/s=2 may not be
completely justified; (b) the high-energy fits may be
inconsistent with the FESR results, in which case either
the low-energy data or the high-energy fits need to be
reexamined. [It is worth remarking that our results for
the AP sum rules are fairly reliable especially for m=0
in the sense that the vertical error bars are small and the
different input data sets do not lead to very different
results. The small error bars for m=2 in Fig. 2(e) are
a priori expected because of the relatively small weight
given to the very-low-energy data in the high-m sum
rules.] The disagreement at large —¢~1 is not as bad as
it looks because the plotted Regge extrapolation did not
take into account the no-compensation mechanism for
the P and P’.

Coming to the results for the B amplitude shown in
Figs. 2(b), 2(d), and 2(f), we see that, as pointed out in
Sec. 4 B, the vertical bars are quite big and a difference
in the input data sets causes an appreciable difference in
the results. The two K*p solutions give fairly different

results. (For B©), the variation caused by varying the

K+p solution is much larger than the one caused by
varying the ¥1* or the A and 2 couplings for the same
K+p solution.) It is difficult to draw any strong con-
clusion from the B results partly because of the very
big errors. The agreement is not good for our favored

47 G. V. Dass, C. Michael, and R. J. N. Phillips (unpublished).
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data set, though it is reasonable for m=0 [Fig. 2(b)]
within the rather large error bars. In A™, the 4,
trajectory contribution is masked by P and P’; not so
in B for m=1 [Fig. 2(d)] where real parts are in-
volved. In this case, our results, as they stand, show no
evidence of a zero for —¢< 0.8 approximately so that the
Chew mechanism (or the no-compensation mechanism)
type nonsense-choosing zero is excluded. Either a Gell-
Mann type nonsense-choosing zero or else no zero of e,
in this range is possible.*® Unfortunately, this conclusion
is in direct contradiction to the results of Chu and
Roy,* who considered the sum rule corresponding to
J ImBdv and S »*dv ImB for the A, contribution to
photoproduction; they conclude that their results
strongly favor the Chew or the no-compensation mecha-
nism over that of Gell-Mann; they did find a zero in the
zero-moment sum rule and they thought that the be-
havior of their second-moment sum rule suggests
strongly a double-zero behavior. It is true that our data
input is not extremely reliable for the real parts (Sec.
4 D) and that our conclusion cannot be regarded as
absolutely final, but it appears that their conclusion is
not final either. Their second-moment sum rule does
have a definite single zero, even though one could
perhaps regard it as only a slight displacement of a
double-zero-type behavior. We believe that more con-
clusive evidence is needed to decide the issue one way
or the other. In fact, considerations of exchange de-
generacy between the p and the 4, would tend to sup-
port our conclusion. Also, the my — mp FESR’s support
our conclusion.

The results for the (—) amplitudes are shown in
Fig. 3 for m=0, 1, and 2. We assume the p to be given
and investigate the w contribution which is our main
interest in the (—) amplitudes. Turning to m=0
[Fig. 3(a)] for A which should be dominated by the
w, we do find solutions (using Kim’s coupling constants)
in which the imaginary part changes sign for —~0.2 as
is needed to explain the crossover phenomenon. There
appears to be some dilution, however, by lower-lying
Regge poles or else the data are not sufficiently re-
liable since we find no corresponding zero either in
Red ) (m=1) [Fig. 3(c)] which is well nigh constant as
a function of £, or in the =2 moment for 4. Actually,
the FESR results for the m=2 moment of 4 [Fig.
3(e)] are quite insensitive to the considered variations
in the input data and could be reliable except for the
fact that all the variations we have allowed (for the 4
amplitudes) are in the very-low-energy data to which
the m=2 are insensitive by construction.?® The present

48 Exchange degeneracy of the 4, with the p would suggest that
the 4, trajectory passed through zero at —i~0.5, while high-

energy Regge fits to 7N — nN and to the KN charge-exchange
data tend to favor a flatter (or curved) trajectory with no such

ero.

4 For the B amplitudes, however, we have allowed big variations
at all energies because the two K*p solutions give quite different
spin-flip amplitudes at even high energies. At low energies, the
different choices for the couplings ga?, gz?, and gy *asss)? provide
this variation.
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experimental situation does not allow one to consider
any variations (for the 4 amplitudes) in the higher-
energy end of our input data—the region which is
weighted heavily for high positive m values; it is
possible that allowing for such variations would repro-
duce results consistent with the usual zero!” in the
effective w contribution to the (—) amplitudes. We do
not regard the absence of a crossover in the m=1 results
as a serious difficulty because of the extent to which the
real parts of the input data are reliable. We return to the
question of the reliability of our sum rules involving the
real parts in Sec. 4 D.

The case of the B™) amplitudes is shown in Fig. 3(b),
3(d), and 3(f). The error bars here are bigger, in general,
than for 4. Overlooking again the m=1 [Fig. 3(d)]
results which involve real parts and which are very
sensitive to the input data variations (particularly, the
K+ solution), we find that after subtracting the known
p contribution, the m=0 results [Fig. 3(b)] for the
effective w contribution to B™ show a behavior similar
to the one for 4™ for m=0. Within the error bars
shown, the m=2 results [Fig. 3(f)] are also consistent
with the occurrence of the usual crossover at —¢~0.2.

We find no evidence in the B sum rules of any
additional zero in B, (a sense-nonsense zero at the
wrong-signature unphysical point «,=0) for —i¢<1
which is inconsistent with «,=0.4540.9¢ found by
Contogouris ef al.2 (see also Sec. 2), from a =N — pN
analysis; our results tend to favor a flatter trajectory
(if the zero at =1, is not to be associated with a,=0).
Also, we find (vB/A4),=4+1 to +3 for 0<—¢<0.7.
This shows that the amplitude B,, could be appreciably
more important than 4, in this ¢ region and it is not a
good approximation to set B,=0' in a Regge fit. One
can get a qualitative estimate of (vB/4), at t=m,? by
assuming the w and p dominance of the isoscalar and
isovector nucleon form factors, respectively. It has been
shown by Rarita ef al.!* that

(AIRY] R 348
(=) (23)
P

== ~054
A Ry 13.7

at t=m,2, assuming factorization for the p residues and
using the results in their Sec. V (xii). Using the known
proton and neutron magnetic moments and charges and
the fact that the isovector part is the p contribution and
the isoscalar part is the w contribution, one can deduce
from the ratio of the isoscalar and isovector total
magnetic moments that

Bo (v1+2Mvs)s
Bo_tnt2Mrde . (24)
B, (71+2M72)p

where the residues v; and v, are defined by Ball and
Wong.5® Similarly, since the isovector and isoscalar
charges are equal, A4./4,~(y1)./(v1),=1. Hence

5 J. S. Ball and D. Y. Wong, Phys. Rev. 133, B179 (1964).
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wianBo/4,~0.5 at t=m,?, assuming m,’~m,? Keeping
in mind the various approximations that we have made
on the way, the comparison of this number (»B/4),, of
~+0.5 with our value (41 to +3), though it involves
an extrapolation in ¢, is qualitatively satisfactory. On
the other hand, in their fit to NN data, Rarita ez al.!¢
used yB/A~—6 for the w, which they took as the
predominant spin-flip contribution to fit the pp polariza-
tion data. Their model is in conflict with the recent $p
polarization data of Daum et al.! at 2-3 GeV/c. This
lends support to the conclusion that additional impor-
tant spin-flip contributions (for example, p, 45, and w
correctly) should be included in a Regge fit to NN
scattering to achieve agreement with experiment. We
have seen that the sign of »B/4 used by Rarita et al.14 is
negative for P, P’, and w; our results want this sign to
be positive for all these three contributions. It may very
well be that if the Regge parameters are constrained to
be consistent with the FESR results, one would get
agreement with experimental data on NN and NN
scattering.

D. How Good Are Our Input Data? Implications
for Different Moments

A word about the extent to which our results for the
FESR’s with different moments are reliable is now in
order. Here we want to consider this question in the
light of our input data. These remarks are supple-
mentary to those of Sec. 3D. To get some idea of how
well our input data determined the low-energy ampli-
tudes 4 and B which went into our FESR integrals, we
compared our amplitudes 4 with some forward-disper-
sion-relation calculations. Unfortunately, there is not
very much else to compare with, especially at /520, Im4
at £=0is, of course, all right because all our input data
reproduce the observed total cross sections. However,
one still has not confirmed that the #>%0 amplitudes 4
are correct. Our extrapolation of the parametrization of
Armenteros ef al.* below their region introduces very
small discontinuities in Im4 (and similarly, in ImB) at
the point (p1a= 550 MeV/c) where the parametrization
of Armenteros et al. takes over the Kim? parametriza-
tion. For Red (K*p— K+p), the agreement is very
good. The situation about Red (K—p— K—p) is not
very good. We (a) overestimate it in the region 550-780
MeV/c (the region between the analyses of Kim and
Armenteros et al.), (b) more or less agree with the
results of a very recent forward-dispersion-relation cal-
culation by Carter® in the region of the analysis of
Armenteros et al., and (c) underestimate it in the region
(1220-1460 MeV/c); all this, in such a manner that the
area under the plot of Red (K—p— K—p) versus » is
about the same as for Carter’s numbers. Our m=o0dd
(real parts of A® involved) sum rules always have
factors of (»2—»¢*)™?2 multiplying the amplitude; this

St A. A. Carter, Cavendish Laboratory Report No. HEP 68-10
(unpublished).
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Fic. 4. Evaluation of Eq. (12) (units, GeV=1) for m=0, yy=0
in the resonance saturation approximation for the contributions
fripr (identified as fpr), fa, of Eq. (9) with all the bound states
and resonances (Ref. 38) (of which J? is known) included. The
full-line curves are the Regge expectation as for Figs. 2 and 3
evaluated at 4/s=2.15( Ref. 39). The crosses (X) are for corrected
Kim coupling constants (Ref. 43) gx? and gs? and a negligible
¥1*(1385) contribution, the resonance analog of our favored data
set; the points are for SU (3) couplings gx? and gs? (gra?~14.5
and f=0.36) and gy, *usss®=1.9/M2; the lines are for uncorrected

Zovko'’s couplings (Ref. 43) ga? and gs?, and gy *=1.9/M2,

places a greater or smaller weighting on the high-energy
region of our input data than on the low-energy region,
depending upon whether m is positive or negative. If
this weighting is not too strong, our results for » odd
may be reliable. Otherwise, this makes our results for
m odd sum rules less reliable than those for the m even
(imaginary parts involved) sum rules because of this
different weighting of the two regions in which our real
parts of the 4@ amplitudes do not reproduce very well
the results of Carter. It is obvious that one would be
very lucky if the ¢ dependence of the m odd sum rules
came out correctly, given the fact that the input data
set might be bad enough to make them wrong at even
t=0. Our m=23 results have not been shown because
these would grossly over estimate the higher-energy end
of the input data. The m =1 results are not bad at
t=0 (see Fig. 1); the ¢ dependence may not be correct
(see Figs. 2 and 3).

We have no way to check our B amplitudes and these
are particularly sensitive to variations in the input data;
one can believe only those conclusions (we have men-
tioned only such ones) which stand inspite of these
variations. Again, we rely on our sum-rule results for
ImB more than on ReB. Summarizing, therefore, we
regard our m even sum rules as more reliable than the
m odd ones.

We wish to emphasize that our data input is a good
representation of all the known experimental data,
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though it may not be the only possible unique repre-
sentation. For example, it reproduces the known total
cross section (both elastic and reaction ones) and the
known differential cross sections from threshold up to
our matching energy ; these indeed are the ingredients of
the data on which the phase-shift analyses which we
have used were based. Also correctly reproduced are the
available data on polarization in K~ scattering even in
the region 1100-1350 MeV/¢,?” in which some extrapola-
tion beyond the region of Armenteros ef al. is already
involved. The forward-dispersion relation for K*p scat-
tering, being built into the analysis of Lea et al.,
guarantees our Re4 (K+p — K*p) at {=0 being correct.
The only obvious imperfections in our input are (a)
Red (K—p — K—p) is not well reproduced. This weakens
our 7 odd results somewhat. (b) There is a slight
discontinuity in ImB and Red (K—p— K—p) at the
point of changeover from the Kim parametrization to
the parametrization of Armenteros et al.; the dis-
continuities in ImB are not very crucial because these
are very small compared to the other more important
ambiguities like g4% gs?, and gy,»2(1385) for the B
amplitude; the discontinuities in ImA are negligibly
small anyway; the one in Red (K—p— K—p) is not
negligible. Nonetheless, an over-all average of Re4 (K—p)
as a function of energy is nearly correctly given, when
compared with Carter’s numbers.

E. Resonance Saturation Approximation

We have evaluated (with »,=0) the m=0 and m=2
results for the separate contributions (P+P’), 4,, w,
and p in the resonance approximation. For m=0, the
results are shown in Fig. 4 for the P4 P’ and 4, and in
Fig. 5 for the p and the w. As mentioned in Sec. 2, we
expect the resonance-saturation-approximation results
to be quite reliable for the w. Keeping in mind the rather
large uncertainties in the known resonance parameters,
we thought it good enough to work within the ap-
proximation of narrow-width resonances and therefore
not to worry about the energy dependence of the rele-
vant width, etc. The full-line curves in Figs. 4 and 5 are
the expected Regge contributions extrapolated down to
4/$=2.15% evaluated as for Figs. 2 and 3. The crosses
are for Kim coupling constants for the A and = terms
(corrected®® for the factors M ,/My) and a negligible
Y1*(1385) contribution; the points are for SU(3)
couplings for the A and = terms (g-x?=14.5 and f=0.36)
and a broken SU(3) value?® for the ¥1* coupling; the
broken lines are for Zovko couplings (not corrected*? for
the factors M ,/My) for the A and T terms and a broken
SU(3) value® for the ¥1* coupling; these cases were
chosen as indicative of the errors and uncertainties in-
volved, within the resonance approximation. Assuming‘“’
that the P+P’ contribution of Eq. (9a) is only P’
contribution in the resonance approximation, the re-
sults for all the four contributions are summarized
below. One must remember® that the resonance ap-
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proximation can give only crude results and that slight
shifts in the positions of the expected zeros (as a func-
tion of f) or double zeros becoming broken into two
nearby zeros (and vice versa) or other similar things are
likely to happen in the resonance-saturation results.
Wehave taken the resonance parameters from Rosenfeld
ef al.’® and have included all the relevant resonances of
which J? is known.

P’. A single zero in the B sum rule and an almost
double zero in the 4 sum rule (a similar behavior for the
m=2 results) confirm our more exact FESR result that
the P’ trajectory seems to choose the no-compensation
mechanism type coupling (apr=0 at —¢~0.5). The
agreement with the Regge curves is not good, possibly
because the relevant Regge fits did not incorporate this
feature of the P’ coupling.

w. The results for both =0 and m=2 indicate zeros
in the 4, and B, at —{~0.1 which is expected on the
basis of the usual explanation!” of the crossover phe-
nomenon. The agreement with the Regge curves is
fairly good. We recall that one can believe the resonance-
approximation results for the w to be reasonably correct.
Again, we do not see evidence of a second zero (at
—1~0.5) in B, as expected due to a wrong-signature
sense-nonsense zero if one accepts a,=0.45+0.9£.2 The
results for the w also, therefore, confirm our more exact
FESR results given already. While this paper was being
written up, we saw a paper by Di Vecchia et al.}® who
evaluated the #=0 case with the older (1967) resonance
parameters of Rosenfeld ef al.,? neglecting the ¥;*(1385)
contribution, as suggested by Kim.?

p. We do not rely very much on our resonance results
for the p and A4, both of which have been evaluated for
m=0 by Matsuda and Igi.?**¢ For the p, the sense-
nonsense zero in B,, is at about the right place, the m=2
result behaving similarly. The Regge 4, is very small
and is not very well given by the resonance approxima-
tion, though the Kim case with no ¥,*(1385) is not far
out from the Regge curve.

Aj;. The m=0resultshavebeen evaluated by Mitsuda
and Igi?** with the older 1967 resonance parameters of
Rosenfeld et al.52 The results are consistent with a
double zero in A4, at —¢~0.2 and a single zero in By,
at i~ —0.6, both of which, if at the same ¢ value, could
result from a no-compensation mechanism for the A4,
(as for P’), though A 4, is numerically somewhat small
in magnitude and also sensitive to the inclusion or
omission of certain resonances. Also, the m= 2 result for
A 4, shows two zeros (at —¢=~0.13 and 0.5; similarly for
4,) and not a double zero as for m=0. The m=2 result
for By, is similar to that for =0, it has a single zero
at —¢=0.4.

On the whole, therefore, our resonance approximation
results give support to our more exact results obtained
with phase-shift analyses as input data.

2 A. H. Rosenfeld, A. Barbaro-Galtieri, W. T. Podolsky, L. R.

Price, Matts Roos, P. Soding, W. J. Willis, and C. G. Wohl, Rev.
Mod. Phys. 39, 1 (1967).
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. F1c. 5. Evaluation of Eq. (12) (units, GeV=1) for m=0, yo=0
in the resonance saturation approximation for the contributions
fo, and fo, of Eq. (9) with all the bound states and resonances
(Ref. 38) (of which JP is known) included. The full-line curves
are the Regge expectation as for Figs. 2 and 3 evaluated at
Vs=2.15 (Ref. 39). The crosses (X) are for corrected Kim
coupling constants (Ref. 43) g2 and gz* and a negligible ¥,* (1385)
contribution, the resonance analog of our favored data set; the
points are for SU (3) couplings ga? and gz? (g,x?~14.5 and =0.36)
and gy *asn?=1.9/M?; the lines are for uncorrected Zovko’s
couplings (Ref. 41) gx? and g3?, and gy ¥ =1.9/M2

F. Relevant Meson-Meson Scattering FESR Analyses
in Resonance Approximation

By considering the process KK — KK, one can show
that the zero in the residue of the helicity-nonflip
amplitude for the w contribution has a zero nearer to
t=0 than the zero in the p residue which in, for example,
the 77 — 7 calculation of Schmid®? is at —~0.3. This
is encouraging for the usual'? w-crossover explanation
which would indeed want it at —#~0.15. For the other
trajectories, the KK — KK calculation does not give
very unambiguous results,

One could consider the process mp — 7y to get infor-
mation on By,. If one uses Eq. (12c) of Ademollo e al.5¢
in their Eq. (12b), one can deduce that Bu,/a4, has no
zero for —#<1.4 approximately. This could mean the
Gell-Mann nonsense-choosing mechanism f~a near
a=0 if a4, goes through zero for —t<1.4; otherwise,55
it could mean the Chew mechanism or the no-compensa-
tion type coupling (8~a? near a=0). Also, the SU 3)
symmetry limit results of Ademollo ef al.5* include
exchange degeneracy between the p and 4,; this implies
BA,'\'aAz near a42=0.

% C. Schmid, Phys. Rev. Letters 20, 628 (1968).

%M. Ademollo, H. R. Rubinstein, G. Veneziano, and M. A,
Virasoro, Phys. Rev. Letters 19, 1502 (1967).

5 The results of Ademollo ef al. (Ref. 54) favor the possibility
that a4, does go through zero for —¢<1.4.
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Fi1c. 6. Evaluation of Eq. (33) at £=0, A\=mx in the normaliza-
tion of Eq. (12) (units, GeV=1) for various # values. For m even,
the whole thing is a genuine FESR, shown by circles where the
naive Regge expectation (evaluated as a sum of genuine » and p
Regge poles as for Figs. 2 and 3) and the modified Regge expecta-
tion coincide. The full line is the naive Regge expectation
having two infinite discontinuities at m=—1.52(=—1—a,) and
m=—1.57(=—1—a,); the dashed curve is the modified version
incorporating the m plane pole plus background model and has no
infinities at the points m= —1.52, —1.57. The integral in Eq. (33)
is shown by points and error bars in the same notation as for the
other figures. For m=—1.5, the integral varies from —8.6 to
—21.7 for the various input data sets; this agrees better with the
dashed_curve. An ideal agreement with the dashed curve would
mean f(m)=0.

5. OTHER SUM RULES

The finite-energy sum rules that we have considered
so far depend on analyticity and a Regge-like parame-
terization of the high-energy data. However, one may
evaluate relations which depend in a more sensitive
fashion on the Regge-pole approximation. Effectively
what one does is to evaluate the Froissart-Gribov
representation of the /-plane amplitude a(!) using the
finite-energy trick to continue the representation to
smaller / values. We shall discuss this procedure in
terms of the Khuri plane®® which is much simpler for
practical evaluation, while the correspondence between
leading Regge poles and leading Khuri poles is main-
tained. Let us take »y to be zero to simplify the dis-
cussion further and consider a typical amplitude
A (v,f) which is an odd function of ». Then at fixed ¢,
say, {=0, we consider the following relations:

0= / i Im[(—%)mmA(—) (V)]dy, (25)

8 N. N. Khuri, Phys. Rev. Letters 10, 420 (1963) ; Phys. Rev.
132, 914 (1963); D. Z. Freedman and J.-M. Wang, ibid. 153, 1596
(1967).
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b(m)= [o i Re[(—-:—i)mA © @)]dp, (26)

fm)= /0 w(%)m ImA© (v)dy.

The expression on the right-hand side of Eq. (25), which
is the usual generalized SCR we have discussed previ-
ously, is zero from crossing and analyticity. Equation
(26) is not zero, and defines an analytic function of
m, b(m). There is a relation between Eqgs. (26) and (27):
f(m)="b(m) sinymr. Equation (27) similarly defines an
analytic function of m, f(m), which is the same function
as was discussed by Khuri®® (noting that » is pro-
portional to cosé, for our kinematics). Thus one expects
f(m) to have poles at m=—a—1, —a+1, —a+3, - - - if
there is a pole in a (/) at /=ca. Assuming that the highest
l-plane singularity is at /=a, one must seek a method of
analytic continuation to discuss Egs. (25)-(27) for
m>—a—1 and this is provided by the finite-energy
trick. We evaluate the integrals from »; to  using a
Regge parametrization of the high-energy data and
obtain, if 4 (v)~3 Be— ¥ DD (}/\)a

0= ] ’ Im[(—;—)mmA © @)]d,,

sin[ 3w (a+m—+1)](vy/N)xtmH
a+m+1

o[ W{(3) sl

N 6005[%7r(a+m+ 1)](p/N)tmHt ,

a+m+1
Vi ™
Fm)= [ (—) ImAOdy
o \A

)\ﬁsin[}r (a4-1)J(wy/N) ettt
a+m+1 .

27)

- 7

, (28)

(29

(30)

In these equations, the summation is over the relevant
Regge poles (p and w for the 4 amplitude). Equation
(28) can clearly be continued in m beyond —a—1 and
this is the technique we have been employing in the
previous sections. Equations (29) and (30), however,
have poles in b(m) and f(m), as we have noted, and to
continue these one musi make a model for the m-plane
amplitude as a pole plus background:

A8 -
b(m)=2 ————+0b(m).

31
(at+m+1) GV
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Then, Egs. (29) and (30) may be written as
N V1 2 ml2 )\B
= - ) |dy -
o= v (=) v ez
Vi a+m+1
X[cos[%w(a—l—m—l—l)](—)\—) ——1] , (32)
Fom)=sin (brm) 3 _n,,mImAHd
Fem=sinom) 50n)= [ (2) Tmaco62an

M
-2 m{smfzr(a-i- )]

X (vy/N)tmHit-sin(Grm)} - (33)

and the latter equations (32) and (33) are in a form
suitable to continue to values of m larger than —a—1.
We note that Schwarz'? has considered expressions in
Egs. (27) and (30) for m odd (for m even this is the
form of the FESR’s used by Dolen et al.?) and has argued
that f(m) is zero at these nonsense, wrong-signature
values if third double-spectral-function effects are
negligible. However, f(m) may even be infinite, as is
exhibited in Eq. (30).

Before evaluating relations such as Eq. (32), one
should discuss the choice of »o and N and possible ¢
dependent singularities. As they stand, b(m) and f(m)
are singular for /~—0.23 when »,=0; such left-hand
cuts in ¢ are well known in the physical partial-wave
amplitudes a(?), of course. Thus we see that &(m) must
contain these cuts and we may learn rather little from
evaluating the relations numerically—what we seek, of
course, is some representation which will minimize the
background term in the region of interest.

Equation (33) with »o=0 has the advantage that only
imaginary parts of the data are required; thus at =0
for A® the data are essentially the total cross sections
and are reliable. Choosing 4 since this is expected to
have effectively only one contribution with a~0.5 at
{=0, we plot in Fig. 6, with error bars as usual, the
integral in Eq. (33) and compare with the Regge terms.
The normalization used is similar to that for the usual
FESR’s [Eq. (12)] considered previously, rather than
as in Eq. (33). The m-plane pole model using A= 0.494
(since cos;=r/u at 1=0) is the more plausible and is
shown dashed, together with the naive result of setting
f(m)=0. Though the normalization of the high-energy
parameters is not very reliable (because the agreement
for m>0 is not good even for 7 values corresponding to
genuine FESR’s) in this context, we see that the
Schwarz condition f(#)=0 for m=—1 is not satisfied,
while f(#m)=0 (shown dashed) is a more plausible as-
sumption. For even m, f(m)=0 and one has the
FESR’s evaluated by Dolen, Horn, and Schmid.3

In Fig. 7, we show the results of evaluating the
analogs of Eq. (32) at =0, for the four amplitudes
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F1c. 7. Evaluation of the analogs of Eq. (32) at t=0 for —2 <m
(integral only) <3 for the four amplitudes 4™, y4 &), yBH, and
B®). The normalization is the same as for Eq. (12) (units,
GeV=1). Also, vo=u-+t/4M was used. The points and error bars
have the same meaning as for the other figures; they are for the
left-hand side of Eq. (12) evaluated for the wrong crossing-
symmetry amplitudes A, »4©), B, and »B® and correspond
to the integral in Eq. (32). The naive (full line) and the modified
(dashed line) Regge expectations are calculated with the same
high-energy parameters as for Figs. 2 and 3 and for A= k. The
infinities at m=—1—a;, —2—a;, —1—a;, and a; for the ampli-
tudes 4™, p4O), »BM, and BO), respectively, (where a; refers
to any contributing Regge pole) occur for the unmodified (full

line) case [b(m)=0], but not in the modified model [I;(m)=0]
which agrees better with the low-energy integrals.

AD yAO yBD and BO), In this case, to avoid the
necessity for real-part data below the physical KN
threshold, we used »o=p-+1/4M as for the FESR’s,
Indeed the integrals evaluated are formally the same as
for the FESR’s of Eq. (12) except for an interchange of
the (4-) and (—) labels. Again the high-energy contribu-
tion (within a 109, error due to neglecting »¢? relative to
vi?) is in good agreement if &(m)=0 (dashed line) and
not if b(m)=0 (continuous line).

Using this value of », there is no ¢ singularity until
vo=—vs at I~~—1.05, so that the ¢ dependence of the
expression should be of value if the background is really
negligible. We find the P’ dip again in A% but no «
crossover at all for 4. In view of the extra assump-
tions involved in carrying the model in Eq. (31) to
170 for these sum rules, we are not able to make a
definite conclusion about this apparent lack of & cross-
over. Introduction of adjustable parameters (to fix up,
for example, the w crossover for 42) would reduce the
chances of learning more from these sum rules,
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F16. 8. K%p polarizations at P, =1.46 GeV/c versus ¢ Con-
tinuous and dashed curves are for K~p scattering and are the
predictions for choices (I) and (II), respectively, as described in
the text. The points with error bars are from Ref. 11; the error bars
represent the range of values in this energy region. The K*p
predictions are shown with crosses and dots for choices (I) and

(IT), respectively.

In conclusion, we have shown that the “off I-shell”
Regge-pole contributions can be calculated by using the
wrong-crossing generalized moment sum rules. These
depend on the m-plane background amplitude which
seems to be negligible for our value of »; and m suffi-
ciently large.

6. PREDICTIONS

In order to predict any specific feature of KN scat-
tering, it is necessary to extract the invariant amplitudes
and their energy dependence from our FESR results.
Having obtained the invariant amplitudes, one can
calculate any observable like do/df and polarization for
KN scattering at high energies or a local energy-
averaged value at lower energies. For instance, the
modulus and phase of the K%p— K°p regeneration
amplitude can be evaluated; it is dominated by the w-
exchange contribution.

If the FESR evaluations had negligibly small errors,
the extraction of the invariant amplitudes could be
accomplished by fitting the left-hand side of Eq. (12) to
a sum of effective poles and determining the «;(f) and
B:(?) for each amplitude at each ¢ value from the results
for the different # values. In practice, however, these
errors are not small, and we choose a less ambitious
procedure (which we call I): We employ effective
trajectories® «(f) deduced qualitatively from previous
high-energyfits, in order to extract the effective residues
B(¢) from our m=0 and m=1, FESR results with our
favored data set. This is somewhat inconsistent since the
phase of the amplitude may not correspond with the

57 The effective a values we used for our =0 and m =1 results
are (0.9-4+0.37) for ImA™®; (0.6+0.4¢) for ImB™; (0.54-0¢) for
Red™® and ReB™®; (0.540.6f) for ImA®™) and Red®), and
(0.54-0.8t) for ImB™) and ReB). Only the ImB™ sum rule for
m =0 is sensitive to the chosen a values because the corresponding
denominator is just a. .
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trajectory a(f). An alternative (which we call II) is to
use (as mentioned previously in Sec. 4C and employed
for Figs. 2-7) the high-energy fits of Phillips and
Rarita!® and of Derem and Smadja® with the modi-
fications that »B/A=+41, +1, +1.5 for P, P/, and w
respectively—although this representation of our FESR
results is quantitatively rather poor, especially for
ReA and ReB® [Figs. 3(c) and 2(d), respectively].
We believe that these choices (I) and (II) represent
qualitatively the correct amplitudes; the quantitatively
exact answer may perhaps lie in between the two
if and when the predictions with (I) and (II) differ
appreciably.?®

In Fig. 8, we show the K*p polarizations resulting
from the above two choices for pim=1.46 GeV/c, our
matching energy. Also shown is an energy-averaged
representation of the K—p polarization data of Daum
et al from 1.4 to 2.3 GeV/c, the error bars showing the
range of values encountered in their energy region. The
experimental values lie between our predictions for the
two choices, (I, the FESR results) and (II, the expected
extrapolation of the modified high-energy Regge fit), at
least up to —#~0.6 beyond which the reliability of these
predictions decreases. In our preliminary report!® on the
sum-rule evaluations, we had used a modification of
choice (I): we did not use directly the FESR results for
ReA™ and ReB“, but determined them from the
FESR results for the corresponding imaginary parts
(ImA® and ImB®), respectively), assuming some
effective a values; this leads to predictions, for K—p
polarization, of about 409, at —{~0.3 and about 1009,
at —i~0.6 (as is indeed observed" experimentally),
with the K+p (K—p) polarization being larger than the
K=p (K*p) polarization for —i¢ less (greater) than
approximately 0.3.

We hope that our results will be qualitatively valid
also at higher energies®® with, of course, a reduction in
normalization. Previous high-energy fits with B,=0and
the opposite sign of By, had predicted a large negative
K~p polarization and a small K*p polarization. One
should note that in an exchange-degeneracy limit for the
residues (at all ¢ values) where »B/4 is the same for p
and 4, the polarization will be zero for K*n and K—p
charge-exchange scattering. Further, if P’ and w (as
well as the p and 4,) were also each degenerate in their
trajectories and residue functions, the polarization and
the real part of the forward-scattering amplitude would
both be zero in the K—p case and both positive in the
K™p case. Also, the two charge-exchange cross sections
would be identical, K—p — K% having a purely imagi-
nary amplitude and K*»n — K°, a purely real one.

Another source of difficulty for the Regge-pole model
in the intermediate-energy region has been the Kt
charge-exchange data at 2.3 GeV/c, as discussed by

% Future high-energy fits (Ref. 47) incorporating the informa-
tion that the FESR’s give can help to make these predictions
quantitative.
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Rarita and Schwarzchild,® who found that the con-
ventional Regge fits gave only half the differential cross
section needed in the peak region (—¢~0.2). This
process is spin-flip-dominated with the p and A4,
trajectory exchanges contributing; the sign change of
the spin-flip amplitude By, (retaining everything else
unchanged as in Ref. 59) is enough to increase the
predictions by up to 509, for —¢~0.2 without the need
to introduce a p’ contribution. Hopefully, a researching?®’
of the parameters after one takes into account this sign
change will make theory agree with the experimental
cross section even better.

7. CONCLUSIONS

We have seen that FESR’s can provide a very useful
tool to determine several features of Regge-pole parame-
ters. If one had a complete and well-determined phase-
shift analysis, one could hopefully learn something also
about the lower-lying Regge poles which would not be
very important to the high-energy fits, but could be
important at the low matching energy that we have to
use. Even with the present state of the low-energy KN
phase-shift analysis, we have learnt some useful things.
We now summarize these.

w. Our sum-rule results, as far as they go, are con-
sistent with the usual explanation of the crossover
phenomenon. These results are based mainly on the sum
rules involving the imaginary parts of the amplitudes 4
and B. Our sum-rule results involving the real parts are
not as reliable as the ones for imaginary parts. If it were
not for the lack of a zero in Red,, as determined by our
sum rules for Re4 <, we should be unreserved about our
confirmation of the usual w-crossover mechanism of only
a single pole with all residues passing through zero at
t=1t, because of factorization.

We find no evidence of a wrong-signature nonsense
zero in B, for —¢<0.8. This is in contradiction with
what is expected for a trajectory function a,, = 0.45+0.9¢
found by Contogouris et al.® from an analysis of the w
contribution in the reaction #N — pN. Our FESR re-
sults would prefer a flatter trajectory for the effective w
contribution.

We find (vB/4),=-+1 to +3 for —¢50.6 which,
again, is in contradiction to what has been assumed in
high-energy fits which have taken this ratio to be either
zero' or negative.!

P and P'. We find (vB/A)p,p-~-1 which is, again,
of opposite sign to that in high-energy fits. This agrees
with the #NV FESR results of Barger and Phillips.?®
Also, we find some evidence of the no-compensation
mechanism type coupling for the P/, ap passing through
zero at —i¢~0.5. Our results support exchange de-
generacy of P’ and w for the ratio of the residues vB/4,
though apr and «, are not found to be degenerate. For

5% W. Rarita and B. M. Schwarzschild, Phys. Rev. 162, 1378
(1967).
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example, we suggest that ap, has a zero at —¢~0.5,
while a,, has no zero for —¢0.8.

p. We have not really learnt anything about the p-
trajectory contribution from the present analysis. We
have taken the p Regge pole to be well known and used
it to teach us something about the w pole.

As. Our results would want (vB/A4).4,=+10 (nearly
the same as for p) which, again, is of opposite sign to
that previously used in some high-energy fits.1s

The situation is somewhat confused about the type of
mechanism of coupling that the 4, chooses. Our sum-
rule results (and also the mn— mp FESR’s in the
resonance approximation) would prefer either the Gell-
Mann mechanism, or else no zero in a4, for —¢<1 ap-
proximately, while the resonance-approximation FESR’s
for the KN system could be consistent with the no-
compensation mechanism and the photoproduction sum
rules of Chu and Roy* would perhaps like either the
Chew mechanism or the no-compensation mechanism.
A really convincing FESR analysis in this context would
be very welcome.® Again, our results support exchange
degeneracy of p with A4, for the ratio of the residues
vB/A for t~0. We cannot really say very much about
the 4, trajectory; our input data are not accurate
enough to allow one to calculate a4, explicitly.

We have not considered the possibility of more than
one ¢-channel pole having the quantum numbers of the
pand A4,. Our 4, and w contributions, therefore, are only
effective ones.

Favored data set. Though the input data are not very
well determined, a choice of the favored data set which
leads to the best agreement with extrapolations down to
our matching energy of the high-energy Regge fits is
possible. This may not be the correct and final repre-
sentation of the data at low energies (up to 4/s=2 for
our purpose). We would prefer Kim’s couplings g,? and
gs* for the Born diagrams, a negligible ¥;*(1385)
coupling (as found by Kim) and the nonresonant (type
IV) K+p phase-shift solution of Lea ef al.2”

Predictions. Having been able to determine the signs
and the ¢ dependence of the Regge-pole spin-flip con-
tributions in KN scattering, we see that the older signs
of vB/A for P, P’, w, and 4, are not consistent with our
results. If we take them as our sum rules prefer, we are
able to predict quite confidently the expected polariza-
tion in K+p and K—p elastic scattering and our predic-
tion agrees with the available!! experimental data on
K~p polarization while the previous fits gave the wrong
sign of the polarization. Also, we are able to remove, at
least partially, the other difficulty that the Regge-pole
theory meets in the KN system: The K+n — K%do/dt
comes out in better agreement with the experimental

80 Note that our result (either the Gell-Mann mechanism or
4,70 for —£50.8) is based mainly on our ReB¢" sum rule which,
apart from involving real parts, gets non-negligible contributions
from the P'. If one had |ReBp:| for —¢~1 much larger than
|ReBp:| for —¢~0 one could perhaps allow a zero in the ReBy,
sum rule and, therefore, a Chew or a no-compensation type
mechanism which corresponds to B~o? near a=0.
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data than the previous older prediction because of the
change of sign of the ratio (vB/4)4,.
Other sum rules. We have considered generalized

G. V. DASS AND C. MICHAEL
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amplitude has cuts, however, and this limits the
applications, since further parameters to describe the
background will then be needed.

Schwarz sum rules which evaluate the ‘“off I-shell”
amplitudes in the Khuri plane. We find the background
to be small in general, so that these relations are
satisfied with Regge-pole parameters alone. The ¢ de-
pendence of these relations implies that the background
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Explicit constraints on the mass dependence of daughter Regge trajectories, near zero mass, are ob-
tained for fermion trajectories contributing to =V scattering. Both the analyticity and the group-theoretic
approaches are investigated. We find agreement between these two methods, but disagreement between
our constraints and those previously published. For the dependence on the mass W of the kth daughter
trajectory with parity designation =, we find that ax® (W)=0—k+4 (6—k+3)W+[B1+B:(ao—Fk)
(c—k+1)+A2(e—k+3) WL - -, where o, 4, By, and B; are constants over the family. For each of the

two methods, we stress the assumptions leading to the MacDowell symmetry evident above.

I. INTRODUCTION

N a recent paper! it has been pointed out that two
different approaches to daughter Regge trajec-
tories, analyticity and group-theoretic, lead to the same
results for the scattering of spinless particles. Mathe-
matically the equivalence of these two approaches has
been established.? Namely, in order to make the analy-
city requirement for scattering amplitudes compatible
with Lorentz invariance and Regge behavior, it is
necessary and sufficient to classify singularities accord-
ing to the irreducible representations of the homogene-
ous Lorentz group SL(2,C). However, at the practical
level, the ways by which these approaches lead to a
given result differ considerably. At present their rela-
tionship is by no means trivial.® In this paper we com-
pare these approaches for fermion trajectories, with
particular emphasis on the mass formula that they yield.
Even though the two methods agree, we find that each
of the methods seems to have some advantages over
the other. We reserve a more detailed discussion of this

* Work supported in part by the U. S. Atomic Energy Commis-
sion under Contract No. AT (30-1)2098. . .

+ Present address: Department of Physics, Johns Hopkins
University, Baltimore, Maryland.

1 Present address: Department of Physics and Astronomy,
University of Massachusetts, Amherst, Massachusetts.

1]. B. Bronzan, C. E. Jones, and P. K. Kuo, Phys. Rev. 175,
2200 (1968).

2 . Domokos and G. L. Tindle, Phys. Rev. 165, 1906 (1968).

31, Jones and H. K. Shepard, Phys. Rev. 175, 2117 (1968).

point for later. The mass formula that we obtain does
not agree completely with that obtained previously by
Domokos and Surdnyi,* hereafter referred to as DS,
using their group-theoretic method. In order to facilitate
comparison, our group-theoretic approach closely paral-
lels that of DS. In our approach this disagreement is
resolved by recognizing some subtleties associated with
the use of wave functions having nonphysical angular
momentum values.

In Sec. IT we examine the implication of analyticity
on the =N scattering amplitude near #=0 (# is the
square of the momentum transfer for exchange scatter-
ing) in some detail, using the method of Ref. 1. In Sec.
IIT we use our apparently modified version of the per-
turbation theory developed in DS to reproduce the re-
sults of Sec. II. Section IV contains some discussion
concerning the relative merit of the two approaches and
the degree to which the daughters are determined by
experiment.

II. ANALYTICITY APPROACH TO =N
SCATTERING AMPLITUDE

The wN scattering is dominated in the backward
region by the exchange of fermion trajectories. For this
reason we go to the # channel and define the invariant

4 G. Domokos and P. Suranyi, in Proceedings of the Topical Con-
ference on High-Energy Collision of Hadrons (CERN, Geneva,
1968), Vol. 1, p. 494.
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Abstract: Duality leads to exchange degeneracy for Regge trajectories, and empiri-
cal evidence is presented that such a degenerate scheme is not satisfied. A sub-
stantial improvement results from the inclusion of Regge cut corrections. These
corrections are discussed, separating for clarity the P and non-P contributions
to the cut. Application is made to Paws of line reversed reactions such as KN and
KN charge exchange, and 7'p — K2t and K'p— 7 Z%,

1. INTRODUCTION

The concept of the duality of resonance poles with Regge poles [1] leads
to many consequences, although the concept can at best be approximate for
the physical amplitude because of the limitations of pole dominance and be-
cause the energy average necessary for the application of duality is impre-
cise. In such a dual scheme, the absence of resonance poles in channels
with exotic quantum numbers leads [2] to exchange degenerate Regge tra-
jectories which have residue functions related in magnitude and have the
mechanism of nonsense-choosing at the intercept of the trajectory with zero
and negative integers. However, the empirical p, w, P' and Ag trajecto-
ries determined from analyzing 7N, KN and N — nN data [3] are not dege~
nerate, and have the mechanism of sense-choosing with a special cross
over zero for p and w, and the mechanism of no-compensation for the P".
As previous calculations have shown, [4] the inclusion of Regge cuts in an
exchange degenerate scheme tends to restore agreement with experiment.
We discuss the effect of such cuts in a qualitative manner which avoids the
differences of detail between formulations of their contribution. In particu-
lar we discuss separately the dominant effects from the asymptotic imagi-
nary elastic scattering amplitude (P) and those from the non-asymptotic
pole contributions such as P', w, p and Ag. We illustrate the consequences
of such cuts both for single pole exchange and for exchange degenerate tra-
jectories, and we discuss the experimental consequenses for cross sec-

* Work supported by the U.S, Atomic Energy Commission,
** On leave of absence from Rutherford High Energy Laboratory, Chilton, Didcot.
Address from Sept. 1969: TH Division, CERN, Geneva.
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tions and polarizations with particular empha51s on line reversed pairs of
reactions such as (Kp — K%n and K*n — KOp) and (s*p - K*>* and K'p ~
-7 2+)

2. REGGE CUTS

The eikonal, Glauber or absorption approaches to Regge cuts in inelas-
tic reactions all give substantially similar results. Details may vary, for
instance the triple and higher multiplicity exchanges are not treated equi-
valently. However, near the forward direction (say for -£<0.6 (GeV/ ¢)2)
single and double scattermg dominate and the cuts come from P and non-P
elastic scattering modifications to the pole. Coherent inelastic processes
[5] may modify the expressions somewhat but these effects should not be
dominant.

A convenient approximate expression for the double scattering term is

Acut(v,b) = ffdtldtz TApolelV, tl)[Ael (v,29) +Ae1 (V, ta)], (1)

where 7=T">6(T) and T = -¢2 - t% -£24 218, + Mt + 211, and our amplitude is
normalized as the 7N non flip amplitude so thagctot ImA/p where v and p
are the pion lab. energy and momentum. For a spin flip amplitude the dou-
ble scattering term is relatively smaller since the single scattering van-
ishes for #1 =0 and thus the convolution is reduced. One may alternatively
consider the multiple scattering projected in / or » and the results are
equivalent. For instance, the flatter ¢ dependence of the cut term is equi-
valent to the absorption correction in low partial waves; and the spin flip
amplitude lies in higher partial waves and is thus less affected by such
absorption.

2.1. P-Contribution

The P-contribution to A ¢yt wil have a phase almost 180° from Apole
since 4 ¢], is negative and real. This destructively interfering cut contri-
bution is inevitable in the type of model we are considering and agrees well
with data, in contrast to the opposite sign resulting from the iAg), ina
unitarity -based approach. Since the P-cut has less rapid { dependence than
the pole term the two contributions may cancel completely for larger (-£)
and such zeroes explain the p and w crossover and the effective no-com-
pensation mechanism [6] for the P'.

The exact phase of the P-cut will depend on the phase variations of the
pole with £ since the convolution integral samples all negative { values. If
the phase of the pole term rotates anticlockwise with decreasing ¢, then the
P-cut phase relative to the pole term will be greater than 180° at # =0 since
the convolution has contributions from -f1 >0; and less than 180° for mode-
rate f values where the main contributions in the integral come from ¢y =
~ t9 = }f, Since the spin-flip amplitude will be affected less by the cuts,
such a deviation in phase of the non-flip amplitude from 180° will give a
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small polarization. If the spin-flip (B) and non-spin-flip (A) amplitudes
have the same phase in the pole term, then the polarization which has the
sign of ImA* B will be positive near f =0 and will change sign by moderate ¢
values. A calculation by Blackmon for 7p — 7n illustrates this quantitatively

[4]-

2.2. Non-P contributions

Pole-pole cuts are expected to contribute although absorption by asymp-
totic elastic scattering only [7] does not include them. Such cuts lie about
0.5 lower than the poles in the o plane and will be important up to moderate
energies. In particular they have a phase which may be estimated from eq.
(1) and is of the order of the sum of the phases of the amplitudes evaluated
at 1fplus 90°. Thus the phase is not near 180° and they contribute substan-
tially to polarization unlike the P-cuts which are suppressed. The P'p cut
in 7N charge exchange is an example and it builds a polarization more pos-
itive than the Pp cut alone and gives a more rapid energy dependence. Such
pole-pole cuts are also invoked to explain the exchange in those processes
where no single pole has the required quantum numbers, but evidence from
such experiments in inconclusive [8].

3. EXCHANGE DEGENERACY AND LINE REVERSAL

3.1. Kaon chavge exchange

Line reversed reactions such as K™p — K% and K*n - Kop provide a
sensitive testing ground for exchange degeneracy. The absence of direct
channel resonances in the latter reaction leads to strong constants on the
exchanged f-channel Regge poles from duality. The p and Ag exchanges
must cancel in the imaginary part of the K*n —» K"p amplitude and they are
thus degenerate in trajectory and their contributions will be 90° out of
phase. The relative sign of their contribution is opposite for K™p - KO and
they build a rotating phase (~e~iT2()y amplitude of the same modulus as the
real K'n — Kop amplitude. Thus the cross sections for the two processes
should be equal, and furthermore there should be no polarization since the
p and Ay contribute in the same relative strength to both spin amplitudes.
The fig. 1 shows that the K™n — Kop cross section is larger at low energies
by about a factor of 2 and may become comparable at 5 GeV/c.

The effect of the P-cut will be to reduce the amplitude for K charge ex-
change slightly less than that for K charge exchange since in the latter case
the phase of the "pole" term does not vary with . Thus the P-cut has the
opposite effect from that needed. The non-P cuts, however, are asymmet-
ric between the two processes and provide an explanation of the effect. In
KN and KN elastic scattering the dominant non-P exchanges are the ex-
change degenerate trajectories P' and w which contribute as P'+ w and
P’ - w respectively. The latter combination is purely real while the former
has the same modulus but a rotating phase (—e"””)‘(g) and so is mostly im-
aginary at { = 0. The non-P pole cuts are then exactly negative imaginary
for K*n — Kop and approximately negative imaginary at small ¢ for K™p —
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Fig. 1. Differential cross-section data from ref. [9] is compared for K™p —K% and
K'n— Kop.

— KOn. Thus these cuts will only destructively interfere in the case of
K'p— KOn, and the larger K*n — Kop cross section is predicted correctly.
We take this as evidence of the importance of pole-pole cuts when effects
from the predominant P-cut are suppressed.

The polarization may then be predicted for K™p — K%n to be small and
positive at small £ and turning negative at moderate ¢ from the P-cut, and
positive and increasing from zero at -£>0 from the P' and w cut; and for
K*tn— Kop the polarizations will be large and positive coming from the P’
and w cut alone. A measurement of the polarization for both processes at
comparable energies would allow confirmation of this cut-modified degen-
eracy scheme.

3.2. Hypercharge exchange

Similar reasoning applies to the pair of line reversed reactions 77p —
—K'=* and K™p — 7”Z". The degenerate K*(1~) and K*(2+) exchanges anal-
ogous to p and Ag will be 90° out of phase. The resulting equality of cross
sections is compared with data in fig. 2. The continuous curves are a one
pole Regge interpolation of the data which does not distinguish the two re-
actions. Thus the fact that the 7*p — K=" data fits reasonably well while
the Kp — 72" data lies consistently high implies that experimentally

gtg (K™p —'7T‘Z)+)>~g—;r (rtp —m Ktz .

In order to estimate the cut effects one must have recourse to SU(3)
which, combined with duality, leads to the duality diagram approach [11]
which predicts that the K* poles will contribute with such strength that the
K™p — 7~ =t amplitude will be real while 7tp — K*Z* will have rotating
phase. The P contribution should factorize so that Py+,Pg+z+=PK-pPr-z+
and thus the sum of terms (Py+,+Pg+x+) and (Pg-,+Py-3+) as needed in
eq. (1) will be the same to first order. The non-P poles in elastic scatter-
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Fig. 2. Differential cross-section data from ref. [10] is compared for 7tp KTt
and K'p— 772 *. The curves are single-pole Regge interpolations of the data and are
equal at a given energy for both reactions.

ing are such that for ¢ ~ 0 the imaginary part is larger in (K'p+ 7”=%) than

in (7*p +K*Z*) and the latter combination has a substantial negative real

part [12]. Then both P and non-P cuts suppress the K'p ~ 7~ Z% reaction more
and lead to a modified result opposite to the experimental evidence. The
polarization is predicted to be positive for 77p = K*Z" from both P and

non-P cuts while only the non-P cuts contribute for K'p — 7-Z% and they

lead to a polarization suppressed for small { and positive for larger | t\ .

The measured polarization [10] for 7*p — K*Z™ is indeed positive for 0.2<
-£<0.6(GeV/c)2 although it is apparently suppressed near ¢=0.

4. SUMMARY

(i) The Regge cut modifications of dual exchange degenerate Regge-
trajectories provide an attractive picture which explains high energy data

satisfactorily.
(ii) Evidence from the non-equality of KN and KN charge exchange con-
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firms the need for absorptive effects from non-asymptotic elastic scatter-
ing; the larger absorption from KN relative to KN being responsible.

(iii) The line reversed pair of reactions 7tp » K*Z* and K™p —» 7~ =t are
not consistent with the scheme in relative magnitude. The experimental ev-
idence is not conclusive but the simplest explanation is that the total cross
sections satisfy

o(rtp) +o(K*=)> (K p) +o(r ")

in the 3 - 8 GeV/c energy range despite the SU(3)-duality diagram-factor-
ization arguments we presented.
(iv) Polarization predictions are presented.
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We discuss a simple rotation in the flip non-flip plane, which is undetermined in conventional Regge fits
(i.e., those without FESR), and which thus affects the conclusions about mechanism choosing at o= 0,
Our t independent effective pole analysis of K*p elastic scattering naturally continues down to py g =
=1.45 GeV/c, where a rotation invariant comparison with the K™p phase shifts is made.

Regge pole phenomenology provides a frame-
work for obtaining the amplitudes of high energy
processes. However in conventional analyses
[i.e., those without FESR *], there are several
features which should be discussed in detail:

i) the uniqueness of the fits;

ii) the zeros of the amplitudes and more spe-
cifically the mechanisms at @ =0, etc.. The
knowledge of these zeros is crucial for duality
comparisons;

iii) the predictive power of such fits.

Most fits have been done in a {-dependent manner
which necessitated a priori assumptions about
zeros and mechanisms for each pole residue. We
want to determine such zeros in an unbiased way
and therefore we perform our analysis at each
fixed ¢ value independently. We consider meson-
baryon scattering (037 — 073"). Within a model
employing a fixed number of Regge poles, one can
discuss the uniqueness of the fits. We shall show
that:

a) there is a simple rotation operation in the
spin {lip-spin non-flip plane which leaves un-
changed the cross-section and polarization at
each ¢ separately, while intermixing the Regge
residue function. This operation affects all con-
ventional Regge analyses (i.e., those without
FESR). However, if one works modulo the rota-
tion, one can investigate simply any remaining
ambiguities in the analysis;

b) the intermixing of Regge residues can modi-~

* We perform a Regge analysis without FESR for the
following reasons: a) possibility to confront high
enexrgy results with FESR; b) for our application to
K*p scattering, though they were useful when no pol-
arization data existed [1], the FESR have poorly known
contributions from the Born poles, unphysical region
and K™p phase shift region,
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fy the zeros in residue functions and change the
interpretation of mechanisms;

c¢) the effective Regge pole model has predict-
ive power coming from the connection between
the phase of the amplitude and its energy depend-
ence. However, the Regge predictions must be
tested in a manner invariant under the rotation.

When do/dtf and P data are available, one has
only two real numbers to determine the four com-
ponents of the two complex amplitudes A' and B.
An analysis employing several Regge poles gives
one further constraint since the phase is obtained
from the energy dependence f. To remove the
above rotation degeneracy, one must either meas-
ure R or A parameters or compare to amplitudes
obtained through phase shift analysis.

We define amplitudes ¢ and b [2] such that

do/dt = c(lal?+182)

Pdo/dt = -2C Imab™

a is the conventional A' amplitude. For elastic
scattering C = (1-1/aM2)/(161p%)  where p; is
the meson lab. momentum, M the target mass.
With ¢ the centre~of-mass momentum, we have

VCIpy B (1+t/442)2
T amM(1-¢/4M2)

We now consider the {a,b) plane ( and no¢ the
complex plane)

T When there is only one Regge pole (as in TN charge
exchange), one may determine from only do/dt data
two extra quantities, the phases of 4" and B These
phases are equal.
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Re = (Rea, Re b

Im = (Ima, Im b

In vector notation the measured quantities are
given by

—

do/dt = C(I?é - Re+Im - Im)

Pdo/dt = 2CRe - Im

do/dt is a scalar product, Pdc/d? a vector pro-
duct and both are invariant under a rotation in
the spin flip-non-flip plane about the normal.

Reggeology gives restrictions on the phase
(angle in the comples plane) from energy depend-
ence, but this Regge phase is invariant under ro-
tations in the (@,b) plane. Since for each Regge
pole Rj we have

_, Fl-cos e R

Re; = ————— Im;

7 sinTa; J

Then any sum of pole amplitudes may be rotated
in the (a, b) plane without changing the complex
phases. A Regge cut can in general be considered
as a sum of effective poles and will also be in-
variant §.

The parameters A and R are related to |a|2 +
- |b|2 and Re(ab *) which are clearly not invariant
under such rotations and will allow, within a
Regge pole model, a complete determination of
the amplitudes. However, they have only been
measured in 7N scattering [3]. Also near =10
one may use limited £ continuity arguments as in
7N charge exchange [4] to limit the rotation angle
since the forward cross-section dip implies sub-
stantial spin flip.

Particular mechanisms such as "nonsense”
and "Chew" for + signatured trajectories at ¢ = 0
are not invariant concepts and can be rotated into
one another. Therefore they cannot be determined
in an unbiased way in a traditional Regge fit.
Dynamical zeros may also be moved in a similar
way.

In order to discuss any remaining ambiguities
in a Regge fit, we must first arbitrarily fix the
over-all orientation in the {@-b) plane. We choose
this over-all orientation such that &(P) = 0 at all
t, which is not a physical constraint on the
Pomeron, but is merely a convention; equally
well we could have chosen b = 0 for any other of
the poles in the model. In the past, it was known
that bp was poorly determined [5]; we emphasize

i However, a specific model, such as the absorption
prescription for the cut discontinuity, is not invariant
under these rotations.
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that our result has nothing to do with the Pomeron
per se, but rotates all poles in the problem equally.

As an illustration we shall now discuss the
Regge analysis of K¥p elastic scattering. We use
do/d# and P data {6,7] between Py, = 1.45 and 15
GeV/c. The do/di data were smoothed in £ and
normalized at £ = 0 to the forward amplitude ob-
tained from opor [8] and dispersion relation
real parts [9]. All data are interpolated to obtain
points at £ values in steps of 0.1 from¢ =0 to¢ =
=-1.0 (GeV)z. We use a conventional effective
pole model, where effective poles represent the
combined effects of poles and cuts. This implies
that we cannot use factorization.

Since there are no good data on K*n elastic
scattering (in particular no polarizations) nor on
KO regeneration on protons, charge exchange will
not give any constraints on the K¥p elastic ampli-
tudes which we set out to determine. Therefore
we do not include charge exchange data, and we
only determine the definite linear combination of
¢ channel isospins, which corresponds to K¥p
elastic scattering, namely, p +w =V and Ag +fg =
= T. We assume that the coupling of ¢ andf’ to
NN is weak and can be neglected. We are left with
three poles: P, T, V. For simplicity, we assume
that the trajectories of V and T are degenerate
@y =0qp =0y (M = meson), but the residues must
not be taken degenerate since such strong ex-
change degeneracy would not represent the data
quantitatively [7]. For numerical stability, we
fix the two trajectory functions, ap and ayg at
various values. Here we shall show two cases; a
non-zero P slope [S]: ap =1+0.3 £, ap, = 0.5+
0.9% and a flat P [F]: ap =1, ap = 0%+t. Ina
subsequent publication we shall discuss the evi-
dence that the data prefer the former choice. As
described above, we work at each ¢ separately in
order to remove prejudices about zeros of resi-
dues; we concentrate on £ #0. In order to fix the
over-all orientation in the (z,5) plane we chose the
convention Bp = 0 at all #; thus we are left with
five unknown residues at each ¢ value: vp, T,
Yy, By, By (where Im A' = yv¥, Im B = pra-1
and v = wy, + /4 M).

For 0 < - £ < 0.5 and each « choice, we ob-
tained fits at each £ value which led to a unique
solution in which each residue function was re-
markably continuous in £ Using first a lowest
momentum of 2.75 GeV /¢ for the fits, we ex-
tended this to 1.45 GeV/c and found substantially
the same solution. Consequently we retained 1.45
GeV/c as a lowest momentum and were encour-
aged by the reasonable fits, particularly for K+p,
at this momentum. We analyzed the fitting pro-
cedure in order to understand the uniqueness; we

223
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Fig. 1. Amplitudes for K+p elastic scattering at 1.45 GeV/c and { = -0.4 GeVz, in the spin flip-non-flip plane from
the Regge pole model S described in the text, and from the phase shift solutions of ref, 10. The Regge amplitudes

o

R and Im may be rotated simultaneously as described in the text; 6(Re,Im) is the angle between these two vectors.

found that v was determined by the higher ener-
gy data in o(K™) + o(K*), and then yy and 8 were
determined in a unique way from the data on
o(K™) - o(K") and Po(K™) + Po(K"*), respectively.
yT and By are then identified from the lower
energy data on o{K~) + o(K") and from Po(K™) +

- Po(K"). ¥ and By are in general less well de-
termined, but out to I#| = 0.5 one obtains a unique
solution. For |#] >0.5, the ambiguities (in part-
icular a four-fold ambiguity affecting By and y7)
will be discussed in another publication.

We summarize our results for - < 0.5 (with
B =0 of course); Yv has the usual cross over
zero at ¢ = - 0.15, By has a zero at - 0.45; both
yT and BT have ghost killing zeros at apm = 0; Bv
and 8 are almost equal in agreement with ex-
change degeneracy.

We pass now to the comparison of our Regge
predictions for the phase and spin dependence of
the K*p amplitudes at 1.45 GeV/c with those from
phase shift analysis [10]. We show in fig. 1a
typical comparison for the amplitudes in the (a, b)
plane. Since we may rotate the Regge amplitudes
about the normal to the plane, we must compare
invariant quantities. Possible candidates are
IR—J\, |I_rﬁ| and 8(Re, Im). However, it is more
convenient to compare first the two fitted quan-
tities do/dt ~ |Ré|2 + |Tm|2 and Pdo/dt
~ [Re||Tm | sinf(Re,Im). The real test is then the
comparison of a third invariant which can be
6(Re, Im) or else ¢ = |Rel/|Im|, the latter being
the tangent of the "average Regge phase”. Such a
third invariant is the prediction of Regge in this
context. Infig. 2 these four quantities (of which
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Fig. 2. Comparison for K+p elastic scattering at 1.45
GeV/c against £, Solid lines are phase shift solutions I
and II of ref, 10, The squares are our fixed ¢ Regge
predictions which are connected to guide the eye by a
dashed line for trajectories S ( =1+0.3¢t ay =
= 0.5+ 0.9 ¢) and a dot-dash line for trajectories
Flap =1, apy = 0.5+ 1.0¢). a) Differential cross-
section, data from Bettini et al. [6], b) Polarization,
data [6] from Anderson et al. (black circles) and Asbury
et al, (open circ}gs). ¢) The ratio ¢ of lengths of the
vectors Re and I, d) The angle B between the vectors
Re and Im, see fig. 1.

only three are independent) are compared for
both our sets of Regge trajectories S, F and for



Volume 31B, number 4

both phase shift solutions I, II {10]. The polari-
zation data clearly show the need of higher partial
waves in the phase shift analysis to give a sharper
rise at small ¢. In the 6 plot, fig. 2d, the Regge
prediction is seen to be rather independent of the
choice of trajectories, and the Regge prediction
shows a preference for the phase shift solution

II, which is the solution most in accord with ex-
change degeneracy expectations {7]. In fig. 2¢, ¢
which is related to the phase and thus to the «
values, shows a larger difference between the
predictions from our two choices. These predic-
tions are in qualitative agreement with the phase
shift amplitudes except at £~ 0. Here, our ¢
values are obtained from fits to the energy de-
pendence of oo for Ktp and, at ¢ =0, lie 0.1
higher than Carter's value [9]. The phase shift
estimates [10] of ¢ at ¢ = 0 do not vary smoothly
with energy, and may change appreciably in more
refined analyses.

Having seen that the invariant comparison to
phase shift amplitudes is fairly good, one may
now fix the orientation of the Regge solutions at
each ¢ value separately from the phase shifts. I
solution II is essentially correct, the Regge so-
lution should be rotated clockwise (see fig. 1) and
the angle corresponds to 8p/yp ~ - 0.5. However,
solution I would be compatible with 8p/yp as
large as +2.0. This same angle intermixes the 8
and ¥ residues for both V and T poles as well.

The methods of amplitude extraction employed
in phase shift analysis and in Regge analysis are
at fixed s and #, respectively, and are quite in-
dependent of each other. It is most encouraging
that when one is able to confront the two methods,
they agree qualitatively. Moreover, the Regge
approach even allows us to discriminate among
phase shift solutions giving equally good fits to
the data. Provided relevant quantities are asked
of it, the predictive power of Regge pole analysis
is evident.
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THE PRODUCTION OF REGGE RECURRENCES
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Abstract: For resonance states lying on a given Regge trajectory, the two-body production
mechanism as a function of the excitation of the recurrence state is discussed. A dual
resonance model suggests general features for the Regge-Regge-particle coupling in-
volved in such production. An application is made to the high energy production in
#N — anN of p, f, and g mesons with emphasis on the relative production cross sections,
the relative t-dependences, the ratio of natural to unnatural parity exchange and the
helicity dependence,

1. Introduction

There is no complete theory of two-body reactions at high energies. The salient
features of the data, however, can be described in a t-channel complex angular mo-
mentum approach. The exchange of a Regge pole is found [1] to explain the energy
dependence and phase of certain amplitudes (net helicity flip n = 1 in particular).
The t-dependence of the Regge residue function can be evaluated from duality con-
siderations, In particular the dual resonance model, B, gives a natural scale of 1o
to the energy s and so defines a residue §(f) that should be essentiully constant in £,
The resulting r-dependence is indeed observed [ 1] experimentatty for those ampli-
tudes that have been found to be Regge-behaved. Other helicity amplitudes have a
more complicated behaviour and in a complex angular momentum approach this
implies the presence of Regge cuts.

Resonance states have been found to lie on exchange-degenerate Regge trajec-
tories which are essentially linear in m?. The highest lying such trajectory for a
given set of quantum numbers (the parent or leading trajectory) is well established
(for example p — f; — giw — Ay K* — K** ctc). The relative couplings (partial
widths) of such Regge recurrence states to a given channel (77 etc.) have been
studicd. For instance, a dual resonance B, model gives an (}c)j decrease of the
partial widths for large J. The daughter states implied by such dual models are much
more model dependent. They will be affected by any unitarization or any absorp-
tion of low partial waves needed to make the dual resonance model more physical.

At high energies, it becomes possible to produce Regge recurrence states in quasi
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two-body reactions, for example 7N — pN, 7N ~ foN. 7N > gN etc. At a given ener-
gy, from a combined study of the different states on the leading Regge trajectoryf,
one can discuss the J-dependence of (i) the resonance production cross section, (ii)
the slope of the differential cross section in ¢ and any eventual shrinking or anti-
shrinking with J, (iii) the ratio of different exchanges (for example 7 to A, ex-
change in 7N - 77N) and the ratio of different helicity amplitudes, (iv) the relative
absorption corrections to the Regge pole exchange.

The next section reviews models that allow a discussion of the relative produc-
tion of Regge recurrences. The on-shell exchange coupling (or equivalently the de-
cay matrix element) is first discussed. The off-shell or Regge exchange coupling
relevant to the production process is then discussed in different models. The dual
resonance model is found to give the most complete treatment and this is related
to analyses [2] using the inclusive triple Regge limit and finite mass sum rules (dual-
ity for Regge-particle amplitudes). Appendix A contains relevant definitions and
clarifications.

The third section, together with appendix B, represents the specific results for the
particle-Regge exchange-Regge production vertex from dual resonance models. Com-
pared to the finite mass sum rule approach, a similar decrease of the ratio of natural
parity exchange to unnatural parity exchange with increasing excitation J is found,
while, unlike that approach, no systematic anti-shrinking of the f-dependence with
increasing mass is present in the dual model vertex. An analysis of the helicity struc-
ture of the Regge exchange coupling is made, and the problem of the unwanted
crossing matrix zeroes in the s-channel helicity m-exchange amplitudes is resolved.

2. Regge recurrence production

As a prelude, the relative production cross section for a spin-J resonance of mass
m in the process a + b = m + ¢ by r-exchange is discussed. On the r-particle exchange
pole, this can be related to the decay matrix element for m — a + 1. Thus, for 7 ex-
change from a o beam, the recurrence production cross section is related to the nn
partial width of the spin-J resonance, see also appendix A.

Historically, the partial widths of spin-J resonances were first estimated [3] from
the centrifugal barrier suppression factors for a decay in a box of radius R

m [ (m) ~ &4 [qR h(JU (4R)} -2 ,
where h}l) is a spherical Hankel function of the first kind. For a lincar Regge trajec-

t As well as the dependence of two-body reactions on J = a(m?) of the produced parent state,
the dependence on m? for fixed-J is also of interest. Thus, using vector dominance, one can
relate the data on electroproduction (n? < 0) and photoproduction (m? = 0) of » mesons on
nucleons to the data on aN - ##N with the dimeson system in a P-wave for a range of values
of m? across the p meson width,
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tory,gR ~ v/7, and thus for large J, ['(J) decreases as gJJ*".,With the dynamical
assumption (4] of a constant g, this is a very rapid decrease of the partial width
with J. The usefulness of the centrifugal barrier factor lies rather in describing the
large g behaviour of the width for fixed-J which is independent of assumptions about
g,

/ A more reliable estimate of the J-dependence of the coupling I' (/) arises from
considering the elastic scattering amplitude for ¢ + d - ¢ + d. For the imaginary part
of the amplitude, duality relates the average direct channel resonance contribution
to the Regge exchange amplitude. The t-dependence of the exchange amplitude then
gives an estimate of the relative strength of different partial waves. For an amplitude
with t-dependence e* $R%t the contribution of the spin-J partial wave contains a fac-
tor

2,2
a(J) ~e-JU+DIq R

Thus partial waves with J ~ gR will be dominant whlle those with J > qR will be
suppressed. For a Regge pole exchange amplitude, AR 2 has the form o’ log(a's)

and then qu2 ~ a's log a's. A direct channel resonance of partial width [ 4and
total width '~ will contribute a bump to thc imaginary part of the amplitude a(/)
of height I, }-I‘ and of extent ins (orm ) of m, FT Thus a, will receive an aver-
age 1magmary part of magitude m [’ Then such duality considerations allow an
estimate of the couplmg of a spin J oz 's = a'm? parent resonance to the channel cd:

m, T ()~ ¢=I/lox /|

This is a much slower decrease with J than that found for the centrifugal barrier with
constant &

A more explicit example of such a dual estimation of the strength of the Jh
partial wave from the r-dependence of the high energy amplitude is the B, dual
resonance model itself. Using the nm — 7 dual amplitude [5, 6] gives for the leading
trajectory :

2 2
-_9° qQaq)’ 1
e i mdu - e,

where ¢, ~ 27 for large J, and is defined in appendix B. When the relevant isospin
factors are included, this expression gives a reasonable account [6] of the nn partial
widths: 0.85 I‘p and 0.34 l‘p are predicted for the f; and g respectively as against
experimental values [7] of ~ 0.9 l"p and ~ 0.5 l‘p Comparison of the g and p partial
widths provides the most interesting test, since this is insensitive to any exchange
degeneracy breaking. For large J, and with linear trajectory J = o' m?, the above ex-
pression has a J-dependence
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m,L(J)~ (ye)’

Such a slow (%e)l exponential decrease is common to all dual model approaches.

In the production of Regge recurrence states at high energy, the coupling or
Regge residue that enters is (see appendix A) R{(t, mz). When extrapolated to the
particle exchange pole (a(t) = 0 or | as appropriate). R is related to the decay ma-
trix element as function of J = oz(mz) discussed above. Thus, the essentially new
feature of interest in production is the interplay of the £, J = a(mz). and X depen-
dence of the coupling.

The n-point dual resonance model allows [8] an explicit calculation of the coupl-
ing R((t, mz) and the results are presented in appendix B and discussed in detail
in the next section. Here. such a B, calculation is compared with other approaches
that have been suggested. The inclusive process a + b = anything + e, is related to the
forwarda +b +e —a+b +e amplitude. The exchange of a Regge trajectory a(7)
coupled to be, then leads to the consideration of the forward Regge particle scatter-
ing amplituder+a—>r +a. Dua]i?' techniques applied to r + a = r + a relate the
triple Regge amplitude at large m* to resonance contributions at small m?. The
triple Regge amplitude has a term (s/m?)2%) which correlates the ¢- and mz-depen-
dence, and this is conjectured [2] to be valid on average for m? in the resonance
region. This gives rise to a production cross section for anything of mass m? which
has a r-dependence antishrinking as =2 logm?  yith increasing m?. The same
factor (s/mz)z"") also comes? from taking the double Regge limit in the exclusive
process a + b = ¢ +d +e. Here duality techniques need to be applied [9] to the
r+a-c¢+damplitude for varying m=,

The (s/mz)z"‘(’) factor also yields a faster fall off with m? when the exchanged
trajectory a(t) is higher lying. Thus natural parity exchange (a(f) ~ 0.5 + ¢) will
become less important relative to unnatural parity exchange (a(f) ~ 0 + 1) as m?
increases at fixed-s.

In practice for a(mz) in the range | to 2, the leading trajectories should dom-
inate ther+a—>r+aandr+a-c+dprocesses, and such dual predictions will be
relevant to parent resonance production. For higher m?, however, just as for particle-
particle scattering, the leading trajectory resonances will no longer dominate the
amplitudes. Thus, there is no conflict with the result (sect. 3) from the dual reso-
nance model that there is, in general, no antishrinking of the r-dependence with m?
for the production of parent trajectory states.

Complementary to the complex angular momentum plane approach to the energy
dependence, the dual absorptive model [10] or geometric model seeks to describe
the momentum transfer dependence of two-body reactions. Thus the ¢-cependence
of the production cross section is predicted in such a model, and its dependence on

f Reggeizing the two-body a+b—=m +e¢ pmduction_amplitudc gives an expression (/) PM,) '
(cos 0,). For large s, at ¢ # 0, cos Os-o s()Zq. mAbe) V. and for large mass m?, Tam ~ mi(dr)” 1,
Thus, Po(r)(ms 8,) behaves as (s/m )"‘(’ . T’o have reasonable analytic behaviour, h()“'cvcr,

B{t) must contain a factor (qamqbc)"”) and then the resultant two-body Regge exchange am-
plitude has no explicit kinematic dependence on m?,
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the external mass m of a produced resonance can be found. Indeed, if a universal
radius of peripherality R, is supposed for all exchange reactions, then the t-depen-
dence J,(R \f—' t)is mdependem of m?. Remembering the motivation via duality
with penpheral resonances at low energy, one might rather expect the average
angular momemum L, ~ R 10 be independent of m?. Then taking account of the
dependence on m? of the final state momentum /P8 leadstoaJ (R V=T gl /\/_‘ )
behaviour. This shows a shrmkmg of the t-dependence with mcreasmg m* since q
dezcreases For large s/m?, however, this effect gives a t-dependence independent of
me.

3. Regge recurrence excitation in the dual resonance model

Explicit calculations with a naturality conserving meson vertex and a naturality
changing meson vertex are reproduced in appendlx B These vertices can be applied
to natural parity meson production (J =0%,17,2%, 37, etc.) from pseudo-scalar
mesons by the exchange of natural or unnatural parity Regge trajectories. The ap-
plications will be most fruitful, if the amplitudes under consideration are Regge be-
haved in 5-dependence and phase and have the r-dependence characteristic of dual
resonance couplings.

For vector meson production on nucleons (PN = VN) the n = 1 natural parity
isoscalur exchange amphtudc (w —fj,) is indeed found {13] to have the Regge s-
dcpcndcncc (— t): (') (1 - o{1)) £,(¢) where £, is the signature factor
(Fl—¢™ /) The p - A, charge cXLh.mgc n=1\ amphtude is relatively small and
hard to isolate without polamntmn data. The n = | unnatural parity charge ex-
change () producing p with A = 0 in the s-channel frame is also found {14, 15] to
have the shrinking s-dependence of a Regge trajectory exchange. The t-dependence
of this amplitude is found [16) to be (u2 — 1)~ /=1 eb! with b=4.4GeV-2 at
17.2 GeV/c. This can be compared([l] with the Regge limit of a dual model ex-
pression 8(¢) I' (~ (1)) £,(6) (a's)*® where (o) is the product of the mp and NN
residues, In the range 0 < - 1<0.2 GeV?, this latter expression bchaves approxi-
mately as (2 = 7} B(r) e where, at 17. P! GeV/e,c=3.8fora’ =09and c=4.3
for &' = 1.0. Comparing with the empirical values, the r-dependence of B(r), thus
defined with the duality scale of s of 1/, is almost constant apart from /= ¢ fac-
tors. This reggeized m-exchange gives a natural prediction for the exponential form
factor that would have been needed for elementary m-exchange.

Bearing in mind these expectations of which amplitudes should be Regge be-
haved, some applications are presented of the dual resonance model couplings of
Regge recurrences. Details are given in appendix B.

3.1. The ratio of natural parity exchange to unnatural parity exchange

The n ex(.h:mge Regge couplings to recurrence states of spin J and helicity A,
U‘l(l m ) has the structure of the decay matrix element of the state to nn, and
Yy
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an off-shell correction factor X{ which, for the s-channel helicity frame, is the pro-
duct of a low order polvnomlal inrs Jnd a(— 0™ factor. For natural parity ex-
change. the Regge coupling NA(t m ) has the structure of a decay matrix element,
times a factor \/__/pa coming from the natumhty change and an off-shell correc-
tion f.utor Because of this \/——/p factor, N7  (m* )/Uo(m )~m~} for increasing
J. or a(m ). at fixed-r. Explicitly evaluatmg the factors in appendix B, gives
’VJ/UJ ~V/=1,0.70v/= ¢ and 0.56v/~ ¢ for J = 1, 2 and 3 production (p, f,, g)
respeutlvely atr~0.

This dependence is similar to the (mz)"‘U(o)“‘W(O) orm~} dependence arising
on average in the finite mass sum rule approach. Experimental evidence supporting
this dependence has been given [2]. in particular a comparison of /, = 0 natural
parity exchange and /, = 1 unnatural parity exchange in #N - pN and 7N > gN.

7 p - a " n data also show [15] a relative decrease of natural parity exchange
with increasing mm mass. The contribution of the m cut makes this more difficult to
analyze quantitatively, however.

3.2. Slope dependence on m?

The r dependences of the Regge vertices are given by the factors x/ A& m?) which
are presented in appendix B. The t-dependence is different for dlfferent helicity am-
plitudes and also different for s- or t-channel frames. The t-dependence is not of
exponential form, and is characterized by the linear term in ¢ at small-¢; R/ (-1 )MI
(1+ bl! +...). The slope of lhc t-dependence of the production amphtudc asa
tuuuuon of excitation J = a(m ) is characterized by 6(J). An antishrinking of the
spin+/ production cross section with ¢ means a decrease of b with increasing m? at
fixed energy s. For large-J and A, = 0, the m-exchange c.ouplmgidocs have an anti-
shrinking behaviour of the slope b as approximately b,\ =g (M)~ -}dlo f(mz)
similar to that found in the finite mass sum rule appro.u,hes from the (s/m*)*®
factor. The same gouplmg in the s-channel frame (A, = 0), however, has a strongly
shrinking behaviour b,\s =0 (mz) ~m? coming from the crossing matrix. For the
lowest spin states, one finds explicitly :
bp =0, br0 = 08 and bg = 1.2 forX =0 mexchange;

b‘o =0, bro = 0 and bg = 0.14 for A =% I natural parity exchange;
b,J =0, bfo =-09 and bg = - 1.4 for comparison from a ~ &'log a'm?
antishrinkage. These slope factors b’ represent the chuange in slope for different
Regge recurrences at the meson vertex. An overall r-dependence coming from the
Regge pole exchange factors and the baryon vertex have also to be added of course.

The A = 0 m-exchange amplitude in 7N = pN seems to be Regge behaved as dis-
cussed above. The comparison of this amplitude with those for f) and g production
should be a particularly appropriate test of the predictions. Dat.: indicate [15] that
the s-channel helicity slope parameter is constant within errors from the p to fO
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region in 7N — 77N at 17.2 GeV/c. The analysis assumes a common slope for all
amplitudes at a given mass, however. a'though the p and fyA =0 amplitudes
should dominate. A separation of these contributions and an extension to the g-
meson region are needed to clarify experimentally the shrinkage or antishrinkage
of the slope with J.

3.3. Crossing matrix zeroes

Consider m-exchange producing natural parity mesons On the m-exchange pole,
the only coupling in the r-channel helicity frame is R FO(m ). Assuming that this
is the onlg' hehcnv coupling for all ¢, would then give an s-channel hellcny structure

M(t me)= d,\ olcosx(1)) RA;-O(' m )Thus the zeroes of the d” function in ¢
would be present in the s-channel hehcnty couplings. For J = | production this yields
R,\ =0 (t’ m* )’~ cos x (1) ~ (¢t + m? — u?) which has a zero in the physical region at
t="—m? +pd ~_06. At high energies, the data show [16] no sign of such a zero.
Such zeroes can only be removed by introducing non-zero t-channel couplings to
A, # 0. The full dual resonance model vertex, indeed, contains such reggeized 7-
couplings to A, # 0 amplitudes (vanishing at a(r) = 0 of course). Then crossing to
the s-channel helicity frame, the combination of contributions from different ¢-
channel helicities no longer has the crossing matrix zeroes Appendlx B establishes
this explicitly. ForJ = 1 production, for example, R,\ =do(t, m )xs a constant and
the unwanted zero is removed naturally.

[t is these additional helicity couplings of the Regge exchange that are important.
They emerge naturally from the dual model structure and indicate that the s-channel
helicity amplitudes have a simpler structure in ¢ compared to the t-channel helicity
amplitudes. Thus the dual model Regge vertex structure justifics the assumption of
simple s-channel helicity couplings that have been made empirically. For instance, the
surprising constancy [16] in ¢ of the ratio y_ of S- to P-wave n7 production in
A, = 0is naturally explained; this is related to the above discussion of the filling in
of the crossing matrix zeroes. A model approach to m-exchange [17] takes the s-
channel helicity amplitudes obtained by crossing the ¢-channel Born term zmd then
arbitrarily replaces ¢ by p? in all factors except for the essential (- £) "/(1.1 ~ t) de-
pendence. This has the feature found naturally in the dual vertices of removing the
t-structure coming from the crossing matrix, but also goes further since it intro-
duces an absorption correction or cut in the n = 0 amplitude which has flip at both
Regge vertices.

The additional Regge couplings also play a role in makmg the A, = 2 production
amplitudes su,mtu.mt for t-values of the order of 1 GeVZ2, Thus, t.kag as an ex-
ample A, or K** production by natural parity exchange, the helicity A, = 2 or )\S 2
contribulion can be estimated from the formulae of appendix B and will be signifi-
cant.
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4. Conclusion

The most reliable component of the dual resonance model should be the vertex
couplings for mesons on leading trajectories. Problems of daughter states, fermions,
and unitarity corrections are thereby avoided. The Regge exchange coupling to pro-
duce leading Regge trajectory recurrence states has been evaluated to give the follow-
ing results,

(a) The production amplitudes for Regge recurrence states can be predicted from
a knowledge of the J/ = 1 amplitude. The resonance production amplitude decreases
as (Ye)2” for large J.
with increasing J.

(¢) The variation of r-dependence with helicity and J has been discussed. Certain
s-channel helicity amplitudes show a shrinkage of r-dependence with increasing J.

(d) Additional Regge couplings have been found that fill in the crossing matrix
zeroes and so yield s-channel helicity amplitudes with simple ¢-dependence.

These results are simplest to apply in practice to amplitudes that are Regge be-
haved. Experimental evidence supporting (b) and (d) has been presented. Many
specific predictions are contained in the couplings evaluated in appendix B. A suc-
cessful analysis of the particle-Regge-Regge coupling may then give information
that can be used to tackle the intriguing problem of understanding why the absorp-
tion corrections (or Regge cut effects) i m the n=0aN = 7N amplitude appear
[18, 15] to decrease with increasing m? (or J) relative to the 7- -pole contribution.

I gratefully acknowledge discussions with P, Hoyer, A.D. Martin and B. Petersson.

Appendix A. Definitions of production amplitudes

Consider the process a + b = m + ¢ where m is a spin-J resonance of helicity A
which decays with invariant mass m into two spinless particles ¢ and d. In the rest
frame of m, the direction of p_ is described by spherical polar angles 6 and ¢ in a
frame with O_ normal to the a +b = m + e scattering plane and O, either along p,
in the r-channel frame or along — p,, in the s-channel frame. The helicity amplxtude
for the a + b = c +d + e process can thus be factorized

A‘;b““ (s.1.m?, cos 0, ¢) = 2 A:b““" (s, t, m?)
¢ A ¢

X [mf -m?- im, I‘T(mz)] Ty dJO(LOS g) e'M (A1)

where M, is the decay matrix element of m into ¢ +d and is related to the partial
width by
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1

2y
my g ()= 3y g

1M, |2 (A2)

The exchange of a Regge pole r of trajectory aft), signature 7, and lowest particle
state of spin j, then gives an a + b > m + e amplitude:

A"b (s, 1. m2) = Rf (6 m?) [ 7 — O] (@5 a TG - oDNR,, , ()

(A.3)

R“f (1, m?) is the required coupling of the exchanged reggeon r of momentum
transfer t to the incoming particle a and the produced state of mass m, spinJ and
helicity A.

Some relations between these amplitudes and the observable differential cross
sections are

A. 1. Inclusive cross section a + b > anything + e,

From the generalized optical theorem, this can be related to the dlscontmuuy
of the forward three-particle a + b + ¢ scattering amplitude A(s, ¢, m )

do  _ I
dr dm? l281r23‘q‘.2

disc A(s, ¢, mz) . (A4)

An average over helicity labels is implied. For s/m? large and m? also large, a triple
Regge behaviour has the form

2a,(4) ()
A(s, ¢, m?) ~(—%) mhH° o, (A.5)
m

where a, is the exchange trajectory (pomeron or other) intercept in the reggeon
(r) - particle (a) total cross section.

2. Exclusive cross sectiona+b—=>c+d+e.

q 2
do = ! ! A:b a (s, t,m?,cos0,9)| , (A.6)
dr dm? dQ 64nsq ; (’n) 4m ¢

where an average over initial and sum over final helicities is implied. For s/m2 large
and m? also large, there exists a double Regge limit with the form
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s ar“be) 5 alt )
A ~(—’) (m?) (A7)
m-

A.3. SpinJ production ina + b = ¢ +d + e and resonance production.

The YM(O ¢) moments of the observable of eq. (A.6) can be used to try and
extract the spin-J, helicity-A component in the cd final state ch.mnel Resonance
states in this channel should have Breit-Wigner shapes in their m 2.de endence In-
tegrating over the resonance line shape in m?, and multiplying by I} (m )/[‘ (m )
to correct for the branching ratio. then gives the resonance productlon Cross seu-
tion. Because of unitarity, this is also related to the factorized production ampli-
tude defined in eq. (A.1). by

g do_ 1
Pawdar©

wyn J 2
14> s mhl (A.8)
641rsql.2 €

where a helicity average over Hy and pyand sum over . is implied.

As a further clarification, the information contained in the m?- or J-dependent
observables A.1 to A.3 15 illustrated at the m-exchange polc t=ul, in aN-maN:
Al |s related to alot (m ); A2 is related to (do/dr), (m ,cos 0); A3 is related to
m, r’ (1)

Appendix B. Explicit dual resonance model couplings

Partu.lc — Regge pole exchange — Regge recurrence production coupling residues
R (r m?) are evaluated from dual resonance models. Isospin and signature factors
Are neglected, since the dynamical dependence on the variables is under study. Triple
meson vertices are considered which are naturality conserving (for example n + 7 —p,
fo+ 8 etc.) or naturality changing (for example 7 + A ) e fy.getc,orm+p—>w,
A2 etc.).

B. 1. Naturality conserving vertex
From f.u(onung the dual n-point function B, into two pieces on a leading pole

m at a(m ) =J in an internal subenergy, the followmb expression for the process
a+b-—+m+earises [11]

y/ 2(\/2Z’ fd “lmals) () _ gy~ 1-e) H (Phu - ph(1 - u)).

Hl...#l

(B.1)
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This must be contracted with the polarization tensor e/ (M) to obtain the
helicity amplitudes. In the rest frame of m. where p has spfxencal polar co-ordinates
0 and ¢,

J My gy w ey g Y
€ L Pt pla= dy, (cosf)e (B.2)
By-eby V¢,

where C, = (V)! 2'1/(.1 !)2. A further property of the polarization tensor is

J _ .I
oy AZA U-rrd NN et L

\,). (B.3)
Then expanding the product in eq. (B.1) gives terms in (p: Y (- p‘e‘)’"’ and eqs.
(B.2) and (B.3) can be used to simplify the expression. In the s-channel helicity
frame, — p is along O_ and has magnitude s/2m for large-s, while p_ has z-compo-
nentp_ cos x and x-component p, sin x where

p:‘: (1) =\m?, t a? )/4m2
pﬂ(t) cos x (1) = (m2 +- az)/?.m .
p (e} sin x () =(=1)t (B.4)

For large-s, the Regge limit of eq. (B.1), gives the Regge residue, defined as in
appendix A,

(2

RV
Ui(l. ,"2)=g_ J!l;,-_ ‘_{(uz)Xi(t, mz), (B.5)

where a(f) = a'(¢ -~ uz) and in the s-channel helicity frame

@, (1))’(’a mY T N afry+d - 1)
-n! I'(~al1))

Xl my=p: (v)Z)
r=0

_nond
((JH\)!(J x)!) d (cos x (1)) (B.6)

(r+)(r-M!

This latter expression reduces to the product of a factor (— t)%'}" and a polynomial

in t of orderJ — 1\ ] or less.
For the r-channel frame, the result is the same as eq. (B.5) and (B.6) except for

the interchange of r and J — r in the first three factors in the numerator of eq. (B.i
On shell at a(f) = 0 the expressions simplify to
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X{S = d{so (cos x(v?))., X! =s,,. (B.7)

The first term in (B.5) is the decay matrix element for m - a + on shell exchange
partu.le The above B, results are for a theory of scalar particles with lowest states
at a(m ) = 0. In practice, for the naturality conserving vertex m + (7 exchange) = p.
fy g etc., the produced resonances have trajectories with a(mz) = | as lowest state.
'ﬂus can be incorporated into a By model form +n>n+ 7 +e (where € is a
JP =0t state) in the same way as into the B, model 5, 6] for 7w > nm. The result-
ing B¢ expression agrees with the B, matrix element on shell, and gives the same
result for the Regge vertex as eq. (B 5) except for the replacement of the V7! factor
in the denominator by v/(J — D!

The t-dependence of the correction factor X (¢) can be expressed, for small-¢, as

Xl mby=(1 + o6 m?) + 00 (- M. (B.8)

Neglecting a% and v?, gives a general result

J(J+|)

J J
bl\=0 by -n -5
"
PRV NN N D
= - —— im e -y C
b)‘(:(, " « =2 T=h 7 (am=) " . (B.9)

Similarly, the r-dependence of ¥ IX 12 is dmm«.tcrmd at small-r by 2 h /=0
Explicit off- \hcll unru.lmn I.n.tnrs fora? = y? = p? and

p,=am(l-4p” /m )} in the s-channel helicity frame are
pX =im pJX:=»(~§r)i‘
pf XS =} {(n12 + 2u2) +(t - yz) Q- l/a'mz)}

1
pi,\’lz=(--%1)2’ n, sz‘@’*iﬁh
1 3
p3X3 = B {(m4 + ()mzyz) +(r - ;12)(6m2 —-&,— - =1 7)},
=—1-3 {(m2 +u2) +(r - uz)(l - l/a'mz)) ,

plx3=—jrm30, PPX3= -4V (- 1) (B.10)
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For the t-channel frame, similarly

b 2 _ - 2
P X} =p 1) (1+i,“ ‘”), pnxt=Y_tU-b) (B

m? — 4u® VIVmI—dp=m

B.2. Naturality changing vertex

From the B, dual resonuance model for five pseudo-scalar mesons {12], one can
extract the vertex for producing natural parity meson Regge recurrences by the ex-
change of a natural parity Regge trajectory a(f) — 1 = o'(f - v?). Extracting the lead-
ing trajectory spin J-pole in the ¢d channel and taking the Regge limit s—~ o, gives a
resonance production coupling together with the decay amplitude. Factorizing off
the decay matrix element and picking out in the s-channel helicity frame the coeffi-
cient of ‘1{0 (cos 8)e™® (see eq. (A.1)) gives the production Regge residue

" H _
iy S0 (20

X){(t, mz) ,
p (%)

J gy tamy’
T NN T TR S N e
Xy, m=) p,”" )r=l -

xDal e Lorel) (see bty M!.)*
P(-a(ny+l) T+ (r =)
X {7y (cosx () +d” |, (cosx(D)} (B.12)

. 1
which is again a polynomial in ¢ of order J- |A] or less together with a factor (= £)3lAl
For on-shell exchange at ¢ = v?

X{(vz, mz) = d{)\ (cos ﬁ(vz)) +d {U\(cos a(uz)) , (B.13)

and in the ¢-channel frame
AV B N
/\Ar(u ,m )'87\,11 . (B.14)

Specific forms of the off-shell correction factor in the s-channel helicity frame,
where p,= pa(vz) and a =y, are
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X{=0.
2 2 2

1 _ 2_m°tuvT—u 2
Xl—l, PaX1~T. anZ AVAN IN
szi = l—z [("12 +v? _”2)2 +m?y +(r - uz)(m2 —1/a")],

4m
AVAN 4
plx3=\f —2—"—'—(n12+uz—u2), pix3=—4Vis:. (B.16)
In the f-channel helicity frame

2 (1 —a(f) cos x(1) 2_l—a(n ..

pa/\ 1 —pa(t) + o m , anz —'Em"*‘ sin x(1) .
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Abstract: The available charge-exchange data for 7N — pN, #N — wN and p—w interference ef-
fects in the momentum range 6 -17 GeV/c are analyzed. Duality considerations are used to
constrain as much as possible the exchanged Regge poles and also to relate their contribu-
tions to those made by the same Regge exchanges in aN — N and #N - A, N, Combined
with an empirical investigation of the Regge cut contributions, this allows a simultaneous
description of vector and tensor meson production. The resulting amplitudes are used to pre-
dict interference effects in the common KK decay channel of £% and A,. Other predictions
include K*(1420) and K*(1420) production, and many polarization effects.

1. Introduction

With the increasing abundance of data on resonance production processes, it has
become possible to investigate closely the structure of the exchange amplitudes. The
usefulness of a description in terms of ¢-channel Regge-pole exchange with s-channel
modifications (cuts or absorption) has been confirmed [1]. The simplest approach
would be to restrict the Regge-pole exchanges by dual constraints (exchange degen-
eracy, etc.), factorization and SU(3), and to restrict the cuts to amplitudes of zero
over-all helicity flip #. We shall pursue such a simple approach with its considerable
predictive power and shall try to identify any possible indications for relaxing the
constraints.

The advent of spectrometer data on the production of higher mass resonances
will introduce a further exciting line of investigation. Higher mass (and spin) reso-
nances are produced in reactions that have the same exchange quantum numbers as
their basic counterparts (e.g. TN - fON or 7N — gN relative to 7N - pN). It is thus a
challenge to existing theories to account for the production mechanisms of such
states. Dual theories, both more generally through local duality applied to finite
mass sum rules [2, 3], and more specifically from the explicit dual model vertex
structure [4], have characteristic predictions to make. We use these ideas to make a
preliminary study of tensor meson production based on the knowledge of vector
meson production.

In sect. 2, we discuss the available data (6—17 GeV/c) on7N - pN and 7N > wN
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and establish models for the exchange contributions. Interference effects between p
and w production amplitudes are observable as a result of p—cw electromagnetic
mixing in the 77 decay, and also from comparison with the SU(3) related pro-
cesses KN - K*N and KN — K*N. Our decomposition of the p and w production
amplitudes into exchange contributions is consistent with data on such interference
effects and, in sect. 3, we discuss predictions for nucleon polarization observables
which will provide further insight into the amplitude structure.

Armed with a model for vector meson production, in sect. 4, we use the dual
model expectations as a guide in discussing the charge-exchange tensor meson pro-
duction reactions 7N - fON and 7N - A,N. The available data are well described.
As an additional sensitive test, we present, in sect. 5, predictions for the interference
effects to be seen in the KK decay channel which is common to A, and 0. Likewise
K*(1420) and K*(1420) production are discussed.

Conclusions are presented in sect. 6.

2. Vector-meson production

Spin-1 meson production on nucleons involves six helicity amplitudes which are
connected to the observable density matrix elements as follows (see also appendix A)

a8 = poodofds = [PL 12 +1P0 |2 =Py,
0% =(py; —py_p)dofde = PS> + P72 =P_|?,
o"=(py) +py_p)dofdr = |PLI2+IPL_12 = P17,

V2 Re pygdofdt = Re (P, P% +P; PO*), 2.1)

where
£ _ 1 -1

Py, =AY HH )

Allowance [5, 6] can be made for the presence of S-wave background under the
P-wave vector meson signal. Thus the modulus of A =0 and ! unnatural parity ex-
change contributions (o and o" ), their interference Re p;, and the natural parity
exchange contribution o™ can be separated. Further separation of the amplitudes
requires, at present, assumptions about the nature of the exchange contributions.

In principle, however, polarization observables will allow [7] a determination of the
moduli and relative phases of each amplitude. In practice, an incomplete set of po-

larization measurements (e.g. polarized target without recoil polarization analysis)
will allow stringent tests of the assumptions to be made about exchange amplitudes.



284 A.C. Irving, C. Michael, Vector and tensor mesons
211 p—pn

The quantum numbers allowed in the ¢-channel are such that only a restricted
set of Regge-pole exchanges should contribute. These are discussed in turn.

2.1.1. w exchange. We treat the pion as a Regge pole with a slope just like any other
particle exchange. The proximity of the J = 0 w-pole to the physical region implies
that the Regge description is essentially the same for small ¢ as a one-particle ex-
change expression. From consideration of the Chew-Frautschi plot for unnatural
parity mesons we expect

a,(t)=a'(t - u?)=0.82(r — p?),

where y is the pion mass and the value of &’ comes from assuming linear exchange
degenerate trajectories m — H or n — B. The J = 0 7-pole couples only to A, =0

p mesons (A, and A, refer respectively to s- and #-channel helicity frames). Away
from the nonsense zero at o, (t) = 0, however, a Regge 7 trajectory should couple to
A, # 0 and this contribution could become significant for —¢ ~ 0.5 GeV?2. A simple
estimate of a reasonable strength for such a A, = 1 contribution comes [4] from the
structure of the dual resonance model vertex. This yields, for the ¢-channel helicity
frame,

t

Tt -

— . (2.2)
716 m(m? — u? - 3¢)

where m =m,, and 7’ vanishes at 1 = u2 as discussed previously. In terms of s-chan-

nel helicity amplitudes, this takes on the simple form [4]

(2.3)

The more popular assumption of taking m_ = 0 leads to n° /nf, = 2+/~1 m/
(m? +t — p?), which is significantly different in the neighbourhood of the zero of
m at —t =m? — u2.

At the nucleon vertex, the m Regge trajectory couples to the helicity flip only.
Thus its contribution to Pg_ and P, _ will be in the above ratio. A simple para-
metrization for the A; = 0 amplitude valid up to moderate z-values is

a(t)—1
0 &y m eb"tef%inan(t) ({)L)

- ,uz—t vm? — 4u? Po

where py is lab momentum and py; is chosen for convenience as 17.2 GeV/c. A con-
stant factor has been included to assist the identification of g with the residue of
the f-channel 7 exchange pole (appendix A).

, (2.4)
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2.1.2. A, exchange. The A, Regge pole may couple to the amplitudes P _and
P7.. We expect a trajectory

ap()=0.5+a't,

The ratio of flip to non-flip coupling at the nucleon vertex may be related by factor-
ization to that found in 7N - N and KN charge exchange. In terms of the invariant
coupling A" and A for such processes we have A, exchange ratios

= — = ) 2.5)

and thus  ~ 0.5 for the vector dominance expectation [8] 4/4" ~ 3.7, while

r ~ 0.25 for the empirical values of 4/4" ~ —8 found in effective pole fits to
0—1* > 0~1* processes [9]. A parametrization for the s and r dependence of the
A, exchange pole contribution is

QA([)—I

i bL
4t = —t'gAebAte 3imop (1) (_p_) . (2.6)
0

2.1.3. Cut contribution. The contributions from the 7 and A, Regge poles have
long been known [10] to be insufficient to describe the data on 7N - gN. In partic-
ular, the data are non-zero in the forward direction, while the Regge contributions
all vanish as ' = 0. It is traditional [10] to incorporate a background, Regge cut, or
absorptive correction C which does not vanish as t' = 0. This can be motivated from
s-channel Born term or dual arguments, via absorption of low partial waves, or from
a m-pomeron Regge cut. Our interest lies in an empirical description of the data,
however, so that we shall be content with a parametrization of the cut C. The sim-
plest assumption is that C only contributes to the s-channel helicity non-flip ampli-
tude Hl_. This leads to equal amounts of cut in P7_ and P} _. The phase and ener-
gy dependence of C may be obtained from the experimental data and some theoreti-
cal assumptions. Since Re p;, experimentally [6] has its extremum value relative to
Py and P_, this implies that P and P_ have the same phase (phase coherence). Thus
the phase of C and of the 7 exchange contributions must be similar. Consideration
of their interference in P, also leads to constraints [5] on their relative phase as a
function of £. A compromise, which also has the virtue of being the naive absorption
model result, is to take the phase from an effective trajectory

ac(t) =0 +3a'r.

The energy dependence of the cut contribution is model-dependent — as a simple
approximation we take the energy dependence to be given by the same effective
trajectory as the phase. Thus the cut is approximated for convenience by an effec-
tive (non-factorizing) pole with the above trajectory. Thus our parametrization is
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p OLC (f) -1
1 L
Ci_=C;_ =gCethe ’lmcm(—) 2.7
Po
2.1.4. Our model. Our combination of 7 and A, pole exchange and effective cut

C differs from that of Estabrooks et al. [11] only in details: the A, = I 7-exchange
coupling and the A, nucleon non-flip couplings are retained. A further possible con-
tribution — with A; quantum number exchange — will be reconsidered subsequently

Thus we have, in the s-channel helicity frame

—t’ GeV?

005 01 02 03 04 05
T T T T

T
mN—pN
0 17.2 GeVic .
s channel helicity
amplitudes
s
(3
Sk
3
2
[]]
o
2
B
E
<
o]
0

Fig. 1. The moduli of the production amplitudes for n p — pon at 17.2 GeV/e. The points are
the s-channel helicity amplitudes of ref. [12] extracted from the data of ref. [13] and the curves

are the fit of the model described in the text. For clarity, | P_| is plotted to exhibit the 180°
phase change of P, near v/—1' = 0.15 GeV,
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Table 1

287

Parameters for the models defined in the text in subsect, 2.1 (z " p— po n), subsect. 2.2 (7 p —
w%n) and subsect. 4.1 (7~p — f%n) [Quantities in square brackets were not varied in the fits;
the normalization of g is calculated in appendix A.]

aN - poN
&r LN/ 8C/gxn by ba be r
(/ub) (GeV™)  (GeV™l)  (GeV™H  (GeV™?)  (GeVTYH)  (GeV)
[6.0] 5.17 -1.42 4.51 3.24 6.45 [0.5]
aN - wN
£8B 2o/8A £2/¢8 Cp/gB Cplgn bCp bc
—1 —1 ~ -2 P -2
(/ub) (GeV) (GeV™) (GeV™) (GeV™") (GeV™F)
6.0 2.0 0.54 -0.20 ~0.048 0.97 (= bey]
aN—fON
& EAlEn &Clgn 8C,/8n by ba bc
/1b) (GeV™)  (GeV™ly  (GeV Y  (GeV™?)  (GeVTE) (GeV D)
(8.4] 1.35 ~0.84 ~0.575 [4.51] [3.24] 3.89
PO =q0 ., PY. =0,
7TS
Pi_ =(_‘) ~_+c,_ , P.,=0,
7TS
0
+ + + _ 4+
P+~ A+ +C+_ ’ P++ _A++ . (2-8)

The moduli of Py, P_ and P_ obtained [11,12] from an analysis of the 17.2 GeV/c
n~p—w*w~ndata [13] determine the parameters introduced above. The normal-
ization (see appendix A) fixes g, ; b, is given by the ¢ dependence of Py; the small
t-value of P, or P_ yields g.; the r dependence of P_ constrains b and then the
shape of P, as a function of 7 is sufficient to determine g, and b . The fit is shown
in fig. 1. Parameters are given in table 1.

The energy dependence [11, 14] from 6—17.2 GeV/c is then a stringent cross
check on the above determination. The break seen [14] at 4—6 GeV/c in the ¢ de-
pendence of Pf is not accounted for, but the energy dependence out to # ~ —0.3 is
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05

RN

0 02 04 06
-t Gev2

Fig. 2. aeft for IP41? as extracted from the 6 GeV/c [14] and 17.2 GeV/c [13} n p— o’ n data
inref, {11] and the prediction of the model (curve). The trajectories assumed for the m, A, and
cut C contributions are also shown.

satisfactory. Among other possibilities, either a 7 trajectory of slope ;o' exactly
phase coherent with the cut C, or a small low-lying correction to PS could be toler-
ated by the data. The energy dependence of P is in agreement with our model,
while the crucial test comes from o for P, as shown in fig. 2. Here the striking
relative increase of natural parity exchange from 6 to 17.2 GeV/c is accounted for
by the AJ, contribution at small 7, the A}, — C, _ destructive interference at mod-
erate 7, and the 4, dominance at larger ¢. Previous interpretations [15] of aN—pN
data have had much larger C contributions relative to 4, at t ~ —0.3 to —0.5, s0
that a much lower value of o [close to ac(f)] had been expected.

Our fit with the dual mode! estimate of ﬂt_/rr(t) (eq. (2.2)) is a considerable im-
provement over taking 7’ zero when P(s) would have had a zero at £ ~ —0.5 and the
cut would have [11] a much flatter # dependence (b ~ 1.0). As a compromise, one
can take 1T£/7T6 at about 0.5 of the dual vertex value eq. (2.2) when the cut ¢ de-
pendence is very reasonable (b~ ~ 3.0). An equally acceptable fit can then be ob-
tained by allowing » to be reduced to 0.25. This compromise description gives a sim-
ilar value of a g for P, , and allows an improved description of the p—c interference
phases. Since our present aim is to retain as simple a description as possible in order
to extend our analysis to the fO production amplitudes, we shall retain the dual
model expression for 17’_/116 of eq. (2.2).

2.2. aN -+ wN
We again discuss in turn the various expected exchange contributions. We con-

sider data for the average of 7~ p = wn and #tn - wp so that any possible [15] 7
exchange via p—w electromagnetic mixing will not contribute.



A.C. Irving, C. Michael, Vector and tensor mesons 289

2.2.1, B exchange. The unnatural parity meson spectrum is consistent with m — H
and n — B exchange degenerate trajectories split apart by about 0.23. Thus we take
the B trajectory as

ap =—025+a't.

To allow for the splitting of the trajectories, and relate B to 7 by exchange degen-
eracy, we use

Ap — &

B_ 8 '(-ap) singmoy ,;m(aB-u")(PL) B

LR G & o (2.9)

—— ie
m g, D(-a,) cosjma,

For strong exchange degeneracy we would have gg = g, ; however since o, # ap
this comparison depends on p; . A dual theory would lead to comparison at as = 1
orpp = 1/(2mNa') which yields gg = 0.5 g, as an expectation. The helicity couplings
of the B exchange are taken from the same model as for the 7 (eq. (2.3)). The dual
vertex factor ensures a pure A, = 0 coupling at o) = O but can also be evaluated at
a(t) = 1. This yields, at ¢t = m]é, a ratio of cw production with A, =0 to all of 0.2.

This can be compared directly with the branching fraction of «w with A, =0 in B
decay to wm which experimentally is quoted [16] as 0.10—0.16. Thus the dual vertex
factor successfully reproduces the predominant A, = 1 coupling at a(¢) =1, the B
mass value.

2.2.2. p exchange. This is expected to be exchange degenerate with the A, ex-
change in p production and we write a,(f) = a4(?) and

g
b _°F . 1
——=—litanjna, , 2.10
A2 gA 2 A ( )
where g, =g, for strong exchange degeneracy of the couplings.

2.2.3. Cut C. The B-pole contribution discussed above gives rise to phase coher-
ence for P_ and P, and a specific ratio from eq. (2.3). The p contribution has a dip
ata p(t) =0in P,. To take account of possible deviations from these expectations in
the data, we introduce a cut in the » = 0 amplitude. Guided by the absorption model
expectation of cuts mainly 180° out of phase with their respective poles, we para-
metrize the phase and # dependence of the cut as

Otc(t)"l
. Y] b, t 1 b.t (P ’
C;_ =(ie 2lmB(t)cBe B’ +ije Zlm"mcpe ‘e )(—) . (2.11)

As discussed subsequently, data imply Cy > C,,, so we take a(f) = ap(¢) for the
energy dependence of the cut.

2.2.4. JECr = 2=+ | exchange. Unnatural parity exchange amplitudes in vector
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meson production with nucleon non-flip coupling can only receive contributions
from the exchange of axial mesons (A; — D nonet) and their JP€ =2+ exchange
degenerate partners (no resonance state known). Thus in 7N — pN, A, exchange
could contribute, but aside from other problems the A, contribution has a zero at
() = 0 (from signature and absense of known J£C = 0—* state), while the 7 con-
tribution has a pole at a(r) = 0. Thus the 7 is doubly favoured over the A; at

a(t) ~ 0. Conversely, in w production, the B exchange contribution has a signature
zero at a(t) = 0, while the Z (JPI¢ =2-1%) exchange contribution would not
vanish at a(#) ~ 0 and could be relatively important. The only clue for the helicity
coupling of Z exchange at the meson vertex comes from the ratio of Ay — p(A) +7
with A =0 and 1 in models [17}]. This leads to a dominant A, = 0 coupling and for
simplicity we use eq. (2.3) to give the s-channel Z,, to 29+ coupling ratio. For the
t dependence of Z exchange, we make the economical assumption that all the unnat-
ural parity exchanges have similar slopes which leads to

. Ay — QO
Z,, g&z/gy cosiima; I'(1 —az)/pp 778
— = — , (2.12)

B,_ —t' sinjimoag T(—ag) \pg

where g, controls the strength (sign unknown) and o is taken as 0 + &'z

TN — wN
T T T T T
dg —— 6 GevVic
1000 dt ---17.2 GeVic

gl

LT

o
>
]
o
o
2 4
10 | N -
F 4 w°p 6 Gevic ‘\ 3
[ § wep 5.1 GeVic \\ ]
[ 4 wep 695 Gevic ;
$ wen 55 Gevic
I S S| ) 02r , 4 1]
0 0.2 04 06 (o} 02 04 06
-t Gev?

Fig. 3. The data {18, 19] and model fit to 7N — wN cross section and s-channel density matrix
elements at 6 GeV/c. The cross-section data at 5.5, 6.95 and 5.1 GeV/c have been scaled by
0.82, 1.38 and 0.70, respectively [i.e. by (pL/6)_2'25] to an effective momentum of 6 GeV/c.
The model prediction for 7N — wN at 17.2 GeV/c is shown by dotted curves.
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2.2.5. Our model. In summary the contributions considered are

0

P —_Bg—’ P9+=Z9—+’

Py =By +Ci_, Py=Ziy,

Pi_=pi_+Ci_, Pi =pi,. (2.13)

Insufficient data on 7N = wN exist to extract a reliable energy dependence of
the different components. Thus we consider data [18, 19] in the region of 6 GeV/c,
where it is best measured, and attempt to describe it with the above contributions
linked to the previous model for p production. Some information from p—cw inter-
ference phases is also anticipated.

Setting g, =0, a considerable breaking of exchange degenerary for B is necessary
(three times expectation) and the large experimental value of P at small £ is not repro-
duced. The latter can be achieved readily by including a Z exchange contribution.

The parameters of a satisfactory description of the data (see fig. 3) are shown in

RHO AND OMEGA PRODUCTION AMPLITUDES

17 GeV/c

-t=01Gev? —— 7. -t =0.3 Gev?

Al
———— Pl
——Z0
-t=01Gev? -z -t=03 Gev? —---Z

Fig. 4. Argand diagrams of our p and w production amplitudes with nucleon helicity flip, at 6
and 17.2 GeV/c, for —¢t = 0.1 and 0.3 GeV?2. For ease of comparison the 6 GeV/c amplitudes are
scaled by the constant factor 6/17.2 (p(w) production amplitudes are shown by solid (dotted)
lines). Also shown are the magnitudes of the (incoherent) contributions pL, AL,’ Z?_‘_ and Z;_
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table 1. As shown in the Argand diagram of fig. 4, the cut C has its phase mainly
antiparallel to B_ to achieve the required P, /P_ ratio (o, _; large and positive). A
small contribution (C,) antiparallel to p serves to swing the resultant of P¥ anti-
clockwise into better agreement with the p—w interference phase data (sect. 3).
One unpleasant feature is that gp/gA ~ 2, unlike the dual expectation of unity. This
might be caused by normalization uncertainties in comparing the cross-section for
producing a wide resonance (p) with a narrow one (w). However, in appendix A we
discuss such normalization questions and no major uncertainty seems present.

A direct test of this exchange decomposition of w production is in the energy
dependence to higher energies and fig. 3 shows the 17 GeV/c prediction.

3. Polarization and interference effects in vector-meson production

The decomposition of the p and w amplitudes discussed in sect. 2 is shown in the
Argand diagrams of fig. 4. Characteristic features are the ¢t and s depenence of the
phase of P _ for p production, due to the interference between the cut C and A,
contributions. The phase of C¢ is rather constant with energy and momentum
transfer and influences the phases of P, for w production as previously discussed.
The non-flip nucleon couplings to Z, p and A, are also all significant and will give
substantial polarization effects.

3.1. Interference effects

The relative phases of p and w production amplitudes are observable from the
electromagnetic p—w mixing in the 77 decay channel and via SU(3) from a compar-
ison of K* and K*¥ production. The p—w mixing in observable P; (i.e. P,, P_ or Py)
is controlled [20] by the bilinear combination of production amplitudes

Pl (p)PL ()" +PL_(0)P _(w)*

= £ [P )2 + 1P _(0)P]T (1P () + 1PL (@)?] e 3.1)

Thus the relative phase ¢; can be measured directly (with no ambiguities), while the
coherence £; can only be determined if the w — nm branching ratio is well known.
The relation to K* production from SU(3) is

V2 PiK*) = Piw) + Pi(p), /2 PKF) =Pi(w) - Pi(p), (3.2)

where the phases are such that K* production would be real for exchange degenerate
Regge poles in p and w production. Thus for observables:

|PI(K*) |2 — |PIKF) |2 = 2Re[PL, (p) P}, (w)* + P (9P, _(w)*]

L
2

=25, [IPL (o) 2 +1PL_(0) P17 [IPL (@) + 1P, ()] cos ;. (3.3)
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Table 2
p—w interference phases

Amplitude —t 6 GeV/e 17.2 GeV/c
(GeV?) ® ¢ ¢ data ® £ ¢ data
(degree) (degree) (degree) (degree)
0-0.08 69 0.54 7030 69 0.43
Py 0.08-0.2 69 0.77 69 0.68
0.2 -0.45 69 0.81 45+30 69 0.84
0-0.08 218 0.47 218 0.36
P 0.08-0.2 106 0.38 7025 106 0.32
0.2 -0.45 87 0.71 120+ 15 87 0.64
0-0.08 93 0.36 75+30 180 0.19
P, 0.08-0.2 188 0.38 140+ 20 241 0.64 205+15
0.2 -0.45 241 0.84 170+ 20 255 095 230+ 7

The phase (¢) and coherence (&) are defined in the text (eq. (3.1)). The preliminary data for ¢ is
taken from refs. [14] (6 GeV/c) and [11] (17.2 GeV/c). The observed strength of p—w inter-
terence effects in #N — mnN data is controlled by £§I'(w — wm). Compared to the usual assump-
tion of complete coherence (¢ = 1), our predictions for £ will result in values of I'(w — nn)
enhanced by 1/&.

Thus the difference of K* and K* observables yields similar information to p—cw
interference, but uses the assumption of SU(3) and gives only £; cos ¢;. The relative
normalization of K* and K* is also difficult to obtain with good precision experi-
mentally. A comparison with preliminary p—cw interference and K* — K* data at
6 GeV/c [14] is presented in table 2 and fig. 5. The two types of data agree general-
ly with each other and with the expectations of our models for p and w production.

Since the w — 77 branching ratio is not well determined, the coherence & has not
been determined experimentally. The relative coherence, however, is found [14] to
be smaller for P than for P_ or Py and this is in general accord with our expecta-
tions. The change in phase with increasing |¢| ofPL for p production as the A,
takes over from the cut combined with the relatively important P} contributions
yields a too-pronounced swing in p—cw interference phase for P, . This feature can
be improved by resorting to the solution (sect. 2) for p production with ni/né re-
duced and a consequent less steep ¢ dependence of the cut and less dominant Pi+
contributions. The phase of <90° between the B and 7 exchange in Py, and the
phase of 2 90° between p and w production in P_ are well reproduced by our
model amplitudes. A strong energy dependence of the p—w phase for P, is also in-
dicated in table 2.

The K* and K* charge-exchange observables are in acceptable agreement except
for P_. Here, aside from a small effect due to 13 pgg bresent in the data, the effects
of SU(3) breaking must be considered. This could be due to cuts which are not SU(3)
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Fig. 5. Our SU(3) prediction and K* production data at 6 GeV/c (pg{)(da/dt), (,ollq1 + pli{_l)
(do/dt)). For the comparison with the preliminary data of ref, [14], which contains § pgg in
each component and uses the mass cut (0.83 < my ; < 0.95 GeV), the prediction has been mul-
tiplied by a factor 0.443.

octets in the f-channel — a serious possibility since the pomeron exchange is not
empirically an SU(3) singlet and also Regge-Regge cuts can contribute. An alterna-
tive explanantion lies in SU(3) broken mass values which enter into the expression
for the crossing matrix used to obtain the s-channel 7 exchange contributions to P_
from the ¢-channel expressions in which A, = 0 is dominant (eq. (2.2)). Thus for the
vertex @ — m by m exchange

(3.4)
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This ratio is larger for K > K* than for m = p processes. Thus in agreement with the
data, a larger value of P_ /P for K* (or K*) compared to p would be expected since
the destructive interference of the cut enhances the effect beyond 1 = —u?2.

3.2. Polarization effects

Fig. 6 shows predictions for p and w production polarization, as well as for
¥N = 7t N where vector dominance (y ~ p—w/2.8) has been used. The polarization
plotted, P, is that arising from natural parity exchange alone

Poo,=-2Im(P],P*), Po=P.o, +P0, . (3.5)

In our model P, is zero for p production and thus for p production and to a good
approximation for photoproduction P, can be equated with Po/o,, which is the
quantity plotted as data [21] in fig. 6. The structure in the polarization arises from
the phase ofPi_, which swings from the phase of C? to that of A, as [#] increases
and which thus passes through 90° relative to P}, = 4,4 at an intermediate r-value.
The energy dependence of Py for 1N — pN and yN - 7N is also characteristic of
our model with its significant A, — C? interference which shifts with energy.

P, for w production depends on the sign of the Z contribution which has not
been determined. The effect of introducing an exchange degenerate A; contribution
in 1N — pn will be very small as argued previously and this is shown quantitatively
for our choice of A;—Z trajectory in table 3. Such small A /7 ratios will not affect
differential cross section and density matrix observables in which they enter qua-
dratically, while polarization effects are linear in A, /7 and so could become signifi-
cant at |#| ~ 0.3 or larger.
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Fig. 6. Predicted nucleon polarization in vector meson production. The more reliably estimated
natural parity exchange component (see eq. (3.5)) is shown. The prediction for yp — #»*n ob-
tained from vector dominance is compared with data [21] at 5 and 16 GeV/c.
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Table 3

The ratio of Z(JPIG = 2_1+) to B exchange in helicity zero amplitudes at 17.2 GeV/c (as de-
duced from our model) and the exchange degeneracy prediction for the equivalent quantity A /=
in p production

-t 1Zo/Bo! 1410 /7ol
(GeV?)

0.05 1.76 0.0094
0.1 1.24 0.023
0.3 0.67 0.112

Further polarized target observables can be measured [7] with the target polar-
ization in the scattering plane. Quantities which are interference effects between
natural and unnatural parity exchange can then be analysed. Thus the relative phase
of PE_ and PL, for instance, can be tested in 71N = pN. Such observables can be
constructed from our parametrizations for the amplitudes and checked from the
Argand diagrams of fig. 4.

4. Tensor meson production
4.1. Introduction

Spin-2 meson production on nucleons involves 10 helicity amplitudes which are
related to density matrix elements and decay angular distribution moments as de-
scribed in appendix A. The combinations which correspond to specific exchange
naturality are

DY, =HY,, DL =VIHL,*HR) . DL =VIMHRFH). @)
D% and D27 are the natural parity exchange amplitudes.

For spin-2 production, removing the spin 0 and 1 background in the decay
channel is much more difficult than the analogous problem for spin-1 production.
The presently available data on tensor meson production are also considerably less
complete than for the vector production we have discussed. This leads us to try to
combine our models for the exchange amplitudes in vector meson production with
some additional theoretical input to describe the tensor meson amplitudes. This
proves very useful as a preliminary study of tensor meson production.

Application of local duality to Regge + particle total cross sections [2] or to
Regge + particle - particle + particle amplitudes [3] allows a general discussion of
the relative production mechanisms for states of different mass but similar exchange
quantum numbers. A much more specific analysis can be made by employing [4]
the Regge recurrence production vertices in the dual resonance model. The latter
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(dual boost model) yields specific expressions for the ¢ dependence and helicity de-
pendence of the Regge-pole exchange vertices for producing states on the same
Regge trajectory (e.g. p—f-g or w—A,). We shall employ and investigate such dual
model relations. The other necessary contribution, the cuts, will be deduced from
the experimental data as far as possible.

4.2 7N~ fON

The exchange contributions will be the same as those for 7N — pN discussed in
sect. 2 and we present here the “dual boost” predictions for fO production relative
to p.

4.2.1. m exchange. At t = u? the coupling reduces to the relevant partial decay width
to mm. The dual boost prediction of I'y ~ 0.85 T, is smaller than the experimental
(6] ratio T ~1.03 I',. However, the discrepancy is not serious — a factor of 1.1 in
the production amplitude only. Our fO model is normalized to the experimental
width as described in appendix A.

The A, =0,1,2 0r A; =0, 1, 2 contributions from Reggeized 7 exchange have
been calculated [4]. In the s-channel the helicity coupling ratios, normalized to 1 at
t=pu? for \, = 0, are given by

PaXy =klm?+2u2 + (- p2) (2 - 1/a'm?)]
2ys 1 '
anl—_E *3[””,

PaXS_ =431, (42)

where 4p§ =m? — 4u? and m is the tensor meson mass. The z-dependence of fO pro-
duction relative to p production is given by the dual vertex factor

' o (1) -1
Vot bt e—;imxn(n( PL

I _ f ys
Ty_ =g, X; 5 o
ur —t 0

(4.3)

Compared to eq. (2.4), the only difference in -dependence comes from the factor
X;. Thus for A, =0, 719_ is a steeper function of ¢ for fO production than for p pro-
duction, since Xf) is at small ¢ equivalent to an exponential with slope 0.9 GeV~2.
This is a very clean prediction, characteristic of the dual vertex factor, since the
more general dual approaches [2, 3] predict, on the contrary, an f9 t-dependence
less steep than for the p. These latter approaches are, however, less specific since
they apply to the sum of all helicity contributions.

4.2.2. A, exchange. The ratio of natural parity exchange to unnatural parity ex-
change is expected to decrease with higher masses produced in all dual-based ap-
proaches [2, 4]. The specific “dual boost” model gives g, /g, ~ 0.7 of the p-produc-
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tion ratio. The ratio of A; =2 to A; = 1 is also specified:

2+
Ax - _ 2mv-t @.4)
A w22 27 -

where a,, w3 =1.
The ¢-dependence of A1* is expected to be the same for f9 as p production and
the ratio r of ++ to +— nucleon couplings is also retained.

ap(t)-1

1y PL
A41.t = —8a l"ebAt e zmaA(t)(_E_ . (4.5)
0

4.2.3. C exchange. In specific absorption models, the cut strength is tied to the 7-
pole strength and ¢ dependence. Thus no substantial change from p to f9 would
have been expected. In practice, data show [0, 22] a reduction in g./g,. (at small ¢)
of ~ 0.7 in going from the p to fO. No explanation exists except for the possibility
that some of the cut could come from A, absorption which would then decrease by
such a factor as discussed above. Data analysis also indicates [12] the necessity of
an n = 1 cut in the amplitude H %4 which vanishes like /= instead of (—t')% as the
pole contributions. Thus we choose a parametrization

ac(t)—l
ct =cl- =gc e e_%imc(t)(ﬂ) ,
Po
ac(t)-1
Czt _ C42-: =ﬁgc2 ebct eflzinac(t)([;_:;) ) (4.6)

where a-(f) is chosen the same as for p production.

4.2.4. Our model. In summary our exchange contribution are

0o _.0
Dy =my_,
- _ _1- 1- 1+ _ 1+ 1+ 1+ _ 41+
D, =n,_+C,_, Dy =A;"+C,, D, =4,
D =alT+C¥, DX =a¥ +c¥, D% =4l @7

A complete separation of J = 2 effects fromJ =0 and 1 in the £ region exists
[12] at 17.2 GeV/c. This was achieved by parameterizing the fO production ampli-
tudes and we show the result in fig. 7. Our dual boost plus p-production model ap-
proach is easily able to reproduce the amplitudes as shown in the figure. The para-
meters are given in table 1. In this description of f0 amplitudes the = contributions
were completely fixed as described above; the A, contributions were fixed except
for g /g, which is forced to be substantially smaller than the dual value; g, b and
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Fig, 7. The £° production amplitudes at 17.2 GeV/c. The points are the amplitudes as extracted
in ref. [12] and the curves are our model reconstruction of them.

&c, were free and obtain reasonable values. Thus the dual vertex factors with little
freedom reproduce the whole complex structure of the fO production amplitudes.
In particular, D, is given entirely by the 7 contribution and the shrinkage of slope
compared to p production is exactly predicted. The fraction of natural parity ex-
change in fO production is relatively small as predicted by the dual approaches and
is consequently not well determined. We are thus unable to confirm the expected
decrease in g, /g, from p to fof 0.7. Our f0 production amplitudes are consistent
with lower energy data. Such data exist either as bounds on J = 2 contributions [23]

or with specific background assumptions [19] to separate out the fO component
(see fig. 8).
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Fig. 8. £% and A, production differential cross sections at 5.1 GeV/c. The points are those of
ref. [19] and the curve is the model prediction,

4.3. iN = AN charge exchange

Available dataon 7 p - Agn orntn - Agp afford little help in constructing a
model. A combination of exchange degeneracy relations applied to 7N - fON, and
dual boost relations applied to "N = wN give strong predictive power. The more so,
since exchange degeneracy breaking has been investigated while comparing
7N = pN with 7N — wN and the dual boost relations have been tested in going from
7N > pN to 7N - fON. For the individual exchanges we assume the following.

4.3.1. B exchange. This is taken as exchange degenerate with the fO production
7 exchange contributions employing the same B/7 ratio as eq. (2.9) with gp/g;; fixed
at the p—w value.

4.3.2. p exchange. This is taken as exchange degenerate to the A, exchange am-
plitudes in fO production together with the factor gp/gA =2 used in relating p to w
production (eq. (2.10)). Note that this factor of 2 largely compensates for the fact
that the g, /g, ratio in f production was much less than the dual boost value from
p production. That the dual prediction persists is not unreasonable, since p exchange
in 7 = A, shares the same coupling as A, exchange in 7 = p when evaluated at the
common A, pole and p pole.
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4.3.3. Z exchange. The ratio of Z to Bis as in eq. (2.12) with g /gp fixed at the
w production value (table 1) and B exchange as above.

4.3.4. Cut contributions. The effective cut in w production (C/gg),, is scaled by
the same factor as the fO cut is in relation to the p cut:

(Clgp)a, = (Clgn)es (8c/8)0 (8c/2n)p" - (4.8)

The t dependence of the w cut is already very flat, so that it is maintained un-
changed for the A, production cut. In the same spirit, we also introduce an helicity
2 cut with the ratio of C,/C the same as in f0 production (gc, /gc).

4.3.5. Our model. In summary, the exchange contributions are

DY =BY_ . Di_=Bl_+ci_, D{_=p +Ci_,

D9-+ =Zg+ . Di=Z4,, Dy, =pi,, (49)

where i = 1—,2—andj= 1+, 2+.

The model is completely specified in advance by a mixture of theoretical and
phenomenological constraints. The predicted differential cross section for A, pro-
duction is compared with some data at 5.1 GeV/c [19] in fig. 8 and the agreement
is seen to be reasonable. Better data in the 37 or nm decay mode, including density
matrix elements or decay moments, would be of great interest in testing our ideas
for the charge-exchange production of A,.

Mearge evidence [24] on the energy dependence of ntn - AOp suggests a de-
crease of cross section with ag ~ 0 consistent with the dominant unnatural ex-
change in our model.

Finally, in this section, we review the status of the dual boost factors which
proved so useful in constructing tensor meson production amplitudes. In relating f0
production to p production, the = exchange contribution is completely specified.
The agreement is reasonable for the normallzatlon TI/r ), and excellent for the
t-dependence of the A; = 0 amplitude (b —b2~09 GeV 2). The helicity struc-
ture proposed also av01ds the problem of crossing matrix zeros in Py and Dy and at
the same time gives a satisfactory account of the measured helicity couplings on the
exchange degenerate B-meson pole (B > wn dominantly X , = 1). The expected
suppression of natural parity exchange relative to unnatural parity exchange in
going from p to f; production is found in our analysis, but is stronger than antici-
pated. The same comparison between w and A, production is closer to the expecta-
tion of the dual vertex model. A similar comparison of natural parity exchanges in
data for 1N - oN and 7N — A, N with /, =0 also suggests [1] that they decrease
somewhat more rapidly for the production of higher spin resonances than in the
model.
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5. Interference effects in f¢ and A, production

An Argand diagram of the f® and A, production amplitudes of our model at
17.2 GeV/c is shown in fig. 9. Compared to the p—co situation (fig. 4) the most
noticeable difference lies in Dg + which is dominated by the cut and so remains near
180° compared to D, . Thus (unlike p, w production) the phase difference be-
tween 0 and A, natural parity production amplitudes varies little with —¢ (~ 120°).
The dominant unnatural parity-exchange amplitudes have a phase approximately 90°
ahead for f production compared to A, production.

Just as for p and w production, the relative phase between f0 and A, production
amplitudes is observable — and in two independent ways. The K*(1420) and
K*(1420) charge-exchange production reactions are related by SU(3) to f0 and A,
analogously to egs. (3.2) and (3.3). Fig. 10 shows the prediction of our model for
the production cross-sections of these mesons compared with data [25, 26] near 4
GeV/c. Normalization uncertainties, particularly with a deuterium target, make this
a rather imprecise test. Relatively well normalized data with density matrix element
information would be needed to investigate the interference effects properly.

f° AND A, PRODUCTION AMPLITUDES AT 17.2 GeV/c

-t=01 GeV?

0 5 1 1
-1=03 GeVv? L1 11 I(ub)2 GeV"”
Dl

Fig. 9. Argand diagram of the model nucleon flip amplitudes for £° (solid lines) and A, (dotted)
production at 17.2 GeV/c at —t = 0.1 and 0.3 GeV?. For clarity the (exceedingly small) ampli-
tudes D%°2 are not shown.
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Fig. 10. Comparison of our SU(3) predictions for K™p — K*°(1420)n (solid line) and

Ktn— K*0(1420)p (dotted line) with the 4.2 GeV/c data [25, 26] (solid and open points, re-
spectively), The 4.6 GeV/c deuterium data of ref. [26] has been scaled by (4.2/4.6)'2 to an ef-
fective momentum of 4,2 GeV/c.

A more complete test in principle, analogous to p—w interference, is provided
[27] by the common decay channel of O and A, into KK. Both mesons can decay
by strong interactions with comparable strength into KOKY and K¥K~ and inter-
ferences between their combined production and decay amplitudes will result. Gen-

eralizing eqs. (A.3)—(A.7) of appendix A this gives observable combinations of the
form

E |Fis, 1) Bi(m) + AL(s, ) BA2(m) |2 | 5.1)

where F’ and A’ (i=0,1%,2%) represent production amplitudes (assumed approximately
constant in KK mvar1ant mass ) and Bf and BA2 are the decay factors of eq. (A.5).

The phase and modulus of these decay factors are illustrated in fig. 11. The mass,
width and branching ratio parameters used are collected in appendix B. The relative
phase 6z — &, of the f0 and A, resonance decay factors is also shown as a function
of KK mass in fig. 11. This is of interest since it is the variation of this phase with m
that allows the ambiguity in the sign of the relative f and A, production phase to be
resolved. Thus, like p—w interference, a more complete measurement is possible in
principle and with no SU(3) assumptions. The relevance of the relative phase de-
pending on m is understood on considering the interference term in eq. (5.1):
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t AND A, DECAY AMPLITUDES
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Fig. 11. The modulus and phase of the 0 - KYK— (full curve) and Ay — KYK— (double-dotted
curve) Breit-Wigner decay amplitudes B(mKK) [eq. (A.5)]. The mass, width and branching
ratios used are discussed in appendix B. We also compare the resonance phase differences

6f—6 Ay (single-dotted curve) and 6°—8% (dashed) where the mass scales are chosen to coincide
atmgg = 1270, m,, = 770 MeV ((m, I‘)p =(772,143); (m, 1), = (784, 10) MeV).

20 Re(FL A% BN (m)B™ (m)*)
m

= L IFLRY { 25148121 1B m) | 1B™2(m) | cos(g; +8¢(m) — 8,,(m)).

u u (5.2)
The known m variation of B and thus & then allows the f—A, relative production
phase ¢; to be uniquely determined.

In practice this effect can be well controlled since, because of isospin, the 0~A2
interference changes sign both with the change from proton to neutron target (as for
p—w interference) and with the change from K¥K~ to KOK? decay channel. An
easy way to visualize the respective signs for the four relevant processes is via duality
diagrams as shown in fig. 12. Thus processes (b) and (¢) 7~ p > K~K*n and
7" n — KOKOp have real production phase duality diagrams (like KN - K*(1420)N)
while (a) and (d), 7~ p - KOK%n and 7*n > K*K~p, have rotating phase (like
KN - K*(1420)N). Thus for processes (b) or (c) the production phases will be as
drawn for the Argand diagram of fig. 9, while for (a) or (d) an extra 180° is needed.



A.C. Irving, C. Michael, Vector and tensor mesons 305

1A n KO

A J—

b :K°

p n
(a) (b)

T [) K
.
L
n p
(c) (d)

Fig. 12. Dgality diagrams for the four processes: (a) 7~ p — KOKOn, byn p— K’K‘Ln, (c)
a*n— K°K%p and (d) ntn - KTK p.

KK MASS SPECTRUM AT 12 GeVic

I ' T T‘\
- n‘p-KOIRUn
‘Z(Tt'p ~KKg n)
0 ——— wp-KkKn 1

b=} | |
1200 1250 1300 1350 1400
m _ MeV
KK

Fig. 13. The predicted KK mass spectrum ([ ¢| < 0.5 GeV2) forn " p— K*K nand
n~p - K°K%n at 12 GeV/c is compared with the n~p — K$Kgn data of ref. [29].
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np—~KKn MASS SPECTRUM AT 17.2 GeVic
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Fig. 14. The predicted mass spectrum da/dm of #p -~ KKn at 17.2 GeV/c integrated over

it < 0.5 GeV? ((a) (b) and (c¢)) and over 0.2 < |t1 < 0.5 GeV? ((d) and (e)). (a) and (d) show o,
the full mass spectrum; (¢) shows the helicity zero contribution g¢; and the helicity one and
two contributions are given by their natural (o) and unnatural (¢_) parity contributions in (b)
and (e). (f) shoys do/dt integrated over the region 1170 < mgg < 1410 MeV as a function of ¢,
The n7p— K°K’n (K*Kn) predictions are shown by full (dashed) curves. Contributions pro-
ceeding via £0 (A,) production are shown by single- (double-) dotted curves.

As an example, consider the contribution to |D0|2. At m ~ m o the 0 Breit-Wigner
phase is ~ 50° ahead of the A, resonance decay phase (see fig. 11) and the f0 pro-
duction amplitude is ~ 70° ahead of the A, production (see fig. 9) so that the over-
all relative phase will be ~ 120° (destructive) for (b) or (c) and ~ 120° + 180° (con-
structive) for reactions (a) or (d).

More comprehensive predictions are shown in figs. 13, 14 and table 4 for differ:
ent combinations of observables in 7N - KKN. Fig. 14 shows the various compo-
nents of do/dm for |¢] cuts of 0 < |t < 0.5 and for 0.2 <|£] <0.5 GeV2. The
latter cut samples the region of largest production phase difference in D _ so ex-
hibiting larger interference effects in do _/dm and hence in do/dm (do,/dm is small
and the helicity zero production phase difference is independent of ¢ in our model).
A general feature of the predicted mass spectra of figs. 13 and 14 is that the maxima
of both 7~ p > K~K*n and 7~ p - KOKOn are shifted from the position of the domi-
nant O (1270 MeV) towards higher masses (to 1325 and 1300 MeV, respectively).
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Table 4
The predicted normalized moments of the KK angular distribution in 7 7p — KKn at 17.2
GeV/e and mg g = 1310 MeV ((Y) = 1/\/417)

Moment K°K° KtK—
vd 0.132 0.140
€T -0.010 -0.009
ey 0.089 0.118
xh 0.081 0.082
r? 0.062 0.051
Y 0.032 0.030
rhH 0.011 0.013
rd 0.002 0.001

For m~p - K~K*n (or equivalently n*n - KVKOp) the shift is more marked and a
definite asymmetry around 1325 MeV is anticipated.

Also shown in fig. 14 is do/d¢ (in the mass region 1.17 <m < 1.41 GeV) for
7~ p—~> K*K-nand np > KOKOn. The interference effects are seen to be small.
Another way to exhibit the data is to show the normalized moments (Y{;,) (eq. (A.6))
for KK production. However, these are predicted to have very weak m dependence
and small interference effects. This is understandable since in general each <Y1f4> isa
sum over many exchange components whose contrlbutions tend to be diluted. In
table 4 we give the predicted values of the <YM) at m = 1310 MeV, where the KK
spectra are approximately maximal. Only the <YM> moments will be independent of
S- and P-wave background uncertainties.

To make maximum use of interference effects, care of these J < 2 contributions
and of accurate relative normalization will be needed experimentally. Another source
of uncertainty is the precise fO > KK (and to a lesser extent A, - KK) branching
ratio. The quoted [28] value of f9 > KK/f0 — all =0.05 + 0.03 is based on data
samples in which the effects of {0 — A, interference have had to be taken into ac-
count in principle. Thus, since we have a reasonable model for the relative strength
and phase of f0 and A, production in 7N - KKN, we are in a position to re-evaluate
the f0 - KK branching ratio. As an example, fig. 13 shows data [29] on 7~ p >
KOKOn at 12 GeV/c, together with our (absolute) prediction* including 0 — A,
interference and using fO - KK/f0 — all = 0.025. Taking account of the normaliza-
tion error on the data, and the possible contribution of S- and P-wave KK; this
yields a KK/all branching ratio 0.025 + 0.01. Our curves in fig. 14 are evaluated
with this branching ratio which has the virtue of being closer to the theoretical

* ThlS contrasts with the experimental analysis [29] of the same data which added incoherent-
ly £° and Ay and estimating equal contributions of the two resonances, compared with the
then existing £° production data in the nw mode and claimed 0 - KK/f - ~ 0.06.
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value from SU(3). Thus, ideal mixing in the tensor meson nonet gives equal f OKK
and A,KK couplings and allowing for D-wave phase space ['io o ¢ = 0.7
Ty, kR ~ 34 MeV, ie. I(f0 - KK)/I'(£0 ~ all) ~ 0.02.

6. Conclusions

(i) The simple exchange-model ideas of exchange-degenerate, factorizing, SU(3)
symmetric £-channel Regge poles, togethcer with empirical cuts in over-all non-flip
amplitudes, have proved a very useful guide to the data. Exchange-degeneracy
breakings of up to factors of 2 have been found necessary, in particular between p
and A, exchanges in vector meson production. It is important to consider a priori
all allowed pole exchanges (i.e. B, A|, Z ...) and then argue why their contributions
might be negligible (as for A exchange in 7N — pN).

(ii) The dual boost factors provide an economical description of higher spin
meson production. The predicted mass/spin dependence of the natural/unnatural
pole couplings, meson vertex helicity couplings and production # dependences
proved very satisfactory in the case of p and f 0 production. The dual vertex helicity
couplings were also shown to describe well the dominantly A , = 1 decay B — wm.

(iii) The empirically determined cut in p production has a remarkably steep ¢
dependence, although this can be alleviated by modifying the nt /176 ratio. For f0
production the cut is relatively smaller at ¢ = 0 and is less steep. No convincing theo-
retical explanation exists, although one possible contributory factor was discussed.

(iv) Improved data on the charge-exchange production of w, A, and f O overa
range of energies will allow many of the above feature to be clarified. Together with
polarization data, or data on the KK decay of f0 — A, (predictions for which were
presented), many more model-independent lines of analysis become accessible. Our
preliminary study of tensor meson production can easily be extended to higher spin
mesons — for instance the spin-3 states g and w*(37). Thus the systematics of the
dependence of the production amplitudes on the external mass and spin can be
established as soon as the relevant data becomes available.

(v) Our preliminary analysis of fO — A, interference in 7N — KKN (in which the
important role of the production amplitudes is emphasized) allows an estimate to be
made of the f0 > KK/f% — all branching ratio which we find to be 0.025 £ 0.010.

We are grateful to Alan Martin and Penny Estabrooks for helpful discussions and
communications.
Appendix A. Normalization and spin

Consider the process a + b - m + e, where m is a spin-/ resonance of helicity A
which decays with invariant mass m into two spinless particles ¢ and d. In the rest
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frame of m, the direction of p,, is described by spherical polar angles 6 and ¢ in a
frame with Oy normal to the scattering plane and Oz either along p, in the 7-channel
frame or along —p,, in the s-channel frame. The helicity amplitude fora+b—~>c+d +e
can be factorized into a production amplitude A7 and a decay matrix element M’

M7 dJ (cos8)eird
A’Ja (s’ t,mz,e, ¢)= E AJA#a(sy ta m2) }\O (Al)
Hekp N Mebb m% — m® — imTy(m)
where
P =22 2 4 1) Ty (). (A2)
We normalize A such that the differential cross section
do ! 14 (s.em2,0,8)2 (A3)

drdm2d§ (217)3 | 4'" Hcfo

where an average over initial spin states and sum over final spin states is implied.
Integrating over the decay angular distribution exhibited in eq. (A.1)

do J}\ua 2\ nJ, 2
= s, t,m<)B’(m A4
=T e, m) B )| (Ad)
where 1
[m;Toq(m)/n] ?
B/ (m) = C (A.5)
m2 — m? — imI'p(m)

are the decay factors relevant.
The generalization to the expectation value of the angular decay moments
Y,ﬁ(e, ¢) gives

<Y1%4>=\/—L 2 2 2L+ T I00ILO) (1Y WIA-NILMp: (A.6)
}\
with
J 2 dO’
Pxn(m*)
AX dm2
= 20 Ref uﬁ'jg(s t,m?)B’ (m) 4, M‘a(s t, m2)* BI(m)*] . (A7)

u

For resonance production it is convenient to introduce production amplitudes
averaged over the resonance mass spectrum and corrected for all decay modes. Thus
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the natural definition of a production cross section is to integrate over the resonance

peak:
2

do It de 7 do
—_— m
dt Teq J drdm?
my,
2,2
1(my , my) A

T )@t o A m)1?, (A.8)

which introduces the average production amplitudes. The average [ is defined so that
it is unity for a narrow resonance. In general, it depends on the mass dependence of

the production amplitudes A7 and the decay factors B/ :
2

I H
10m?, m?) =F—T [ amBImPR 2 14/ D 140 mHE . (A9)
ed ¥, My A y A
my

Analogous averaged results hold for the moments and density matrix elements of
resonance production. For explicit expressions and an extension to a mixture of spin
states see ref. [23].

In the special case of m exchange at # = u2, however, the dependence of the pro-
duction amplitude on 72 is known and can be used to obtain the normalization of

p and f0 production. Thus A7 contains [6] an additional factor of MY controlling
the production of resonance J by 7 exchange. Thus

L ch(mJ) Im —m? —imD(mD 24 T (m? '
T cd\'eg

(A.10)

This, combined with the Chew-Low formula [6], enables the production cross sec-
tion at ¢ - u2 to be normalized

t—u?) do! 2 g2
(——_‘;—,l——dt =—5 4ﬂCI(2J+1)mJI‘cd(mJ)I (A.11)
t=u* myp
NFL

The right-hand side at p; =17.2 GeV/c, with g2/an =144, taking I, =1, hasa
value (6. 55)2 ub for p production (I = 1;¢;,=1;'(m;) =0.143) and a value of (9.2
for f0 production (I = 0;¢;=%; T, (my) =0.81 X 0.182). These values are used for
normalizing our production amphtudes by equating them to g2 2bgu? (see table 1).
Representative values of /. (mL, mH) calculated from the mm phase shifts [6] are

1°(0.490, 0.689) = 0.495 , 1°(0.078,1.562)= 1.028 .

Thus about £3I" in m is needed to have 11‘: ~ 1. For the 0, with £3T" mass range
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Iﬂf =0.96. Thus our normalization of the p and f production amplitudes corresponds
in practice to taking a mass range of +3I". For the w, which is very narrow, our pre-
scription depends less on the production amplitude and is equivalent to taking the
whole signal — to which +3I' is a good approximation.

Appendix B. Decay amplitudes for fO and A,

To evaluate the resonance decay factors B(m) (eq. (A.5) of Appendix A) we need
the dependence of the total width I't and partial width I' 4 on subenergy m. For a
D-wave resonance it is customary to use a centrifugal barrier factor

{q 5 Dy(qrR)

where D5 (x) =9 + 3x% + x4, q is the decay momentum into the relevant channel,
and R is a constant representing the radius of interaction.

For the fO we take [6] (in GeV units): m; = 1.27, mass dependence of I' from
Ip(my) = 0.182, R = 3.5 with g as nm decay momentum; mass dependence of I'g g
from Py (mg)/T'r = 0.025 (see text), R = 3.5 with g as KK decay momentum.

For the A, we take [30] ma, = 1.324; mass dependence of I'y from I'p(my, ) =
=0.104, R = 3.5 with q as a mp decay momentum; mass dependence of I'y i from
kg (ma,)/Tp =0.06 [31],R =3.5 with q as KK decay momentum,
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Abstract: Dual structure of the mn scattering amplitude has been investigated in terms of the
finite energy sum rule using recent phase-shift data. The amplitude shows properties quite
consistent with the simple dual model in the framework of the two component theory of
duality.

Extensive study of dipion peripheral production has given information on 7w
scattering in the low-energy region and has enabled us to investigate a relation be-
tween direct-channel resonances and crossed-channel Regge exchange, called duality.
In this paper we present an analysis of 77 scattering by constructing the amplitude
in the Regge region in terms of finite energy sum rules using recent phase-shift data
[1-3].

We must include two resonance towers with different signatures in the direct
channel to study the relation between trajectories with different signatures in the
crossed channel. For the input of our analysis, we choose the partial-wave solution
of the Wisconsin-Toronto group [2] (from +/s = 0.60 to 1.48 GeV), which covers
the p- and f-meson regions?.

A set of sum rules with a continuous moment is written in terms of the integral
of a crossing-odd amplitude:

kv ;
St )= [ dvim [02 —vd) T D2+ D2 ) M
Yo

1 The solution of ref. [2] seems to have two flaws at a glance [3, 4], i.e., one is the absence of
the S*(980) and the other is the early onset of inelasticity. The contribution of S*(980) to
the integral of the FESR, however, is negligible because of its small elastic width, and the
early onset of inelasticity may not have a serious effect after integration. On the other hand
we do not take the LBL solution [3], because of its large f-wave contribution which is incon-
sistent with recent experiment [4].
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where v = L (s —u). For I, = 0 and 2, we make T crossing odd, multiplying the origi-
nal amplitudes by v. We evaluate the integral up to Vs = 1.48 GeV over the region
0<—1<2.4(GeV/c)? with moments —4 <e< —1%. Since the finite energy sum rules
are known to be well saturated by low-lying resonances provided the cut-off is chosen
midway between two adjacent resonances, [5, 6] our cut-off at /s = 1.48 GeV,
which lies midway between f and g mesons, is appropriate to test the duality.

I, = 1. The integral (1), for each moment e, exhibits the phase of the amplitude
given by the effective trajectory a,(¢) = 0.5 + 1.1£. In fig. 1 we present the #-de-
pendences of both the imaginary and real parts of the scattering amplitude in a
Regge region, which are given by (a, + 1)S(z, —2) and (ap +2)S8(¢, ——3)/\/1)12\/ — V%,
respectively, assuming T ~ v*?. Both imaginary and real parts exhibit the behaviour
characteristic of p Regge pole exchange with the Gell-Mann mechanism [7]: the
imaginary part has single zeros at £.~ —0.4, —1.4 and —2.3 (GeV/c)2, while the
real part has double zeros at t ~ —0.4 and —2.3 (GeV/c)? and has a maximum at
t~—1.5(GeV/c)2.

In order to test the resonance dominance of the imaginary part of the non-dif-
fractive amplitude, which'is one of the requisites for the duality, we also show in
fig. 1 the imaginary part of the amplitude calculated from the integral saturated by
p, f and €'(1260) (second daughter of f) resonances’ . The figure shows that the p
Regge pole exchange amplitude is built of the sum of p, f and € in the direct
channel. We have made the same analysis including two more resonances p'(1590)
and g [8] in addition to p, f and € and choosing the cut-off at 1.81 GeV and found
single zeros at # =z —0.4, —1.4 and —2.1 (GeV/c)? in agreement with the results
above. This indicates that the structure of the imaginary part of the amplitude re-
mains unchanged as the cut-off is taken higher.

It should be noted in particular that the amplitude near the first zero is described
by the Regge pole exchange in contrast to the helicity non-flip amplitude in meson-
baryon scattering, where the imaginary part has a zero at r ~ —0.2 (GeV/c)2. The
prediction based on a low-energy nm model [9], which gives a zero near ¢ = —0.2,
does not agree with the FESR analysis, unless the partial waves higher than the
leading resonances contribute unexpectedly. If this feature of the mm scattering am-
plitude persists at high energy, a considerable contribution from lower partial
waves is required and the smaller radius of the peripheral 77 interaction (R ~0.8
fm) which is consistent with the position of the first zero at —t ~ 0.4 (GeV/c)?
would not be sufficient to assure the observed behaviour, particularly beyond the
first zero.

T For the low-energy region (+/s < 0.6 GeV) where phase-shift data are lacking, we extrapolated
the partial-wave amplitudes consistently with the current algebra requirements. Qur results do
not depend on the details of the extrapolation.

The resonance parameters are determined by a fitting procedure to the partial-wave ampli-
tudes of ref. [2], each amplitude being assumed as a sum of a Breit-Wigner form and a con-
stant background term. The parameters are: m, = 0.782, r,= O.l37,xp =0.93;m;=1.261,
I'p=0.183,xp=0.78;m, = 1.316, T',, = 0.267, x, = 0.73 (in GeV units). A change of the
parametrization, especially of €', has little influence on the results.
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Fig. 1. t-dependences of the imaginary and real parts of the I, = 1 scattering amplitude in the
Regge region (solid curve), given by

\/v uo Ty, 1) =ile, +1)S8¢, —2)+(a +2)8¢, _3)/\/1; ”0’

where v 5, stands for the cut-off of the integral. The errors shown are those calculated from the
data of ref. [2]. The dashed curve represents the imaginary part of the amplitude calculated by
resonance saturation. (The amplitudes are in units of GeV.)
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Fig. 2. p Regge-pole parameters, o (t) (a) and {3 ) (b), determmed in a t-independent manner
(circles) as well as a f-dependent manner for 0 < -t <1 (GeV/c) (solid curve). The errors for
ozp(t) are only typical. (ﬁp(t) is in units of GeV.)
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The remarkable feature also seen in fig. 1 is the #-channel Regge pole behaviour
which persists in the large |7| region as far as t =~ —2.4 (GeV/c)2. Although we are
in the region of the third double spectral function in the integration for large |¢],
the sum rule is expected to be written safely because of the absence of a dual (s, u)
term in the /, = 1 combination, (s, #) — (4, ). In addition to this, the absence of an
(s, u) term implies that the amplitude is described in terms of Regge-pole ex-
change in the s-channel even in the backward direction, so that, as we observe in
fig. 1, the imaginary part of the amplitude at fixed u cancels when averaged overan
energy interval As & 2 (GeV)?2, while the real part gives a positive value in agreement
with the p-f exchange degeneracy in the u- as well as s-channels.

The Regge-pole parameters, a,(f) and §,(¢), determined in a f-independent
manner are shown in fig. 2 T. They are consistent with roughly straight trajec-
tory with a,(0) = 0.5 and a' >~ 1 (GeV/c)~2 and the residue function B, () ~
1/T[a, 1. We have estlmated ﬁp(mz) which is related to the p-width in the
t-channel in terms of a ¢-dependent analysis assuming a linear trajectory and a
quadratic parametrization in ¢ for §,(¢) in the forward region 0 < | #] < 1
(GeV/c)?. This analysis gives & ,()=0.52+1.087and I') = 0.15 GeV, consistent
with the p meson width in the s -channel F ~0.13 GeV*

I, = 0. The two component theory of duahty [10] assumes that the imaginary
part of the amplitude in the forward region is given by the sum of f Regge and
pomeron exchanges which are dual to s-channel resonances and the non-resonating
background part, respectively. This assumption has been ascertained in the case of
meson-baryon scattering by separating the ordinary Regge amplitude in terms of
the resonance approximation in the s-channel [11—13]. The saturation of the p-ex-
change amplitude by the s-channel resonances allows us to expect they also saturate
f-exchange in the /, = 0 amplitude.

The integral corresponding to the imaginary part of the /, = 0 combination of the
resonant amplitude is presented in fig. 3(a) in the forward region up to ¢t =—1.0
(GeV/c)?, together with that of the full amplitude. The resonant part has the quali-
tative features of single Regge-pole exchange with the Gell-Mann mechanism like
the p-exchange, and is quite consistent with the p-f exchange degeneracy. To make
it clear the imaginary part of the p exchange contribution to the I, = 1 amplitude
multiplied by 3 is added in the same figure. The slight difference between the two
amplitudes is due to our cut-off of the integral and will become smaller with alter-
nating signs as the cut-off is taken higher.

On the other hand the non-resonating background part shows a diffraction-like
t-dependence as is seen in fig. 3(b). The magnitude of the forward peak corresponds
to the asymptotic total cross section o,, =~ 28 mb. Although this value seems a bit
larger (02xP ~ 18 mb [14]) it should not be taken too seriously, since it depends on
the choice of a partial-wave solution and the separation of the background part.
tot o Ot _en 6,(0) $%p0-1

i The residue g p(t) is normalized as Tt O

* See third footnote of this paper.
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— T
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Fig. 3. (a) the integral S(¢, —2) corresponding to the imaginary part of the /, = 0 amplitude
(solid curve) and the resonance saturation for the integral (dashed curve) as a function of ¢. The
p exchange contribution to the ;=1 amplitude multiplied by % is also shown (dotted curve).
(b) the non-resonating background part which is obtained by subtracting the resonance contri-
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Fig. 4. (a) the integral S(z, —2) corresponding to the imaginary part of the /; = 2 amplitude
(solid curve) as compared with the imaginary part of the /; = 0 resonant amplitude (dashed
curve). (b) the effective Regge-pole trajectory for the I, = 2 amplitude determined in a f-inde-
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These results are in good agreement with the conjecture of the two component
theory of duality in that the resonant and background parts are dual to ordinary
Regge and pomeron exchanges, respectively.

We now refer to the real part, which is sensitive to the ill-determined phase shift
of the 7, = 2 d-wave 6% (due to the crossing matrix and the factor qv ~ »2 in the in-
tegrand). We have found that the integral corresponding to the real part of the/, =0
amplitude has a zero at t ~ —0.6 (GeV/c)? contrary to the expected behaviour of the
sum of the pomeron and f exchanges. This discrepancy originates from the large ex-
otic phase 8% of our input [2].

1, = 2. The integral corresponding to the imaginary part of the /, = 2 amplitude
is about half of that of the 7, = 0 resonant amplitude at ¢ = 0 (fig. 4a), although no
Regge pole is exchanged in the /, = 2 channel. As for this superconvergence-type in-
tegral, we are confronted with a disastrous cut-off problem [15], i.e., the magnitude
of the s-channel resonances grows as V‘ap(t), so that cancellation between the contri-
butions from resonances with different signatures is not expected even if the ex-
change degeneracy holds exactly (a simple estimation of the integral with exact ex-
change degeneracy gives 54% of the integral for the /, = O resonant part). The ex-
oticity of the f-channel, however, is supported by two observations: (i) the integral
has a structureless -dependence, (ii) effective one-pole analysis gives a.¢r(£) <O for
all ¢ (fig. 4b).

We have investigated the properties of the amplitude for 7 scattering as model-
independently as possible using recent partial-wave analyses. The results presented
above are strongly suggestive of the dual structure which is abstracted from the
simple B4 model in the framework of the two-component theory.

One of the authors (Y.0.) is thankful to the Sakkokai Foundation for financial
support.
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Abstract: The 17 GeV/jcn p— pon production amplitudes are decomposed into », A, and
non-evasive exchange contributions. Independent support for this descnptlon comes from
the observed p-w interference effects and from the energy dependence of o° production
data.

The reaction 7~ p = pOn is well-known historically as a process in which 7 ex-
change can be studied. However, it has also been noted that simple one-pion ex-
change does not provide a complete description of the production mechanisms
[1, 2]. Here we investigate the non n exchange contributions and present a simple
phenomenological model which describes the helicity structure and ¢ dependence
of the 17.2 GeV/c p0 production data [3]. Examination of the energy dependence
and of p-w interference effects provides support for our description.

The p production ** amplitude combinations Py, P, and P_ can be extracted
[4, 5] from 7~ p = 7~ 7*n cross-section and density matrix data. Py describes helicity
zero dipion production and P, (P_) describe helicity 1 production by natural (un-
natural) parity exchange to leading order in energy. Neglect of A; quantum number
exchange ensures [5] that Py and P_ are single amplitudes and their relative phase,
¢, can also be determined. P, is an incoherent sum of amplitudes with and without
helicity flip at the nucleon vertex (of which the former is expected to dominate).

The P-wave amplitudes 7 obtained from the high statistics 17.2 GeV/c data [3]
are shown in fig. 1 for the ¢ channel (Gottfried-Jackson) frame. For our present
purposes, the s-channel decomposition could equally well be used, but the # channel
allows a somewhat clearer separation of the modifications to 7 exchange.

# Supported by the National Research Council of Canada.
#% On leave of absence from the University of Durham, Durham.
* Present address: University of Durham, Durham.
*#* That is the P-wave n ~n" production amplitudes in the p mass region.
+ We consider only the solution with Py and P_ essentlally phase coherent which was shown
[6] to be the physical solution for —¢ < 0.2 GeV2.
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p PRODUCTION AMPLITUDES AT 17 GeVic

T T T T j’ T T T T

VT GeV

Fig. 1. The p production amplitudes in the f-channel frame at 17.2 GeV/c. The points are the
results of an amplitude analysis of the CERN-Munich = 7p — n"ntn data for 700 < M., <
850 MeV. The curves are the results of the fit to the amplitudes in the interval 0.005 < ~f <
0.5 GeV? that is described in the text. The values of the parameters are gc/g7r = —1.21, cor-
respondir_\§ to a cut strength of 0.93 of that in the Williams model [7], ng/gy =8.2,b, =

0.6 GeV™, b= 0.8GeV2, by =2.5GeV > and a4 — ap=0.43 GeV 2 (x* = 0.7 per degree
of freedom).

Elementary one-pion exchange only couples to Py in the z-channel frame. The
non-zero values of P, , which moreover do not vanish in the forward direction, thus
imply an additional contribution which is not (evasive) pole exchange. Such a cut
effect is expected {7, 2] to be most important in the s-channel net helicity non-flip
amplitude H}L_. The cut, C, then contributes equally to P, and P_ in the s-channel,
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and on crossing to the z-channel contributes to P, P_, Py in the ratio 1 : cos x : sin X,
where x is the s-f crossing angle (sin x > 0). The inclusion of C allows an adequate
description of P_, but the observed ratio of |P,| to |P_]| as a function of # necessi-
tates the introduction of a natural parity exchange contribution (A, exchange)
which interferes destructively with C in P,. This leads us to the parametrization

Py=mn+Csinx, P_=Ccosx, P ,=4,+C, )
where the ¢ dependence is parametrized as

1.
=g, —\/—_— b t —gima_ ’
2ot
1.
ngc ebct . 2 ima, ’ @
1.

A2 _ ——tgAebAt . zlmxA’
with a; = a’b + a;t determining the phase of the ith contribution.

The phase difference between  and C is controlled by the relative phase, ¢, of
Py and P_, which is consistent with ¢ = 180° for all — less than 0.5 GeV2. P; and
P_ determine the 7 and C contributions, and then, given the phase difference *

o, —ac, |P,| determines the A; exchange contribution. We take o~ = a,; and, at
t=0,a5 —ar =0.5. Allowing a linear dependence on ¢ of the 4,-C phase differ-
ence, we obtain the overall fit ** in the ¢ region —0.005 to —0.5 GeV?2 shown in
fig. 1.

The simple parametrization of egs. (1) and (2) is an excellent description of the
17.2 GeV/c data out to —¢ = 0.5 GeV2. The description of P, is also reasonable in
the region beyond —0.5 GeV2, where this amplitude dominates. Two possible con-
tributions which have been neglected could easily be incorporated without changing
the essential features. First, from processes such as KN = KN, 7N = nN, and from
the non-zero polarization in yp = 7*n, there is some evidence for a small A, helicity
non-flip coupling at the nucleon vertex. Such a coupling will be important for polari-
zation predictions in 7N > pN, but enters the unpolarized observables only as a
small correction to the ¢ dependence of 4, and a small reduction of coherence be-
tween C and A, in P, . Secondly, a reggeized 7 exchange can have a A, =% 1 coupling
(vanishing at ¢ = u2 of course) to P_. This coupling is present in dual Born models [8]
and is such as to fill in the crossing matrix zero (cos x =0 at —t ~ 0.6 GeV?2) in P_
in the ¢-channel frame (or equivalently in Py in the s-channel frame). Fig. 1 indeed
indicates the need for such a contribution to P_ at large r.

* The data impose bounds to this phase difference. At —¢ ~ 0.05, lapy —orl = < 0.6 decreasing
to IaA—aCI<02at—t~ 0.5 GeV2.
** As |P+$ has a quadratic dependence on 45, a second solution exists, This is found to be un-
physical, having an 4 ; contribution whose phase, relative to C, varies extremely rapidly
with £, and whose magnitude shows an anomalously rapid ¢ dependence.
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EFFECTIVE TRAJECTORIES FOR Tt p - p°n AMPLITUDES
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Fig. 2. The effective trajectories, calculated using s-channel amplitude components obtained by
analysing n7 p — 7~ ntn data in the energy range 4—17 GeV/c.

Having established a parametrization for the phase and ¢ dependence of the n, C
and 4, contributions for — < 0.5 GeV?2, we look at the energy dependence that
would arise from the phase-energy relationship. Fig. 2 shows the effective trajectories,
ae(?), for Py, P, and P_ (in the s-channel) obtained * by analyzing n—p = 7~ a*n
data, refs. [3, 10—13], in the energy range 4 to 17 GeV/c. In the model of eq. (1),
the s-channel P, is pure 7 exchange and o, = 0.5 (t—u?) is a reasonable compromise
trajectory. Qualitatively, the structure of a,g for P, can be easily understood with
our description. C is the dominant contribution at small ¢ (&~ =~ o) and A, dom-
intates at £ ~ —0.5, while there is a cancellation at intermediate ¢ values (¢ ~ —0.25)
which leads to an a,g above the A, trajectory. However, although the ¢ behaviour
is correct, the phase-energy prediction is approximately 0.2 lower than ¢ obtained
from the data.

At 17.2 GeV/c, p-w interference effects have been shown [14] to be largest in
P, in the interval 0.1 < —¢ < 0.4 GeV?2 and we shall concentrate on this amplitude.
Fig. 3 shows a breakdown of P, into its C and 4, components, as determined above,

* The method used is described in ref. [9], except that here we use the s-channel observable

(poot %pss) do/dt in the place of |P(]|2. This is an update of that calculation and includes
high statistics 7~p — » "n"n data at 6 GeV/c [13] as well as the high statistics 17 GeV/c data.
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for three relevant ¢ intervals. The phase of P, relative to P_ can thus be ob*ained.
For 7~ p = wn, p quantum number exchange contributes to P, . Since B quantum
number exchange in 7N = wN is smaller than 7 exchange in 7N = pN, the B cut
should be small compared to p exchange *. Unfortunately, there are no data on
IP,| for aN = wN at or near 17 GeV/c. Thus, the modulus, as well as the phase,
must be estimated before a p-w interference pattern can be predicted. The simplest
model is to take exchange degenerate p and 4, contributions: p =i4, tan Lna AlD).
This then ensures, via SU(3), a real KN -~ K*N amplitude in agreement with duality
for an exotic direct channel process. Constructing P, for w production in this way
then yields the p-w modulating factors shown in fig. 3. Conversely, the relative
moduli and phases of the p and w production amplitudes P, derived from fitting
the experimental data at 17.2 GeV/c [14], yield the P, amplitudes for « production
that are shown by crosses in fig. 3. These estimates are in reasonable accord with
the p-A, exchange degeneracy prescription. In particular the change of phase of P,
with ¢, required by the observed p-w effects, is well reproduced by the admixture
of C and A, contributions to P, for 7—p —> pOn.

Further confirmation comes from the observed ratio [15] of |P,|in K~p = K*On
and K*n—> K*Op. P, forK*n— K*Op (C+A,+p exchange) is suppressed since the
resultant of 4 ,+p, which is predominantly real, cancels with the real C contribu-
tion. On the other hand, for K—p - K*On (C+A,—p exchange), the resultant of
A,—p is approximately imaginary and adds incoherently to C.

The exchange degeneracy of p and A, leads to a zero of the p contribution at
a, =0 which is not observed in P, obtained from the available 7*n = wp data at
6-7 GeV/c [16, 17]. Thus, some modification at larger ¢ or at lower energy to P,
in w production will be necessary. Insight into this effect should come from a study
of the p-w effects in the 4—6 GeV/c Argonne [13] n~p—> 7~ n*n (and 7*tn > 7~ 7"p)
data. In fig. 3, we predict the p-w modulating factor for P, at 4 GeV/c, using the
17 GeV/c amplitude components, p-A, exchange degeneracy and the phase-energy
relation. The observed effect in P, , for 0.08 < —¢ < 0.2, in the preliminary data [13]
at 4 GeV/c indicates a somewhat larger relative p-co production phase (240 £ 20°)
than that predicted by the model (= 210°).

In summary, we have presented a simple picture for the main features of the ¢
and s dependence of 7~ p = pOn data and p-w interference patterns. For 7—p - pOn,
the dominant contributions are 7 exchange (unnatural parity exchange coupling to
t-channel helicity zero p mesons); a cut C (over-all s-channel helicity non-flip which
thus contributes to unnatural and natural parity exchange), and an 4, contribution
in natural parity exchange which interferes destructively with the cut contribution.
The natural parity exchange amplitude for 7N = wN, as seen through p-w inter-

ference, is consistent with a p contribution exchange degenerate to the 4, contribu-
tion in 7N — pN.

* This is consistent with the small p-w interference effects observed in P_ (cf., ref. [14]).
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Abstract: We give a comprehensive description of our scheme for applying the Roy equations to
7w phenomenology. The method is applied to recent high statistics #r experiments. The com-
plete set of amplitudes consistent with these experiments and with the theoretical constraints
of analyticity, crossing and unitarity are presented. We consider the implications of these
results and discuss future experiments which could remove the final ambiguities in the low-
energy nw amplitude.

1. Introduction

QOur ambition, in performing this phenomenological analysis of w7 scattering, is
to describe the low-energy mm experimental situation in a language as simple and as
model-independent as possible, sticking to properties derived from fundamental
principles. Within the context of present experimental information, the outcome
of our work is to point out what is known about 7w scattering and what remains
to be measured in order to have complete information, i.e. what are the “useful”
measurements. Qur most important results have already been given in refs. [1—4],
and, in this paper, we give a complete account of the method and techniques. Of
course, our program is such that we can readily incorporate new measurements
as soon as they are available. We must emphasize that, at this stage, we do not
have any other theoretical ambition than analyzing the data. We believe that it is
only once this phenomenological description is done thoroughly that one can at-
tempt to understand theoretically the dynamics of the low-energy mr system, or
to test various dynamical assumptions, since there is a considerable dispersion in
the experimental results at present.

We proceed in two steps. First, we elicit the classes of nr amplitudes consistent

* Postal address: Laboratoire de Physique Théorique et Hautes Energies, Université Paris VI -
Tour 16 - ler étage - 2, Place Jussieu, 75221 Paris CEDEX 05.
** On leave from Dept. of Natural Philosophy, Glasgow University, Glasgow G12 8QQ.
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with crossing, analyticity and unitarity requirements. Then we find the subclass
which agrees with experimental results. Our basic starting point consists in the
rigorous equations derived by Roy [5] on the basis of fixed momentum transfer
dispersion relations and crossing symmetry. In sect. 2 we recall these equations

and explain how we use them. In spirit, our work may be compared to what has
been done in the past decade on 7N scattering [6], the difference being that the
experimental 7N information is much more accurate and abundant, while theore-
tical constraints on 7w = 7w, which is a closed system under crossing, are more
stringent. Roy’s equations express the crossing property directly on physical partial-
wave amplitudes and it was advocated by Basdevant, le Guillou and Navelet [7]

that they should be used for such an analysis. Besides us, several groups [8—10]
have attempted this and the results may be considered qualitatively similar although
a particular parametrization in the case of Bonnier and Gauron [8] and a specific
interpretation of the data in the case of Pennington and Protopopescu [10] have
led these authors to conclusions which are too restrictive in our opinion, although
correct within their particular assumptions.

An important byproduct of our work is of a theoretical nature. In fact, we have
gained considerable insight into various previous theoretical approaches to nm scat-
tering and their results [11]. The Chew-Mandelstam equations, which are well-
defined approximations to Roy’s equations [7], must be reinterpreted as relations
approximately satisfied by the amplitude. In some recent model calculations [12]
which used the unphysical region constraints it was claimed that the presence of
the p-meson in the [ =/ =1 amplitude leads to more or less unique s-waves; by being
able to produce explicit counterexamples, we have shown these conclusions to be
much too restrictive. Recently Piguet and Wanders [13] have also shown this using
the unphysical region constraints, therefore it is not necessary to further analyze
this point: the unphysical region constraints may be just as useful as the physical
ones but it is more difficult to use them safely when continuing to the physical
region (e.g. the p-mass). Our most important observation concerns the number of
parameters which are necessary in order to specify the low-energy 7 amplitude.

In fact, we have found essentially the same number of degrees of freedom as in the
Born term of a Lagrangian model. For instance, the interplay of crossing and uni-
tarity is not strong enough to determine the 77 amplitude uniquely once the exis-
tence of the p meson is fixed: one can impose the presence of an arbitrary / =0
s-wave resonance etc. . . . . One of the ambiguities is reminiscent of the Castillejo-
Dalitz-Dyson ambiguity. Mathematically, the Roy equations bear much resem-
blance with the approach initiated by Atkinson [14] in recent years within the
Mandelstam representation, and it may be possible that they contain the CDD am-
biguity noticed by Atkinson and Warnock [15]. This observation is in particular
relevant to the question of constructing 7w amplitudes constrained by the low-energy
current algebra conditions [16, 17]: in fact, the existence of the p meson and of an
isoscalar s-wave resonance cannot be established without specifying further the
dynamics, for instance by requiring the absence of CDD poles [17] (if this is possible)
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or by referring to a specific Lagrangian {18} (this has been noticed in a different
context by Lehman [19]). These theoretical results are mentioned in sect. 3. The
conclusion that can be drawn is that it is absolutely necessary to supplement cros-
sing and unitarity with very precise dynamical properties — and not just a few low
energy parameters — in order to specify the #m amplitude. We have not been able
to use criteria such as asymptotic properties, duality or current algebra conditions
in a secure way to discriminate among our solutions; we feel that new theoretical
tools or definitions are necessary in order to do so.

Sect. 4 contains the results of our phenomenological analysis, concentrating on
the energy region from threshold to 1.1 GeV. This analysis uses, besides the p pa-
rameters, various sets of data concerning the / =/ = 0 phase shift 68 in the region
500 MeV <M, < 1100MeV coming from pion production experiments. We then ex-
amine a posteriori the implications of other measurements such as 89 in the low-energy
region — e.g. from K4 experiments — and the ] =2 s-wave phase 62 The first im-
portant observation is that there is at present no compelling argument to fix the

s-wave I = 0 scattering length aO better than within the limits —0 05< aO <07m_
In particular we cannot confirm that Weinberg’s predictions (ao ~0.15-0.19) are
established. Secondly, as an effect of the ambiguities, one cannot discriminate be-
tween the phases 60 of three different groups [20—22] which, in the region

500 MeV <M <900 MeV are similar in behav10ur but are roughly equally spaced
from one another by 5° to 10°. However, once aO and a particular experimental set
of 6 and inelasticities ’70 up to 100 MeV have been selected, then relatively crude
1nformat10n about the high energy behaviour is sufficient to determine the nm-am-
plitudes below 1 GeV, within small uncertainties. Hence we are able (a) to discuss
the implcations of a given set of experimental results and to compare it with other
sets, and (b) to indicate how further experiments (and what experiments) can re-
solve these final ambiguities.

2. Theoretical framework
2.1. Roy’s equations

The technique for obtaining physical partial wave equations is quite old [23].
The nm equations have been written by Roy [5], and further analyzed by Basdevant,
Le Guillou and Navelet [7] (BGN). We shall only mention the basic features of inte-
rest for the present work. For simplicity we consider the 7070 amplitude F00(s,z,u)
and denote by 490(s,7) its s-channel absorptive part (our notations and conventions
are given in appendix A). The 7-dependent subtraction function of fixed-¢ dispersion
relations can be expressed in terms of the forward amplitude [5, 7], and we write
the dispersion relation as (we use pion mass units m, = 1)
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FOO(stu) aOO G 4)f ds' AOO(s 0)[ 1 ]
1 5S¢ —4) "t §+r-4

where (180 is the s-wave scattering length, and where the absorptive part can be ex-

panded in partial waves

A% =23 2+ 1)Im 10" P, (1 +—2’—) (22)
1=0 4

in the intersection of the large Lehmann-Martin ellipses *, i.e.
41> -28. 2.3)

After projecting F99(s,z,u) onto partial waves, using the #—u symmetry in the direct
channel (Bose statistics),

1
f,°°(s)=% [ P06t p@) a2
Y1

1 0
- 00 _2 00
f FOGs,tu) P(z) dz = = f FO(s,1,u) P, (1+ )dt (2.4)
0 L9

and using eqs. (2.1) and (2.2), one obtains a set of relations for partial-wave ampli-
tudes

00 ~ .
f; ()=a8,, + 25 @+1) [ a5 K] (s.8) Im £O(5)), (2.5)
r 4

where the kernels can easily be deduced from the above equations. The relations
(2.5) are well defined, i.e. the summation over /' converges, provided s is in the range

—4<s<60, (2.6)

(this range may be extended considerably, both rigorously [25] and by phenomeno-
logical arguments [7]). Taking isospin into account is only an algebraic complica-
tion, we refer the reader e.g. to BGN [7].

These equations are rigorously derived from axiomatic field theory, they are
necessary conditions for crossing to hold since they originate from the s—u symmetric
eq. (2.1), but they are not sufficient and must be supplemented [5, 7] by another
set of relations expressing the r—u symmetry of the amplitude defined by eq. (2.1)

1
f FO®s,tu) Py, 1(2) dz=0. @7
-1

* See for instance ref. [24].
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However, it can be seen [5, 7] that these supplementary conditions involve only
higher partial waves /' > 2, and do not constrain the s-wave (more generally, the s-
and p-waves in the full isospin treatment). Therefore, for/ =0 (and /' =1),eq.(2.5)
is a complete expression of the crossing symmetry that the total amplitude enjoys;
in particular, Martin’s [26] and Roskies’ [27] relations for s- and p-waves may be
deduced from it.

Roy has furthermore argued that if the absorptive parts Im fy(s) are known in
the inelastic region s 2 16, the elastic unitarity relation

Im f(s) = p(s) [(Re £(s))” + (Im £(s))*] (2.8)
with Re fj(s) as defined by eq. (2.5) (which is an identity for Im f;) provides a sys-
tem of non-linear singular integral equations defining Im f;, and hence the ampli-
tude, in the elastic region.

2.2. Basic properties of the equations

In the realistic case with charged pions, the equations have the form

"8 810
=] 0 |oy+3a-sad) 2| L5,
aé -2850
2 1 o
+ 2 D [ K6 mAE) o + 6l 2.9)

I'so r'=o 4

where a8 and a(z) are the s-wave scattering lengths, and where ¢{(s) is a well defined
sum of higher partial-wave contributions (I' > 2)

2 o
o= T [ & 6sHms)as (2.10)
Ir=o I'-2 4
(see BGN for further details concerning the kernels Kf’/ ).

The fundamental advantage of the relations (2.9) over the unphysical region
crossing constraints [26—27] is that they relate physically accessible quantities. The
price to pay is of course that they involve an infinite number of partial waves.

It has been shown by BGN that in the so-called “s--p approximation” i.e. setting
Im f;(s)= O for I' > 2 in (2.9) one obtains the Chew-Mandelstam equations [28],
which appear as well defined approximations to exact equations. However, Lovelace
pointed out [29] that the Chew-Mandelstam equations could not have physically
reasonable solutions owing to their behaviour at s = oo, Therefore the presence of
the higher wave contribution ¢{(s) (or its analytic continuation above s = 60) is
crucial mathematically. However, if dJ{(s) is small in the low energy region, as turns
out to be the case in practice (see further on), we see that the Chew-Mandelstam
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equations must be reinterpreted as relations which must be approximately saturated
by the amplitude, and not as equations whose exact solutions should be close to
physical amplitudes.

We now come to a very important property of eq. (2.9) which we shall use in
the following. In the right-hand side of (2.9) there are three terms: a polynomial
subtraction term, an integral over s- and p-waves, and ¢{ (s). The polynomial satis-
fies all crossing constraints trivially. It has been shown by BGN that the integral
over s- and p-waves satisfies all Martln inequalities and Roskies relations automati-
cally whatever the values of the Im f,r () I'= 0 1 prov1ded they are positive. The
“true” zp[ (s), i.e. as calculated if we knew Im f, (s) I' > 2 exactly, satisfies the con-
straints by itself also. But, if we construct a function ¢I (s) which satisfies the con-
straints, and choose some functions Im f, (s) >0 (/' =0,1), then fll (s) as defined by
the right-hand side of (2 9) will automatically comply with all requirements of
crossing whatever Im fl are chosen.

2.3. Driving terms

In order to use eq. (2.9) in practice, we split the 5" integration into two parts,
introducing some cutoff parameter N

2 1 N
fll(s)=S.T.+ DD f Kf}r(s,s') Imf{'(s') ds'+d{(s), (2.11)
I'=0 =0 %

where S.T. is the first-order polynomial subtraction term written in eq. (2.9), and
& 1(s) is called a driving term. The driving term consists of two pieces

di(s)=d(s) +dl(s) . (2.12)

The first piece dt 1 (s) is the contnbutlon of all waves for s’ > N, and the second
d2 (s) of higher waves ' > 2 fors' <N, i.e.

2 =] o0 - ,

f ngl(s,s') ImflI, (s"ds', (2.13a)

I'=s0 I'=0 N
2 ) N
do=-2 T [
3

KT (ss)Imfl (s s (2.13b)

We choose for V an energy squared above which a Regge representation of the am-
plitude is convenient. Therefore the evaluation of dlll is quite simple if we compute
the Regge contribution in the original dispersion relation (2.1) and project the result
on partial waves, € g for the 7070 amplitude we would have

a5 =3 f 4z P2) = f a' [a(s',1) A", 0) + b(s',£,9) A% D)], (2.14)

where a(s',¢) and b(s ,4,8) can be read off from eq. (2.1).
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For dlzl (s) we make the rather drastic approximation of retaining only the reso-
nance contributions and neglecting completely the low-energy part. The main justi-
fication is phenomenological: higher partial wave wm amplitudes are very small at
low energies, and the neglected contributions fall well within the errors we shall
allow on the estimation of the driving terms, if we restrict ourselves to studying
the equations in a limited energy region above threshold, e.g. 4 <5< 60 m2

In practice, we have chosen N =110 m2 1e half way between the f and g
resonances. The f;, resonance contrlbutes to d2 we have taken a mass Mg, = 1269 MeV
and an elastic partial width F =125 MeV. To estimate d”/ 1 we assume a Regge pole
plus pomeron exchange behav10ur for the Regge exchange component we take
exchange degenerate p + f; poles with the Lovelace-Veneziano residue function [30]
evaluated for a universal p coupling constant of f2/4w = 2.4. The diffractive com-
ponent is represented as a simple pomeron exchange pole with a slope ap=0.4 GeV~ 2
and parameters chosen to give an asymptotic cross section o,, = l/m ~ 20 mb and
a logarithmic slope for the differential cross section of b = 10 (GeV/c) 2 at

=10 GeV2. In s- and p-waves, the resulting driving terms can be approximately
parametrized between threshold and NV by

di(s) = (s—4)E F =L, (2.15)

The coefficients d{ % are given in table 2. The major contribution to d9 o(s) comes
from the fo resonance, while pomeron exchange provides the dommant part of

(s) and d! 1(s) is quite small. The errors that must be attached to the estimation
of the dr1v1ng terms come from phenomenological (or experimental) uncertainties,
e.g. errors on F » 0o » the p residue function v,(7), and theoretical uncertainties —
neglecting low-energy contributions in (2.13b), and not imposing in this work the
supplementary conditions (2.7). (In an exact theory it should not matter whether
one computes the driving terms in eq. (2.14), and the similar one for dlzl, using the
full integration range —1 < cos 6 <\ 1 or only half of it 0 < cos § < 1, owing to
Bose statistics. In an actual parametrization the two results are generally different,
but one can easily check that in practice the discrepancy is very small at low
energies — less that 1% for s < 5 — and in particular for 0 < s < 4; it increases with
energy to become quite large above 1(GeV)2.

We must emphasize that eq. (2.15) is only a representation of the computed
driving terms, valid to first approximation in the region 10 < s < N where they are
not negligible numerically. However, in the region 0 < s < 4 this approximation is
very poor, and eq. (2.15) violate the unphysical region crossing constraints, whereas
the computed driving terms do not. One can even construct driving terms which
satisfy all crossing constraints exactly [8], and which agree with eq. (2.15) for
10 <5 <N well within the errors that we allow.

Our qualitative results are somewhat independent of the exact values of the
driving terms, provided the order of magnitude is correct, and therefore our experi-
mental ignorance of mm Regge parameters is not a practical drawback here.



420 J.L. Basdevant et al., nw amplitudes

2.4. Definition and construction of the solutions

Once the driving terms d{(s) are known, eq. (2.11) becomes a system of non
linear singular integral equations for the amplitude in the region 4 <s <N when
put together with the unitarity condition

1 — (nh())?
4p(s)

if the elasticity parameters n{(s) are given (for the notations, and definition of p(s)
and n{(s) see appendix A), and we want to investigate the classes of amplitudes
satisfying these equations.

However, in the present work, we are primarily interested in studying the m7
amplitudes below 1.1 GeV,i.e. for 4 <s < 60. In that region, one knows phenom-
enologically that higher partial wave amplitudes / 2> 2 are small and essentially real,
therefore unitarity (2.16) is not a strong constraint on these waves and we shall
concentrate on the s- and p-wave equations / = 0, 1. Once these equations are solved,
in a sense we will now describe, higher partial-wave amplitudes are known without
any further iteration of the equations [7] for 4 <s < 60, and the resulting total
amplitude satisfies fixed ¢ dispersion relations, crossing and unitarity for s < 60 to
a very good accuracy [7]. We do not attempt to use egs. (2.11) and (2.16) as integral
equations — for instance through an iteration scheme — for technical and mathe-
matical reasons (e.g. we do not know a priori the multiplicity of solutions corre-
-sponding to given values of the scattering lengths and driving terms). Instead we
define a solution, i.e. a unitary and crossing symmetric amplitude at low energies,
by the following criterion.

“e-criterion”: Since f,l(s) as defined by eq. (2.11) for /=0, 1, in terms of
Im f,lrl(s'), (a) satisfies all crossing and positivity constraints whatever the value of
Im f,Iv (s")> 0 [7], and (b) has by construction [7] the imaginary part Im f{ (s), we
define a solution to eq. (2.11) ‘t}y requiring that all three amplitudes f8(s), f %(s),
f%(s) also satisfy unitarity Im fj (s) = v/(s—4)/s| f,I (s)I2 to a given accuracy € (e.g. 1%)
in the eleastic region.

We confine ourselves to the elastic region and do not extend the range of our
criterion to s =V, which is lpossible in principle (see eqgs. (2.11) and (2.16)), because
the elasticity parameters 1 (s) are not sufficiently well measured up to s =V at
present. However, we shall make full use of the important experimental observation
[21,22, 31-35] that 7w amplitudes are nearly elastic up to the KK threshold
(n,l ) ~1s< 4m12<) and we choose the elastic region to be s < 4m12< (indeed 4m
inelasticity seems weaker than 1% below the KK threshold, this sets the order of
magnitude of €). Above s = 4m%, we check a posteriori that the deviation of f,I )
from the unitarity relation (2.16) is compatible with the errors we can accept on
the values of n,’ (s) and the driving terms.

In order to realize this, we first choose Im f,I (5) to be the imaginary part of an
amplitude g'll (s) parametrized so that it satisfies elastic unitarity exactly below s = 4m12(,

Im £1(s) = )1 )1 + (2.16)
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and inelastic unitarity (2.16) with a given nlI (s) above that energy
Im f1(s) = Im g/ (s) . (2.17)

We then compute fl[(s) by eq. (2.11) and we fix the parameters in gll(s) by mini-
mizing the quantity
60
If =gl = [ wo)iffs) gl ds, (2.18)
2

where w(s) is a positive weight function (the CERN program MINUIT was used).
In practice we have chosen
P
If - gll =23 wilff ) —gl ), (2.19)
i=1
the s; being a set of points (typically 5 to 10 points) in the region 4 <s; < 60. One
of the points chosen is threshold, so that we minimize in particular on the s-wave
slopes bg, b% and the p-wave scattering length a} defined in appendix A (the s-wave
scattering lengths are subtraction constants in eq. (2.11)).
To prevent the parametrization from playing a crucial role, we have used two
very different analytic forms, which both lead to the same results in practice. The
first is a simple K-matrix approach

gl© =K+ 0!, (2.20)

where C, (s) is the Chew-Mandelstam function
Cn(s) =.2_ i—__4 log Yy ° 4-s+ y - -8 s
n ‘ s 2

and the K-matrix can be taken as a rational function in §
! _a{)SIO + a{(s—-4) + aé(s—4)2 +.o..
Ki(s) = ; , (2.21)
1+Cis-+Cls -2+, ..

which is elastic up to infinity. Inelasticity may be introduced by adding to eq. (2.21)
a term of the .form H,I (s) Cx (s) where H,’ (s) is another rational function and

s—4mK \/4m%(—s + /-8 5 .
log —vmyg—~1 Atan

s ZmK

2
Ce(s) == { -
my—1 .
(2.22)
This method is simple and practical, however, it is not well suited for incorporating
a given inelasticity, and another method, fully described in appendix B, consists in
expressing the partial wave S-matrix elements as products of rational functions:
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Sl =[1+2 |/ gl(s)]

z—z¥ z+z . n
R R I1—-az
- — ... (2.23)
_ ¥ i
z zR z+zR i1 taz

[where zp is complex (resonance pole), a is real and n is an odd integer, see appen-

dix B], z being a conformal variable which unfolds the appropriate Riemann sheets
and is defined in appendlx B. Within this parametrization it is easy to insert a given
inelasticity for s > 4mK, m particular the S* effect [21, 22, 31-35]. The two

s-wave scattering lengths "0 and a%, which determine the subtraction terms in eq.(2.11),
are of course among the parameters in egs. (2.21) and (2.23).

Once the minimization is achieved, we may adopt the following philosophy. The
functions f,I (s) are analytic in s and are by construction the projections of a crossing
symmetrlc total amplitude which satisfies fixed ¢ dispersion relations, while the
g (s) are analytic in s and satisfy unitarity (2.16) with given inelasticities. Further-
more in the region of interest we have

I76) —gf () <e, 4<5<60. (2.24)

Therefore we consider both fll and gll as approximations to the same amplitude
which is analytic, unitary and crossing symmetric, and we call either of them a
solution. Once we are in the vicinity of a solution (if it exists) it is sufficient to
iterate the equations in order to obtain the numerical solution (provided we have
fixed a sufficient number of conditions for it to be unique). However it is worth
emphasizing that we are also buidling explicit analytic models of 77 amplitudes,
i.e. the functions gII (s), which are unitary and satisfy crossing in the sense of our
e-criterion, and which can be used in other applications.

It may happen eventually that by undertaking a more complete treatment of
the equations — e.g. using the supplementary conditions [5, 7] — one may be able
to exclude some of our solutions. However, we think that in trying to do this at
present we may eliminate physically acceptable solutions since our theoretical
and phenomenological knowledge is not sufficiently accurate and complete (e.g.
if we choose the inelastic threshold to be s = 4m12<, we cannot take strictly € = 0
in our e-criterion, since a theorem by Martin [24] says that the 77 amplitude must
vanish identically if the 4 inelasticity vanishes anywhere between s = 16 and
s = 20). In other words, given an arbitrary set of s- and p-waves, one can always
construct driving terms so that eq. (2.11) is satisfied; however, these driving terms
will in general be in contradiction with phenomenological estimates (e.g. averaged
asymptotic cross sections orders of magnitude too large, or even negative) and we
can exclude them, but it is only experimental and phenomenological arguments
which can discriminate between our solutions at present.
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2.5. Higher partial waves

Once we have determined s- and p-wave amplitudes, higher partial waves are com-
puted directly by eq. (2.11) which we may write as
2 1 N
fll(s = E > f KﬁII (s,s) Imfl{ (s ds'
4

r

Y ¥ Imfs)y <
G [ as mAiG) dls), 1>2 (2.25)
4

(s'—)(s'~s)
where we have redefined the driving term in order to extract the explicit direct

channel right-hand cut contribution which has the good threshold behaviour [7],
and which contains the direct channel resonances (e.g. the f for / = 2,7 = Q) that

we put in by hand. In the region 4 <s <X 60 unitarity is a very weak contraint on
these waves, therefore we shall define the phase shift by the approximate relation

tan 84(s) = |/ Ss;“- Ref(s) | (2.26)

(we may check a posteriori that neglecting the low-energy contribution in the
second term of the r.h.s. of (2.25) is a good approximation).

In eq. (2.25), the first term i.e. the s- and p-wave contribution, is the dominant
one at low energies, until the effects of direct channel resonances are felt. We re-
mark that for [ > 2 it is important to compute the driving terms by projecting on
the whole range —1 < cos 8 < 1 [see eq. (2.14)] if we want to preserve the threshold
behaviour without invoking the supplementary conditions (2.7) which we have not
studied or used here.

2.6 Basic phenomenological assumptions

In all this work we have restricted ourselves to a particular set of 77 amplitudes
defined by physical criteria which we now enumerate.

() We assume the existence of the / =7 =1 p-resonance, and we impose its mass
m, and width T" (varylng these parameters within experimental errors). The p-wave
scattering length itself ‘11 is computed from the equations, it is not imposed.

(b) We assume that to a good approximation (1%) inelasticity starts at s = 4mK
and notats = 16m2 Our treatment of the inelasticity will be described in sect. 4.

(c) The Regge parameters and higher partial-wave resonances enable us to estimate
the driving terms, as described above, within definite error bands which we do not
transgress.

(d) We also assume that the exotic / = 2 s-wave is non-resonant below 1 GeV, and
we forbid resonance poles in our parametrization of this amplitude.
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2.7. Unsubtracted dispersion relation

Under plausible assumptions — Pomeranchuk theorem and non-dominance of
the real part over the imaginary part asymptotically — the /, = 1 amplitude satisfies
an unsubtracted dispersion relation

oo

2FO(s,f) + 3F (s, 1) — 5F2(s,t)=-11; [ s [—1 ——1—] ds',  (27)
y s'—s  §'-u

where
As,)=2A40(s,r) +341(s,1) — 54%(s,1)

a consequence of which is the Olsson sum rule [36]:

_ 3 ds o bt
L=24)~5a2== [ —Z— (o0 (&)~ ()], (2.28)
47 4 \[s(s—4)

[cf. also eq. (A.7)].
Assuming A(s,?) is dominated by p-exchange at high energies

a (O
A@) = 7,(0)s LN s>N, (2.29)
it is natural to split eq. (2.28) into two parts
L =Lsp +L_, (2.30)

where L is the s- and p-wave contribution to the right-hand side of (2.28) for
S< N, and L, includes the higher wave / > 2 and asymptotic s > N contributions.
Choosing N =~ 110m,2,, the only / 2 2 resonance to be taken into account is the fy
and we obtain

40 F?(l) .8 7,(0)

T 1

N2

L =

oo

5 (2.31)
mfo(mfo —4)

We may incorporate eqs. (2.27) and (2.28) in our analysis. However, in eq. (2.30)
L., is quite important (20 to 30% of the total) and this requires a good knowledge
of the p residue function. Therefore, in order not to bias our results, we prefer to
operate backwards and, for each of our solutions, to use egs. (2.27) and (2.28) to
extract the implications concerning v,(?) [1,2, 37]. For instance we can define
L, as the value which saturates eq. (2.30) once s- and p-waves are known, and then
compare it with the available (rather ill-defined) experimental information.

3. Theoretical results

We did not encounter any basic technical obstacle in carrying out our programme.
The most important problem was to discover the actual multiplicity of solutions,
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and to know how many constraints were necessary for a solution to be unique.

The usefulness of the Roy equations, both theoretical and phenomenological, as
argued in ref. [7] is established by observing that (a) we have found no published
model which satisfies our criterion, and (b) simple analytic forms which fit the

data will in general violate the equations grossly. However, for several models which
incorporate the p meson by construction [12, 38], we can produce amplitudes
which are close to the model predictions near threshold (s < mg) and do satisfy

the criterion.

Our most interesting result concerns the multiplicity of the solutions. We have
already explained this in ref. [1}. Our assumptions of subsect. 2.6 do not put
stronger constraints on the s-wave scattering lengths a8 and a% than to lie in a do-
main outlined in fig. 1 of ref. [1]. By no means does one obtain quasi-uniqueness
as hinted by some model calculations [12] based on the unphysical region crossing
contraints. Since our amplitudes satisfy these contraints they are explicit counter-
examples to the uniqueness claim. There are however some restrictions: for instance
the values a8 = a(z) =0 can be reached only by introducing an exotic / = 2 resonance
in contradiction with our assumption (2.6d).

Once a8, a%, m, and ', are fixed, the very low-energy parameters (i.e. the p-wave
scattering length and the s-wave effective ranges) are essentially determined. Further-
more all amplitudes in our domain are such that 68(m p)>0and 6%(m ») <050
that, as a nearly trivial consequence of crossing, each s-wave amplitude possesses a
zero in the region 0 < s < 4 or near it (e.g. if a(z) >0 (or a8 < 0) the zero offg (or
fg) lies in the physical region s > 4). However there remains an arbitrariness in the
/=1 =0 phase; one can choose the energy at which 68 passes through e.g. 90°.

To summarize, in order to obtain a more or less unique set of amplitudes under
our previous assumptions we need to specify five parameters which can be taken as
08, a(z), m,, I', and the energy where 68 =90°.

Our findings are qualitatively similar to those of Morgan and Shaw [39]. These
authors found that in addition to imposing m o> I, they could fix at least 4 more
parameters which they took to be ag/a%, 58 (600 MeV), 88 (900 MeV) and 8(2)(m )-
Our more complete treatment of crossing allows us to reduce this number to 3 and
for arbitrary values within a domain of these 3 parameters we do find consistent
solutions *. It is quite easy to understand these results by referring to the Born
term of a Lagrangian containing a contact —%[)\(n-n)z term, a scalar interaction
3m.g (m e and a vector interaction g€, ;3, m;p), as represented in fig. 1.In Born
approximation the amplitude depends on five parameters, i.e. A, mg, M, gg, gf2
which can be eliminated in favour of 08, a%, m,, I‘p, and a combination of m, and
I', and which are all uncorrelated by crossing. Using the notation of Chew and
Mandelstam

AZE»,& (s,t,u) = A(s,t,u) 8,505 tAESU) 6017866 +Au,1,5) 8 4 85, > 3.1

* We are indebted to Dr. G. Shaw for a clarifying correspondence on this point.
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XS

A 9e

Fig. 1. Born terms of a Lagrangian model in mr scattering. All crossed diagrams are understood
to be present.

we would have

[\*]

m — —
ABom(S,t,u)=7\+gz . € +g§ [—SZ—E + 82t ] ’ (3.2)
mZ—s me—t m-—u
o
and, in Born approximation
3m2 m2
0. 2 € 27
32m mag=5\+g: [ 5 5 +2] +log; — (3.32)
m-—4m m
€ m P
2 2 2 m72"
327 m ag = 2A+ 2ge — 8gp — (3.3b)
My
so that
2 2
2l _s2= 2[5 BT 34
29— >% =3 2 2 S| = -, (3.4
T Lm* —4m m me 4n
€ n P

o

which shows that the value a8 = a(% =0 cannot be reached in the absence of an

exotic pole. It is known that one can unitarize such a Lagrangian by using e.g. the

Padé method [40] and preserve approximately its crossing properties provided the
coupling constants are not too large (notice that our domain lies inside —0.1 < a8 <08,
—02< a% < 0.15 so that on an absolute scale, e.g. axiomatic bounds [41] ag =-175,
a(z) = —7.1, we are dealing with very small scattering lengths) and unitarity effects

will not change the basic character of the Born term. We remark that allowing for

an exotic resonance would add two more parameters, as would the introduction

of another I = 0 resonance.

The fact that one can choose, at given a8 and a%, the energy where 68 =90° is
highly reminiscent of the CDD ambiguity. Since Roy’s equations have some similari-
ties with the equations considered by Atkinson [14] within the Mandelstam repre-
sentation, we may be in the presence of the same CDD ambituity as noticed by
Atkinson and Warnock [15]. However, our ambiguities may also come from the
fact that we have not really taken care of the asymptotic properties of the equations
— we lump any deviation at high energies in the errors attributed to the driving
terms. In any case, this is a very interesting problem to which we hope to come back.

To conclude, we are comforted to understand our results in the simple language
of Lagrangian field theory and, perhaps, within S-matrix theory as developed by
Atkinson [14], although it may be disappointing that the uniqueness hopes of the
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low-energy bootstrap [11] and of some models are disproved. In a phenomenol-
ogical language, crossing constrains the low energy parameters but not the striking
features of the low-energy nm amplitudes i.e. the resonances. In order to determine
the physical amplitude, we must incorporate in our analysis some experimental
information about the s-waves, which we shall now do.

4. Phenomenological results

In this section we supplement the phenomenological assumptions of subsect. 2.6
by requiring agreement with all available experimental information on the 77 sys-
tem below 1.1 GeV. Most of the information comes from recent high statistics
mtn~ production experiments [20—22, 31—35]. Apart from the tho meson param-
eters, these experiments mainly constrain the isoscalar s-wave phase shift 68 in the
region 500 MeV <M < 1100 MeV. Measurements of other quantities are exam-
ined a posteriori and are found to be insufficiently accurate at present to select
further between our solutions.

4.1. Further phenomenological assumptions

Therefore we now further restrict our set of nm amplitudes and require agree-
ment with the following additional physical information.

(e) There is a strong cusp or S* effect causing 68 to accelerate through 180°
and a sharp onset of inelasticity at the KK threshold [21, 22, 31-35].

(f) The isoscalar s-wave phase shift 58 in the mass range 500 MeV <M <
900 MeV must lie in the between-down [42] or up-down [22] bands.

When we undertook this analysis the isoscalar phase shift 68 was assumed to be
of the between-down type [42] and our most detailed results were obtained using
the Saclay [20] and Berkeley {21] phases. Chew-Low extrapolation results from
the high statistics CERN-Munich experiment [33-35] were in good agreement
with the Berkeley phases. However a recent amplitude analysis [22] yields phases
noticeably higher than previous results. We therefore also present our preliminary
analysis of these new solution 1 (CM-EM1) phases [22]. It should be remarked here
that another analysis [35] of the same data, based on slightly different assumptions
regarding the structure of the dipion production amplitudes, leads to phases closer
to those from Chew-Low extrapolation than to CM-EM1 (see fig. 5 below). Very
grossly, there isa 5° to 10° difference between the Saclay (SAC) and the Berkeley
(BKLY) phases and a similar difference between the latter and the CM-EM1 phases.
It is convenient to analyze the results obtained by fitting on a given data set and then
to see how the results are altered when another set is chosen. We adopt the criterion
that the x% per experimental point must be less than 2 to define a “fit” to the data.

The conformal variable z, described in appendix B, is well suited to describe a
given behaviour in the region of the KK threshold and the results presented in this
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Table 1
Fixed parameters in the Saclay and Berkeley solutions [cf. egs. (B.6), (B.15), (B.17)]
zgx = 0.928 -7 0.0740 Egx= 998 —i 66 MeV
z, =0.468 —10.0126 Ep = 767 —i 67 MeV
z.» =0.539 + i 0.0088 Epr =1630 — i 120 MeV
zy = 0.537 —-i0.0107 Xpr =0.36
al =0.872

section were all derived in terms of this variable. In particular the S* effect is de-
scribed by a pole in the z variable, the parameters of which were found by fitting
to the inelasticity ng(s) of ref. [21] and to a given set of phases 68 below the KK
threshold. In addition, the phase at the KK threshold was constrained to be 180°
to conform with the experimental vanishing of the Y(l) moment [21]. These $*
parameters were found to be essentially independent of the behaviour below
800 MeV and are given in table 1. We remark here that a much narrower S* pole
is used to fit the CERN phases. We also investigated the sensitivity of our results
to the existence of an €' resonance in f g(s) above 1100 MeV.

In order to obtain good input output agreement for the p-wave above 800 MeV
within this parametrization, we found it necessary to include a background singu-
larity. For convenience we choose to represent this background by an inelastic o’
resonance either under the f or the g meson. The parameters taken for this p’ reso-
nance and for the p resonance itself are also given in table 1. The I = 2 s-wave am-
plitude is taken to be purely elastic. For a full discussion of our parametrization,
we refer the interested reader to appendix B.

The driving term parameters to be substituted in eq. (2.15) were calculated as
described in subsect. 2.3 and are listed in table 2. We estimate the errors due to un-
certainties in experimental quantities and neglected contributions to be less than
30% for d8(s) and 50% for d%(s) and d%(s).

4.2. General description of solutions s- and p-waves

The multiplicity of solutions described in sect. 3 is reduced, firstly, by fixing
the isoscalar s-wave amplitude near the KK threshold and above to satisfy the

Table 2
Driving term parameters
k 1 2 3
a.n
(0,0) 9.12x 1074 9.78 x 1075 0
Q. 1.36 x 1074 8.36x 107 175 x 1077

©,2) 5.09x 1074 6.32x 1075 ~3.78% 1077
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phenomelogocial requirement e). In this way, we are reduced to just one solution
for each point in the explored region of the (aO, aO) plane as outhned in fig. 1 of
ref. [1]. Secondly, we require the isoscalar s-wave phase shift 60 to satisfy condi-
tion f). This reduces the number of possible 77 amplitudes further leaving, for any
given set of experimental phase shifts, only a very narrow band of finite extent
in the (a8, a(z)) plane. This allowed region, hereafter called a universal curve, fol-
lowing Morgan and Shaw [39], is shown in fig. 2 for each of the three sets of ex-
perimental phase shifts 88. We note there is a systematic downward displacement
of the universal curve associated with the upward displacement of the experimental
phase shifts 68 in passing from the Saclay to the CM-EM1 results. If we allow for
all of the uncertainties in the physical input we find an error band associated with
each of these curves — viz., for fixed aO, the uncertainty in aO is Aao =+ 0.007.
The major contribution to this estimated error comes from allowing for the possible
existence of an €' resonance. The effect of including an €’ resonance is to displace
the universal curve upwards.

It is interesting to compare the universal curves of fig. 2 with the results from
the soft meson theory of low-energy mr interactions due to Weinberg [43]. The as-
sumptions of linearity and current algebra give

3

L =2af — 5aj = 18a; =—— =0.60 £ 0.06 (4.1)
41rF7r
| W
ay SAC
0.04 BKLY
0.0z CM-EM1
oy ' ‘ ‘ o ‘ :g
~0.02—
-0.04

Weinberg
-0.06

-0.120L

Fig. 2. Universal curves correlating the two s-wave scattering lengths for the Saclay (SAQC),
Berkeley (BKLY) and CM-EM1 phase shifts respectively. The estimated error band associated
with each of these curves is discussed in the text.
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for the universal curve, where F,_ is the PCAC constant. The further assumption of
non exoticity for the o term implies

agjag =% » “42)

and combined with eq. (4.1) gives the Weinberg predictions for the scattering lengths,
shown in fig. 2. The universal curves of fig. 2 are reproduced by the following ap-
proximate parametrizations,

SAC: 243 — 842 =062+ (2 - 0.2)? £ 0.06, 4.3)
BKLY: 22— 8a2=0.69+(@@-0.2)? £ 006, (4.3)
CM-EM1: 2aJ — 842 =084+ (el —0.25)? +0.06, (4.5)

where the quoted error is estimated in the same way as Aa% above. Furthermore
both the Saclay and Berkeley data restrict the isoscalar s-wave scattering length to
the range

—0.05<a) <06 , (4.6)

while the CM-EM1 phases require "0 >0.15.

The p-wave scattering length ”1 is rather stable and close to the Weinberg value
0.33 + 0.03, whereas the linear approximation prediction al 1 = 1% L is not well satis-
fied except for s-wave scattering lengths close to the Weinberg values.

The variation of the s- and p-wave scattering lengths and s-wave slopes [defined
in eq. (A.4)] along the universal curve is given in tables 3 and 4 for the Saclay and
CM-EMI phase shifts. Fixing 08 essentially determines all these low energy param-
eters. The isoscalar s-wave slope, in particular, has a qualitatively different behav-
iour to that of the linear approximation, which gives b0 = lL and b2 1L Future
analyses of low energy m experlments such as K4 decay, should be constramed
in their choice of a3 and bo s0 as to be compatible with the results spanned by
tables 3 and 4.

In figs. 3—5 we show three typical solutions for each of the three different sets
of experimental phase shifts. The three curves in each figure illustrate the spread
of allowed behaviour below 500 MeV for a given set of experimentally determined
s-wave phase shifts above 500 MeV, with the present statistical accuracy of the ex-
periments. In each case we give the two extreme solutions and an intermediate solu-
tion which, for the Saclay and Berkeley phase shifts, corresponds to the Weinberg
scattering lengths. For the CM-EM1 phase shifts, the Weinberg predictions corre-
spond to the lowest allowed values for the scattering lengths. In fig. 5 we also in-
clude the phase shifts 88 obtained from a simple Chew-Low extrapolation [33] of
the CERN-Munich data and from an amplitude analysis based on spin and phase
coherence [35], in order to illustrate the ambiguities involved in 7w phase-shift
analyses. The resolution of these ambiguities in 77 phase-shift analysis is an impor-
tant problem for future 7 phenomenology; a possible approach is suggested in sub-
sect. 4.5.
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Table 3.
Low energy s- and p-wave parameters calculated for the Saclay phase shifts
ag bg a% b?) ai
-0.056 0.15+0.03 —-0.103 + 0.007 -0.061 + 0.007 0.030 £ 0.002
0.16 0.21 £ 0.03 —-0.037 £ 0.007 -0.065 + 0.007 0.032 £ 0.002
0.30 0.19 £ 0.03 —0.006 + 0.007 —-0.074 + 0.007 0.035 = 0.002
0.58 0.03 + 0.03 +0.047 £ 0.007 —0.096 = 0.007 0.040 + 0.002
200° — T T T T T T
T T
150°~ 10 b .

0.5 ~
o 11

1 I
1000 1100

100°

0
-10° —
~20° —
-30°F .
1 1 1 i 1 1 1 1 1
300 400 500 600 700 800 900 1000 1100
Mnn MeV

Fig. 3. Typical solutions for the s-wave amplitudes fitted to Saclay phase shifts. The curves
correspond to (1) ad = —0.06, (2) a3 = 0.16 and (3) ad = 0.58.
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Table 4
Low energy s- and p-wave parameters calculated for the CM-EM1 phase shifts
a9 b3 a3 b3 ay
0.17 0.32 £ 0.03 —-0.066 = 0.007 —0.083 £ 0.007 0.040 + 0.002
0.31 0.30 £ 0.03 —0.030 £ 0.007 —0.090 £ 0.007 0.042 £ 0.002
0.40 0.27 £ 0.03 -0.010 + 0.007 —0.093 £ 0.007 0.042 + 0.002
0.59 0.14 £ 0.03 +0.028 + 0.007 —-0.106 + 0.007 0.045 + 0.002
200°— T T T T T T T
T T
150° 1.0 . -
0.5} I 4
0 I
Mo
° 1 1 -
100 1000 1100
50° -
0 +
_10° —
_20° -~
-30° -
] 1 L L 1 L 1 1 1
300 400 500 600 700 800 900 1000 1100
M T MeV

Fig. 4. Typical solutions for the s-wave amplitudes fitted to the Berkeley data. The curves cor-
respond to (1) a3 = —0.05, (2) a3 = 0.17 and (3) a3 = 0.59.
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200°— T T T T T T T T

150°

100°

50°

-10°

-20°

~30°

1 | 1 1 1 A 1 - 1
300 400 500 600 700 800 900 1000 1100

Myn MeV
Fig. 5. Typical solutions for the s-wave amplitudes fitted to the CM-EM1 phase shifts [22] &.
Also shown are the phases of Grayer et al. [33] ¥ and Hyams et al. [35] § from the same ex-
periment. The curves correspond to (1) a8 =0.17, (2) ag =0.31 and (3) ag =0.59.

In table 5, we give the mathematical and associated physical parameters for the
Saclay and Berkeley solutions shown in figs. 3 and 4. As well as the s- and p-wave
scattering lengths and s-wave slopes, we tabulate the mass and width m e+ g assO-
ciated with the e resonance pole and the d- and f-wave scattering lengths.

In contrast to our set of 77 amplitudes covering the whole range (4.6), Pennington
and Protopopescu [10] have claimed that imposing the Berkeley data in the Roy
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Table §

Variable parameters in the Saclay (SAC) and Berkeley (BKLY) solutions [cf. egs. (B.6), (B.15),
(B.17)). These solutions do not contain an €' resonance above 1100 MeV and therefore lie in
the lower parts of the error bands associated with the universal curves in fig. 2

Param. SAC 1 SAC 2 SAC 3 BLKY1 BKLY2  BKLY3
ad ~0.058 0.165 0.583 ~0.054 0.169 0.587
ad ~0.105 -0.038 0.042 ~0.115 —0.048 0.032
a 0.0303 0.0324 0.0408 0.0336 0.0351 0.0431
53 0.154 0.210 0.057 0.178 0.248 0.097
b3 ~0.064 —0.068 ~0.101 ~0.071 ~0.075 ~0.102
m, 569 MeV 407 MeV  267MeV  517MeV 439 MeV 309 MeV
r, 672MeV  875MeV  732MeV  477MeV  671MeV 624 MeV
a9 x 10* 15.9 15.7 21.8 17.9 17.2 23.1

a3 x 10* -1.96 -0.49 5.77 -1.11 0.38 6.63
ay x 10% 0.14 0.41 1.26 0.15 0.46 1.35
Rez, 0.721 0.718 0.655 0.656 0.670 0.614
Imz, ~0.224 -0.326 —0.411 -0.196 -0.282 —0.368
ad 0.683 0.970 1.55 0.673 0.933 1.56
8 -0.332 -0.296 —0.411 -0.456 -0.339 -0.458
Re 1.31 1.10 1.01 1.21 1.18 0.939
Imz9 1.13 1.47 1.19 0.860 1.25 1.14
0, —41° -63° -55° -53° -62° -83°

0, 25° -2° -1° 11° 1° 5°

a3 0.914 1.07 1.28 0.909 1.06 1.27
3 —0.239 ~1.00 -1.00 ~0.476 ~0.884 -0.406
Re 73 1.62 0.075 0.371 0.347 0.069 0.000
Imz3 1.26 1.00 0.929 1.41 1.06 1.00
s -0.174 -0.140 0.015 ~0.120 -0.095 0.040

equations leads to a well defined scattering length a8 =0.15 £ 0.07. It appears that
this result follows from their strict use of the Berkeley band of phase shifts down
to 500 MeV [10, 44]. This is partly illustrated in fig. 4, where the first data point
favours our solution 2. However our three solutions have a reasonable x2 when
compared to the full data set and we feel it would be unwise to rely heavily on the
phase near 500 MeV to select a solution of the Wemberg type.

In our solutlons the 7 = 2 s-wave phase sh1ft 50 is strongly correlated to the
behaviour of 80 It is clear that measuring 60 with good accuracy, i.e. a true error
of + 3°, in the region from 450 MeV to 900 MeV, could constrain the 7w amphtude
apprec1ab1y However it should be remarked that the 60 phase depends on both "0
and on the 80 used in the fit (see figs. 3—5). The downward displacement of the
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Fig. 6. Behaviour of the d- and f-wave amplitudes below 1 GeV for the three Saclay solutions
of fig. 3.

universal curve in passing from the Saclay to the CM-EM1 phase results in a larger
(numerically) 8(2) phase. In any case the present experimental information on 6 is
not yet precise enough to discriminate between our band of solutions.

4.3. Higher partial waves

The d- and f- partial-wave amplitudes are calculated as described in subsect. 2.5.
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Table 6
Behaviour of the d- and f-wave phase shifts below 1 GeV. Errors include the effect of all experi-
mental and theoretical uncertainties

M, (MeV) 89 52 5}
400 0°.,07 + 0° .01 0° .00+ 0° .01 0° .002 £ 0° .001
600 0°.9 +0°.1 —0°.1 £0°.1 0°.04 +0°.02
800 35 £0°.5 -0°.5 £0°.2 0°.2 *0°.1

1000 11° +2° -1°.0 £0°.6 0°.8 20°.2

and we plot the quantities

s
K{(s) = Vs tan 5‘; 4.7)

2q21+1

in fig. 6 for our Saclay solutions. The K{(s) tend to the scattering lengthsa{ at
threshold and we see that the scattering length approximation, K{(s) =a!, can be
grossly violated for energies below 1 GeV. We note that the isoscalar d-wave scat-
tering length a(z) has a rather stable value within our set of solutions — it is dominated
by the p and the “e”. The / =2 d-wave scattering length is comparatively small
(p—"“€” cancellation) while the f-wave scattering length a% is dominated by the thresh-
old singularities. The behaviour of the d- and f-waves are similar to fig. 6 for our
solutions fitted to the Berkeley or CM-EM1 phases. Since the values are quite stable
we tabulate the d- and f-wave phase shifts for the mass region below 1 GeV in table 6.
The errors allow for the spread between the three solutions and uncertainties in the
experimental phases 58, the driving terms and other input parameters such as the
elastic partial decay width of the f;; resonance. The values of these higher wave
phases at 1 GeV are in good agreement with experimental values [20, 21, 22, 35].
Below 1 GeV the d- and f-waves are more accurately defined by our phenomenelog-
ical determination than by experiment at the present level of statistics. We therefore
suggest that in future 77 phase-shift analyses below 1 GeV, the phenomenological

d- and f-wave phases of table 6 should be used as input (checking a posteriori that
they agree with the data). In particular we remark that the CM-EM1 d-wave phase
shifts [22] appear to be too large below 800 MeV.

4.4. The Regge p residue function

We have evaluated the asymptotic contribution L, (defined in subsect. 2.7) to
the Olsson sum rule for our three sets of solutions and the values obtained are
shown in fig. 7. The error band associated with each of these curves, due to all the
uncertainties in the input, corresponds to AL_, =% 0.05. The contributions of the
f, resonance and Regge p exchange with the Lovelace-Vaneziano [30] residue func-
tion were evaluated using eq. (2.31) and are indicated by dashed lines in fig. 7. We
see that our solutions tend to favour an effective Regge o exchange residue function
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Fig. 7. Asymptotic contributions L, to the Olsson sum rule. The dashed lines indicate the
contributions from the fg resonance and Regge p exchange with the Lovelace-Veneziano residue
function, Vp.

at t = 0 somewhat smaller than the Lovelace-Veneziano value. In particular our
Saclay and Berkeley solutions suggest that the Veneziano B, model predicts high
energy amplitudes too large by about a factor of two*, and that the zero of the
effective residue function is nearer the geometrical absorption value, t = —0.2 GeVv?,
than the nonsense value, = —0.6 GeV?2 [37].

4.5. Future selection between solutions using the n*n— Y? moment

Our isoscalar s-wave amplitudes for a particular set of experimental phase shifts
above 500 MeV differ mostly below the rho (see figs. 3—5) and have an uncertainty
of between % 5° and + 10° at 500 MeV. More accurate information on 88 near
500 MeV and below would be a great help in further restricting our set of 77 ampli-
tudes, as exemplified in the work of Pennington and Protopopescu [10, 44] dis-
cussed above. The rho meson no longer dominates the amplitude in this mass region
and it is more dificult to extract reliable s- and p-wave phase shifts from nt#— pro-
duction experiments. Partial information may still be accessible however, in the

* A similar phenomenon has been found in other circumstances [45].
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Fig. 8. Normalized extrapolated ¢ Y?) moment for the Saclay data compared to the solutions
of fig. 3.

form of the YO moment of the 7w angular distribution. In fact the normalized
(Y0> moments which are proportional to the backward forward asymmetry, have
been published for the Saclay and Berkeley experiments [20, 21]. This quantity
has been calculated for all our solutions and is shown in figs. 8—9 together with
the experimental values There is a tendency for the large values of ”0 compared
to Weinberg (i.e. "0 2 0.3) to be favoured. However we would not rule out any of
our solutions on this basis at present, but only point out that reliable experimental
information on this quantity could do so.
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Fig. 9. Normalized extrapolated ¢ Y?) moment for the Berkeley data compared to the solutions
of fig. 4.

There are theoretical grounds [11, 22] for believing that the unnormalized
moment, N (“Y(l)), is a cleaner quantity to extrapolate for the reaction 7N - 7aN.
In the CM-EM1 phase-shift analysis it was found convenient to use the combination
N (Y(l)) — \/2:3 N Yg), which removes the main d-wave effects and essentially extra-
polates to the quantity

oy _ T 1 . .
(Y?) 0:1 54‘/;-;5 sin 6% 2 smb‘g cos (68—6%)+s1n6(2)cos(6(2)—8i)). (4.8)
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Fig. 10. Unnormalized (}(1)) ";1— moment, defined in eq. (4.8), computed from the CM-EM1
(and 2) phases and compared to the solutions of fig. §.

We have evaluated this quantity for the CM-EM phase shifts and indeed it is found
to be invariant in going from their (favoured) solution 1 to their solution 2 phase
shifts. In the absence of the original data on the moments we have treated these
values as data points in fig. 10, where we compare them to the predictions from our
three solutions of fig. 5. None of our solutions is able to reproduce the behaviour
of this quantity in the region below 600 MeV and we feel this is a serious anomaly
which should be investigated further. This is reflected in the low-energy structure
of the p-wave amplitude from the CERN analysis shown in fig. 11 which, similarly,
we are unable to reconcile with the Roy equations. The CM-EM solution 2 p-wave
phase shifts [22] are also shown in fig. 11 and are even more difficult to reproduce.
We should like to emphasize again that the Roy equations are able to predict d
and higher waves accurately below 1 GeV. From our point of view there is, thefore,
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Fig. 11. The quantity (2q3/\/§) cot 6} evaluated for the CM-EM1 e and CM-EM solution 2
é p-wave phase shifts [22]. The curves correspond to the three solutions of fig. 5.

no advantage in working with <YO> - \/1_8 ) rather than with (YO) itself. In fact
values of the unnormalized Y0 moment could be ]ust as useful input into our analysis
as the isoscalar s-wave phase shlfts Since (YO) O is more directly accessible ex-
perimentally, it could replace 60 as item (f) in our list of assumed phenomenoligical
information. We therefore urge experimentalists to publish values of this quantity,
obtained by extrapolation or amplitude analysis. A direct nm phase-shift analysis of
these data could then be made within our approach, in which other moments could
be predicted and checked a posteriori or used as additional phenomenological in-
put.

4.7. Information on mn scattering from other sources

We conclude with some remarks about other sources of information on low
energy wr scattering. The I = 2 s-wave phase shift 6% is correlated to the behaviour
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Fig. 12. Recent K, results compared to the three Berkeley solutlons of fig. 4. Data points
from Beier et al. [46] § and from Zylbersztein et al. [46]: X x points, £ maximum likelihood,
# Pais Treiman method.

of 58 as shown in figs. 3—5. As mentioned above, the measurement of 8(2) with good
accuracy in 7t or m~n~ production experiments would help to constrain the mm
amplitude and, in each case, would select between the solutions with the small and
large values of 08. However the dispersion in the present I = 2 data [1, 42] encom-
passes all of our solutions.

The most direct experimental method of selecting between our solutions in favour
of a definite s-wave scattering length is, of course, from K 4 measurements. In fig.12
we compare our three Berkeley solutions from fig. 5 with the most recent K4 re-
sults [46]. The curves for a given value of "0 are very similar for our Saclay and
CM-EM1 solutions, due to the correlatlon we find between ”0 and the slope bO It
appears that a negative value for ‘10 can be ruled out but, otherwise any value within
the range (4.6) is allowed by present measurements. Clearly a more accurate K4
experiment could provide a sensitive determination of ”0 As mentioned earlier,
future analyses of K4 decay should make use of the phenomenological correlation
between a8 and b0 given in tables 3 and 4.

Via analytic contmuatlon the amplitudes for other processes can be related to
the mm phase shifts. In particular the behaviour of the elastic #N d-wave amplitude
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close to the physical threshold is very sensitive to the value of a8. The most detailed
analysis [47] favours a8 ~ 0.1 and claims that the errors are small enough to rule
out a scattering length as large as 0.6.

We should like to thank Professors J. Hamilton and A. Martin for their constant
interest and suggestions. Much useful advice arose from conversations and corre-
spondence with Drs. D. Atkinson, B. Bonnier, P. Gauron, R.C. Johnson, G. Laurens,
D. Morgan, M.R. Pennington, C. Schmid and G. Shaw. We also thank Dr. C. Schom-
blond for her help and Professors M. Gourdin and G. Snow for useful remarks.
Finally one of us (CDF) gratefully acknowledges the hospitality of NORDITA.

Appendix A. Notation

We use partial-wave amplitudes fI (s) for orbltal angular momentum / and isospin
1. These are related to the real phase shift 67 (s) and elasticity coefficient n; (s)
by

i 1 5
Ao=@loe 1 - 2iew A1
where p(s) =/(s—4)/s (we use units# =c=m, = 1).

Scattering lengths al are defined as

al = lim flI(s)/qZI, (A2)

s—>4%

where g is the ¢.m. three-momentum,

g2 = s(—4). (A3)
For s-waves we define the slopes b8 and b(z) as
bl = lim (Re i —adla? . (A4)
s—4

For the detailed form of the Roy equations we refer to BGN [7].
Taking the limit as s = 4% of these equations one gets identically

0
bo‘ 3(2a0—5a0) 4 +16 f I:AO(S 0) — (00)2 |/ 4]
s

+ln§ _E?s,—) [ AO(s 0)— A4l 0)+5A2(s 0, (A.5)
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@})? 16 s , 4
= —1(243—542) 4 L f —,—)2 [Az(s ,0)—(a3)2|/s7—}

+ 16 f 45 [149¢',0) +141(s",0) +1 425" 0)] . (A.6)
¥ /_
4 S (S 4)

Here A/(s,¢) is the absorptive part of the invariant amplitude F? (s,¢) (cf. sect. 2).
We also make use of the following sum rules based on unsubtracted forward
dispersion relations:

=1,0 1 4 [
L——2a0—5a0—;!

(Olsson’s sum rule),

[249(s' 0) + 341(s',0) = 54%('.0)],  (AD)

s'(s’ —4)

L 16 [ ., 25-4 "
ay =— ds —,——— s',0)
3 4 2( 4)2
l - ds, Or! 1,7 2,0
o f ) [240(s".0) + 341(s' 0) — 54%(5',0)] . (A8)

3
Taking the limit s - 4% in the Roy equation for fll (s) one obtains Wander’s sum rule

96 ds’ 25s'—4

2 — — ==
ao Sa 18a - '2( 4)2A( 0)
16 r dsl 0/.¢ 1,7 2t
+30 0 8 a0 0)+341(,0) — 5425 0)] (A.9)
T ») '
3 s(s—4)

which of course is also a consequence of eqs. (A.7) and (A.8).

Appendix B. Parametrization of s- and p-wave m amplitudes

In this appendlx we descrlbe in some detail the parametrizations adopted for s-

and p-waves (f3(s), f1(s), £ §(s)).

We shall primarily be working with the S-matrix element

I
sl =nle 1

=1+2i l/»s;—“f{(s)

=1-2 f‘s;s JHOR (B.1)
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We want to write Sl] as a rational function of a suitably chosen variable z which
will automatically introduce the physically relevant thresholds. The advantages of
this scheme over the more familiar K-matrix formalism are (i) we can explicitly
ensure that no physical sheet singularities occur; (ii) the parameters are directly
related to the location of singularities and thus for the most part have a simple
physical significance of their own and (iii) we are able to treat the important
1=1=0 nr - KK inelasticity without having to parametrize (K-) matrix elements
having to do with the reactions 77 - KK and KK - KK, in which we have no direct
interest here.

The variable z will differ for the three amplitudes above for reasons which will
become clear below. We therefore treat the parametrization of each amplitude indi-
vidually.

B.1. Parametrization of fg( s)

Here the physically relevant thresholds are s =0,5 =4.and s = 4m12(. The variable
z which we chose will map the g-plane cut along (—, —qy) (g;, *°), (i, i>°) and
(—i%o, —i) onto the unit circle |z| < 1 such that

= 2
ql— mK_lv

qe(_q]r q])_)ze(_la 1)3
1% sheet(Img>0)~>zI<1, Imz>O0,

27 sheet Img<0)~>{z|<1, Imz<O0. (B.2)
The transformation g —> z is given by
2 _ R%z2
) (22—2(2))(22—282) ’
zp=¢?, tanb=1/g,, 0~16°3,
R =£I ~192. (B.3)
g

Fig. 13 is the z-plane image of the four-sheeted s-plane Riemann surface. The circle
and the real axis divide the z-plane into four domains which are the images respec-
tively of the four sheets of s.

From eq. (B.3) it follows that the four complex numbers z;, i = 1,2,3 .4 with

zy=~z,, z3=—zl_1, z4=zl_1=—z3, lz,1<1, Imz,; >0, (B4)

will be the images of the same complex number in the s-plane, however, pertaining
to sheet number i.
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Fig. 13. z-plane image pertaining to eq. (B.3) of the four-sheeted Riemann surface for s.

Time-reversal invariance, elastic unitarity (we assume nO(s) =]lon4<

s<mg

in the parametrization) and analyticity requires the S-matrix element (B.l) to satisfy

S3(=z%) = [S9()1*
So(-2) =831,
Sg holomorphicin |z} <1, Imz>0,

Sg meromorphic in z| <1 .
These will be satisfied by the following rational parametrization
S8(2)= R(z;z,) R(z;zg+)
0, 03
i+ gz z—B z
x 2z 23 “)Q(z;z_g),
-z t+a02 t+{30 3
where
_(x x+
R (x;y) = E2IED)
(-—p)h®)

(B.5)

(B.6)

(B.7)

We first outline the mathematical significance of the various factors in eq. (B.6).
The first factor, “R(z;z,) in eq. (B.6) introduces a pole at z = z, corresponding
to an e-meson of mass m, and width I'; such that z_ is the image of the point s,
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on the second sheet, where
s,=(m_—3iT )2 .

The factor R(z; zs*) likewise describes an S* resonance.

The third factor in eq. (B.6) introduces a pole at z =i corresponding to the
1/+/s singularity at s = 0 (cf. eq. (B.1)).

The fourth factor in eq. (B.6) introduces a zero in S o(s) in the range 0 <s< 4
on either the 1st or 3rd sheet (according to whether on >1lor 0‘0 <1) and a cor-
responding pole on the 2nd (virtual bound state) or the 4th sheet. The presence
of this factor is required for any reasonable low-energy behaviour of f O(S) From
eq. (B.1) we see that the position of this zero will be given by the equation

B6=3 V= (B.8)

which will always have a solution on —2 <+/s <2 (/s < 0 on the 3rd sheet,

\/s > 0 on the 1st sheet). The position of the zero we calculate approximately in
terms of the low-energy parameters a8 and b8. From the definition eq. (A.4) and
unitarity we get to order (g2) on 0 <s < 4

£3(s) =ad + 63q? — VA=s (1@l)? + q* [adp) + 5 @d)*— §@)?]) . (B.9)
For all our solutions the corresponding solution to eq. (B.8) has /sl < 1. We there-

fore expect the approximation (B.9) to be adequate in view of the crossing con-
straint

3
Im f(s) = O(s2) fors—>0~

The remaining parameters {38 and Re z 8, Imz 8 in the last two factors in eq. (B.6)
are chosen so as to reproduce the behaviour

Re /0(s) =a +ba? + 0.,

as s > 4%, for the given values of z, zg« and 0‘0 Whenever thlS is possible in more
than one way, that solution (in terms of BO, Rez Oand Imz 0) is chosen which
corresponds to the most distant singularities in the z-plane (cf. the discussion below).

We next comment on the physical significance of the parameters as given in
tables 1 and 5.

B.1.1. The S* resonance. The experimental structure which identifies the dynamical
propertles of the S* is the peculiar behaviour of 6 and n8: below the KK threshold
z=1) 80 increases slowly to 82 = 90° m the 900 MeV region; then on a short
mterval_]ust before the KK threshold 8 increases rapidly to 180°;above s = 4 mK
"70 exhibits a corresponding rapid drop from 1 to a minimum value of 0.3—0.5. The
choice of parametrization (i.e. the choice of z) is heavily blased in favour of func-
tions with important square-root branch points ats = 4 mlz( 59 0(2) will be regular
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atz =1 and (d/dz) S8(z)|z=1 will be proportional to the strength of the cusp-effect.
One can still, within the present parametrization, describe a fully elastic fg. By eqgs.
(B.4) this requires the singularity structure to be invariant under z - z~1, however.
For an approximately elastic f 8(s) we would thus be forced to have, besides the
factors R(z;z,) and R(z;zgx) in eq. (B.6), additional factors R(z;z,) and R(z;2g+)
with

-1 =
Z'S* "‘Zs*l

However, the contribution of a term ‘R (z;z,) to the phase shift is
—2zImz

: (B.10)

6(z;zr) = Atan

2
Izrl -z

Thus we see that the two factors ‘R(z;z.) “R(z;zg«) (With values of z, and zg« as given
in tables ! and 5) will already reproduce the qualitative behaviour of 68 as summa-
rized above. In particular the agreement would be completely spoiled if we had a
factor R (z; zge) with zg =~ zgd : the rapid rise in 6 would then disappear. We

thus conclude that the presence of this rapid rise and the fact that it takes place

over the interval from 90° to 180° is strong evidence for an interpretation of the

S* as a 2nd sheet pole not accompanied by a 3rd sheet pole, as would be the case

for a less inelastic object *. We have argued that near z = 1 we must have C)Q(z;z's*) ~1]
This requires

IImz's*I < |Re Z,S* —1].

In practice we encounter no difficulty in fitting the data without an R(z; zg«)
term at all, corresponding to Im ZIS* =0.

We conclude that there is strong experimental evidence for the S* as a 2nd sheet
pole with a mass very close to 4 my . The width is given essentially by the length of
the energy interval over which 88 increases from 135° to 180° (say) and/or the
length of the energy interval over which 1?8 drops to its minimum. This parameter
is much harder to get from present experiments than the mass. The data of ref. [22]
thus require a value of I'g« an order of magnitude smaller than that given in table 1.
In principle, however, I'gx must be considered an experimentally well defined param-
eter.

B.1.2. The e-resonance. The € is a much more elusive object than the S* and thus
our published values for m, and I, in table 5 need some comments.
We first point out that the set of functions

i—az"

, el <1, n > 0 odd integer

i+az"

* If one wants to describe the observed drop in n8 in connection with a behaviour ofsg like
in the so called up-solution above 800 MeV, one must in fact use a factor R(z;z’s*). That
was done in ref. [3]. In this work, however, we only consider the implications of the “down-
solution’ above m, (cf. ref. [21]).
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is a complete set of functlons on the space of elastic S-matrices defined on —1 <z <1
(ie.ond4<s<4 mK) This means that we can fit any conceivable experimental
phase shift with arbitrary accuracy using functions .S O(Z) having singularities only
for 1z| > 1. That again implies that even a seemingly clearly resonating phase shift
(like & %, see below) can be fitted with arbitrary accuracy without using a second
sheet resonance pole [48]. This observation implies that it is not only very difficult
to determine the e-pole position but the problem of finding the singularities corre-
sponding to a set of experimental phase shifts with finite accuracy (however good)
does not even in principle have a unique solution. This statement is true for any
parametrization: it is a feature known as instability in theories of analytic extra-
polation [49]. One therefore needs to reformulate the problem (which was “im-
properly posed”). We do this by assuming first that on the second sheet at most 3
poles need be considered. These 3 poles are the ones pertaining to z_, zg« and (for
sufficiently large values of ao — cf. table 5) a virtual bound state comlng from the
fourth factor in eq. (B.6). Second, we requlre that the contribution to 60 coming
from singularities outside the circle |z| = 1 is “as smooth as possible” inside |z| = 1.
In the present work we shall make no attempt to formalize this last principle, but
from results on extrapolation theory pertaining to analogous situations [49] we
expect that, once such a grmciple has been sharply defined, one can prove that as
experimental errors on 8¢y go to zero (i) the 3 poles on the 2nd sheet will converge
to unique and well deflned positions provided the assumption that at most 3 poles
exist on the 2nd sheet is correct and (ii) the contribution to S8 coming from singu-
larities outside {z| = 1 will converge to a well defined function inside |z| = 1, whereas
the actual singularity positions outside |z| = 1 are not expected to have any signifi-
cance and no convergence of these can be expected since the approximation scheme
neglects the presence of branch-point singularities on |z| = 1.

In the present work we have imposed smoothness of the contribution of back-
ground singularities (those with |z| > 1) (a) by limiting their number and (b) by
requmng them to be as far away as possible (cf. the discussion of the parameters
ﬁo, Re Z 8 and ImZz 0) However crude this treatment of the background singulari-
ties may be, it represents a refinement over our methods u<ed for ref. [2]. According-
ly we feel that our values for I, in that paper may have been overestimated (cf.
table 5 for our new values).

The disentangeling of the contribution from the three 2nd sheet poles is still a
serious one. For the S* we feel the situation is rather well defined as explained
above, however, and for the remaining two we are effectively helped by the Roy-
egs. in that, once we chose a particular value of ”0’ these eqs. predict the corre-
sponding value of b and therefore the position of the pole in the 4th factor in
eq. (B.6) as explamed above. Thereby the ambiguity in the e-pole position is reduced.

We thus feel that our published e-pole positions represent a little more than the
results of an arbitrary fit, but we strongly emphasize that, due to the inherent dif-
ficulties in its definition, the actual numbers should be treated with great care. The
test of our scheme will be to see whether z ¢ a8 we have defined it will converge to a
unique position as experimental errors decrease with time.
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B.2. Parametrization of ff/s}

There are two essentlal differences compared to the parametrization of f O(S)
(i) nears=4 mK

1) =16 + OGs — 4 mdy2) (B.13)

where ?{ (s)isregularats =4 mlz(;
(ii) near s = 4

1 1.3
6] xayq
Condition (i) is satisfied automatically by writing S{ as a (rational) function of
the new variable

z,=42(3-2%), (B.14)

where z is given by eq. (B.3). Then the condition (B.13) just means that S %(21) is
regularatz = 7 (the image of s = 4 mlz()

Condition (ii) is satisfied by formally treating fl 1 as an s-wave with zero scattering
length and slope = a{

Simplifying a little the low energy treatment as compared to the case of fO we
then write

(i+z)(i—alz ) (i-p1z3)
(=2 ) (+az) ) (+6]27)
X R(zy32,) ‘R(zl;z;,). (B.15)
Here z , is the image in the z; plane of the point
s=(m, - 5i Fp)2

Si@) = RGys2,)

on the second sheet.

The two last factors have been included in order to be able to vary the detailed
behaviour of 6% in the 900—1000 MeV region as required by the Roy equations.
We found it natural to represent these background-terms by an inelastic p’ (cf.
table 1), but by no means do we claim to have predicted a p’ by the Roy equations.

B.3. Parametrization of f(Z)(s )

In this amplitude no KK threshold is present and, for simplicity, we take f O(S)
to be elastic from threshold to s = co. That is, we take S2 ¢ to be a rational function of
the new variable z, given by
) 4z%
qc=—— . (B.16)
(25 - 1?



J.L. Basdevant et al., nm amplitudes 451

We thuse write
2 i6y 164
S5(z) =R(zyse ) R(zpe )

2

itz, I—aiz, I— B
X < 2 g 2 (2) i R(z4:7) - (B.17)
=2, z+a0 2 1+B

Here 6 and 0, are free real parameters in the interval (57,3 ImGe. for sim-
plicity we allow real axis poles on the left-hand cut) The parameters a%, BO, z %
are then fixed in terms of the scattermg length ‘10 and the slope bo in complete
analogy to what was done for f 0(s) above,
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Abstract

We analyze the Roy equations for the lowest partial waves of elastic
7w scattering. In the first part of the paper, we review the mathematical
properties of these equations as well as their phenomenological applica-
tions. In particular, the experimental situation concerning the contribu-
tions from intermediate energies and the evaluation of the driving terms
are discussed in detail. We then demonstrate that the two S-wave scatter-
ing lengths af and a? are the essential parameters in the low energy region:
Once these are known, the available experimental information determines
the behaviour near threshold to within remarkably small uncertainties. An
explicit numerical representation for the energy dependence of the S- and
P-waves is given and it is shown that the threshold parameters of the D-
and F-waves are also fixed very sharply in terms of aJ and a3. In agree-
ment with earlier work, which is reviewed in some detail, we find that the
Roy equations admit physically acceptable solutions only within a band of
the (ad,a?) plane. We show that the data on the reactions ee™ — 77 and
7 — mwav reduce the width of this band quite significantly. Furthermore,
we discuss the relevance of the decay K — w7 e v in restricting the allowed
range of af, preparing the grounds for an analysis of the forthcoming pre-
cision data on this decay and on pionic atoms. We expect these to reduce
the uncertainties in the two basic low energy parameters very substantially,
so that a meaningful test of the chiral perturbation theory predictions will
become possible.
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1 Introduction

The present paper deals with the properties of the w7 scattering amplitude in
the low energy region. Our analysis relies on a set of dispersion relations for the
partial wave amplitudes due to Roy [[[. These equations involve two subtraction
constants, which may be identified with the S-wave scattering lengths, a) and a?.
We demonstrate that the subtraction constants represent the essential parameters
in the low energy region — once these are known, the Roy equations allow us
to calculate the partial waves in terms of the available data, to within small
uncertainties. Given the strong dominance of the two S-waves and of the P-wave,
it makes sense to solve the equations only for these, using experimental as well as
theoretical information to determine the contributions from higher energies and
from the higher partial waves. More specifically, we solve the relevant integral
equations on the interval 2M,; < /s < 0.8 GeV. One of the main results of this
work is an accurate numerical representation of the S- and P-waves for a given
pair of scattering lengths af and a2.

Before describing the outline of the present paper, we review previous work
concerning the Roy equations. Roy’s representation [[] for the partial wave am-



plitudes ¢! of elastic 77 scattering reads

2 [e'e] ) , . .
Hs)=kl(s)+ Y S AMZ ds' KT (s, s') Im 1 (s') | (1.1)

I'=0¢'=0

where I and ¢ denote isospin and angular momentum, respectively and k! (s) is
the partial wave projection of the subtraction term. It shows up only in the S-
and P-waves,

s — 4M?

kl(s)=al o) + e

1 1 1
(240 — 5a2) (g o469+ — 8l o} — = 52) .2
The kernels K/} (s,s') are explicitly known functions (see appendix A). They
contain a diagonal, singular Cauchy kernel that generates the right hand cut
in the partial wave amplitudes, as well as a logarithmically singular piece that
accounts for the left hand cut. The validity of these equations has rigorously
been established on the interval —4M? < s < 60M?2.

The relations ([[.1)) are consequences of the analyticity properties of the 7w
scattering amplitude, of the Froissart bound and of crossing symmetry. Com-
bined with unitarity, the Roy equations amount to an infinite system of coupled,
singular integral equations for the phase shifts. The integration is split into a
low energy interval 4M? < s < sy and a remainder, sy < s’ < oco. We refer to
sg as the matching point, which is chosen somewhere in the range where the Roy
equations are valid. The two S-wave scattering lengths, the elasticity parameters
below the matching point and the imaginary parts above that point are treated
as an externally assigned input. The mathematical problem consists in solving
Roy’s integral equations with this input.

Soon after the original article of Roy [[[] had appeared, extensive phenomeno-
logical applications were performed [P]-[], resulting in a detailed analysis and
exploitation of the then available experimental data on 77 scattering. For a re-
cent review of those results, we refer the reader to the article by Morgan and
Pennington [[J]. Parallel to these phenomenological applications, the very struc-
ture of the Roy equations was investigated. In [[J]], a family of partial wave
equations was derived, on the basis of manifestly crossing symmetric dispersion
relations in the variables st +tu + us and stu. Each set in this family is valid
in an interval sy < s < s1, and the union of these intervals covers the domain
—28M?2 < Re s < 125.3M2 (for a recent application of these dispersion relations,
see [[Z]). Using hyperbolae in the plane of the above variables, Auberson and
Epele [[J] proved the existence of partial wave equations up to Re s = 165M?2.
Furthermore, the manifold of solutions of Roy’s equations was investigated, in
the single channel [[4]-[[d] as well as in the coupled channel case [[q]. In the
late seventies, Pool [[§ provided a proof that the original, infinite set of integral
equations does have at least one solution for /sy < 4.8 M., provided that the
driving terms are not too large, see also [L9]. Heemskerk and Pool also examined
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numerically the solutions of the Roy equations, both by solving the N equation
[[9] and by using an iterative method [R{].

It emerged from these investigations that — for a given input of S-wave scat-
tering lengths, elasticity parameters and imaginary parts — there are in general
many possible solutions to the Roy equations. This non-uniqueness is due to the
singular Cauchy kernel on the right hand side of ([[.1)). In order to investigate the
uniqueness properties of the Roy system, one may — in a first step — keep only
this part of the kernels, so that the integral equations decouple: one is left with a
single channel problem, that is a single partial wave, which, moreover, does not
have a left hand cut. This mathematical problem was examined by Pomponiu
and Wanders, who also studied the effects due to the presence of a left hand cut
[[4]. Investigating the infinitesimal neighbourhood of a given solution, they found
that the multiplicity of the solution increases by one whenever the value of the
phase shift at the matching point goes through a multiple of /2. Note that the
situation for the usual partial wave equation is different: There, the number of
parameters in general increases by two whenever the phase shift at infinity passes
through a positive integer multiple of 7, see for instance [B1], P3| and references
cited therein.

After 1980, interest in the Roy equations waned, until recently. For instance,
in refs. B3] these equations are used to analyze the threshold parameters for
the higher partial waves, relying on the approach of Basdevant, Froggatt and
Petersen [f, ). The uncertainties in the values of af and af are reexamined in
refs. [B4]. In recent years, it has become increasingly clear, however, that a new
analysis of the mm scattering amplitude at low energies is urgently needed. New
K.4 experiments and a measurement of the combination aj — a3 based on the
decay of pionic atoms are under way [R5-[R9. It is expected that these will
significantly reduce the uncertainties inherent in the data underlying previous
Roy equation studies, provided the structure of these equations can be brought
under firm control. For this reason, the one-channel problem has been revisited
in great detail in a recent publication [B{], while the role of the input in Roy’s
equations is discussed in ref. [BI].

The main reason for performing an improved determination of the 77 scat-
tering amplitude is that this will allow us to test one of the basic properties of
QCD, namely the occurrence of an approximate, spontaneously broken symme-
try: The symmetry leads to a sharp prediction for the two S-wave scattering
lengths BZ-[AJ]. The prediction relies on the standard hypothesis, according to
which the quark condensate is the leading order parameter of the spontaneously
broken symmetry. Hence an accurate test of the prediction would allow us to ver-
ify or falsify that hypothesis [B4]. First steps in this program have already been
performed [BJ]-[B9]. However, in the present paper, we do not discuss this issue.
We follow the phenomenological path and ignore the constraints imposed by chi-
ral symmetry altogether, in order not to bias the data analysis with theoretical
prejudice. In a future publication, we intend to match the chiral perturbation



theory representation of the scattering amplitude to two loops [[[(J] with the phe-
nomenological one obtained in the present work.

Finally, we describe the content of the present paper. Our notation is specified
in section 2. Sections 3 and 4 contain a discussion of the background amplitude
and of the driving terms, which account for the contributions from the higher
partial waves and from the high-energy region. As is recalled in section 5, uni-
tarity leads to a set of three singular integral equations for the two S-waves and
for the P-wave. The uniqueness properties of the solutions to these equations are
discussed in section 6, while section 7 contains a description of the experimental
input used for energies between 0.8 and 2 GeV. In particular we also discuss
the information concerning the P-wave phase shift, obtained on the basis of the
ete™ — mm and 7 — 7wrr data. In section 8, we describe the method used to
solve the integral equations for a given input. The resulting universal band in the
(a$,a?) plane is discussed in section 9, where we show that, in the region below
0.8 GeV, any point in this band leads to a decent numerical solution for the three
lowest partial waves. As discussed in section 10, however, the behaviour of the
solutions above that energy is consistent with the input used for the imaginary
parts only in part of the universal band — approximately the same region of the
(a$,a?) plane, where the Olsson sum rule is obeyed (section 11). The solutions
are compared with available experimental data in section 12, and in section 13,
we draw our conclusions concerning the allowed range of aj and a3. The other
threshold parameters can be determined quite accurately in terms of these two.
The outcome of our numerical evaluation of the scattering lengths and effective
ranges of the lowest six partial waves as functions of a and a3 is given in section
14, while in section 15, we describe our results for the values of the phase shifts
relevant for K — 7wm. Section 16 contains a comparison with earlier work. A
summary and concluding remarks are given in section 17.

In appendix A we describe some properties of the Roy kernels, which are
extensively used in our work. The background from the higher partial waves
and from the high energy tail of the dispersion integrals is discussed in detail
in appendix B. In particular, we show that the constraints imposed by crossing
symmetry reduce the uncertainties in the background, so that the driving terms
can be evaluated in a reliable manner. In appendix C we discuss sum rules
connected with the asymptotic behaviour of the amplitude and show that these
relate the imaginary part of the P-wave to the one of the higher partial waves,
thereby offering a sensitive test of our framework. Explicit numerical solutions of
the Roy equations are given in appendix D and, in appendix E, we recall the main
features of the well-known Lovelace-Shapiro-Veneziano model, which provides a
useful guide for the analysis of the asymptotic contributions.



2 Scattering amplitude

We consider elastic 77 scattering in the framework of QCD and restrict our
analysis to the isospin symmetry limit, where the masses of the up and down
quarks are taken equal and the e.m. interaction is ignoredf]. In this case, the
scattering process is described by a single Lorentz invariant amplitude A(s,t, u),

(m4(pa) 7€ (ps) out|7(p1) 7" (p2) in) = 0 +
(2m)1 04 (Py — P){6%%0°4 A(s, t,u) + 626 A(t, u, s) + 596 A(u, s,t)} .

The amplitude only depends on the Mandelstam variables s, t, u, which are
constrained by s+t +u = 4M?2. Moreover, crossing symmetry implies

A(s,t,u) = A(s,u,t) .

The s-channel isospin components of the amplitude are given by

T(s,t) =3A(s, t,u) + A(t,u, s) + A(u, s,t) ,
T'(s,t)=A(t,u,s) — A(u, s,t) , (2.1)
T?(s,t) = A(t,u,s) + A(u, s,t) .

In our normalization, the partial wave decomposition reads

Tl(s,t):327r2(2€+1)Pg<1—l— 2t )tg(s),

1 51
I _ I 2i6,(s) __
t(5) = gy (M) ¥4 =1}, (2:2)
4M?
o(s)=4/1——7=—.
S

The threshold parameters are the coefficients of the expansion
Rety(s) = ¢* {ag + by +q"c +...} (2.3)

with s = 4(M?2 + ¢?).

The isospin amplitudes T = (T°,T*,T?) obey fixed-t dispersion relations,
valid in the interval —28M?* < t < 4M? [El]. As shown by Roy |[fl, these can be
written in the formf]

T(s,t)=(AM>)" (s 1+t Cy +uCy,) T(4M?2,0) (2.4)
+/ ds' ga(s,t,s) ImT(s',0) +/ ds' gs(s,t, ) ImT(s',t) .
AM2 AM2

'In our numerical work, we identify the value of M, with the mass of the charged pion.
2For an explicit representation of the kernels ga(s,t,s"), g3(s,t,s’) and of the crossing ma-
trices Cyg, Csy, we refer to appendix A.



The subtraction term is fixed by the S-wave scattering lengths:
T(4M2,0) = 327 (al, 0, a2) .

The Roy equations ([[.])) represent the partial wave projections of eq. (B.4).
Since the partial wave expansion of the absorptive parts converges in the large
Lehmann—Martin ellipse, these equations are rigorously valid in the interval
—4M?* < s < 60M2. If the scattering amplitude obeys Mandelstam analyti-
city, the fixed-t dispersion relations can be shown to hold for —32M? < t < 4M?
and the Roy equations are then also valid in a larger domain: —4M? < s < 68 M2
(for a review, see [IF]). In fact, as we mentioned in the introduction, the range
of validity can be extended even further [[I], [J], so that Roy equations could
be used to study the behaviour of the partial waves above V68 M, = 1.15GeV,
where the uncertainties in the data are still considerable. In the following, how-
ever, we focus on the low energy region. We assume Mandelstam analyticity and
analyze the Roy equations in the interval from threshold to

s1 = 68M?2 | Vs1 =1.15GeV .

3 Background amplitude

The dispersion relation (B.4) shows that, at low energies, the scattering amplitude
is fully determined by the imaginary parts of the partial waves in the physical
region, except for the two subtraction constants a3, a3. In view of the two sub-
tractions, the dispersion integrals converge rapidly. In the region between 0.8 and
2 GeV, the available phase shift analyses provide a rather detailed description of
the imaginary parts of the various partial waves. Our analysis of the Roy equa-
tions allows us to extend this description down to threshold. For small values of s
and t, the contributions to the dispersion integrals from the region above 2 GeV
are very small. We will rely on Regge asymptotics to estimate these. In the fol-
lowing, we split the interval of integration into a low energy part (4M2 < s’ < s9)
and a high energy tail (so < s’ < 00), with

V52 =2GeV 59 = 205.3 M2 .

For small values of s and ¢, the scattering amplitude T (s,t) is dominated by
the contributions from the subtraction constants and from the low energy part
of the dispersion integral over the imaginary parts of the S- and P-waves. We
denote this part of the amplitude by T (s,t)4p- The corresponding contribution
to the partial waves is given by

2 1 s9 , . L
H(s)=Kl(s)+ 33 A s K (s, ) It () (3.1)

I'=04'=0



The remainder of the partial wave amplitude,

Z Z ds' KIF (s,s") Imtl (s (3.2)

—0 0 — 4M2

+ Z Z ds' Kji (s,8") Imty, (s')
I'=0£'=0" %2
is called the driving term. It accounts for those contributions to the r.h.s. of the
Roy equations that arise from the imaginary parts of the waves with ¢ = 2,3, ...
and in addition also contains those generated by the imaginary parts of the S-
and P-waves above 2 GeV. By construction, we have

ty(s) = ti(s)sp + di(s) (3.3)
For the scattering amplitude, the corresponding decomposition reads
T‘)(S? t) = T‘)(S? t)SP + T‘)(S? t)d : (34)

We refer to f(s, t)q as the background amplitude.

The contribution from the imaginary parts of the S- and P-waves turns out
to be crossing symmetric by itself. In this sense, crossing symmetry does not
constrain the imaginary parts of the S- and P- wavesﬁ The symmetry can be
exhibited explicitly by representing the three components of the vector T (s,t)gp
the isospin projections of a single amplitude A(s,t,u),, that is even with respect
to the exchange of ¢ and u. The explicit expression involves three functions of a

single variable [T}, Bg:
As, t,u) g =321 {3WO(s) + 5(s — )W (£) + 3(s — )W (u)
FSWR(E) + S (u) — S2(s)} (3.5)

These are determined by the imaginary parts of the S- and P-waves and by the
two subtraction constants a, a3:

ads  s(s—4AM?) s ds' Tm (s’
WO(S): 0 + ( )/MZS( 0( )

4 M2 7 (' —AM2)(s' —s) ’
5 / 1/
Wi(s)= % A e S,(S,dj L\n};i)— g (3.6)
W)= Z]%/Z% + e _7T4M7%) AZZ s’(s’dj/i]\rjgij)— s)
The representation
A(s,t,u) = A(s, t,u) g+ A(s, t,u)g (3.7)

3The asymptotic behaviour of the scattering amplitude does tie the imaginary part of the
P-wave to the contributions from the higher partial waves, see appendix



yields a manifestly crossing symmetric decomposition of the scattering amplitude
into a leading term generated by the imaginary parts of the S- and P-waves at
energies below s, and a background, arising from the imaginary parts of the
higher partial waves and from the high energy tail of the dispersion integrals.

4 Driving terms

In the present paper, we restrict ourselves to an analysis of the Roy equations
for the S- and P- waves, which dominate the behaviour at low energies. The
background amplitude only generates small corrections, which can be worked
out on the basis of the available experimental information. The calculation is
described in detail in appendix B. In particular, we show that crossing symmetry
implies a strong constraint on the asymptotic contributions.

The resulting numerical values for the driving terms are well described by
polynomials in s, or, equivalently, in the square of the center of mass momentum
¢* = 1(s — 4M?). By definition, the driving terms vanish at threshold, so that
the polynomials do not contain g-independent terms. In view of their relevance
in the evaluation of the threshold parameters, we fix the coefficients of the terms
proportional to ¢? with the derivatives at threshold and also pin down the term
of order ¢* in the P-wave, such that it correctly accounts for the background
contribution to the effective range of this partial wave. The remaining coefficients
of the polynomial are obtained from a fit on the interval from threshold to s;.
The explicit result reads

d)(5)=0.116¢* + 4.79¢* — 4.09¢° +2.69¢° |
di(s)=0.00021 ¢ 4+ 0.038 ¢* +0.94¢° — 1.21¢% , (4.1)
d2(s) =0.0447¢* + 1.59¢* — 6.26¢° +5.94¢° |
where ¢ is taken in GeV units (the range 4M? < s < 68M? corresponds to
0 < g < 0.56GeV). The driving term of the I = 0 S-wave is larger than the
other two by an order of magnitude. It is dominated almost entirely by the
contribution from the D-wave with I = 0. In di(s), the D- and F-waves nearly
cancel, so that the main contributions arise from the region above 2 GeV. The
term d2(s) picks up small contributions both from low energies and from the
asymptotic domain. The above polynomials are shown as full lines in fig. [I. The
shaded regions represent the uncertainties of the result, which may be represented
as dl(s) £ el(s), with
ed(s)=0.008¢* +0.31¢* —0.33¢° +0.41¢° ,
el(s)=0.002¢*> +0.06¢* — 0.17¢° +0.21¢* , (4.2)
e2(s)=0.005¢* +0.20¢* — 0.32¢° +0.39¢% .
Above threshold, the error bars in d(s), d}(s) and d3(s) roughly correspond to
6%, 1% and 4% of dj(s), respectively.
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Figure 1:  Driving terms versus energy in GeV. The full lines show the re-
sult of the calculation described in appendix B. The shaded regions indicate the

uncertainties associated with the input of that calculation. The dashed curves
represent the contributions from the D- and F-waves below 2 GeV.
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As far as d))(s) is concerned, our result roughly agrees with earlier calculations
B, [@]. Our values for di(s) and d2(s), however, are much smaller. The bulk of
the difference is of purely kinematic origin: The values taken for s, are different.
While we are working with /s; = 2GeV, the values used in refs. [f] and [f] are
V53 M, ~ 1GeV and v/110 M, ~ 1.5GeV, respectively. The value of sy enters
the definition of the driving terms in eq. (3.2) as the lower limit of the integration
over the imaginary parts of the S- and P-waves. We have checked that, once this
difference in the range of integration is accounted for, the driving terms given
in these references are consistent with the above representation. Note however,
that our uncertainties are considerably smaller, and we do rely on this accuracy
in the following. It then matters that not only the range of integration, but also
the integrands used in [B, fI] differ from ours: In these references, it is assumed
that, above the value taken for s, the behaviour of the S- and P-wave imaginary
parts is adequately described by a Regge representation.

The difference between such a picture and our representation for the back-
ground amplitude is best illustrated with the simple model used in the early
literature, where the asymptotic region is described by a Pomeron term with
otot = 20mb and a contribution from the p- f-trajectory, taken from the Lovelace-
Shapiro-Veneziano model (appendix [{]). As discussed in detail in appendix B4},
the assumption that an asymptotic behaviour of this type sets in early is in con-
flict with crossing symmetry [f3. In particular, the model overestimates the
contribution to the driving terms from the region above 1.5 GeV, roughly by a
factor of two. Either the value of o,y or the residue of the leading Regge trajec-
tory or both must be reduced in order for the model not to violate the sum rule
(B-:§). The manner in which the asymptotic contribution is split into one from
the Pomeron and one from the leading Regge trajectory is not crucial. For any
reasonable partition that obeys the sum rule (B.6]), the outcome for the driving
terms is approximately the same. The result for di(s) and d(s) is considerably
smaller than what is expected from the above model. The leading term d(s),
on the other hand, is dominated by the resonance f»(1275) and is therefore not
sensitive to the behaviour of the imaginary parts in the region above 1.5 GeV.

5 Roy equations as integral equations

Once the driving terms are pinned down, the Roy equations for the S- and P-
waves express the real parts of the partial waves in terms of the S-wave scattering
lengths and of a principal value integral over their imaginary parts from 4M? to
sy. Unitarity implies that, in the elastic domain 4M? < s < 16M?2, the real
and imaginary parts of the partial wave amplitudes are determined by a single
real parameter, the phase shift. If we were to restrict ourselves to the elastic
region, setting s, = 16M?2, the Roy equations would amount to a set of coupled,
nonlinear singular integral equations for the phase shifts. We may extend this
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range, provided the elasticity parameters n/(s) are known. On the other hand,
since the Roy equations do not constrain the behaviour of the partial waves
for s > 68M?2, the integrals occurring on the r.h.s. of these equations can be
evaluated only if the imaginary parts in that region are known, together with
the subtraction constants al, a, which also represent parameters to be assigned
externally.

In the present paper, we do not solve the Roy equations in their full domain
of validity, but use a smaller interval, 4M? < s < so. The reason why it is
advantageous to use a value of sg below the mathematical upper limit, sq < sy,
is that the Roy equations in general admit more than one solution. As will be
discussed in detail in section [, the solution does become unique if the value of
so is chosen between the p mass and the energy where the I = 0 S-wave phase
passes through 7/2 — this happens around 0.86 GeV. In the following, we use

V50 = 0.8GeV | s0=32.9M? .

In the variable s, our matching point is nearly at the center of the interval between
threshold and s; = 68 M?2. We are thus solving the Roy equations on the lower
half of their range of validity, using the upper half to check the consistency of
the solutions so obtained (section [[(J). Our results are not sensitive to the precise
value taken for sy (section ).

The Roy equations for the S- and P-waves may be rewritten in the form

s S0
Reti(s) = l{:g(s)—l—][ ’ ds'K}J(s,s') Im t8(s')+][ ds'K}!(s,s") Imti(s)
4M2 4M2
50
o A KL (s, I ad() + f1(s) + di(s) (51)

AM2
where I and ¢ take only the values (7, ¢) =(0,0), (1,1) and (2,0). The bar across
the integral sign denotes the principal value integral. The functions f/(s) contain
the part of the dispersive integrals over the three lowest partial waves that comes
from the region between sy and s;, where we are using experimental data as
input. They are defined as

2 1
i) =>> i ds' KIF (s,s") Imth (') . (5.2)
I'=0¢'=0"%0

The experimental input used to evaluate these integrals will be discussed in sec-
tion [, together with the one for the elasticity parameters of the S- and P-waves.
One of the main tasks we are faced with is the construction of the numerical
solution of the integral equations (F.1]) in the interval 4M? < s < s, for a given
input {a9, a3, f/,ni,dl}. Once a solution is known, the real part of the amplitude

can be calculated with these equations, also in the region so < s < s7.
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6 On the uniqueness of the solution

The literature concerning the mathematical structure of the Roy equations was
reviewed in the introduction. In the following, we first discuss the situation for
the single channel case — which is simpler, but clearly shows the salient features —
and then describe the generalization to the three channel problem we are actually
faced with. For a detailed analysis, we refer the reader to two recent papers on
the subject [Bd, BI]] and the references quoted therein.

6.1 Roy’s integral equation in the one-channel case

If we keep only the diagonal, singular Cauchy kernel in (1)), the partial wave
relations decouple, and the left hand cut in the amplitudes disappears. Each one
of the three partial wave amplitudes then obeys the following conditions:

i) In the interval between the threshold s = 4M? and the matching point s = s,
the real part is given by a dispersion relation

1 oo Imt(s")
Ret(s) = —4M?2) = ds' : 6.1
et(s)=a+(s ") 7 Jam2 § (s" —4M2) (s — s) (6.1)
ii) Above sg, the imaginary part Imt(s) is a given input function
Imt(s) = A(s), 5> S0 - (6.2)
iii) For simplicity, we take the matching point in the elastic region, so that
1 .
t(s) = —e®®sind(s) , 4M? < 5 < s , (6.3)

o(s)

where d(s) is real and vanishes at threshold. We refer the reader to [BJ] for a
precise formulation of the regularity properties required from the amplitude and
from the input absorptive part. As a minimal condition, we must require

lim Im t(s) = A(sg) . (6.4)

s,/'s0
Otherwise, the principal value integral does not exist at the matching point.

Equations (p-1)-(B-4) constitute the mathematical problem we are faced with

in this case: Determine the amplitudes ¢(s) that verify these equations for a given
input of scattering length a and absorptive part A(s). Once a solution is known,
the real part of the amplitude above sq is obtained from the dispersion relation
(B-1)), and t(s) is then defined on 4M? < s < co. The following points summarize
the results relevant in our context:

1. Elastic unitarity reduces the problem to the determination of the real func-
tion d(s), defined in the interval 4M? < s < s5. The amplitude #(s) is then
obtained from (B.3).
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Figure 2: Boundary conditions on the phase d(sg) for solving Roy’s integral
equation. Figs. a,b,c represent the cases 0 < d(so) < 7/2, 7/2 < §(s9) < 7 and
T < 0(sg) < 3m/2, respectively. In fig. ¢, the phase winds around the Argand
circle slightly more than once.

2. A given input {a, A(s)} does not, in general, fix the solution uniquely — in
addition, the value of the phase at the matching point plays an important
role. Indeed, let ¢(s) be a solution and suppose first that the phase at
the matching point is positive. For 0 < d(sg) < 7/2, the infinitesimal
neighbourhood of ¢(s) does not contain further solutions. For d(sg) > /2,
however, the neighbourhood contains an m-parameter family of solutions.
The integer m is determined by the value of the phase at the matching
point ([x] is the largest integer not exceeding x):

m= 2] (65

™

For a monotonically increasing phase, the index m counts the number of
times d(s) goes through multiples of /2 as s varies from threshold to the
matching point. We illustrate the situation for m =0, 1,2 in figure .

3. If the value of the phase at the matching point is negative, the problem
does not in general have a solution. In order for the problem to be soluble
at all, the input must be tuned. For —7/2 < d(sp) < 0, for instance, we
may keep the absorptive part A(s) as it is, but tune the scattering length a.
This situation may be characterized by m = —1: Instead of having a family
of solutions containing free parameters, the input is subject to a constraint.
Once a solution does exist, it is unique in the sense that the infinitesimal
neighbourhood does not contain further solutions.

4. Consider now the case displayed in fig. Pa, where the phase at the matching
point is below 7/2. This corresponds to the situation encountered in the
coupled channel case, for our choice of the matching point. According to the
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above statements, a given input {a, A(s)} then generates a locally unique
solution — if a solution exists at all. We take it that uniqueness also holds

globally, see [[5].

The solution may be constructed in the following manner: Consider a family of
unitary amplitudes, parametrized through cy,...,c,. For any given amplitude,
evaluate the right and left hand sides of eq. (b.I]) and calculate the square of the
difference at N points in the interval 4M? < s < sy. Finally, minimize the sum
of these squares by choosing cq, ..., ¢, accordingly. Since the solution is unique,
it suffices to find one with this method — it is then the only one.

6.2 Cusps

In general, the solutions are not regular at the matching point, but have a cusp
(branch point) there: d(s) = d(s9)+C(so—s)"+..., with v > 0. The phenomenon
arises from our formulation of the problem — the physical amplitude is regular
there. We conclude that, even if a mathematical solution can be constructed for
a given input {a, A(s)}, it will in general not be acceptable physically, because
it contains a fictitious singularity at the matching point. The behaviour of the
phase is sensitive to the value of the exponent: If v is close to 1, the discontinuity
in the derivative is barely visible, while for small values of v, it manifests itself
very clearly.

The strength of the singularity is determined by the constant C', whose value
depends on the input used. In particular, if the scattering length a is varied,
while the absorptive part A(s) is kept fixed, the size of C' changes. We may
search for the value of a at which C vanishes. Although the singularity does not
disappear entirely even then, it now only manifests itself in the derivatives of
the function (for the solution to become analytic at sg, we would need to also
adapt the input for A(s)). In view of the fact that our solutions are inherently
fuzzy, because the values of the input are subject to experimental uncertainties,
we consider solutions with C' >~ 0 or v ~ 1 as physically acceptable and refer to
these as solutions without cusp.

The search for solutions without cusp can be implemented as follows. Instead
of fixing a, constructing solutions in the class of functions with a cusp and then
determining the value of a at which the cusp disappears, we may simply consider
parametrizations that do not contain a cusp, treating the scattering length a as
a free parameter, on the same footing as the set cq,..., ¢, used to parametrize
the phase shift and minimizing the difference between the left and right hand
sides of eq. (p.1). We have verified that if a solution without cusp does exist, this
procedure indeed finds it: Allowing for the presence of cusps does not lead to a
better minimum.

The net result of this discussion is that the scattering length a must match
the input for A(s) — it does not represent an independent parameter. When

16



range of s range of §) range of 0} m
I 1<ys<115| m<é)<irm|sm<di<m 2
IT | 0.86<+/s0<1 iT<dy<m |sT<d<T 1
II| 0.78<4/50<086| 0<dy<szm|sm<d<m 0
IV| 028<50<078| 0<d)<szm| 0<édf<sm|-—1

Table 1: Multiplicity of solutions in the coupled channel case. The multiplicity
index m is the number of free parameters occurring in the solutions of the Roy
equations, if the matching point sy is in the interval indicated (in GeV units).
Also displayed is the variation of the physical phases d) and ] on that interval.

solving the Roy equations, we can at the same time also determine the value
of a that belongs to a given input for the high energy absorptive part. The
conclusion remains valid even if the matching point is above the first inelastic
threshold, provided the elasticity parameter n is known and sufficiently smooth
at the matching point. For a thorough analysis of the issue, we refer to [B]].

6.3 Uniqueness in the multi-channel case

In the multichannel case, we need to determine three functions d,d; and §3 for
a given input {al, a2, f/,n},d}. The multiplicity index m of the infinitesimal
neighbourhood of a given solution is displayed in table [I] [B]]], for various values
of the matching point sg. The table contains the following information. In the
situations indicated with the labels I and II, the infinitesimal neighbourhood of
a given solution contains a family of solutions, characterized by 2 and 1 free
parameters, respectively. In case III, the solution is unique in the sense that the
neighbourhood does not contain further solutions, while in case IV a solution only
exists if the input is subject to a constraint (m = —1, compare paragraph 3 in
section 6.1). In order to uniquely characterize the solution in case I, for instance,
we thus need to fix two more parameters — in addition to the input — say the
position of the p resonance and its width, or the position of the p resonance and
the value of s where the I = 0 phase passes through 7/2; and similarly for II. In
the following, we stick to case III, where the solution is unique for a given input.
As discussed above, each of the three partial waves will in general develop a cusp
at the matching point sy, unless some of the input parameters take special values.

The situation encountered in practice is the following. Let 0.1 < aJ < 0.6,
and let f/, n} and d! be fixed as well. For an arbitrary value of the scattering
length a2, the solution in general develops a strong cusp in the P-wave. This
cusp can be removed by tuning a2 — a2, using for instance the method described
in the single channel case above. Remarkably, it turns out that the solutions
so obtained are nearly free of cusps in the two S-waves as well. The problem
manifests itself almost exclusively in the P-wave, because our matching point is
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rather close to the mass of the p, where the imaginary part shows a pronounced
peak. If a2 is chosen to slightly differ from the optimal value a2, a cusp in the
P-wave is clearly seen. We thus obtain a relation between the scattering lengths
ad and a?. This is how the so-called universal curve, discovered a long time ago
[[4], shows up in our framework. We will discuss the properties of this curve in
detail below.

In principle, we might try to also fix aj with this method, requiring that there
be no cusp in one of the two S-waves. The cusps in these are very weak, however
— the procedure does not allow us to accurately pin down the second scattering
length. The choice a) = —0.2, for instance, still leads to a fully acceptable
solution. On the other hand, we did not find a solution in the class of smooth
functions for aj = —0.5. This shows that the analyticity properties that are not
encoded in the Roy integral equations (p.1]) do constrain the range of admissible
values for af), but since that range is very large, the constraint is not of immediate
interest, and we do not consider the matter further. In our numerical work, we
consider values in the range 0.15 < aj < 0.30 and use the center of this interval,
a) = 0.225, as our reference point.

7 Experimental input

In this section, we describe the experimental input used for the elasticity below
the matching point at /sy = 0.8 GeV and for the imaginary parts of the S- and
P-waves in the energy interval between /sg and /sy = 2GeV. The references
are listed in [[I3]-[F9] and for an overview, we refer to [f], pUj]. The evaluation of
the contributions from the higher partial waves and from the asymptotic region
(s > s9) is discussed in detail in appendix [B.

7.1 [Elasticity below the matching point

The Roy equations allow us to determine the phase shifts of the S- and P-
waves only if — on the interval between threshold and the matching point —
the corresponding elasticity parameters 7(s), n;(s) and 73(s) are known. On
kinematic grounds, the transition 2r — 47 is the only inelastic channel open
below our matching point, 1/s9 = 0.8GeV. The threshold for this reaction is
at E = 4 M, ~ 0.56 GeV, but phase space strongly suppresses the transition at
low energies — a significant inelasticity only sets in above the matching point. In
particular, the transition 77 — KK, which occurs for £ > 2 My ~ 0.99 GeV,
does generate a well-known, pronounced structure in the elasticity parameters of
the waves with I = 0, 1. Below the matching point, however, we may neglect the
inelastic reactions altogether and set

no(s) =mni(s)=mg(s)=1, 5<08GeV .
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We add a remark concerning the effects generated by the inelastic reaction
21 — 47, which are analyzed in ref. [57]. In one of the phase shift analyses given
there (solution A), the inelasticity 1 — 1 (s) reaches values of order 4%, already
in the region of the p-resonance. The effect is unphysical — it arises because the
parametrization used does not account for the strong phase space suppression at
the 4r threshold[]. For the purpose of the analysis performed in ref. [F7], which
focuses on the region above 1 GeV, this is immaterial, but in our context, it
matters: We have solved the Roy equations also with that representation for the
elasticities. The result shows significant distortions, in particular in the P-wave.

7.2 Input for the [ = 0,1 channels

The experimental information on the 77 phase shifts in the intermediate energy
region comes mainly from the reaction 7N — 7w N. A rather involved analysis is
necessary to extract the mm phase shifts from the raw data, and several different
representations for the phases and elasticities are available in the literature. The
main source of experimental information is still the old measurement of the re-
action m"p — w7 n by the CERN-Munich (CM) collaboration [[[9], but there
are also older, statistically less precise data, for instance from Saclay [[5] and
Berkeley [A], as well as newer ones, such as the data of the CERN-Cracow-
Munich collaboration concerning pion production on polarized protons [p4] and
those on the reaction m~p — 7%, obtained recently by the E852 collabora-
tion at Brookhaven [BY9]. For a detailed discussion of the available experimental
information, we refer to [0, b4, Bd].

For our purposes, energy-dependent analyses are most convenient, because
these yield analytic expressions for the imaginary parts, so that the relevant
integrals can readily be worked out. To illustrate the differences between these
analyses, we plot the corresponding imaginary parts in fig. fj, both for the I =0
S-wave and for the P-wave. The representations of refs. [{7, B3, b7 do not extend
to 2 GeV, but they do cover the range between 0.8 and 1.7 GeV. Unitarity ensures
that the contributions generated by the imaginary parts of the S- and P-waves
in the region between 1.7 and 2 GeV are very small, so that we may use these
representations also there without introducing a significant error. For the P-wave,
the differences between the various parametrizations are not dramatic, but for
the I = 0 S-wave, they are quite substantial. Despite these differences, the result
obtained for the dispersive integrals are similar, at least in the range where we
are solving the Roy equations. This can be seen in fig. [], where we plot the value
of the dispersion integral f, defined in eq. (B.9). The only visible difference is
between parametrization B of ref. [7] and the others. In order of magnitude, the
effect is comparable to the one occurring if the scattering length aj is shifted by
0.01. It arises from the difference in the behaviour of the S-wave imaginary part

4We thank Wolfgang Ochs for this remark.
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Figure 3: Comparison of the different input we used for the imaginary parts of
the I =0 and I = 1 lowest partial waves above the matching point at 0.8 GeV.

in the region between 1 and 1.5 GeV. The phase shift analysis of Protopopescu et
al. [A§ does not cover that region, as it only extends to 1.15 GeV, but those of Au,
Morgan and Pennington [57] as well as Bugg, Sarantsev and Zou [B7] do. Both
of these include, aside from the CM data, additional experimental information,
not included in the analysis of Hyams et al. [A7].

In the following, we rely on the representation of Au et al. [p7] for the S-wave
and the one of Hyams et al. [{7] for the P-wave (the analysis of Au et al. does not
include the P-wave). We have verified that, using [[[q] also for the S-wave would
not change our results below the matching point, beyond the uncertainties to be
attached to the solutions, anyway. On the other hand, Au et al. [B5] yield a more
consistent picture above the matching point — for this reason we stick to that
analysis. More precisely, we use the solution denoted by K;(Etkin) in ref. [B3],
table I. That solution contains a narrow resonance in the 1 GeV region, which
does not occur in the other phase shift analyses. In our opinion, the extra state
is an artefact of the representation used: A close look reveals that the occurrence
of this state hinges on small details of the K-matrix representation. In fact, the
resonance disappears if two of the K-matrix coefficients are slightly modified, for
instance with (—cY,, —c9,) = (3.1401,2.8447) — (3.2019, 2.6023).
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Figure 4: Comparison of the results obtained for the dispersion integral fJ with
the various imaginary parts shown in fig. fJ.

7.3 Phase of the P-wave fromete™ — 77~ and 7 — 7 7’ v,

For the P-wave, the data on the processes ete™ — 777~ and 7 — 7~ 7% v, yield
very useful, independent information. The corresponding transition amplitude is
proportional to the pion form factor F.,, (s) of the electromagnetic current and
to the form factor Fy(s) of the charged vector current, respectively. The data
provide a measurement of the quantities |F.,, (s)| and |Fy(s)| in the time-like
region, s > 4M?2.

In the isospin limit, the two form factors coincide: The currents only differ by
an isoscalar operator that carries odd G-parity, so that the pion matrix elements
thereof vanish. While the isospin breaking effects in |F (s)| are very small, p —w
interference does produce a pronounced structure in the electromagnetic form
factor. The w-resonance generates a second sheet pole in the isoscalar matrix
elements, at s = (M, — i%Fw)z. The residue of the pole is small, of order
O(mg — my, €%), but in view of the small width of the w, the denominator also
nearly vanishes for s = M?2. Moreover, the pole associated with the exchange of a
p occurs in the immediate vicinity of this point, so that the transition amplitude
involves a sum of two contributions that rapidly change with s, both in magnitude
and phase. Since the interference phenomenon is well understood, it can be
corrected for. When this is done, the data on the two processes ete™ — w7~
and 7 — 7~ 7 are in remarkably good agreement (for a review, see [B1, B2]).
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We denote the phase of the vector form factor by ¢(s),
Fy(s) = |Fy(s)]e™®® .

In the elastic region 4M? < s < 16M?2, the final state interaction exclusively
involves 7 scattering, so that the Watson theorem implies that the phase ¢(s)
coincides with the P-wave phase shift,

o(s) = 01(s) , 4M? < s < 16M?2 .

In fact, phase space suppresses the inelastic channels also in this case — the
available data on the decay channel 7 — 47 v, show that, for £ < 0.9 GeV, the
inelasticity is below 1%, so that the phase of the form factor must agree with the
P-wave phase shift, to high accuracy [63].

In the region where the singularity generated by p-exchange dominates, in
particular also in the vicinity of our matching point, the form factor is well rep-
resented by a resonance term and a slowly varying background. Quite a few such
representations may be found in the recent literature. Since the uncertainties
in the data (statistical as well as systematic) are small, these parametrizations
agree quite well. In the following, we use the Gounaris-Sakurai representation of
ref. [64] as a reference point. That representation involves a linear superposition
of three resonance terms, associated with p(770), p(1450) and p(1700). We have
investigated the uncertainties to be attached to this representation by (a) com-
paring the magnitude of the form factor with the available dataf], (b) comparing
it with other parametrizations, (c) varying the resonance parameters in the range
quoted in ref. [f4] and (d) using the fact that analyticity imposes a strong cor-
relation between the phase of the form factor and its magnitude. On the basis
of this analysis, we conclude that the ete™ and 7 data determine the phase of
the P-wave at 0.8 GeV to within an uncertainty of £2°. A detailed comparison
between the phase of the form factor and the solution of the Roy equations for
the P-wave will be given in section [2.3.

7.4 Phases at the matching point

In the framework of our analysis, the input used for s > s¢ enters in two ways:
(i) it specifies the value of the three phases at the matching point and (ii) it
determines the contributions to the Roy equation integrals from the region above
that point. Qualitatively, we are dealing with a boundary value problem: At
threshold, the phases vanish, while at the matching point, they are specified by
the input. The solution of the Roy equations then yields the proper interpolation
between these boundary values. The behaviour of the imaginary parts above the
matching point is less important than the boundary values, because it only affects
the slope and the curvature of the solution.

®We are indebted to Simon Eidelman and Fred Jegerlehner for providing us with these.
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5 61 61 — 4y reference
81.7 £ 3.9 1052 £ 1.0 234+ 4.0 , 7

=]
(@)

[
90.4 £ 3.6 1152 £ 1.2 248 £38 [P0] s-channel moments
85.7£29 116.0 1.8 30.3 + 3.4 [B0] t-channel moments
81.6 £4.0 108.1 £1.4 26.5 + 4.2 [Eg table VI
80.9 105.9 25.0 @, [
79.5 106.1 26.5 53 solution A
79.9 106.8 26.9 [B7] solution B
80.7 — — 6] solution K;
82.0 - - [P3] solution K;(Etkin)

Table 2: Value of the phases 63 and d; at 0.8 GeV. The first three rows stem from
analyses of the data at a fixed value of the energy (“energy independent”), while
the remaining entries are obtained from a fit to the data that relies on an explicit
parametrization of the energy dependence (“energy dependent analysis”).

We now discuss the available information for the phases d) and 4] at the
matching point. The values obtained from the high energy, high statistics 7N —
7mN experiments are collected in table B In those cases where the published
numbers do not directly apply at 0.8 GeV, we have used a quadratic interpolation
between the three values of the energy closest to this one. The errors given in
the third column are obtained by adding those from the first two columns in
quadrature. For the energy dependent entries, the error analysis is more involved
— only ref. [I§] explicitly quotes an error. The scatter seen in the table partly
arises from the fact that different methods of analysis are used. The corresponding
systematic uncertainties are not covered by the error bars quoted in the individual
phase shift analyses: Taken at face value, the numbers listed in the table are
contradictory, particularly in the case of the P-wave. For a thorough discussion
of the experimental discrepancies, we refer to [B0].

As discussed above, both the statistical and the systematic uncertainties of
the ete™ and 7 data are considerably smaller. They constrain the phase of the
P-wave at 0.8 GeV to a narrow range, centered around the value 4} (so) = 108.9°
obtained with the Gounaris-Sakurai representation of the form factor in ref. [p4]:

61(s0) = 108.9° £2° . (7.1)

The comparison with the numbers listed in the second column of the table shows
that this value is within the range of the results obtained from 7N — 77w N.
Unfortunately, the ete™ and 7 data only concern the P-wave. To pin down
the I = 0 S-wave, we observe that the overall phase of the scattering amplitude
drops out when considering the difference §{ — 40, so that one of the sources
of systematic error is absent. Indeed, the third column in the table shows that
the outcome of the various analyses is consistent with the assumption that the
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fluctuations seen are of statistical origin. The statistical average of the energy
independent analyses yields d1(sg) — 05(so) = 26.6° & 3.7°, with x* = 2 for 2
degrees of freedom (as the numbers are based on the same data, we have inflated
the error bar — the number given is the mean error of the three data points). The
remaining entries in the table neatly confirm this result. Combining it with the
one in the fourth row, which is based on independent data, we finally arrive at

61(50) — 0 (s0) = 26.6° £2.8° . (7.2)

Since the value for d} comes from the data on the form factor, while the one for
the difference §; — &) is based on the reaction 7N — 77N, these numbers are in-
dependent, so that it is legitimate to combine them. Adding errors quadratically,
we obtain

65(s0) = 82.3° £3.4° . (7.3)

In the following, we rely on the two values for the phases at the matching
point given in egs. ((]]) and ([.J). We emphasize that the 1N — 77N data
are consistent with these — in fact, the result of the energy-dependent analysis
quoted in the fourth row of the table is in nearly perfect agreement with the
above numbers. We are exploiting the fact that the e™e™ and 7 data strongly
constrain the behaviour of the P-wave in the region of the p, thus reducing the
uncertainties in the value of 4} at the matching point.

For the principal value integrals to exist, we need to continuously connect
the values of the imaginary parts calculated from the phases at the matching
point with those of the phase shift representation we wish to use. This can be
done, either by slightly modifying the parameters occurring in the representation
in question or with a suitable interpolation of the phases between the matching
point and KK threshold. We have checked that our results do not depend on
how that is done, as long as the interpolation is smooth. Note that, for the
representation K5 (Etkin) [pJ] — our reference input for the imaginary part of the
I = 0 S-wave — an interpolation is not needed: The last row of table |} shows
that, at the matching point, this representation nearly coincides with the central

value in eq. ([.9).

7.5 Input for the [ = 2 channel

The uncertainties in this channel are rather large. The current experimental
situation is summarized in fig. f, where we show the data points from the two main
experiments [5]], B3], and five different parametrizations that we will use as input.
The central one is our best fit to the data of the Amsterdam—CERN-Munich
collaboration (ACM) [p]] solution B (which we call from now on ACM(B)) with
a parametrization a la Schenk [pH]. To cover the rather wide scatter of the data,
we have varied the input in this channel, using the five curves shown in the figure,
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Figure 5: Different data sets for the S-wave in the I = 2 channel and curves
that we have used as input in the Roy equation analysis.

together with 72 = 1 (note that for the Roy equation analysis, only the value of
the scattering length a2 and the behaviour of the imaginary part above 0.8 GeV
matter).

8 Numerical solutions

In the preceding section, the input required to evaluate the r.h.s. of our system
of equations was discussed in detail. In the present section, we describe the
numerical method used to solve this system and illustrate the outcome with an
example.

8.1 Method used to find solutions

We search for solutions of the Roy equations by numerically minimizing the square
of the difference between the left and right hand sides of eq. (B.1)) in the region
between threshold and 0.8 GeV. As we are neglecting the inelasticity in this
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region, the real and imaginary parts of t!(s) are determined by a single real
function, the phase §7(s). In principle, the minimization should be performed
over the whole space of physically acceptable functions {40(s), di(s), da(s)}, but
for obvious practical reasons we restrict ourselves to functions described by a
simple parametrization. We will use the one proposed by Schenk some time ago
B3], allowing for an additional parameter in the polynomial part:
4M2 AM? — sl
tan d; = /1 — —= ¢* {A] + B{¢" + C{q* + D]¢"} (7” 7 Z) . (81)
s S S
The first term represents the scattering length, while the second is related to the
effective range:
4 ; 1

=AW =Bl A

I 3

In each channel, one of the five parameters is fixed in order to ensure the proper
value of the phase at so. Moreover the S-wave scattering lengths a) and a3 are
identified with the two constants that specify the subtraction polynomials in the
Roy equations. As discussed in sect. ], we need to tune the value of a2 in order
to avoid cusps. Treating this parameter on the same footing as the others, we
are dealing altogether with 15 — 3 — 1 = 11 free variables, to be determined by
a minimization procedure. Our choice of sy ensures that the solution is unique,
and therefore the method is safe: The choice of a bad parametrization would
manifest itself in a failure of the minimization method — the minimum would not
yield a decent solution.

The square of the difference between the left and right hand sides of the Roy
equations is calculated at 22 points between threshold and sg for each of the three
waves, so that the sum of squares (A% ) contains 66 terms. The minimization
of the function (AZ ) over 11 parameters can be handled by standard numerical
routines [pg]. Our procedure does generate decent solutions: The differences be-
tween the left and right hand sides of the Roy equations are not visible on our
plots — they are typically of order 1072, The equations could be solved even more
accurately by allowing for more degrees of freedom in the parametrization of the
phases, but, in view of the uncertainties in the input, the accuracy reached is per-
fectly sufficient. Note also that the exact solution corresponding to a given input
contains cusps. We have checked that these are too small to matter: Enlarging
the space of functions on which the minimum is searched by explicitly allowing
for such cusps in the parametrization of the phases, we find that the solutions
remain practically the same.

8.2 Illustration of the solutions

To illustrate various features of our numerical solutions, we freeze for a moment
all the inputs and analyze the properties of the specific solution we then get.
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Figure 6: Numerical solution of the Roy equations for a) = 0.225, a3 = —0.0371
(the value of a corresponds to the center of the range considered while the one
of a? results if the input used for Im 3 is taken from the central curve in fig. ).
The arrow indicates the limit of validity of the Roy equations.

The input for the imaginary parts above sq is the following: For the I = 0 wave,
we use the parametrization labelled K7 (Etkin) of Au et al. [fH]. In the case of
the I = 1 wave, we rely on the energy—dependent analysis of Hyams et al. [[7],
smoothly modified between sy and 4M% to match the value 61 (sg) = 108.9°. For
the I = 2 wave, we take the central curve in fig. f]. The driving terms are specified
in eq. ({.1). Moreover we fix aJ = 0.225. With this input, the minimization leads
to ag = —0.0371 and the Schenk parameters take the values listed in table B, in
units of M.

The plot in fig. f] shows that the numerical solution is indeed very good: Below
S0, it is not possible to distinguish the two curves representing the right and left

=0 I=1 =2
Al 0.225 3.63-1072 | —3.71-1072
B! 0.246 1.34-1074 | —8.55-102

cl| —-1.67-102| —6.98-107°| —7.54-1073
Dl| —6.40-1074 1.41-1076 1.99-10~*
st 36.7 30.7 —~11.9

Table 3: Schenk parameters of the solution shown in fig. fl.
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hand sides of eq. (p-1)). For this solution we found as a minimum A2 = 2.1-107°,
which corresponds to an average difference between the right and left hand sides
of about 6 - 1074,

Having solved the Roy equations in the low—energy region, we now have a
representation for the imaginary parts of the three lowest partial waves from
threshold up to s;. Since the driving terms account for all remaining contri-
butions, we can then calculate the Roy representation for the real parts from
threshold up to 1.15 GeV (full lines in fig.ff). On the same plot, above sg, we also
show the real part of the partial wave representation that we used as an input for
the imaginary parts (dashed lines). The comparison shows that the input we are
using is well compatible with the Roy equations (we should stress at this point
that in none of the phase—shift analyses which we are using as input the Roy
equations have been used).

9 Universal band

As we have discussed in the preceding sections, for a given value of a) and fixed
input, the Roy equations admit a solution without cusp only for a single value
of a?. By varying the input value of a, the Roy equations define a function
a} = F(af) that is known in the literature as the “universal curve” [[4]. The
experimental uncertainties in the input above 0.8 GeV convert this curve into
a band. The universal band is the area in the (afj,a3) plane that is allowed
by the constraints given by the wr—scattering data above 0.8 GeV and the Roy
equations. In this section we give a more precise definition of our universal band,
and calculate it accordingly.

We first point out that the universal curve a3 = F(aJ) depends rather mildly
on the input in the I = 0 and I = 1 channel (a more quantitative statement
concerning this dependence is given below). For this reason, we only consider
the uncertainties in the input for the I = 2 channel. The available data in this
channel are shown in fig. ], together with five different curves that we have used as
input. For each one of these, we obtain a universal curve, which nearly represents
a straight line in the (a,a3) plane. The resulting five lines are shown in fig. 1.
The central one is well represented by the following second degree polynomial:

ag = —0.0849 + 0.232 ay — 0.0865 (ag)* . (9.1)
The analogous representations for the top and bottom lines read:

—0.0774 + 0.240 a§ — 0.0881 (ag)? ,
=—0.0922 + 0.225a) — 0.0847 (ag)* . (9.2)

2
Qg

2
Qg

The region between these two solid lines is our universal band. It is difficult
to make a precise statement in probabilistic terms of how unlikely it is that
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Figure 7: Universal band. The five lines correspond to the five different curves
shown in fig. [ (the top line, for instance, results if the input for Im¢2 in the
region above 0.8 GeV is taken from the top curve in that figure). Sy marks our
reference point: af = 0.225, a3 = —0.0371. The bar attached to it indicates the
uncertainty in a2 due to the one in the phase &) at the matching point — the most
important remaining source of error if the input for Im¢2 is held fixed.

the physical values of the two scattering lengths are outside this band. With
our rather generous choice of the two extreme curves, we consider it fair to say
that the experimental information above the matching point essentially excludes
such values. In fact, we will argue below that the theoretical constraints arising
from the consistency of the Roy equations above the matching point restrict the
admissible region even further.

We now turn to the dependence of the universal curve a? = F(a) on the
input in the I = 0 and I = 1 channels, keeping the one for I = 2 fixed. Changes
in the input above 2My are practically invisible at threshold: If we keep the
phase shifts at the matching point fixed, the three different available inputs for
the I = 0 and I = 1 channels yield values of a2 that differ by less than one
permille. The phase shifts at sy are the only relevant factor here. Moreover, for
the value of a2, 60(so) is much more important than d7(sg): Shifts of d;(so) by
+2° change the value of g roughly by a permille, but a change by +3.4° in 63 (so)
induces a shift of Aa3 = £8.4 - 107*, which amounts to two percent. Even so,
this is much smaller than the width of the band, as can be seen in fig. [].

29



We have also varied /sy within the bounds 0.78 and 0.86 GeV and found that
the dependence of the relation a? = F(a) on s is rather weak. To exemplify, we
mention that for the solution with aj = 0.25 at the center of the universal band,

a shift from y/sg = 0.8 GeV to 0.85 GeV changes a3 by 1073.

10 Consistency

It takes a good balancing of the various terms occurring in the Roy equations for
the partial waves not to violate the unitarity limit. In the case of the S-wave with
I =0, for instance, the contribution to Re t) that arises from the subtraction term
kJ(s) is very large already at 1 GeV: The solution shown in fig. [ corresponds to
ad = 0.225 and a2 = —0.0371, so that kJ(s) = 2.7 for s = 1 GeV?. As the energy
grows, the term increases and reaches k(s1) = 3.6 at the upper end of the region
where our equations are valid, s; = 68 M2. Unless the contributions from the
dispersion integrals nearly compensate the subtraction term, the unitarity limit,
|Rety| < (20)7' ~ L is violated. The example in fig. ] demonstrates that we do
find solutions for which such a cancellation takes place, with values of a3, a3 that
are within the universal band.

It is striking that, above the matching point, this solution very closely fol-
lows the real part of the input. In a restricted sense, this is necessary for the
solution to be acceptable physically: The solution is obtained by identifying the
imaginary part above the matching point with the one obtained from a particular
representation of the partial waves. The Roy equations then determine the real
part of the amplitude in the region below y/s; = 1.15 GeV. If the result were very
different from the real part of the particular representation used, we would have
to conclude that this representation cannot properly describe the physics. This
amounts to a consistency condition: Above the matching point, the Roy solution
should not strongly deviate from the real part of the input. The condition can
be met only if the cancellation discussed above takes place, but it is stronger.
The example in fig. ff demonstrates that there are solutions that obey the consis-
tency condition remarkably well, indicating that our apparatus is indeed working
properly.

We will discuss the consistency condition on a quantitative level below. Before
entering this discussion, we briefly comment on a different aspect of our frame-
work: the stability of the solutions. The behaviour below 0.8 GeV is not sensitive
to the uncertainties in the input used for the imaginary parts above 1 GeV. We
can modify that part of the input quite substantially, and without changing any-
thing else (not even below s) still get a decent solution from threshold up to
the limit of validity of our equations. Naturally, if we do not modify the Schenk
parameters that define the phase below sg, the Roy equations are not strictly
obeyed, but the deviation from the true solution is quite small. The reason is
that, if s is small, the kernels K/}’ (s, s') strongly suppress the contributions from
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Figure 8: Solutions of the Roy equations for af = 0.225 and two extreme values

for aZ. The left figure corresponds to the point Sy in fig.[], while the one on the

right shows the solution for S;. The arrows indicate the limit of validity of the

Roy equations.

the region where s’ is large. The term K3 (s, s’), for instance, has the following
expansion for s’ > s:

K%(s,s') = % {116 — 10s(402) — (4212)?) % +0 (é)
The interval above 1 GeV only generates very small contributions to the integrals
on the r.h.s. of the Roy equations, if these are evaluated in the region below the
matching point.

We now take up the consistency condition and first observe that, once a solu-
tion has a consistent behaviour above the matching point, reasonable changes in
the input above 1 GeV lead to solutions that also obey the consistency condition:
It looks as if the Roy equations were almost trivially satisfied, behaving like an
identity for £ > 1 GeV. Is this consistent behaviour automatic, or does it depend
crucially on part of the input ?

The answer to this question can be found in fig. §, where we show two solutions
obtained with the same value of aj as in fig. I, but different inputs for Im#2: The
solution on the left is obtained by using the top curve in fig. f] instead of the
central one (aZ = —0.0279 instead of a2 = —0.0371). The solution on the right
corresponds to the bottom curve in fig. [}, where a2 = —0.0460. The figure clearly
shows that the consistent picture which we have at the center of the universal
band is almost completely lost if we go to the upper border of this band: It is by
no means trivial that we at all find solutions for which the output is consistent
with the input.

The fact that the peaks and valleys seen in the solutions mimic those in the
input can be understood on the basis of analyticity alone: The curvature above
the matching point arises from the behaviour of the imaginary parts there. The
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relevant term is the one from the principal value integral,

1 2 I !
Ret(s) = — ds' mi(s) +

T Jar2 s'—s

r(s) .

The remainder, r(s) contains the contributions associated with the subtraction
polynomial, the left hand cut, the higher partial waves, as well as the asymptotic
region. On the interval sg < s < sy, it varies only slowly and is well approximated
by a first order polynomial in s.

The representations of the partial wave amplitudes that we are using as an
input are specified in terms of simple functions. In the vicinity of the region
where we are comparing their real parts with the Roy solutions, these are ana-
lytic in s, except for the cut along the positive real axis. Hence they also admit
an approximate representation of the above form — the contributions from distant
singularities are well approximated by a first order polynomial. Disregarding the
interpolation needed to match the representation with the prescribed value of
the phase at sg, their imaginary parts coincide with the one of the corresponding
Roy solution above the matching point. The small differences occurring in the
interpolation region and below the matching point do not generate an important
difference in the curvature. We conclude that the difference between the Roy so-
lution and the real part of the input must be linear in s, to a good approximation.
Moreover, within the accuracy to which our solutions obey the Roy equations,
the two expressions agree at the matching point, by construction. Accordingly,
the relation can be written in the form

Ret(s),,, = Ret(s) .+t (s—50)0 . (10.1)

input

We have checked that this relation indeed holds to sufficient accuracy, for all three
partial waves. This does not yet explain why the solution follows the real part of
the input, but shows that it must do so up to a term linear in s that vanishes at
the matching point. In particular, if the difference between input and output is
small at the upper end of validity of our equations, then analyticity ensures that
the same is true in the entire region between the matching point and that energy
(in this interval, s varies by about a factor of two).

In view of the uncertainties attached to our input, we cannot require the
Roy equations to be strictly satisfied also above the matching point. The band
spanned by the two green lines in fig. [l shows the region in the (ad,a?) plane,
where the solution for Ret(s) differs from the real part of the input by less
than 0.05 (expressed in terms of the parameter 3 in eq. ([[0.1]), this amounts to
139] < 0.07GeV~?). Likewise, the band spanned by the two blue lines represents
the region where |Ret2(s)roy — Ret2(8)impu| < 0.05, so that |32] < 0.07GeV 2
The corresponding band for the P-wave is much broader — in this channel, the
consistency condition is rather weak and is met everywhere inside the universal
band. We conclude that, in the lower half of the universal band, all three waves
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Figure 9: Regions inside which the consistency condition is met. The band
between the two blue lines is for the condition in the I = 2 channel, whereas
the one between the two green lines is for the I = 0 channel. The two red lines
delimit the band inside which the Olsson sum rule is satisfied. The shaded area
gives the intersection of the three bands.

show a consistent behaviour, while for the upper quarter of the band, this is not
the case (the situation at the upper border is shown on the left in fig. ).

It is not difficult to understand why the consistency condition is strongest
for the I = 0 S-wave. In this connection, the most important term in the Roy
equations is the one from the subtraction polynomial — the solution can satisfy the
consistency condition only if the term proportional to s is nearly cancelled by a
linear growth of the remaining contributions. The term generates the contribution
(B3, 81, 85) = (6,1,-3) x (2a% — 5a2)/(72 M?) to the coefficients that describe
the difference between output and input for the three lowest partial waves. The
subtraction polynomial thus contributes twice as much to 3§ as to 32, so that the
consistency band for the I = 2 wave must be about twice as broad as the one for
the I = 0 wave, while the one for the P-wave must roughly be six times broader.
At the qualitative level, these features are indeed born out in the figure, but we
stress that the term from the subtraction polynomial is not the only one that
matters — those arising from the integrals also depend on the values of aJ and a.
The two green lines correspond to a variation in a by about +0.004. Increasing
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a? by 0.004, the value of the subtraction term k32(s1) decreases by 0.10. The fact
that the lines correspond to a change in Ret)(s;) of only +0.05 implies that the
contributions from the integrals reduce the shift by a factor of 2. Also, if only
the subtraction term were relevant, the consistency bands would be determined
by the combination 2aZ — 5ag and thus have a slope of % Actually, these bands
are roughly parallel to the universal band, whose slope is positive, but smaller by
about a factor of 2.

11 Olsson sum rule

In the Roy equations, the imaginary parts above the matching point and the two
subtraction constants afj, a2 appear as independent quantities. The consistency
condition interrelates the two in such a manner that the contributions from the
integrals over the imaginary parts nearly cancel the one from the subtraction
term. In fact, a relation of this type can be derived on general grounds.

The fixed-t dispersion relation (P-4) contains two subtractions. In principle,
one subtraction suffices, for the following reason. The t-channel I = 1 amplitude

TW(s,4) = é (27%(s5,4) + 3T (s,1) — 5T%(5, 1)}

does not receive a Pomeron contribution and thus only grows in proportion to
5@ for s — oo. The dispersion relation (2.4), however, does contain terms that
grow linearly with s. For the relation to be consistent with Regge asymptotics, the
contribution from the subtraction term must cancel the one from the dispersion
integralf]. At ¢ = 0, this condition reduces to the Olsson sum rule, which relates
the subtraction constants to an integral over the imaginary parts [f7]:
M? o 2ImT%(s,0) +3Im T (s,0) — 5Im T?(s, 0)

2a) —5ap=-—= | d
G200 = g AM2 § s(s—4M?2)

(11.1)

It is well known that this sum rule converges only slowly — the contributions from
the asymptotic region cannot be neglected. We split the integral into four pieces,

2a8_5a3:OsP+0D+0F+OGS .

The first term represents the contributions from the imaginary parts of the S-
and P-waves in the region below 2 GeV, which are readily worked out, using
our Roy solutions on the interval from threshold to 0.8 GeV and the input phase
shifts on the remainder. The result is not very sensitive to the input used and is
well approximated by a linear dependence on the scattering lengths,

Osp = 0.483 +0.011 + 1.13 (a) — 0.225) — 1.01 (aj + 0.0371) .

6Tn the case of the t-channel amplitudes with I = 0 and I = 2, the fixed-t dispersion relation
(2.4) does ensure the proper asymptotic behaviour.
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The remainder is closely related to the moments I introduced in appendix B.1:
here, we are concerned with the case n = —1. The term O, describes the con-
tribution from the imaginary part of the D-waves, in the interval from threshold
to 2 GeV. The relevant experimental information is discussed in appendix B.3,
where we also explain how we estimate the uncertainties. The numerical result
reads O, = 0.061 £ 0.004, including the small, negative contribution from the
I = 2 D-wave. The bulk stems from the tensor meson f»(1275): In the nar-
row width approximation, this contribution amounts to 0.063. For the analogous
contribution due to the F-wave, we obtain O, = 0.017 £ 0.002 (in narrow width
approximation, the term generated by the p3(1690) yields 0.013). Those from
the asymptotic region are dominated by the leading Regge trajectory — as noted
above, the Pomeron does not contribute. Evaluating the asymptotic contribu-
tions with the formulae given in appendix B.4, we obtain O, = 0.102 4+ 0.017.
Collecting terms, this yields

2a) —5aj = 0.663 & 0.021 4 1.13 (a) — 0.225) — 1.01 (aj + 0.0371) . (11.2)
The result corresponds to a band in the (aj, a3) plane:
a2 = —0.044 £ 0.005 + 0.218 (a9 — 0.225) . (11.3)

The band is spanned by the two red lines shown in fig. P One of these nearly
coincides with the lower border of the universal band, while the other runs near
the center. The Olsson sum rule thus imposes roughly the same relation between
a) and a2 as the consistency condition. Note that the asymptotic contributions
are numerically quite important here: The term O,s amounts to a shift in a3
of —0.026 + 0.004. The fact that — in the region where our solutions are inter-
nally consistent — the sum rule is indeed obeyed, represents a good check on our
asymptotics.

The Olsson sum rule ensures the proper asymptotic behaviour of the ampli-
tude only for ¢ = 0. In order for the terms that grow linearly with s to cancel
also for t # 0, the imaginary part of the P-wave must obey an entire family of
sum rules. The matter is discussed in detail in appendix C.1, where we demon-
strate that one of these offers a further, rather sensitive test of our framework.
The relationship between the Roy equations and those proposed by Chew and
Mandelstam [6g is described in appendix C.2, where we also comment on the
asymptotic behaviour of the dispersion integrals that occur on the r.h.s. of the
Roy equations for the S- and P-waves.

12 Comparison with experimental data

In our framework, the only free parameter is a). Comparing our Roy equation

solutions to data, we can determine the range of a consistent with these, as well
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as a corresponding range for 3. This experimental determination of the two
S-wave scattering lengths is the final scope of the present analysis and the main
subject of the present section. Data on the 77 amplitude are available in a rather
wide range of energies (we do not indicate the upper limit in energy when this
exceeds 1.15 GeV, the limit of validity of our equations):

e K, data for the combination 63 — d] (2M, < E < 0.37 GeV);
e ACM and Losty et al. data for 62 (0.35 GeV < E);

e Data on the vector form factor — according to the discussion in section
-3, these can safely be converted into values for d; in the region of the p
(0.5 < EF<0.9 GeV);

e CERN-Munich, and Berkeley data in the channels with I = 0 and I =1
(0.5 GeV < E);

In the Roy equations, aj and a? exclusively enter through the subtraction poly-
nomials, specified in eq. ([.J). Those relevant for the S-waves contain a con-
stant contribution given by the scattering length and a term proportional to
(s —4M?) x (2a) — 5a?). In the I = 0 wave, that term is larger than aj from
E ~ 0.5 GeV on. For the I = 2 wave, the linear term starts dominating over
a? even earlier. Since t7(s) vanishes at threshold, the corresponding subtrac-
tion polynomial exclusively involves the linear term. This implies that, except
in the vicinity of threshold, the behaviour of the solutions is sensitive only to
the combination 2a — 5a3 of scattering lengths — roughly the combination that
characterizes the universal band. Accordingly, only data that reach down close
to threshold give a direct handle to separately determine af and a3. In fact, only
those coming from K.4 decays meet this condition.

There is another threshold in energy that is obviously relevant for our ap-
proach: the matching point so. We will make a clear distinction between data
points below sy and those at higher energies. The comparison to data above sg
can hardly yield any information on the scattering lengths, because the behaviour
of our solutions at those energies very strongly depends on the input used for the
imaginary parts: The uncertainties in the experimental input completely cover
the dependence of the solutions on the scattering lengths — we will discuss this in
detail below. Instead, we analyze the requirement that the solution is consistent
with the input for s > s¢, in the sense discussed in section [[(J. This condition
turns out to be practically independent of the input used for the imaginary parts
above sy and does therefore yield a meaningful constraint on 2ag — 5ag.

12.1 Data on 58 — 5% from K., and on 53 below 0.8 GeV

Let us first consider the K 4 data. The comparison between our solutions and the
high-statistic data of the Geneva-Saclay collaboration [Bd] is shown in fig. [0, for

36



15—

10—

3; (degrees)

0
Oy~

Geneva-Saclay
—— Roy solution § —

..... Roy solution §
— — — Roy solution §

0.325 0.350 0.375
E(GeV)

Figure 10: Comparison of our Roy solutions for different values of the scattering
lengths with the data of the Geneva—Saclay collaboration, Rosselet et al. [Bd].
The full, dash-dotted and dashed lines correspond to the points Sy, So and S3 in

fig. [0

various values of the scattering lengths. The figure confirms the simple intuition
that these data are mainly sensitive to aj. In accordance with previous analyses
[[A], we find that they roughly constrain aj to the range between 0.18 and 0.3.

As for the low—energy data in the I = 2 channel, we should stress that this
wave is quite strongly constrained once 03 (so) is fixed. Because of the absence
of any structures between threshold and 0.8 GeV, once we fix §2(sg), the only
freedom is in the way the phase approaches zero at threshold, i.e. in the value
of a} — which depends on aJ. Fig. []] shows that, at fixed §3(so), even a sizeable
change in a) is barely visible in the I = 2 phase. The only important factor
here is the value of the phase at the matching point: The comparison with the
experimental data basically tells us which value of §3(sg) is preferred.

A quantitative statement can be made in terms of x?, and in principle we
could calculate three different y2-values, based on the three sets of data shown
in fig. §. Two of these, however, represent two different analyses of the same
set of TN — mnN data. Their difference is a clear sign of the presence of
sizeable systematic errors. We have estimated the latter using the difference,
point by point, between the two analyses A and B of ref. [fJ], and added this in
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Figure 11:  Comparison of our Roy solutions with the data on d3 obtained by
the ACM collaboration [F3] and by Losty et al. [BI]]. The full, dash-dotted and
dashed lines correspond to the points Sy, So and S3 in fig. [

quadrature to the statistical errors. As reference we have used the ACM(A) set
of data, but have checked that interchanging it with the one of Losty et al. does
not give significantly different results. The corresponding 2, combined with the
one obtained from the K., data, has a minimum y?, = 5.1 (with 8 d.o.f.) at
a) = 0.242, a3 = —0.0357. The contour corresponding to 68% confidence level
(x* = X2, + 2.3) is shown in fig. [Z The range 0.18 < aJ < 0.3 is dictated by
the K .4 data, whereas the I = 2 data exclude the upper border of the band.

12.2 The p resonance.

The input used at the matching point implies that the P-wave phase shift must
pass through 90° somewhere between threshold and 0.8 GeV — the Roy equations
determine the place where this happens and how rapidly the phase must grow
with the energy there. The solutions turn out to be very stiff: Varying the
values of a and a2 within the universal band, and also varying the input for the
imaginary parts above 0.8 GeV within the experimental uncertainties, we obtain
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Figure 12: Range selected by the data below 0.8 GeV. The dashed line represents
the 68% C.L. contour obtained by combining the Geneva—Saclay data on K4
decay with those from ACM(A) on §2.

the narrow band of solutions shown in fig. [[3

In this figure, the energy range only extends to 0.82 GeV, for the following
reason: Our solutions move along the Argand circle only below the matching
point. At higher energies, the real part of the partial wave calculated from the
Roy equations does not exactly match the imaginary part used as an input:
unless we correct the latter, the elasticity ni differs from unity, already before
the inelastic channels start making a significant contribution. If the consistency
condition is met well, the departure from unity is small, but it can become as
large as 5% if we go to the extreme of the consistency region shown in fig.f} This
means that it does not make much sense to extract the value of the phase without
adjusting the imaginary part. The proper way to do this is to extend the interval
on which the Roy equations are solved, but we did not carry this out.

In the region 0.7GeV < 0.82GeV, the result closely follows the data of the
CERN-Munich collaboration. Below 0.7 GeV, however, the data are in conflict
with the outcome of our analysis: The five lowest data points are outside the
range allowed by the Roy equations, a problem noted already in ref. [f]. In our
opinion, we are using a generous estimate of the uncertainties to be attached to
our input. Note, in particular, that at those energies, the driving terms barely
contribute. We conclude that the discrepancy between our result and the CERN-
Munich phase shift analysis occurring on the left wing of the p is likely to be
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Figure 13:  P-wave phase shift. The band shows the result of our analysis,
obtained by varying the input within its uncertainties, while the data points
indicate the phase shift measured in the process 7N — 7N by the CERN-
Munich collaboration. The full line represents the phase of the vector form factor
(Gounaris-Sakurai fit of ref. [B4]).

attributed to an underestimate of the experimental errors. As discussed below,
the comparison with the ete™ and 7 decay data corroborates this conclusion.

Concerning the resonance parameters, we first give the ranges of mass and
width that follow if, in the vicinity of the resonance, the phase shift is approxi-
mated by a Breit-Wigner formula]

p2i01(s) Mp+il,M, — s
Mz —iT,M, —s

_ LM,
_Mg—s ’

tg 61 (s)

In this approximation, the mass of the resonance is the real value of the energy
where the phase passes through 90° and the width may be determined from the
value of the slope dd}/ds at resonance. The solutions contained in the band shown

"The difference between M? £ iM,T, and (M, + 1T,)? is beyond the accuracy of that

approximation. The second is obtained from the first with the substitution M2 — M? — 1 T2,
M,I', — M,I',, which increases the value of M, by about 4 MeV.
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in the figure correspond to the range M, = 774 £3MeV and I') = 145 = 7MeV,
to be compared with the average values obtained by the Particle Data Group,
M, =1770.0£0.8MeV, I', = 150.7 £ 1.1 MeV [0

The only process independent property of the resonance is the position of the
corresponding pole — the above numbers specify this position only approximately.
To determine it more accurately, we first observe that the Roy equations yield
a representation of the partial wave t{(s) on the first sheet, in terms of the
imaginary parts along the real axis. The first sheet contains both a right and
a left hand cut. We need to analytically continue the function from the upper
rim of the right hand cut into the lower half plane (second sheet). The difference
between the values obtained in this manner and those found by evaluating the
Roy representation in the lower half plane is given by the analytic continuation
of the imaginary part,

1
Imti(s) = o0 sin?d1(s) .

On the first sheet, ¢{(s) does not have singularities. Hence a pole can only
arise from the continuation of the imaginary part. Indeed, the function sin?di(s)
contains the term exp 27 6 (s), which has a pole below the real axis. The position
is readily worked out with the explicit, algebraic parametrization of the phase
that we are using. The result illustrates an observation made long ago [[[1], [2, [3:
The pole mass is lower than the energy at which the phase goes through 90°, by
about 10 MeV: For the band shown in the figure, the pole position varies in the
range

M,=7625+2MeV |, T,=142+7MeV .

The e*e™ and 7 data neatly confirm the conclusion reached above: The phase
of the form factor is in perfect agreement with the behaviour of the P-wave that
follows from the Roy equations, but differs from the data of the CERN-Munich
phase shift analysis, particularly below 0.7 GeV. In our opinion, the information
obtained about the behaviour on the left wing of the resonance on the basis of the
reactions et *tr~ and 7 — 7 7% is more reliable than the one obtained
from 7N — 7w N. The fact that the Roy equations are in good agreement with
the ete™ and 7 data is very encouraging.

In view of the clean determination of the P-wave phase shift through ete™
and 7 experiments, we find it instructive to draw fixed x?-contours in the (aj, a3)
plane. To do so, we first need to attach an error bar to the curve representing
the phase shift. In section [[-4, we estimated the uncertainty in d1(sg) at +2° or
+2%. As we go down in energy, the relative precision of the determination of
the phase decreases: A generous estimate of the uncertainty at /s = 0.5 GeV is
10% or £0.6°. A smooth interpolation between these two values is our estimate
of the experimental error bar (below that energy, the eTe™ and 7 data become

e — T
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Figure 14: 68% C.L. contour obtained by combining all relevant low energy
data: K4 decay, ACM(A) data on 62 below 0.8 GeV and results for §; extracted
from the ete™ and 7 data on the pion form factor.

scarce and have sizeable uncertainties). To construct the y? we have compared
our solutions to the experimentally determined phase shift at five points between
0.5 and 0.75 GeV. Combining this x? with those from the data on K., decays
and on 62 below 0.8 GeV, we obtain the 68% C.L. area drawn in fig. [4. The
minimum of the x? is now 5.4 (with 13 d.o.f.). The position of the minimum is
barely shifted: It now occurs at aj = 0.240, a2 = —0.0356. In other words, at the
place where the x? of the K4 data on §) — 6] and those on §2 had a minimum,
the y? relative to the data on the form factor is practically zero and also has a
minimum. In view of the fact that the uncertainties in §;{ are very small, this
is quite remarkable. The data on the P-wave do not change the position of
the minimum, but shrink the ellipse along the width of the universal band. As
expected, they do not reduce the range of allowed values of a.

12.3 Data on the I =0 S-wave below 0.8 GeV

In fig. [ we compare the S-wave obtained from our Roy equation solutions with
the available data: CERN-Munich [[[1]] and Berkeley [[[§]. The band shown is a
representation of the uncertainties in the solution, which have two main sources:
the uncertainty in 63(sg) and the one in §2(sg) (width of the universal band).
The central curve shows our reference solution af = 0.225, a2 = —0.0371. The
uncertainties indicated do not account for the changes occurring if the value
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Figure 15: Comparison between the Roy solution for the S-wave and the phase
shift analyses of the CERN-Munich (circles) and Berkeley (squares) collabora-
tions. The band shows the uncertainties in the Roy solution, which are dominated
by those in a) and a?.

a) = 0.225 is modified. Changing this value within reasonable bounds, however,
brings the solution out of the band only below 0.4 GeV, already far below the
first data point. The figure shows good agreement with the data, especially so
for the Berkeley data set. The CERN-Munich data set shows a certain structure,
which does not occur in our solutions — in view of the uncertainties in the data,
this difference does not represent a problem.

Despite the positive picture which emerges from the comparison, we refrain
from using these data to draw confidence-level contours in the (a,a3) plane.
The S-wave phase shifts have been extracted simultaneously with the P-wave.
As discussed in the preceding section, these are affected by systematic errors
which are at least as large as the statistical ones. The same must be true for
the data in the I = 0 channel, so that a quantitative comparison with the Roy
solutions is barely significant.

12.4 Data above 0.8 GeV

The Roy equations are valid up to y/s; = 1.15 GeV. In fig. [[§, we show three
different solutions for the I = 0 and I = 1 partial waves, in the region above
the matching point. They are obtained by using three different inputs for the
imaginary parts (note that the curves represent our solutions, not the real parts
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Figure 16: Behaviour of the solutions above the matching point. The curves
show the solutions obtained with three different inputs for the imaginary parts.
The data points are taken from the energy independent analysis of the CERN-
Munich data [[d]. The I = 0 S-wave is shown in black, the I = 1 P-wave in
blue.

of the input). The figure shows that the differences are substantial, especially in
the S-wave, despite the fact that, below /sy = 0.8 GeV, the three solutions are
practically identical, for all three waves. Evidently, above the matching point,
the Roy solutions are very sensitive to the input used for the imaginary parts.

It is not difficult to understand why that is so. As discussed in detail in section
10, the solutions follow the real parts of the representation that is used as input
(see fig. [ for the case of Au et al. —in the other two cases, the picture is similar).
The real parts of the three representations differ considerably. Moreover, all of
these are systematically lower than the “data points” in fig. [[f, which show the
result of an energy independent analysis of the CERN-Munich data [I7]. In view
of this, it is not surprising that the three Roy solutions are quite different and
that they are also systematically lower than the data points.

We conclude that a comparison of the Roy solutions with the data in the region
above the matching point does not yield reliable information about the values of
the two S-wave scattering lengths and we do therefore not show confidence—level

44



contours relative to data above 0.8 GeV.

13 Allowed range for a) and a3

The above discussion has made clear that we can rely only on two rather solid
sources of experimental information to determine the two S-wave scattering
lengths: the data on K., and those on the P-wave in the p region. The for-
mer determine a range of allowed values for a) while the latter yield a range for
the combination 2aJ — 5a2. The consistency condition and the Olsson sum rule
impose further constraints. Figure [[7] summarizes our findings: We have super-
imposed the ellipse of fig. [[4 with the lines that delimit the consistency bands for
the two S-waves, as well as those relevant for the Olsson sum rule. The allowed
range for aj and a? is the intersection of the ellipse with the band where the Ols-
son sum rule is obeyed within the estimated errors. In that region, the solutions
also satisfy the consistency condition.
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Figure 17: Intersection of the ellipse in fig. [[4 (68% C.L. relative to the data
on K. decay, on 62 and on the form factor) with the bands allowed by the
consistency condition in all the three channels and by the Olsson sum rule.

We find it quite remarkable that the data on the shape of the p resonance, the
consistency condition and the Olsson sum rule all show a preference for the lower
part of the universal band. This gives us confidence that our conclusion on which
region in the (a, a3) plane is allowed by the present experimental information is
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rather solid. Once the new data on K.4 decays will become available, the allowed
range in a) will become much narrower, and we will have a very small ellipse. The
prospects of making a real precision test of the predictions for the two S-wave
scattering lengths in the near future, appear to be very good, in particular also
in view of the pionium experiment under way at CERN [29].

The 7N — 7w N data do provide essential information concerning the input
of our calculations, but, as discussed in sections [[2.3 and [[2.4], they do not impose
a firm constraint on the scattering lengths (incidentally, these data also prefer
the lower half of the universal band). This is unfortunate, because the power of
the Roy equations (unitarity, crossing symmetry and analyticity) is that of con-
necting regions of very different energy scales. The behaviour of the two S-waves
in the immediate vicinity of threshold is determined by the scattering lengths. In
the combination 2a) — 5a3, these also determine the linear growth of the subtrac-
tion polynomial: As we discussed in detail in section 10, the large contribution
from the polynomial must be compensated to a high degree of accuracy by the
dispersive integrals. We therefore expect that a reanalysis of the 7N — 7w N
data based on the Roy equations would lead to a rather stringent constraint on
the allowed region, as it would make full use of the information contained in these
data — in our opinion, the existing phase shift analyses are a comparatively poor
substitute.

14 Threshold parameters

14.1 S- and P-waves

As shown in ref. [4], the effective ranges of the S- and P-waves and the P-
wave scattering length can be expressed in the form of sum rules, involving inte-
grals over the imaginary parts of the scattering amplitude and the combination
2a) — 5ak of S-wave scattering lengths. The sum rules may be derived from the
Roy representation by expanding the r.h.s. of eq. (5-1]) in ¢* and reading off the
coefficients according to eq. (B.J). In the case of the S-wave effective ranges, the
expansion can be interchanged with the integration over the imaginary parts only
after removing the threshold singularity. This can be done by supplementing the
integrand with a term proportional to the derivative

d 1 L h(s) O — (s — 2o TR
ds \[s(s—aM2) ~ {s(s—4ME)}* " h(s) = (s = 2M2)\[s(s — 4M12) .

In this notation, the sum rules may be written in the form:

1 S
by (2a) — bad) + 0 / 2 ds {4M3§(s — M2?)Imt)(s)

T 3M2 37 Jaz {s(s — 4M2)}?
—9M2(s — AM2) Tmt}(s) + 5M2(s — 4M2) Imt3(s) — 2(af)? h(s) }

T2
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8 [o© ds 0N 0
-/ EPEEB)E (ag)* h(s) +byy , (14.1)

8 [ ds
2 _ 0 _ 5a2) 4+ — 20 ANs2 0
b= 6M2 (20 = Bag) + 3 AM,% {s(s —4M?2)}? {2MW(S 4M;) Imto(s)
+9M2(s — AM2) Tmt}(s) + M2(Ts — 4M2) Im#3(s) — 3(ag) h(s) }
8 [ ds 212 2
- h b
T Jsy {s(s—4M2)}? (a5)" () +bya
1 SM2 52 ds
1_ 0_ r 2 7r (e AN 0
a; = 18M7% (2(10 5(10) + o ~/4M.,2r {S(S . 4M7%)}2 { 2(5 4M7r) ImtO(S)
+9(3s — AM*) Imt!(s) + 5(s — 4M?) Imtg(s)} +ayy ,
8 s ds
1_ - _ _ 213 0 3 272
b= 9 AM,% {s(s —4MZ)}? { 2(s — 4M7)" Imto(s) +9 (35 1257 M7

+ 48 sM2 — 64M2) Imti(s) + 5(s — AM2)* Tm t3(s) } + b}, -

The integrals only involve the imaginary parts of the S- and P-waves and are
cut off at s = s5. The contributions from higher energies, as well as those from
the imaginary parts of the partial waves with ¢ = 2,3, ... are contained in the
constants b, b2, aj,, b}, By construction, these represent derivatives of the
driving terms at threshold,

do(s) = ¢®b) .+ O(¢*), di(s) = ¢*al 4+ ¢*bl,+ O(¢®), di(s) = ¢*b3 .+ O(¢*).

The numerical values obtained within our framework are given in the upper
half of table f], where we also show the numbers quoted in the compilation of
Nagels et al. [[{g], which are based on the analysis of Basdevant, Froggatt and
Petersen [ff]. In accordance with the literature, we use pion mass units. Since
the relevant physical scale is of the order of 1 GeV, the numerical values rapidly
decrease with the dimension of the quantity listed. The columns A — E indicate
the following contributions to the totalf}

A. Contribution from the subtraction term o 2a2 — 5a3.

B. Imaginary parts of the S- and P-waves on the interval 4 M? < s < so. This
contribution is evaluated with the Roy solutions described in the text.

C. Imaginary parts of the S- and P-waves in the range so < s < so. Here, we
are relying on the experimental information, discussed in section [q.

D. Imaginary parts of the higher partial waves in the range 4 M? < s < sy.
These are calculated in the same manner as for the driving terms of the S-
and P-waves (see appendix B.J).

8The numbers given for the total include the tiny additional contributions to b} and b3 that
arise from the integrals over h(s)(ad)? and h(s)(a)? in the interval sy < s < co. Numerically,
these amount to b3 = —6.3-107% M2 and §b3 = —1.7-107° M 2.
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A B C D E | total Ay JAD) ref.[7] units
v | 212 45| —.03 | .02].00| 256 |4.02 || 254031071 M2
b3 | —1.06 26| .02 .01|.00| —.77|4.003 | T3 | -824.08| 107 M2
al| 353] —03| .13|—.01|.01| 3.63|4.02 |2 | 38+02]102M_ 2
bl — 4.05| 1.39 | —07|.08| 545 |+.13 | =3 1073 M4
ay | — 1.29| 28| .07].03| 167|401 |52 1.7+.3 |10°3M*
| — | —348 | —.04| .25|.02|—3.25|4.07 | T3 1074 M6
az| — 1.67 | =51 .35|.02| 153 |4.07 |4 | 1.3+£3 |107*Mm*
| — | =310|—-.09| .06]|.02|—3.11|+.07 | *a} 1074 M6
at | — 511 26| .05|.01| 543 |+.1 |55 6+£2 | 107°MS
| — | -396|—-.01| .01].01|—395]|+.08 | % 1072 M8

Table 4: Threshold parameters of the S-, P-, D- and F-waves. The significance
of the entries in columns A-E is specified in the text. The column A; indicates
the uncertainty due to the error bars in the experimental input at and above 0.8
GeV, whereas Ay shows the shifts occurring if a and a? are varied within the

ellipse of fig. [[4, according to eqs. ([4.2) and ([[4.4).

E. Asymptotic contributions, s > s5. These are evaluated with the representa-
tion given in appendix B.4.

For the reasons discussed earlier, we use /sy = 0.8GeV, /sy = 2GeV. The
values quoted in columns A and B are obtained with our reference solution,
ad = 0.225, a3 = —0.0371, which corresponds to the point Sy in fig. [d.

The table shows that the result for 09, b2, a}, b} is dominated by the contri-
butions from the subtraction term and from the imaginary parts of the S- and
P-waves. The higher partial waves and the asymptotic region only yield tiny
corrections. The sum D-+E represents the contribution from the driving terms.
In the evaluation of these terms, which is discussed in detail in appendix [B.5], we
have constrained the polynomial fit with the relevant derivatives at threshold, so
that the numerical values of the four constants b3,, b3,, al,, b, are correctly
reproduced by the corresponding terms in the representation (f.1]).

The uncertainty given in column A; of table [l only accounts for the noise
seen in our evaluation for the specific values af = 0.225, a2 = —0.0371 (errors in
columns B-E added up quadratically). The sensitivity to these two parameters
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is well represented by linear relations of the formf

W= 256x107'M-2 {1+ 32Ad0—12.7Aa? } ,
B =—0.77 x 1077 M2 {14+25Ad) —7.6Aa2} ,
al = 3.63x1072M-2 {1+23Aa) —7.8Ad2} |
bl = 545x1073M-4 {140.1Ad0 —5.7Aa } ,

(14.2)

with Aa§ = a) — 0.225, Aad = a3 + 0.0371. Using this representation, the lo
ellipse of fig. [[4 can be translated into 1o ranges for the various quantities listed
in the table — these are shown in column A, (since our reference point is not at
the center of the ellipse, the ranges are asymmetric).

The table neatly demonstrates that the two S-wave scattering lengths are
the essential low energy parameters — the uncertainty in the result is due almost
exclusively to the one in af, a3. This is to be expected on general grounds [[q]:
The integrals occurring in the above sum rules are rapidly convergent, so that
only the behaviour of the partial waves in the threshold region matters. The
uncertainties in the input used for the imaginary parts above the matching point
only enter indirectly, through their effect on the S- and P-waves in the threshold
region. We did not expect, however, that the effect would be as small as indicated
in the table and add a few comments concerning this remarkable finding.

In order to document the statement that the uncertainties which we are at-
taching to the phenomenological input of our calculation (behaviour of the imagi-
nary parts above the matching point, elasticity, driving terms) only have a minute
effect on the result for the threshold parameters, we find it best to give the nu-
merical size of this effect (column A; of the table). We repeat that the numbers
quoted there merely indicate the noise seen in our evaluation — we do not claim to
describe the scattering amplitude to that accuracy. Isospin breaking, for instance,
cannot be neglected at that level of precision.

The reason why the threshold parameters are insensitive to the uncertainties
of our input is the following. As discussed in detail in sections f}-f], the solutions
of the Roy equations in general exhibit a cusp at the matching point. If the
imaginary parts above 0.8 GeV and the value of aj are specified, there is a solution
with physically acceptable behaviour in the vicinity of the matching point only if
the parameter a? is chosen properly. In other words, there is a strong correlation
between the behaviour of the imaginary parts and the parameters a), a3. As we
are selecting a specific value for these parameters, we are in effect subjecting the
imaginary parts to a constraint. For this reason, the uncertainties in the input
can barely be seen in the output for the threshold parameters — the main effect

is hidden in af, a3. The correlation just described originates in the fact that one

9For 0.15 < af < 0.30 the representation holds inside the universal band to better than 4%.
Similar relations also follow directly from the representation of the S- and P-waves given in
appendix , but since the threshold region does not carry particular weight when solving the
Roy equations, these do not have the same accuracy.
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of the two subtraction constants is superfluous: The combination 2a§ — 5 a2 may
be represented as a convergent dispersion integral over the imaginary part of the
amplitude.

The correlation is illustrated by the lines in fig. [, which correspond to the
specific parametrization of the input used for the imaginary part of the I = 2
S-wave shown in fig. . As there is very little experimental information about
the energy dependence of this partial wave, we have worked out the change in
the Roy solutions that occurs if this energy dependence is modified above the
matching point. The result for the threshold parameters turns out to be practi-
cally unaffected. Also, we have varied the driving terms within the uncertainties
given in section f|. Again, the response in the threshold parameters can barely
be seen.

14.2 D- and F-waves

Similar sum rules also hold for the threshold parameters of the higher partial
waves. The contributions from the imaginary parts of the S- and P-waves are
obtained by expanding the kernels occurring in the Roy equations for the D- and
F-waves around threshold. We write the result in the form

16 52 ds
g=— e — — AN 0 9 1
“2= t5r AM; 53 (s — 4M2) {(s = 4M2) Imty(s) + 9(s + 4M2) Tm t] (s)

+5(s — 4AM2) Im#3(s)} + a3,

32 = ds
b= / — 4M7) Img(s) — 3(s — 12M7) Im #}
2 157 AM2 g4 ($—4M7%) {(5 7r) mtO(S) 3(8 7|—) mtl(s)
+5(s — 4M2) Im#3(s) } + 05,
8 [ ds
2= 15 S s —anpz) 1205 —4Mz) Tmig(s) - AM?2) Im
Qo 457 ~/4M,2r 53 (S—4M7%) { (5 7r) mto(s) 9(S+ W) mtl(s)
+ (s — 4AM2)Imt3(s) } + a3, | (14.3)
16 = ds
=557 ), 2(s — 4M) Im g — 12M2) Tm £}
2 157 Jamz s* (s — 4M2) { (s =) Imtg(s) +3(s “YImtq(s)

+ (s — AM2) Imt3(s)} + b3,

16 52 ds
3= 1050 AM; st (s — 4M2) {2(5 4M7) Imtg(s) +9(s +4M;) Imti(s)
— 5(s — 4M?) Imt%(s)} +ayy ,
128 52 ds
5= — — 2 0 2 1
bg - 105 7 /4M72r 85 (S . 4M7%) {2(8 4M7r) Imto(s) + 36]\47r Imtl(s)

— 5(s — AM2) Im#3(s) } + b3,
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where a) ;, b3, ... contain the contributions from s > s, as well as those from
the higher partial waves. The evaluation of these contributions, however, meets
with problems that we need to discuss in some detail.

First, we note that the definition of the driving terms in eq. (B.9) is suitable
only for the analysis of the S- and P-waves. For £ > 2, the functions d’(s) contain
a branch cut at threshold, so that these quantities are complex. In order to solve
the Roy equations for the D-waves, for instance, the contributions generated by
their imaginary parts need to be isolated, using a different decomposition of the
right hand side of these equations. As far as the scattering lengths and effective
ranges are concerned, however, only the values of the functions d}(s) and their
first derivatives at threshold are needed, which are real.

A more subtle problem arises from the fact that the explicit form of the
kernels occurring in the Roy equations for the higher partial waves depends on
the choice of the partial wave projection. As discussed in detail in ref. [[[7], the
definition ([A.4) — which we used in our analysis of the S- and P-waves — does not
automatically ensure that the threshold behaviour of the partial waves with ¢ > 3
starts with the power ¢?‘. The problem arises from the fact that the solution of
the Roy equations leads to a crossing symmetric scattering amplitude only if the
imaginary parts of the higher partial waves satisfy sum rules such as the one in
eq. (B.§). In particular, the expansion of the F~wave in powers of ¢ in general
starts with

Rety(s) = z3¢" + a3¢° + b3¢° + . ..

For the fictitious term 3 to be absent, the imaginary parts of the higher partial
waves must obey a sum rule. In fact, we have written down the relevant sum
rule already: equation (B-§). The derivation given in section shows that this
constraint ensures crossing symmetry of the terms occurring in the expansion of
the scattering amplitude around threshold, up to and including contributions of
O(q"). The threshold expansion of the partial waves with ¢ > 3 thus only starts
at O(¢%) if this condition holds — in particular z} then vanishes. The sum rule
that allows us to pin down the asymptotic contributions to the driving terms
for the S- and P-waves thus at the same time also ensures the proper threshold
behaviour of the F—waves. The absence of a term of O(¢%) in the G-waves leads
to a new constraint, which could be derived in the same manner, etc. Note that
the contributions from the imaginary parts of the S- and P-waves are manifestly
crossing symmetric — the constraints imposed by crossing symmetry exclusively
concern the higher wavesfy.

The F-wave scattering length occurs in the expansion of the amplitude around
threshold among the contributions of O(q%), two powers of ¢ beyond the term just

10The family of sum rules discussed in appendix @ does not follow from crossing symmetry,
but from an asymptotic condition that goes beyond the Roy equations. As shown there, those
sum rules do tie the imaginary part of the P-wave to the higher partial waves.
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discussed. In the numerical analysis, we thus need to make sure that the sum rule
holds to high precision if we are to get a reliable value in this manner. For the
effective range, the situation is even worse. This indicates that for the numerical
analysis of the higher partial waves, the extension of the range of validity of the
Roy equations achieved if the standard partial wave projection (A7) is replaced
by ([A-]) generates considerable complications.

For the evaluation of the threshold parameters, this extension is not needed
— we may use the partial wave projection ([A.3), for which the problem discussed
above does not occur. In particular, 21 then automatically vanishes, so that the
evaluation of the scattering lengths and effective ranges does not pose special
numerical problems. To evaluate those from the asymptotic region, we expand
the fixed-t dispersion relation (P.4) in powers of ¢t. The results obtained for
ad = 0.225, a3 = —0.0371 are listed in the lower half of table [

The dependence on the S-wave scattering lengths may again be represented
(to better than 6% inside the universal band for 0.15 < a) < 0.30) with a set of
linear relations:

ad= 1.67x1073M* {1+2.6Aa}—8.6Ada2},
by =—325x 107*M % {1+6.6 Aa) —17Add } ,
a3 = 153 x 107*M* {1+ 14 Aa} —25Aal } ,
b2 =—-311 x 107*M 5 {1+6.2Aa) —11Ad? } ,
ay= 543 x107°M_% {1+55Aa) —8Ad? },
bi=-395x10"°M8 {1+ 8Aa) —8Adal}.

(14.4)

The sensitivity is more pronounced here than in the case of the threshold pa-
rameters for the S- and P-waves. In particular, the linear representation for the
D-wave scattering length a3 only holds to a good approximation if a) and a2 do
not deviate too much from the central values.

15 Values of the phase shifts at s = M3

A class of important physical processes where the w7 phase shifts play a relevant
role is that of kaon decays. Let us recall, for instance, that the phase of &’ is
given by the value of 6 — ) + 3 7 at s = M7. In this section, we give numerical
values for the three phase shifts at the kaon mass as they come out from our Roy
equation analysis, and show the explicit dependence on the two S-wave scattering
lengths. In this manner, an improved determination of the latter will immediately
translate into a better knowledge of the phases at s = M.

The decays K° — mm and K+ — 7m concern slightly different values of the
energy. In view of the fact that the CP-violating parameter ¢’ manifests itself in
the decays of the neutral kaons, we evaluate the phases at s = M7,. Note that,
in addition to this difference in the masses, there are also isospin breaking effects
in the relevant transition matrix elements. As far as the w7 phases are concerned,
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Value at
5 = M]2(O Al AQ
69 373 | +14 | *3
o1 55 | +0.1 |3,
2 —7.8 | £0.04 | *1
69— 62| 452 | £1.3 | I13

Table 5: Values of the phase shifts at s = M2, in degrees. The central value is
obtained with our reference solution of the Roy equations, where aj = 0.225, a3 =
—0.0371. The column A; indicates the uncertainty due to the error bars in the
experimental input at and above 0.8 GeV, whereas Ay shows the shifts occurring
if a) and a? are varied within the ellipse of fig. [4, according to eq. ([5.1)).

however, the isospin breaking effects due to my — m,, are tiny, because G-parity
implies that these only occur at order (mg —m,)?.

As in the preceding section, we give values at the reference point aj = 0.225
and a? = —0.0371, and break down the errors into those due to the noise in
our calculations and those due to the poorly known values of the two scattering
lengths. The results are shown in table f|. Like for the threshold parameters, the
two S-wave scattering lengths are the main source of uncertainty. In the present
case, the errors due to the uncertainties in our experimental input at 0.8 GeV
are not negligible, but they amount to at most 4%.

The dependence of the central values on the two scattering lengths is well
described by the following polynomials:

08(M}o) =37.3° {1 + 3.0Aaf — 8.5Aa3} |
0} (M) =5.5° {1+ 1.7Aa) — 6.7Aag} (15.1)
03 (Mpo) =—7.8° {1+ 1.9Aaf — 13Aad} ,

08(Mo) — 03(Mo) =45.2° {1 + 2.8Aaf — 9.4Aa3 } .

Our results are in agreement with refs. [p0, [, [[9], but are more accurate. In
the foreseeable future, the two S-wave scattering lengths will be pinned down to
good precision, so that the above formulae will fix the phases to within remarkably
small uncertainties.

16 Comparison with earlier work

The Roy equations were used to obtain information on the 77 scattering ampli-
tudes, already in the early seventies. Most of the work done since then either
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follows the method of Pennington and Protopopescu [, f]] or the one of Basde-
vant, Froggatt and Petersen [, [f]. In the present section, we briefly compare
these two approaches with ours. A review of the results obtained by means of
the Roy equations is given in ref. [[].

To our knowledge, Pennington and Protopopescu [ were the first to analyze
7w scattering data using Roy’s equations. In principle, the approach of these
authors is similar to ours. In our language, they fixed the matching point at
Vo = 0.48 GeV. As input data, they relied on the 77 production experiment of
the Berkeley group [g], using the data of Baton et al. [iF] for the I = 2 channel
(at the time they performed the analysis, the high-energy, high-statistics CERN-
Munich data [[[7]] were not yet available). The Roy equations then allowed them
to extrapolate the S- and P-wave phases of Protopopescu et al. [I§] to the region
below 0.48 GeV. Comparing the Roy-predicted real parts with the data (this
corresponds to what we call consistency), they found that these constrain the
two S-wave scattering lengths to the range aj = 0.154+0.07, aZ = —0.053 £0.028.
In their subsequent work [H], they then used the Roy equations to solve the famous
Up-Down ambiguity that occurs in the analysis of the S-wave.

The fact that, in their analysis, the matching point is taken below the mass of
the p has an interesting mathematical consequence: As discussed in section 6.3,
the Roy equations do then not admit a solution for arbitrary values of aJ, a3, even
if cusps at the matching point are allowed for (the situation corresponds to row
IV of table ). To enforce a solution, one may for instance keep the input for the
imaginary parts as it is, but tune the scattering length a3. The result, however,
in general contains strong cusps in the partial waves with I = 0,1. These can
only be removed if the input used for the imaginary parts above the matching
point is also tuned — the situation is very different from the one encountered for
our choice of the matching point.

Basdevant, Froggatt and Petersen [f, f] constructed solutions of the Roy equa-
tions by considering several phase shift analyses and a broad range of S-wave
scattering lengths. The method used by these authors is different from ours
in that they relied on an analytic parametrization of the S- and P-waves from
threshold up to /s = v/110 M, = 1.47 GeV, the onset of the asymptotic region
in their case. Some of the parameters occurring therein are determined from a fit
to the data, some by minimizing the difference between the right and left hand
sides of the Roy equations in the region below \/sg = v/60 M, = 1.08 GeV. In
this manner, they construct universal bands corresponding to the Berkeley [[g],
Saclay [J] and CERN-Munich phases as determined by Estabrooks et al. [p(].
The individual bands are not very much broader than the shaded region in fig. [,
but they are quite different from one another: Crudely speaking, the Berkeley
band is centered at the upper border of our universal band, while the one con-
structed with the CERN-Munich phases is centered at the lower border. The
Saclay band runs outside the region where we can find acceptable solutions at
all.
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In order to compare their results with ours, we first note that, for the six
explicit solutions given in table 5 of [[], the value of aj varies between —0.06 and
0.59. Only two of these correspond to values of the S-wave scattering lengths in
the region considered in the present paper: BKLY, and SAC,. For these two,
the value of the P-wave phase shift at 0.8 GeV is 108.3° and 108.0°, respectively,
remarkably close to the central value of the range allowed by the data on the
form factor, eq. (7.2). Concerning the value of ) at 0.8 GeV, however, the two
solutions differ significantly: While BKLY yields 79.7° and is thus within our
range in eq. (7.4), the value 70.2° that corresponds to SAC, is significantly lower.
In our opinion, that solution is not consistent with the experimental information
available today. In the interval from threshold to 0.8 GeV, our solution differs
very little from BKLY,. Above this energy, the imaginary part of the I = 0
S-wave in BKLY 5 is substantially smaller than the one we are using as an input.
Nevertheless, the solutions are very similar at low energies, because the behaviour
below the matching point is not sensitive to the input above 1 GeV.

17 Summary and conclusions

The Roy equations follow from general properties of the w7 scattering amplitude.
We have set up a framework to solve these equations numerically. In the following,
we summarize the main features of our approach and the results obtained with it,
omitting details — even if these would be necessary to make the various statements

watertight.
1. In our analysis, three energies sy < s; < sy play a special role:
Vso = 0.8GeV |, sp = 329M?* |
Vs1 = 1.15GeV 51 = 68 M2 |
Vs = 2GeV , sy = 205.3M?2 .

We refer to the point s as the matching point: At this energy, the region where we
calculate the partial waves meets the one where we are relying on phenomenology.
The point s; indicates the upper end of the interval on which the Roy equations
are valid, while sy is the onset of the asymptotic region.

2. Given the strong dominance of the S- and P-waves, we solve the Roy
equations only for these, and only on the interval 4M? < s < sq, that is on the
lower half of their range of validity. In that region, the contributions generated by
inelastic channels are negligibly small. There, we set nJ(s) = ni(s) = na(s) = 1.
In the interval from sg to so, we evaluate the imaginary parts with the available
experimental information, whereas above sy, we invoke a theoretical represen-
tation, based on Regge asymptotics. We demonstrate that crossing symmetry
imposes a strong constraint on the asymptotic contributions, which reduces the
corresponding uncertainties quite substantially — in most of our results, these are
barely visible.
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3. The Roy equations involve two subtraction constants, which may be iden-
tified with the two S-wave scattering lengths aJ, a2. In principle, one subtraction
would suffice: The Olsson sum rule relates the combination 2 aJ — 5 a3 to an inte-
gral over the imaginary parts in the forward direction (or, in view of the optical
theorem, over the total cross section). This imposes a correlation between the in-
put used for the imaginary parts and the values of the S-wave scattering lengths,
but using this constraint ab initio would lead to an unnecessary complication
of our scheme. We instead treat the two subtraction constants as independent
parameters. The consequences of the Olsson sum rule are discussed below.

4. Unitarity converts the Roy equations for the S- and P-waves into a set
of three coupled integral equations for the corresponding phase shifts: The real
part of the partial wave amplitudes is given by a sum of known contributions
(subtraction polynomial, integrals over the region sy < s < s9 and driving terms)
and certain integrals over their imaginary parts, extending from threshold to sg.
Since unitarity relates the real and imaginary parts in a nonlinear manner, these
equations are inherently nonlinear and cannot be solved explicitly.

5. Several mathematical properties of such integral equations are known, and
are used as a test and a guide for our numerical work. In particular, the existence
and uniqueness of the solution is guaranteed only if the matching point sg is taken
in the region between the place where the P-wave phase shift goes through 90°
and the energy where the I = 0 S-wave does the same. As this range is quite
narrow (0.78 GeV < /sp < 0.86 GeV), there is little freedom in the choice of the
matching point — we use /sp = 0.8 GeV. According to table [, the multiplicity
index of the interval 0.86 < /sp < 1GeV is equal to 1. By way of example
(v/so = 0.88 GeV), we have verified that our framework indeed admits a one—
parameter family of numerical solutions if the matching point is taken in that
energy range.

6. A second consequence of the mathematical structure of the Roy equations
is that, for a given input and for a random choice of the two subtraction constants,
the solution has a cusp at sg: In the vicinity of the matching point, the solution in
general exhibits unphysical behaviour. The strength of the cusp is very sensitive
to the value of a2. In fact, we find that the cusp disappears in the noise of
our calculation if that value is tuned properly. Treating the imaginary parts as
known, the requirement that the solution is free of cusps at the matching point
determines the value of a2 as a function of aJ. This is how the universal curve of
Martin, Morgan and Shaw manifests itself in our approach.

7. The input used for the imaginary parts above the matching point is subject
to considerable uncertainties. In our framework, the values of the S- and P-wave
phase shifts at the matching point represent the essential parameters in this
regard. In order to pin these down, we first make use of the fact that the data on
the pion form factor, obtained from the processes e*e™ — 777~ and 7 — 7~ 7%,
very accurately determine the behaviour of the P-wave phase shift in the region
of the p-resonance, thus constraining the value of 6 (sg) to a remarkably narrow
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range. Next, we observe that the absolute phase of the w7 scattering amplitude
drops out in the difference d; — 89, so that one of the sources of systematic
uncertainty is eliminated. Indeed, the phase shifts extracted from the reaction
mN — 7w N yield remarkably coherent values for this difference. Since the P-
wave is known very accurately, this implies that §0(sg) is also known rather well.
The experimental information concerning 62, on the other hand, is comparatively
meagre. We vary it in the broad range shown in fig. .

8. The uncertainties in the experimental input for the imaginary parts and
those in the driving terms turn the universal curve into a band in the (ad, a?)
plane, part of which is shown in fig. []. Outside this “universal band”, the Roy
equations do not admit physically acceptable solutions that are consistent with
what is known about the behaviour of the imaginary parts above the matching
point.

9. One of the striking features of the solutions is that, above the matching
point, they very closely follow the real part of the partial wave used as input for
the imaginary part, once the value of a? is in the proper range. The phenomenon
is discussed in detail in section [(, where we show that, in a certain sense, this
property represents a necessary condition for the solution to be acceptable phys-
ically. The region where this consistency condition holds is shown in fig. P It
roughly constrains the admissible values of a2 to the lower half of the universal
band.

10. As mentioned above, the Olsson sum rule relates the combination 2a)—5a3
of scattering lengths to an integral over the imaginary parts of the amplitude.
Evaluating the integral, we find that the sum rule is satisfied in the band spanned
by the two red curves shown in fig. fJ. The Olsson sum rule thus amounts to
essentially the same constraint as the consistency condition. Presumably, the
universal band is of the same origin: Physically acceptable solutions only exist
if the subtraction constants are properly correlated with the imaginary parts.
The shaded region in fig. f shows the domain where all of these conditions are
satisfied. It is by no means built in from the start that the various requirements
can simultaneously be met —in our opinion, the fact that this is the case represents
a rather thorough check of our analysis.

11. The admissible region can be constrained further if use is made of ex-
perimental data below the matching point. At the moment there are two main
sources of information on 77 scattering below 0.8 GeV: A few data points for the
I = 2 S-wave phase shift — which to our knowledge will, unfortunately, not be
improved in the foreseeable future — and a few data points on &) — d; very close
to threshold, as measured in K., decays. These data do provide an important
constraint. We compare our solutions inside the universal band to both sets of
data. As shown in fig. [[3, the corresponding x? contours nicely fit inside the
universal band. The net result for the allowed range of the parameters is shown
in fig. [, which summarizes our findings.

12. To our knowledge, the Roy equation analysis is the only method that
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allows one to reliably translate low energy data on the scattering amplitude into
values for the scattering lengths. As discussed above, the available data do cor-
relate the value of a3 with the one of a). Unfortunately, however, the value of a
as such is not strongly constrained: In agreement with earlier analyses, we find
that these data are consistent with any value of af in the range from 0.18 to 0.3.

13. The new experiments at Brookhaven [P7 and at DA®NE [P§] will yield
more precise information in the very near future. We expect that the analysis of
the forthcoming results along the lines described in the present paper will reduce
the error in aJ by about a factor of three. Moreover, the pionic atom experiment
under way at CERN [29] will allow a direct measurement of |a§ — a3| and thus
confine the region to the intersection of the corresponding, approximately vertical
strip with the region shown in fig. [[7.

14. The two subtraction constants a), ag are the essential parameters at low
energies: If these were known, our method would allow us to calculate the S-
and P-wave phase shifts below 0.8 GeV to an amazing degree of accuracy. The
parameters aJ, a2 act like a filter: If the solutions are sorted out according to
the values of these parameters, the noise due to the uncertainties in our input
practically disappears, because variations of that input require a corresponding
variation, either in af or in a3 — otherwise, the behaviour of the solution near
the matching point is unacceptable. A simple explicit representation for the S-
and P-wave phase shifts as functions of the energy is given in appendix [} The
representation explicitly displays the dependence on af, a?.

15. We have also analyzed the implications for the scattering lengths of the
P-, D- and F-waves, as well as for the various effective ranges. The fact that
ad and a? are the essential low energy parameters manifests itself also here: If
we change the input in the Roy equations within the uncertainties, but keep a
and a? constant, the values of the various threshold parameters vary only by tiny
amounts, typically around one percent or less. The main source of uncertainty in
the determination of the threshold parameters is by far the one attached to the
S-wave scattering lengths.

16. If the energy approaches the matching point, the uncertainties in the
experimental input, naturally, come more directly into play. Also, the uncertain-
ties in the driving terms grow rather rapidly with the energy. At the kaon mass,
however, these are still very small. We have analyzed the phase shifts at £ = My
in detail, because these represent an important ingredient in the calculation for
various decay modes of the K mesons. The result shows that the uncertainties
are dominated by those in af), a2, also at that energy. We conclude that the fu-
ture precision data on Ky,-decay and on pionic atoms will translate, via the Roy
equations, into a rather precise knowledge of the 77 scattering amplitude (not
only the lowest three partial waves) in the entire low—energy region, extending
quite far above threshold.

17. In the present paper, we followed the phenomenological path and avoided
making use of chiral symmetry, in order not to bias the data analysis with the-
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oretical prejudice. A famous low energy theorem [B2] predicts the values of the
two basic low energy parameters in terms of the pion decay constant. The predic-
tion holds to leading order in an expansion in powers of the quark masses. The
corrections arising from the higher order terms in the chiral expansion are now
known to order p® (two loops) []]. We plan to match the chiral perturbation
theory representation of the scattering amplitude with the phenomenological one
obtained in the present paper [BUJ]. This should lead to a very sharp prediction
for aj and ag. The confrontation of the prediction with the forthcoming results
of the precision measurements will subject chiral perturbation theory to a crucial
test.
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A Integral kernels

Crossing symmetry, A(s,u,t) = A(s,t,u), implies that the isospin components
T = (T°, T, T?%) are subject to the constraints (u = 4M? — s — t)

f(57 U) = Ctu f(57 t) ;
f(t> S) - CSt f(57 t) 3
f(% t) = Cu f(& t),

where the crossing matrices Cy, = Cyt, Csy = Cus, Cst = Cls are given by

1 5 1 5
0 Doy P
Cow=10 -1 0 Csu = 7? ? ? Cs = ? ? *§
0 01 5 7 @ 5 25
Their products obey the relations
(Ctu)2 = (Csu)2 = (Cst)2 =1,
Cst Ctu = Ctu Cus = Cus Cst 5 Csu Cut = Cts Csu = Cut Cts .
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The quantities ga(s,t, s'), g3(s,t,s") occurring in the fixed-t dispersion relation
(B:4) represent 3 x 3 matrices built with Cy, Cy, and Cs,,

t 1 C
7t7/ = - Cs Cscu( — ) ’
ga(s:1,5) 7rs’(s’—4M7%)(u ¢ +5Cit Cru) s—t s —uy
su 1 C
48 = — ( s“) Al
g5(s,t, %) (s — up) s’—s+s’—u (A1)
where u = 4M? — s — t and ug = 4M?2 — t.
The straightforward partial wave projection of the amplitude reads
1 1
t(s) = —/ d2P(2)T!(s,t.) ,  t.=1(AMZ—s)1—2) . (A2)
647 J-1
On account of crossing symmetry, the formula is equivalent to
)= o [ dzPu(2) T(s.12) (A3)
§)=—— 2Py (z s,t,) . )
¢ 327 Jo ‘ ’

As pointed out by Roy [[l]], the second form of the projection is preferable in the
present context, because it involves smaller values of |t,|, so that the domain of
convergence of the partial wave series for the imaginary parts on the r.h.s. of the
fixed-t dispersion relation (B.4) becomes larger: Whereas for the straightforward
projection, the large Lehmann-Martin ellipse is mapped into —4M? < s < 32M2,
the one in eq. ([A.J) corresponds to —4M? < s < 60M2.

The kernels K/} (s, s') that occur in eq. () are different from zero only if
both I+ /¢ and I'+ ¢ are even. With the partial wave projection (A.3), the explicit
expression becomes[]

/ 1 /
Kt (5,8) = (20 +1) [ dz Pi(2) Ku(s,t2,8)"
0
t=3(AM2 —s)(1—=2) . (A.4)

The functions Ky (s,t,u)" are the matrix elements of

2t

Kg/(s, t, 5/) — 92(57 t, 5/) + 93(5, t, 5/) Py (1 + m) . (A5)
HNote that the fixed-t dispersion relation (E) is not manifestly crossing symmetric — for
¢ > 2, the kernels do depend on the specific form used for the partial wave projection. In
particular, the kernels occurring in the Roy equations for the waves with £ > 3 are proportional
to (s — 4M2)" only if the projection in eq. (A.J) is used — for the one we are using here, the
proper behaviour of the solutions only results if the contributions from the imaginary parts
of the different partial waves compensate one another near threshold (see section ) For a

detailed discussion of these issues we refer to [[(7].
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The kernels contain the usual pole at s = s', generating the right hand cut
of the partial wave amplitudes, as well as a piece K}/ (s,s') that is analytic in
Res > 0, but contains a logarithmic branch cut for s < —(s" — 4M?):

ACEE

ir 7l
m ) 555/ + KM’ (S,Sl) .

To illustrate the structure of the second term, we give the explicit expression for
I=0I'=(=/=0:

K((]]((J](S> 5/) =

2 p <s+s’—4Mﬁ> 25455 —16M?
s/

3m(s—4M?2) 3m s (s" —4M?2)

We do not need to list other components — they may be generated from the above
formulae by means of standard integration routines.

B Background amplitude

B.1 Expansion of the background for small momenta

The background amplitude only contains very weak singularities at low energies.
At small values of the arguments, A(s,t,u)y thus represents a slowly varying
function of s,t,u, which is adequately approximated by a polynomial. We may,
for instance, consider the Taylor series expansion around the center of the Man-
delstam triangle: Set so = $MZ, s = so + ,t = 59 — 3(x — y), expand in powers
of x and y and truncate the series. Alternatively, we may exploit the fact that,
in view of the angular momentum barrier, the dispersion integral over the imag-
inary parts of the higher partial waves receives significant contributions only for
s'21GeV?% For small values of s and ¢, we can therefore expand the kernels
g2(s,t,s') and g3(s,t,s’) in inverse powers of s’. The coefficients of this expansion
are homogeneous polynomials of s, t and M?2, which may be ordered with the
standard chiral power counting. The corresponding expansion of the Legendre
polynomial starts with

2t B t )

Truncating the expansion at order p°, the background amplitude becomes

—

T(s,t)a = =327 {(tu Cu + 51 Ca + 51 Cra)) (1 + Cu) I (B.1)
{2t Cru+ 5 Coy + 2 uCyp + (125 Cryy + 2 Coy + 12t Cyy) Cou Y Iy
+stu(l+Cu) H + 0% .
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The coefficients Iy and I3 represent moments[q of the imaginary part at t = 0,

0 I
I 1 / ds ImT"(s,0)q4 (B.2)

m 73272 Jaarz s72(s — AM2)

In view of the optical theorem, these quantities are given by integrals over the
total cross section, except that the contributions from the S- and P-waves below
s9 are to be removed. Equivalently, we may express these coefficients in terms of
the imaginary parts of the partial waves:

X (20+1) ps2 dsImti( X (20 +1) o dsImtl(s

e s amz s"H2(s — 4M2 P s"t2(s — AM2)

Except for a contribution proportional to 111, the last term in eq. (B.1) may be
expressed in terms of the derivative of Im T'(s, t); with respect to ¢:

1 < ds OImT!(s,t)g
H = -21!¢! / —_ . B.4
1ot 3272 Jamz s3 ot =0 (B-4)
Here, only the higher partial waves contribute:
S 1 ds Imt]
H' =S @20+ 1){6(t +1) — 25!} = s tm g (s) (B.5)

s Yon Jamz s3(s — 4M2)

The expression is similar to the one for I{, except that the sum over the angular
momenta picks up a factor of /(¢ + 1), indicating that partial waves with higher
values of ¢ are more significant here. Note that all of the above moments are
positive.

B.2 Constraints due to crossing symmetry

The expansion of the background amplitude starts at order p*, with a manifestly
crossing symmetric contribution determined by the moments I. The term from I
is also crossing symmetric, but the one proportional to s¢u violates the condition
T(s w)g = Cp, T (s t)q, unless the I = 1 component of the vector (1 + Cy,) H
vanishes, i.e.

2H° = 9H' +5H* . (B.6)

This sum rule is both necessary and sufficient for the polynomial approxima-
tion to the background amplitude to be crossing symmetric up to and including
contributions of order p°.

12 The factor 1/(s — 4M?2) could also be expanded in inverse powers of s, but this would
worsen the accuracy of the polynomial representation. Note that the same factor also occurs
in the representation (@) for the contributions generated by the imaginary part of the S- and
P-waves below s2: The expansion of the functions W(s) in powers of s yields integrals of the
same form. Hence the low energy expansion of the full amplitude can be expressed in terms of
moments of this type.
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The sum rule illustrates the well-known fact that crossing symmetry leads
to stringent constraints on the imaginary parts of the partial waves with ¢ > 2
(for a thorough discussion, see [B1], fJ]). Crossing symmetry implies for instance
that Im¢J(s) can be different from zero only if some of the higher partial waves
with I =1 or I = 2 also possess an imaginary part — in marked contrast to the
situation for the S- and P-waves, where crossing symmetry does not constrain
the imaginary parts.

In the form given, the sum rule only holds up to corrections of order M?2.
We may, however, establish an exact variant by expanding the I = 1 component
of the relation T (s,u)g = C, T (s,t)q around threshold, for instance in powers
of t and u. In order for the term of order tu occurring in the expansion of the
left hand side to agree with the corresponding term on the right hand side, the
imaginary parts must obey the sum rule

o0 ds - ) -
Awm {2ImT%(s,0) ~ 5ImT%(s,0)} =
3/00 ds (3s — 4 M?)
am2 s% (s —4AM2)3

{(s =4M2)ImT'(s,0) - 2Im T"(5,0)} , (B.7)

where T(s,t) stands for the partial derivative of T(s,t) with respect to t. Ex-
pressed in terms of the imaginary parts of the partial waves, the relation reads

_Z (20+1)0(0+ 1)A;2 W {2Im#)(s) — 5Imt3(s)} =
) (2€+1){€(€~|—1)—Q}AZZ%QImt}(s) . (B.8)

The approximate version (B-§) differs from this exact result only through terms
of order M?2.

The constraints imposed by crossing symmetry show, in particular, that the
concept of tensor meson dominance is subject to a limitation that does not occur
in the case of vector dominance: The hypothesis that convergent dispersion inte-
grals or sum rules are saturated by the contributions from a spin 2 resonance leads
to coherent results only at leading order of the low energy expansion. The sum
rule (B7) demonstrates that the hypothesis in general fails: Crossing symmetry
implies that singularities with ¢ > 2 cannot be dealt with one by one.

Since the relation (B-f) ensures crossing symmetry, the above low energy
expansion of the isospin components of the amplitude is equivalent to a manifestly
crossing symmetric representation of the background amplitude:

A(s,t,u)g =p1 +p2s+ps 2 4 py (t — u)2 + p5 $° + pe s(t— u)2 + O(p8) . (B.9)

By construction, A(s,t,u)s does not contribute to the S-wave scattering lengths.
This condition fixes p; and ps in terms of the remaining coefficients:

pr=—16M2py, po=4M?(—ps+ps— 4M? ps), (B.10)
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The explicit expressions for the latter read

8 16
pgz?ﬂ(éﬂg—QI& — )+ TﬂMﬁ (=819 =211} + 1112 +12H) |
pa=87 Iy + I¢) + 167 M2 (I + I7) , (B.11)

4
p5:§(8lf+9111—11[12—6H) :

pe=A4n(I} —3I?+2H) .

In view of the sum rule (B-G), only two of the components of H are independent.
Moreover, the amplitude only involves a combination thereof:

H=2H"-2HY=2(H+2H*) = H' + H? . B.12
9

The above formulae show that the leading background contribution is deter-
mined by the integrals I, which yield

pr=0MM) , pp=0MM7), ps=0(1), ps=0() .

The contributions from I; and H modify the result by corrections that are sup-
pressed by one power of M? and, in addition, generate a polynomial of third
degree in s, t, u, characterized by ps and pg.

B.3 Background generated by the higher partial waves

Next, we turn to the numerical evaluation of the integrals IB, E, H and first
consider the contributions from the imaginary parts of the partial waves with
¢ > 2 in the region below 2 GeV. The integrals are dominated by the resonances,
which generate peaks in the imaginary parts. In the vicinity of the peak, we may
describe the phase shift with the Breit-Wigner formula

. M? + iU M, — s
62@5(3) r
M2 — il M, —s '

where M, and I', denote the mass and the width of the resonance, respectively.
To account for inelasticity (decays into states other than 77), we multiply the
corresponding expression for the imaginary part of the partial wave amplitude
with the branching fraction I',_ .. /T",. This leads to

. 5 R o Vi
It 8) =\ SThE G- aRpE T TR

where I, and ¢, denote the isospin and the spin of the resonance, respectively. In
the narrow width approximation, the formula simplifies to

Tm ¢l (s) = 7 D pn M, (1 — 4M2/M2) 28 (s — M?) . (B.13)
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Only four of the states listed in the particle data booklet [[0] below 2 GeV
have spin ¢ > 2 and carry the proper quantum numbers to be produced in 77
collisions: The spin 2 resonances f5(1275) and f5(1525), the spin 3 state p3(1681)
and the state f;(1710), whose spin is not firmly established, but must be even.
There is no evidence for exotic states: fo, f5 and f; are isoscalars, while the p3 is
an isovector.

Very likely, the lightest spin 4 state is the f;(2044): A linear p(770) —
f2(1275) — p3(1691) Regge trajectory calls for a spin 4 recurrence almost ex-
actly there. At any rate, if the spin of the state f;(1710) were equal to 4 or
even larger, it would sit above that trajectory and thus upset the standard Regge
picture, which we will be making use of to estimate the asymptotic part of the
driving terms. We take it for granted that J = 0 or 2 and conclude that only the
I = 0 D-wave and the F-wave contain resonances below 2GeV. In the follow-
ing, we discuss the contributions generated by these states, comparing the result
obtained from the narrow width formula with the one found on the basis of two
different phase shift analyses.

The most important contribution arises from the tensor meson f5(1275). In-
serting the values My, = 1275 MeV, I'y, _.r» = 157 MeV, the narrow width formula
gives I§; = .25GeV ™" IV, = 15GeV~°, H} = .93GeV~°, to be compared with
the results obtained with the parametrizations of the D-wave in refs. [[[7] and [B7],
which yield

[A7): 10, =.25GeV ™", IV, =.18GeV ™%, H) =1.10GeV° | (B.14)
B : I)p=27GeV™*, I}, =.19GeV ™, H), =117GeV " . (B.15)

These numbers show that the contributions from the imaginary part of the D-
wave are dominated by the fo(1275).

We add a few remarks concerning the detailed behaviour of Im¢3(s) and first
note that the f}(1525) mainly decays into K K. In the present context, this state
may be ignored, because the corresponding 77 partial width is tiny: Iy .r =
.62+.14 MeV. The phase shift analysis of ref. [p7] does contain a second resonance
in the D-wave, which generates a small enhancement in the integrands on the
r.h.s. of egs. (B-3), (B.3) towards the upper end of the range of integration. The
numerical result in eq. (B.15) includes the tiny contribution produced by this
enhancement, but this effect only accounts for a small fraction of the difference in
the values obtained with the two different phase shift analyses. The main reason
for that difference is that the two representations of the D-wave in refs. [[7, B
do not agree very well on the left wing of the f5(1275). In the context of the
present paper, these details are not essential — we use the difference between the
two phase shift analysis as a measure for the uncertainties to be attached to the
moments.

To estimate the significance of the remaining partial waves with I = 0, we
consider the contribution generated by the f;(2044). This resonance also mostly
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decays into states other than 7m. The relevant partial width is I'y, . = 35 £
4MeV. The narrow width formula shows that the contribution from this state is
very small: 1§, = .009GeV ™" I{, =.002GeV~°, H} = .04GeV~°. Moreover,
the center of the peak is outside our range of integration — more than half of the
contribution from this level is to be booked in the asymptotic part. We conclude
that the imaginary parts of the partial waves with ¢ > 4 only matter at energies
above 2 GeV.

The p3(1681) shows up as a peak in the imaginary part of the F'-wave. Accord-
ing to the particle data tables [[[{], it mainly decays into 4. The partial width of
interest in our context is I'p, _r» = 383 MeV. Inserting this in the narrow width
formula, we obtain Ij,. = .020 GeV ™, If,, = .007 GeV 5, H) = .07 GeV™C, to
be compared with the values found by performing the numerical integration with
the representations for the F-wave given in the two references quoted above:

[47) : I;p=.028CGeV ™, I}, =.012GeV™°, Hj. = .12GeV° | (B.16)
B7 : I3,=.030GeV™*, I}, =.016GeV ", Hp =.16GeV° . (B.17)

In the present case, the narrow width formula only accounts for about half of the
result: The region below the resonance is equally important. There, the difference
between the two phase shift analyses is more pronounced than for the D-waves.
Accordingly, the uncertainties in the F-wave contributions to the moments are
larger.

The formula (B-13) predicts that the contribution generated by the imagi-
nary part of the I = 2 waves vanishes, because that channel does not contain
any resonances. According to Martin, Morgan and Shaw [f9], the D-wave phase
shift may be approximated as 62(s) ~ —0.003 (s/4M2) (1 — 4M2/s)5. The corre-
sponding contributions to the moments are indeed very small: 12 = 0.005GeV ™,
I? = 0.006GeV™®, H = 0.04GeV~°®. In the following, we assume that these
estimates do hold to within a factor of two.

This completes our discussion of the contributions generated by the higher
partial waves in the region below 2 GeV. The net result is that these are due
almost exclusively to the D- and F-waves. The numerical results are listed in
row L of table fl. For I = 0, 1, the values given rely on the phase shift analyses
of refs. [[I7, b7, while the estimates for I = 2 correspond to the parametrization

of ref. [BF].
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I=0 I=1 I1=2

18 I? H° I& Ill H! Ig 112 H?
GeV 4 GeV 0| GeVTO | GeVT4| GeVTO| GeVl| GeV4| GeV 0| Gev 0

L .26 .19 1.13 .029 | .014 .14 .005 | .006 .04

R .03 .004 A1 018 | .003 .07 — — —

P .01 .001 .04 .010 | .001 .04 .010 | .001 .04
total .30 .19 1.28 058 | .018 .24 .015 | .007 .08

+ .01 .01 .05 .007 | .002 .03 .008 | .006 .04

Table 6: Moments of the background amplitude. The rows L, R and P indicate
the contributions from the region below 2 GeV, from the leading Regge trajectory
and from the Pomeron, respectively. The last two rows show the result for the
sum of these contributions and our estimate of the uncertainties, respectively.

B.4 Asymptotic contributions

We now turn to the contributions from the high energy tail of the dispersion
integrals. The asymptotic behaviour of the scattering amplitude may be analyzed
in terms of Regge poles. A trajectory with isospin I generates a contribution
o 5% to the t-channel isospin component Im 7'!)(s, t), which is defined by

ImTW(s,8) =" CIImT! (s,1) .
I/

The asymptotic behaviour of the amplitude with I; = 1 (s — oo, t fixed) is
governed by the p-trajectory,

Im TW (s,t) = B,(t) 521 .

The Pomeron dominates the high energy behaviour of the I, = 0 amplitude.
Together with the contribution from the f-trajectory, the Regge representation
of this component reads

Im 7O (s,t) = 3 P(s,t) + Bf(t) s/

In the absence of exotic trajectories, the component with I; = 2 rapidly tends to
zero when s becomes large. The asymptotic behaviour of the s-channel isospin
components thus takes the form

ImTOs, 1) = P(s, 1) + 30;(t) s°7" +ﬁ (1) %W 4 (t = )
Im T (s,t) = P(s,t) + 265 (t) s/ + 18,(#) s> — (t ) , (B.18)
ImT2(s,t) = P(s,t) + +6(t) s*/") — p(t) 50 4 (t - u) .

If ¢ is kept fixed, the terms with P(s, t) and 3(t) s*) dominate, generating a peak
in the forward direction, while the analogous structure in the backward direction
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(fixed u) is described by those with P(s,u) and (u) s*™). At fixed ¢, the crossed
terms drop off very rapidly with s, so that their contribution disappears in the
noise of the calculation and may just as well be dropped.

The Lovelace-Shapiro-Veneziano model [B3, B4, BY] provides a very instructive
framework for understanding the interplay of the asymptotic contributions with
the resonance structures seen at low energies (see appendix []). In that model,
the p- and f-trajectories are linear and exchange degenerate,

a,(t) =ap(t) =g+t . (B.19)

We fix the intercept with the Adler zero, a(M?) = %, and choose the slope such
that the spin 1 state on the leading trajectory occurs at the proper mass:

(M7 — M2~ ag =13 —aq M? . (B.20)

1
ap =5

The amplitude may be represented as a sum of narrow resonance contributions.
Since the model does not contain exotic states, Im T?(s, t) vanishes, so that the
residues [3;(t) and [,(t) are in the ratio 3:2. The explicit expression reads

7 A (g )*®

8.(0) = 360:0) = "5y

(B.21)
Finally, we fix the overall normalization constant A such that the width of the p
agrees with what is observed. This requires

A=96mT, M2 (M2 —4M2)~3 . (B.22)

The model explicitly obeys crossing symmetry and yields a decent picture
both for the masses and widths of the resonances occurring on the leading tra-
jectory and for the qualitative properties of the Regge residues 3,(t), 5;(t). The
main deficiency of the model is lack of unitarity: It does not contain a Pomeron
term, so that the total cross section tends to zero at high energies. While the
model yields quite decent values for the full widths, it does not account for the
fact that the resonances often decay into states other than 7w, particularly if
the available phase space becomes large — in the model, the branching fraction
[y—rr /Ty is equal to 1. Consequently, the LSV-model overestimates the magni-
tude of the Regge residues — a significant fraction thereof should be transferred
to the Pomeron term. For this reason, the model can only serve as a semi-
quantitative guide.

As discussed in section [B.Z, crossing symmetry strongly correlates the asymp-
totic behaviour of the partial waves with their properties at low energy. In par-
ticular, the parameters occurring in the Regge representation of the scattering
amplitude can be extracted from low energy phenomenology. For a review of
these calculations, we refer to the article by Pennington [[i3]. The value obtained
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for (3,(0) is smallerf] than what follows from egs. (B21)), (B:22) by a factor of
0.6 +0.1. Also, while the formula (B.21)) implies that the residue contains a zero
at to = 2M? — Mg = —0.55GeV? because a(t) vanishes there, the calculation
of ref. [A3 instead yields a zero at ty = —0.44 & 0.05GeV?>. This confirms the
remarks made above: The LSV-model describes the qualitative properties of the
Regge residues quite decently, but overestimates their magnitude.

In the numerical evaluation, we use the linear p-trajectory specified above,
a,(t) = a(t), and fix the corresponding residue with the results of ref. [[[3], which
are adequately described by a modified version of the LSV-formula:
7T)\10/11(t)

— L ty=-044GeV? , X\ =(78+.13)) . (B.23
F[(t—to) al] 0 1 ( ) ( )

ﬁp(t) =
We determine the properties of the f-trajectory with exchange degeneracy, i.e. set
ay(t) = at) and By(t) = 26,(t). For the Pomeron, we use the representation

P(s,t) = osesdt (B.24)

While the parameter b = 8 GeV 2 describes the width of the diffraction
peak, the optical theorem implies that o represents the asymptotic value of the
total 77 cross section. Evidently, the above parametrization can be adequate
only in a limited range of energies: The cross section does not tend to a constant,
but grows logarithmically. In the present context, however, the behaviour at very
high energies is an academic issue, because the integrands of the moments rapidly
fall off with s. What counts is that the above representation yields a decent
approximation for c.m. energies in the range between 2 and 3 GeV. There, the
terms generated by the p-f-trajectory are by no means negligible: The formula
(B.1§) shows that at 2 GeV (3 GeV), these terms by themselves generate a
contribution to Im7°(s, 0) that corresponds to a total cross section of 21 mb (14
mb) — in the energy range relevant for the moments, the Pomeron term does not
represent the dominating contribution to the total cross section. As discussed
in detail in ref. [3], crossing symmetry leads to the estimate o = (6 £ 5) mb.
Although the error bar is large, the value is significantly smaller than what is
indicated by the rule of thumb o7 ~ 2 o7l ~ 5oV ~ 20mb.

Indeed, the sum rule (B.G) confirms this result. The numerical values obtained
with the above representation for the contributions from the p-f-trajectory are
indicated in row R of table f§. If the high energy tail is omitted altogether, the
L.h.s. of the sum rule (B.G) becomes (2H°);, = 2.3 GeV~°, while the r.h.s. amounts
to (9H' 4+ 5H?), = 1.5GeV 5. Clearly, further contributions are required to
bring the sum rule into equilibrium. The Regge terms do contribute more to the

In ref. [, the residue is written as 3, (t) = L7, (t) o/ll"(t)f%. The result obtained for the
value at ¢ = 0 is 7,(0) = (0.6 = 0.1)M !, to be compared with the number ~,(0) = 0.97 M !
that follows from egs. (B.19)-(B.22).
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right than to the left and reduce the discrepancy by a factor of two. Since the
Pomeron affects the various isospin components almost equally, it contributes
about 7 times more to the right than to the left. For the sum rule to be obeyed
within the uncertainties of the remaining contributions, the value of ¢ must be
in the range o = (5 4+ 3) mb.

Let us compare our representation of the background with the model used
for the asymptotic behaviour in the early literature. Assume that, above an
energy of 1.5 GeV, the imaginary parts can be described by a Pomeron term with
0wt = 20mb and a Regge term that corresponds to the leading trajectory of the
LSV-model. The Lh.s. of the sum rule (B-f]) then takes the value 2H® = 3.3, while
the r.h.s yields 9H! +5H? = 6.1 (to be compared with the value 2.6 obtained for
either one of the two sides with our representation of the background). Evidently,
the model is in conflict with crossing symmetry. In the region relevant for the
driving term integrals, the LSV-model overestimates the Regge residues by about
40% [A3] and the sum rule (B.f) then implies that the value ¢ = 20mb is too
large by about a factor of 4.

We repeat that our calculation has no bearing on the asymptotic behaviour
of the total cross section — we are merely observing that, unless the value of o is
in the range 5+ 3 mb, the representation used for the amplitude violates crossing
symmetry. The row P indicates the contributions to the moments generated by
the Pomeron if ¢ is taken in the middle of this range. The net result of our
calculation is contained in the last two rows of table [, which list the outcome
for the moments and for the error bars to be attached to these, respectively. For
the quantity H defined in eq. (B:13), we obtain

H =0.3240.02GeV . (B.25)

B.5 Driving terms

The polynomial approximation for the background amplitude can be used to
determine the low energy behaviour of the driving terms — it suffices to evaluate
the partial wave projections of the polynomial T (s,t)q. The range of validity
of the resulting representation for the driving terms, however, only extends to
c.m. energies of about 0.6 GeV. For our numerical work, we need a representation
that holds for higher energies.

The approximations for the imaginary parts discussed above yield the follow-
ing representation of the driving terms:

dy(s) = dy(s)r +dj(s)r + dy(s)p
2 3 L / /
di(s)e=> 5 ds' K} (s, ) Imtl (s) |
=0 /=2 /AM3

1 1
d(s)y = 327/0 AP\ T (s,t.)e ,  H=RP
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8

f(s,t)H:/ ds’gg(s,t,s’)-Imf(s’,O)H+/ ds'gs(s, t,s') - ImT(s', )y |
ED) S2

ImT%s,t)r = 2 B,(t) s*V + 2 B, (u) s*™

Im T (s, t)r = B(t) s*@ = B,(u) s*
ImT?%(s,t)g =0 ,

ImT%(s,t)p = ImT?(s,t)p = P(s,t) + P(s,u) ,
ImT"(s,t)p = P(s,t) — P(s,u)

The result of the numerical evaluation of these integrals with the parameter values
specified above is given in eq. ([L.)).

We use the difference between the results for dj(s);, and dj(s),, obtained with
the two phase shift analyses quoted above as a measure for the uncertainties in
these quantities. In the case of the I = 2 D-wave, we assume that the Martin-
Morgan-Shaw formula does describe the behaviour of the imaginary part to within
a factor of 2. For the Regge-contributions, we use the error estimate v,(0) = (0.6
0.1)M_! given in ref. [fFJ]. Finally, the uncertainties attached to the Pomeron
term correspond to those in the value ¢ = 5 4+ 3mb, obtained in section B4
The result quoted in eq. (-J) is obtained by adding the corresponding error bars
quadratically and fitting the outcome with a polynomial.

There is a neat and rather thorough check of the above calculation. The
driving terms represent the partial wave projections of the background amplitude.
Since that amplitude must be crossing symmetric, we may equally well calculate
the projections with the formula ([A.2) instead of using (JA-3) — the result should be
the same. The modification of the partial wave projection changes the form of the
kernels K}/ (s,s') and the contributions from the imaginary parts of the higher
partial waves below 2 GeV then change, quite substantially. The contributions
from the asymptotic region, however, are also modified. In the sum, these changes
indeed cancel out, to a remarkable degree of accuracy. This corroborates the
claim that our description of the background is approximately crossing symmetric.
Evidently, the sum rule (B:f]) plays an important role here, as it correlates the
magnitude of the asymptotic contributions with those from the low energy region.

C Sum rules and asymptotic behaviour

C.1 Sum rules for the P-wave

As discussed in section [[I], the Olsson sum rule ensures the correct asymptotic
behaviour of the ¢-channel I = 1 scattering amplitude 7" (s, ) for s — oo, t = 0.
The requirement that this amplitude has the proper high energy behaviour also
for t < 0 implies a further constraint, which is readily derived from the fixed-¢
dispersion relation (B.4). It suffices to evaluate the coefficient of the term that
grows linearly with s and to subtract the value at ¢ = 0. The result involves the
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following integrals over the imaginary parts of the amplitude (¢t < 0):

S(t) = ® 1 2ImT%(s,t) +3Im T (s,t) — 5Im T?(s, )
AM2 12s (s 4+t —4M?2)
o0 (s —2M2)ImT'(s,0)

4M,$d$ s(s—4M2)(s—t)(s+t—4M2) ~

The barred quantities stand for Im T7(s,t) = {ImT%(s,t) — ImT%(s,0)}/t. The
amplitude T (s, t) has the proper asymptotic behaviour only if S(¢) vanishes for
space-like values of ¢t. Since the S-waves drop out, the condition amounts to a
family of sum rules that relate integrals over the imaginary part of the P-wave
to the higher partial waves. For t = 0, for instance, the sum rule may be written
in the form

o Imti(s) o 2ImtY(s) — 5Imt2(s)
— = 2 1 1
AM,%dS s? (s —4M?2) 522274“7“.( E+ e+ 4M,$ds 18 s (s —4M2)?

((0+1)s—4(s—2M2)} Tmt}(s)
652 (s —4M?2)? '

(C.1)

+ (20 + 1) A ‘;st { (C.2)

0=35,...

The integrals over the individual partial waves converge more rapidly than in the
case of the Olsson sum rule, but the factor (£ + 1) gives the higher partial waves
more weight — in fact, the contributions from the asymptotic region are even more
important here. The sum rule is of the same structure as the one that follows
from crossing symmetry, eq. (B.7), but there are two differences: The integrals
converge less rapidly by one power of s and the P-wave does not drop out.

Since the sum rule (C-3) offers a good opportunity to check the representation
used for the asymptotic region, we evaluate it explicitly with our input for the
imaginary parts. We split the integration into one from threshold to /sy = 2 GeV
and one over the asymptotic region, s > s, (compare appendix B). Denoting the
low energy part of the integral over the P-wave by

52 Im ¢1(s)
Sy = / ds —— 177 ,
" Janz s (s —4M32)
we write the sum rule in the form

SP:SD_I_SF_I_SCLS 5 (63)

where S, and S, stand for the analogous integrals over the D- and F-waves.
While the low energy contributions from the waves with ¢ > 4 are neglected, their
high energy tails are accounted for in the term S, 5, which collects all contributions
from the region above ss.

The form ([C.2) of the sum rule is suitable to calculate the contributions from
the interval 4M7% < 8§ < S9. Numerically, we obtain

Sp=193+£0.08 , Sp =0.55+0.03 , Sr=0.13£0.01 ,
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in units of GeV~*. To evaluate the asymptotic contributions, we instead use the
form (Cd)): The term S, coincides with the expression S(0)/487, except that
the integration now only extends over the interval s < s < oo. Inserting the
representation specified in appendix B.4, we find that the bulk stems from the
leading Regge trajectory (1.12 £ 0.19). The Pomeron does not contribute to the
first integral on the r.h.s. of eq. (CJ]), because that integral is of the same isospin
structure as the one occurring in the Olsson sum rule, but it does generate a
small negative term via the second integral (—0.0240.01). The net result for the
asymptotic contributions,

Sas = 1.10 £0.19 |

leads to Sp,+Sr+S,s = 1.7710.19. Within the errors, the outcome agrees with the
numerical value Sp = 1.9340.08 obtained for the 1.h.s. of the sum rule ([C.3). Note
that more than half of the r.h.s. stems from the asymptotic region. We conclude
that our asymptotic representation is valid within the estimated uncertainties,
also for this sum rule, which converges more slowly than the moments considered
in appendix B. Since the Olsson sum rule belongs to the same convergence class
as the one above, we feel confident that our error estimates apply also in that
case.

C.2 Asymptotic behaviour of the Roy integrals

If the imaginary parts of the partial waves with ¢ > 1 are discarded, the Roy
equations become a closed system for the S- and P-waves. The explicit expres-
sions for the kernels show that the dispersion integrals over the imaginary parts
of these waves grow linearly with s, like the subtraction polynomials. Except for
the contributions from the higher partial waves, the r.h.s. of the Roy equations
for the S- and P-waves thus grows in proportion to s:

xS xS xS
0 1 2
AM? oo 2Imtd(s) + 27Imti(s) — 5Imt2(s)
¥ =2a) —5a5 — —= d 0 L 02 (C4
% %o T 4M,$S s(s—4M?2) (C-4)

So, if the coefficient ¥ vanishes, the contribution from the dispersion integrals
cancels the one from the subtraction polynomial, simultaneously for all three
partial waves [B, B3]. In fact, if the imaginary parts of the higher partial waves are
dropped and if ¥ is set equal to zero, the Roy equations become identical to those
proposed by Chew and Mandelstam [fg] (see ref. [P for a detailed discussion).
The expression for X resembles the Olsson sum rule, where the contributions from

the S- and P-wave read

4M?2 oo q 2Imt3(s) + 9Im¢1(s) — 5Imt3(s) N
—z s
m Jamz s(s—4M?2)

0 2 _
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If only the S-waves are retained, the Olsson sum rule does imply that ¥ vanishes —
evidently, this sum rule is closely related to the observation that the linearly rising
contribution from the subtraction terms must cancel the one from the dispersion
integrals (section [[(). As is well-known, however, the coefficient of the P-wave
term in X differs from the one in the Olsson sum rule. The implications of this
discrepancy for the Chew-Mandelstam framework are discussed in the references
quoted above. The family of sum rules derived in appendix [C.J] points in the
same direction: The imaginary part of the P-wave is tied together with those of
the higher partial waves — setting these equal to zero leads to inconsistencies [Bf].

For the above asymptotic formulae to apply at £ ~ 1GeV, two conditions
would have to be met: (a) the contributions from the higher partial waves can
be ignored at these energies and (b) the integrals over the imaginary parts of the
S- and P-waves are dominated by the contributions from low energies. Unfortu-
nately, neither of the two conditions is met. The solutions show a pronounced
structure in the region above the matching point — evidently, we are not dealing
with the asymptotic behaviour there. The numerical value of ¥ is negative: The
integral in eq. (C4)) over-compensates the term 2a) — 5a2. We may lay the blame
upon the contributions above the matching point — if the integral were cut off
there, ¥ would approximately vanish.

The situation is quite different for the Olsson sum rule, which does not rely on
low energy approximations but represents the exact version of the condition that
must be obeyed by the two subtraction constants for the scattering amplitude
to have the proper asymptotic behaviour. In that case, the coefficient of the
P-wave is three times smaller — the region above the matching point plays an
essential role in bringing the sum rule into balance. The numerical evaluation in
section [[]] shows that even those from the region above 2 GeV are significant.
The rapid growth of the driving terms indicates that the higher partial waves
become increasingly important as the energy rises — it is clear that the asymptotic
behaviour of the partial wave amplitudes cannot be studied on the basis of the
S- and P-wave contributions to the r.h.s of the Roy equations.

We conclude that, at the quantitative level, the above simple mechanism
cannot explain why, for suitable values of a) and a3, our solutions remain within
the bounds set by unitarity. For an analysis of the behaviour above the matching
point that neither discards the higher partial waves, nor relies on low energy
dominance, we refer to sections [[( and [[].

D Explicit numerical solutions

In this appendix, we make available our explicit numerical solutions of the Roy
integral equations. We proceed as follows. For a few tens of pairs (a9, a2) in the
universal band (see fig. []), we have constructed the three lowest partial waves at

2M, < /s < 0.8 GeV. As we explain in the main text, we parametrize the phase
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21
zZ2
<3
Z4
<5
<6
27
<8
<9
210

21
zZ2
<3
Z4
Z5
<6
27
<8
<9
210

21
zZ2
Z3
Z4
<5
<6
27
<8
<9
210

Aj

.2250
.2250
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

A

.3626-107"
.1834-1071
.1081-1071
.3195-10~2
.1670-1073
.9543-1073
.5049-10—3
.4595-10*
.9000-10~*
.1198-10*

Ag

.3706-107*
.0000
.3706-10~1
.0000
.0000
.0000
.0000
.0000
.0000
.0000

Table 7: Polynomial coefficients for Roy solutions.

By
.2463
.1985
.1289
.1426-1071
8717-1072
5058-10~1

—.4266-1072
—.4658-1072
—.5358:1072
—.2555-1072

By
1337-107%

—.2336-1072
—.8563-1073

1678-1073
41471074
.8402-1074

—.9308-10~*
—.2755-1073
—.2308-1073
—.6120-10~*

B;

—.8553-107*
—.1236-107¢
—.6673-1072

4901102
.2810-1071
.4010-1071

—.1663-10*
—.6784-107¢
—.5429-107¢
—.1178-107¢

Co

—.1665-10*
.3283-1072
1142-1071
.1400-1071
16131071
.3000-10~1
.4045-1072
.2110-102
.1095-1071
.4249-1072

Ci

.6976-10*
.1965-1073
.3268-10*
.2173-10*
.3267-107°
.2059-10~*
.1070-10~*
.5554-10*
.5307-10*
.1519-10*

&

7542-1072
.3466-107"
.2857-1071
.2674-1072
1477-1071
.2458-1071
—.3030-1071
—.9512-107!
—.8744-1071
—.2535-1071

75

D

—.6403-1073
—.4136-1072
—.3699-10~2
—.3980-1072
—.3152-1072
—.7354-1072
—.1212-1072
—.4544-1072
—.4558-1072
—.1271-1072

Dy
1408-107°

—.1974-10~4
—.8821-107°
—.6047-10°6
—.1617-107°
—.3125-107°
—.1257-107°
—.4432.107°
—.4415-107°
—.1344.107°

Dj
.1987-1073

—.2524-1072
—.1993-1072

.1506-10~2
.2915-1073
.1325-1072
.8759-1073
A4713-1072
.5313-1072
.1730-1072

0
So

.3672-10?

.1339-10

.6504
—.3211-10
—.1396-10
—.4114-10
—.3447-10
—.8428-10
—.6350-10
—.1486-10

51
.3074-10?
—.2459
—.1733
.6323-1071
—.1090-1072
27241071
—.7218-1072
.1483-1071
1813-1071
.5016-1072

55
—.1192-10?
—.4040-102
—.3457-102
—.9879-102
—.9856-102
—.2072-103
—.1589-103
—.5259-103
—.5366-103
—.1723-10°



shifts 6/ of the solutions in the manner proposed by Schenk [B],

AM2 AM2 — sl
@ { AL+ Blg? + Clg' + Dlgt) (—) R

tand; = /1 —
s — 5

Each solution of the Roy equations corresponds to a specific value of the 3 x 5
coefficients in this expansion,

Ay = Aj(ag, ap), -, sp = sq(ap, aj) .

We approximate these by a polynomial of third degree in the scattering lengths
ay and a?. In terms of the variables

ad a?
Po b2

the numerical representation for the coefficient BY, for instance, reads

Bl =21+ 20u+ 230+ z4u® + 250% + zguv + 27 u® + 25 u* v + 29 uv? + 210V

The 15 x 10 numbers z1, ..., 219 for the coefficients A§, By, ..., s? are displayed
in table [, in units of M?2.

E Lovelace-Shapiro-Veneziano model

In this appendix, we describe the model used to illustrate the basic properties
of the Regge poles occurring in the asymptotic representation of the scattering
amplitude [B3, B4, BF. In this model, the w7 scattering amplitude is taken to be
of the form

A(s,t,u)y = A P(as, ar) + A Das, ) + Ao (v, )
where ®(a, (3) is closely related to the Beta-function,

_T(L-a)l(1 - f)
[0 -a-p)

and o represents a linear Regge trajectory,

®(a, §)

g = Qg + 1S
At fixed t, the function ®(as, ay) shows Regge behaviour when s tends to infinity:

O(as, ap) = (—as)™T'(1 — ay) .
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At the same time, the representation (1 — oy > 0)

O(as,on)=(1—as— ) B(l —as, 1 —ay) (E.1)
_ X a4+ 1)-- (g +n—1)
_(1—ozs—ozt){1_%%—;::1 ICES TS }

shows that the amplitude may be expressed as a sum of narrow resonance con-
tributions, with mass

M? = (1) (n—ap) , n=12...

n

The coupling constants A;, Ao may be chosen such that the amplitude does
not contain resonances with I = 2. For this condition to be satisfied, the corre-
sponding s-channel isospin component

T?(s,t)y =2 M @y, ) + (A1 + A2) ((a, ) + Plag, o))
should be free of poles in the physical region of the s-channel. This requires
)\2 = —)\1 = %)\,

so that the amplitude takes the form

A(s, t,u)y = =32 {P(as, ap) + Plowg, o) — Plow, )}
TO(s, t)y = —3A {3 P (s, o) + 3P (v, vy) — Pev, )} (E.2)
T (s,t)y = —M®(a, ay) — Plas, )}
T?(s,t)y = =X ®(y, )

In the chiral limit, where the Mandelstam triangle shrinks to the point s =
t = u = 0, the amplitude must contain an Adler zero there. Indeed, the factor
1— a5 — a4 generates such a zero if ag = % Hence the deviation of o from % must
be of order M2, so that a, — % represents a quantity of order p%. At leading order
of the low energy expansion, the behaviour of the amplitude therefore represents

the first term in the expansion around the point ay = ap = @, = %, which in
view of I'() = /7 yields
A(s,t,u)y =T\ (as — 3) +O(p') (E.3)

This does have the structure of the Weinberg formula, provided the intercept «y
is chosen such that a;, passes through the value % at s = M2 i.e. B

1 2
Oé(]ZE—Oleﬂ_.

The lowest levels of spin 1, 2, 3, 4 indeed occur on an approximately linear
trajectory with this intercept: Fixing the value of the slope with M,

= b2 - a2y

7



the model predicts
My, = 1319(1275) MeV, M,, = 1699 (1691) MeV, M/, = 2008 (2044) MeV,

where the numbers in brackets are those in the data tables [[].
The representation ([E-]) shows that for s > 4 M2 ¢ < 0, the imaginary part
of ®(as, o) consists of a sequence of J-functions:

Im ®(a, o) ——WZR (o) -n) ,

Ro(a) = 5((3;;(;)) = i oy (@t 1) o atn—1)

For the imaginary part of the s-channel isospin components, we thus obtain

ImT (s, t)y = 327TZ{R (o) + Ru(ow)}8(s — M?)
1 n=1
ImTl St _—Z{R at n(au)}é(s_MEL) ’
o n=1

ImT?(s,t)y =0,

with w =4 M? —t — M?.
We may then read off the imaginary parts of the partial wave amplitudes by
decomposing the polynomial R, () into a Legendre series:[]

- /r’n ,
:O M2 —4M2) "

Gi {1—|— }Z T’ng(s ) s

Imt}(s)y = ﬁ{l — (=% E rned(s — M7)

Im#)(s)y

Im#(s)y =0 .

On the leading trajectory, the coefficients are

n

n 2 2\n
s @nrnn 1 Mo =AM

Tnn =
Comparison with the narrow width formula (B.I3) shows that the model
predicts the width of the various levels ag]

A wlrng
327 aq M2
14Tn the case of t3(s), the sum over n only starts at n = 1.

15 The formula reproduces the numerical results in Table I of ref. [@], if the parameter values
are adapted accordingly (ag = 0.48, a; = 0.9 GeV ™2, ', =112MeV, M, = 764 MeV).

[ — (M2 — 4 M2)2 (E.4)
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where w! depends on the isospin of the particle: w® = 3, w' = 2, w? = 0. In
particular, the result for the width of the p reads

P A
796w M2

(M2 — 4 M2)3. (E.5)

Fixing the coupling constant with the experimental value I') = 151.2MeV, we
obtain A\/32m = 0.728. The formula (E.4) then predicts

7" =130(157)MeV,  IT" =51(51)MeV,  [F" =46(35) MeV,

where the numbers in brackets are again taken from the data tables [[[(]. This
shows that the model does yield a decent picture, not only for the masses but
also for the widths of the particles on the leading trajectory.

In addition to the levels on the leading trajectory, the model, however, also
contains plenty of daughters, with a rather strong coupling to the w7-channel.
For the states on the first daughter trajectory, for instance, equation (E-) yields
Ty =783MeV, I']T = 154 MeV, I'f7 = 113MeV, I'f7 = 42MeV, etc. The scalar
daughter of the p is particularly fat.

It is clear that an amplitude that describes all of the levels as narrow reso-
nances fails here. Unitarity implies the bound

M2
dsTm 2 1 —4M2/s < M? — 4M? .
e A5 T t3(s) 1= 4025 < :

This condition is violated for M < 1.3 GeV. Also, if the intercept of the leading
trajectory is fixed with the Adler condition as above, the scalar daughter of the f,
is a ghost: The formula (E.4)) yields a negative decay width [BJ]. In this respect,
the model is deficient — as witnessed by the life of even royal families, the decency
of a mother does not ensure that her daughters behave.

The problem also shows up in the S-wave scattering lengths: Chiral symmetry
relates the coefficient of the leading term in the low energy expansion (E-33) to

the pion decay constant,
1

If the coupling constant A is fixed such that the model yields the proper width for
the p, the L.h.s. of this relation exceeds the r.h.s. by a factor of 1.7. Accordingly,
the prediction of the model for a exceeds the current algebra result by about this
factor. In the vicinity of threshold, the behaviour of the amplitude is determined
by the properties of the function ¢(a, 3) for o ~ (5 ~ % There, the first term in
the series ([E-) accounts for about two thirds of the sum. The spin 1 component
of this term is due to p-exchange, while the spin 0 part arises from the scalar
daughter of the p. By construction, the former does have the proper magnitude.
The S-wave scattering lengths are too large because the scalar daughter of the p
is too fat.

TAQp = (E.6)
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As was noted from the start [85], the model is not unique. To arrive at a more
realistic model, we could add extra terms that domesticate the daughters and
leave the leading trajectory and the position of the Adler zero untouched. Note,
however, that the number of states occurring in the Veneziano model corresponds
to the degrees of freedom of a string, while the spectrum of bound states in QCD
is the one of a local field theory, where the number of independent states grows
much less rapidly with the mass. Modifications of the type just mentioned can at
best provide a partial cure. In particular, these do not remove the main deficiency
of the model, lack of unitarity.
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