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The structure of the vacuum in the SU(2) Yang-Mllls theory is discussed for general gauges. The original discus- 
stuns given by Callan et al. and Jacklw and Rebbi are restricted to a particular class of gauge conditmns. We show 
that the periodic vacua and the "vacuum seizing" m the presence of massless fernuons can be reahzed m any gauge 
by recognizing the independent dynamical role of surface variables defined at spatml mhmty. 

The relevance of  the Euchdean pseudo-particles [1 ] for the vacuum structure of  the Yang-Mills theory,  in weak 
couphng, was recently discussed by Callan et al. and Jacklw and Rebbi [2].  They found a series of  degenerate vac- 
ua In) (n = integer) which are classified by the gauge topology;  the pseudo-particle solution describes tunneling be- 
tween these in the WKBJ approximation [3].  The true vacuum is a hnear superposltion of  { In)}, 10 ) = ~2nein°ln), 
0 ~< 0 ~< 27r. The different values of  the angle 0 (a measure of  spontaneous P and T violation) defines different 
theories which do not transform into each other.  In the presence of  massless ferm~ons, although tunneling is sup- 
pressed, the vacuum must still be 10)by the requirement of  cluster decomposmon.  The U(1) chiral symmetry is 
then spontaneously violated without  a Nambu-Go lds tone  boson as previously suggested by Kogut and Susskmg 
[4].  These qualitative features are remimscent of  the Schwinger model [4].  

However, it seems that  previous arguments are only valid within a very restricted class of  gauge conditions. 
Callan et al. used the A 0 = 0 gauge. Although Jacklw and Rebbi did not  specify the gauge, it is evident that their 
discussion does not apply,  for example, to the axial gauge [5].  It Is therefore desirable to clarify the situation and 
to extend the above picture to any gauge. In this letter we establish the vahdlty of  the periodic vacuum structure 
and the associated vacuum seizang in a wider class of  gauge conditions by recognizing the dynamic role played by  
boundary condit ions in terms of  surface variables [6].  

By now it is well known that  a WKBJ description [3] of  tunneling can be given by the Euchdean classical solu- 
t ion which interpolates between the initial and final states. Therefore, we restrict ourselves to EFT. We have the 
initial and final condit ion F~v(x, x 4 = _+oo) ~ 0. This imphes Au(x,  x 4 = +oo) ~ co-1 ~u60" Since we are in the vacu- 

um sector we impose the boundary con&tion 

~raOa). (1) Au(r = 0% x4 ) ~ 60-1 ~60 ,  60 = exp0 1 

The method of  handling the boundary condit ion (1) in terms of  an action principle was described in ref. [6] .  The 

action is 

1 f d 4 x  Tr(FuvFuv) 1 S=-~ --fi fdx 4 fd2o, Trg.,(A.-60-1~.60), (2) 

which is lnvarlant under the gauge transformation 

A v ---> U - I A u U  + U -10taU, 60 ~ 60U, g~v -'> U-lguvU" (3) 
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It is important to recognize the Oa(x) and guy(x), (which are defined only at spatial infinity) as independent dy- 
namical variables besides the original fieldAu, because there are gauges in which the surface value o f A  u does not  
vanish for any finite time and changes m time. As we shall see later, this is crucial to realize the vacuum structure 
in general gauges. The variational principle then implies the equations of  motion and the boundary condition (1). 
The quantum states are functionals o f A  u and 0 a and must satisfy the constraint (1). 

The existence of  multiple classical vacua stems from the nonvanishing of  the Pontrjagin class number [1 ] 

q = -(1/321r 2) e . ~  f d 4 x  Tr(Fu.Fa~),  (4) 

in Euclidean space. If the fields are not singular we have the identity [1 ] 

( l l l6n2)euv~3 Tr(FuvFc,# ) _ A A - auJ  ~ , J~ = ( l /4n  2) euva3 Tr(Av0aA 3 + "~AvAaA3). (5, 6) 

Thus, q can always be written as a four dimensional surface integral. In particular, in the A 0 = 0 gauge the space in- 
finity does not contribute and we have [2] 

q = n+ - n_ ,  (7) 

where 

n_+ =-(11247r 2) fdx egk Tr (A iAIAk )  x4=* =. (8) 

Since q is an integer, the existence of  degenerate multiple vacua with different "quantum number" n± is quite eas- 
ily visualized as discussed by CDG and JR [2]. However, in the axial gauge [5], for example, it is evident that (8) 
has no meaning because A i ~ 0 for x 4, while q 4= 0 due to the contribution from spatial infinity. 

Now, we shall show that in any gauge the winding number q can be casted into the form (7), if we include the 
additional contribution coming from spatial infinity. To do so, it is convenient to introduce a parametrization for 

~.o(x) + 

w(x)  = u 0 + iukT" k, u 2 + UkU k = 1, u 0 = cos ~(x), 

u 2 = sin ~(x) sin O(x) sin ~ x ) ,  u 3 = sin if(x) cos O(x), 

Then 

Now 

u I = sin ~ ( x )  sin O(x) cos  ¢ ( x ) ,  

0<ff~<Tr ,  0 < 0 < T r ,  0~<~<27r .  
(9) 

q=--~l [fdxJA] x4=+" _~-1 fdx4 fd20i JA. 
X 4 = - -  oo 

(10) 

-½ fd2~i J/A = (1/24.2) fd2oi eiu.x Tr(¢o-1 auw'~o-1 ~,¢o'co-1 a~.co)= (1/24. 2) fd2oi ausi ~ (11) 

where 

s i  : A eilzvh ( 1 ~  1 . - -~sln  24)  a v cos0 ~x¢" u 

Hence 

q = n +  - n _  

where 

* The surface varmbles are defined at r = o. for all times. Hence the limit x4 --' +-~* is lmphcitly taken after the limit r ~ o.. 
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n_+ = [ (1 /24"  2) f dxeqk Tr(A,AIAk)+(1/2.2 ) fd2o, S° 1 (12) 

X 4  = +- ~ 

(provided ~ is a single valued function of  spatial co-ordinates). We note that even lfA i = 0 at x 4 = +oo and thus the 
first term in (11) vanishes, the second term in general does not vanish. This inevitably reqmres us to treat the sur- 
face variables as independent dynamical variables. 

We are thus led to the following classificatmn of  gauge conditions: 
(a) Non zero contr ibution to n_+ only from the volume integral. 
(b) Non zero contnbutmn to n_+ only from the surface integral. 
(c) Non zero contr ibution to n_+ from both volume and surface integrals. 

The A 0 = 0 gauge conforms to case (a). The axial gauge A 3 = 0 and the radial gauge SqA i = 0 conform to case (b). 
Later we shall indicate that the Coulomb gauge also conforms to case (a). 

In order to realize the importance of  including the surface term in the case (b), we explicitly discuss the BPST 
solution [1 ] in the radial and axial gauges. As an interesting example, we also consider the Coulomb gauge. For  
the case o f A  0 = 0 gauge see Gervais and Sakita [7].  The gauge transformed field Is 

p_ x 2 x4 - i'r.x Vx4 + i~'xl 
AU=U-1APu+u-lo~u,~ ~ A~ x2+~2[ ~ lOist_ ~/-~ _]" (13 ,14)  

Since A uP -~ O(1/r) as r -+ oo we have A u _+ U - l  Ou U as r -~ ~o. Hence limr__, ~ U(r. x4) = o0. 
1 Radial gauge: ~zAi = 0. Due to spherical symmetry  we may set U = exp {i£ "a V r a f(r, x4)}. We reqmre f(r = 0, x4) 

= 0(mod 2 , ) ,  since U be regular at r = 0. Otherwise, we will induce a singularity in the gauge field and (5) is inap- 
plicable. 

- -  tan -1 (15) f(r, X4) = ~/~C2 
1 

then using ~ = l imr+= -if(r, x4)  we have ~ = ~- ½ ,  at x = +_oo. 
Hence 

(1/2.2) f 'od2o, =_+(1/8.) fd(cos 0) d,  -- +'- - - 2 '  

X 4  ='1- oo 

and we have n+ - n _  = +1. From this we may conclude that the "classical" degenerate vacua are "eigenstates",of  
( 1 / 2 -  2) fS~ d2oi with eigenvalues n - 1/2,(n = integer). Clearly the adjacent classical vacua are connected by the 
transformation T = e x p ( 2 ,  i fpayca dw), where pa is the momentum conjugate to 0 a. 

Axialgauge [5]. A 3 = 0 with boundary condit ion l imxa~+~ A 0 = - h m x 3 ~ _ ~  A 0. Then 

U=exp( /~  21 ) t a n _  1 (  x3 ~X2rl xlr2 x4r3~ 
,vx  + x] + + x2 + x] + 4 + 2 + - v t  (17) 

In this gauge it is convenient to use 

S l  1 . u = -e'uvx cos 0 ~v ({  qJ - ~san 2~)  axq~, (18) 

which has the same divergence as the previous expression (12). The surface integral is performed over a large rec- 
tangular box.  The integral over the planes x 1 = +~  and x 2 = +_oo gives no contr ibution because q~ = ~(x 1 , x2)  and 
03~ becomes zero. 

Hence we obtain 
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[ y+- 
= (ll2.2)fcos O(~l(½~b --¼sin 2@1~2q~ + ~2(---~ ~ +¼sin 2~)~lq~ dx 1 dx 2 

X3=--oo 

1 
Observing cos 0 -* -+1 as x 4 -* +oo and qJ -+ + 7 as x 3 ~ _+o% we have 

[(1/2.2)fd2o, S~ 1 = (1/2.2)[fl ~ (a___~l dXl+ a4D dx2"ll =+L (20) 
~x4=+-- ax2 /Jxs=+= - : "  

Here again we have n+ - n_ = +1. In this case, the transformation that connects the adjacent classical vacua is 
T = exp(2. iP3) where 

1 f[p3(x 3 +oo) P3 = "2 = + p3(x3 = _oo)] do 3 

.1 /?  ̂
Coulomb gauge: aiA l = 0. By setting U = exp0~-r 5oaf(r, x4)) , f (0 ,  x4) = 0 (mod 2 . )  we have 

d 2 f + 2 d _ f = 2  t 2rx4 r 2 - x 4 2 - X 2  } ( 3  2x4 (21) 
dr 2 r dr r2 tr2 +x2 + X2 c°s f r2 + x2 + x2 sin f - -~ +2) r2 + x2 + X2 " 

Although it is difficult to solve this equation exactly, we can easily see that (21) implies limr_,= 3f/bx 4 (r, x4) 
= 0( l / r )  which leads to the neglect of the surface term. Therefore the Coulomb gauge conforms to case (a). The 
existence of degenerate multiple vacua can be seen by considering (21) at x 4 = +oo. It has infinitely many distinct 
solutionsfn(r) satisfylngfn(0) = 0 and fn(°°) = 2mr. To see this we put In r = s, then at x 4 = +_oo (21) becomes 

d2 f_  d f +  2 s m f  (22) 
ds 2 ~ • 

If  s is regarded as "t ime" this is nothing but the equation of  motion of a point particle in a periodic potential 
2 c o s f w i t h  frictional force - (d f /ds) .  For the sufficiently distant "past",  the solution of  (22) satisfying f(s = _oo) 
= 0 is f(s) = ce s where c is an arbitrary constant. It is quahtatively obvious that we can always arrange the constant 
c such that f(s = ~ )  = 2mr.fn(r) defines a mapping of  winding number n from S3(=R 3 + oo) to  $ 3 (  = group mare- 
fold). Thus, even after we impose the gauge c o n d i t i o n  ~l Aa = 0 and boundary condition U(0) = -+1 and U(',°) = -+1 
there remains the freedom of discrete time-independent gauge transformation, hence the discussxons of CDG and 
JR apply also to this case. 

In the presence o f  massless fermion, the conserved but gauge variant axial current [2] is 

j 5  = i~7u75 ~ _ jA .  (23) /a /.t 

5 = O, (d/dt)Q 5 -4:0 if one cannot neglect the surface term. (Q5 = f d 3 x j 5 ) .  However, because of  Although O uJ u 
the existence of  surface variables as independent dynamical variables we can define a new conserved axial charge 

f i + 1  Qs = Q5 _ (1 /2 ,2)  d2oz SO 2.  

By (11) (d/dt)Q 5 = 0 for any gauge. Also _Q5 In) = 2nln). 
This implies [2] that vacuum tunneling is forbidden in the presence of  massless fermions. However, by the re- 

quirement of  cluster decomposition [2, 4] the true vacuum is I0) = ~n ein° In). Thus, in any gauge the "vacuum 
seizes" [4] with no Nambu-Goldstone boson corresponding to the spontaneous violation of  U(1) chiral symmetry. 

Conclusion. Vacuum periodicity is not an artifact of  the A 0 = 0 gauge (or of  the class of  gauges we have re- 
ferred to as (a)). 
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In o ther  gauges the addit ional  dynamical  variables on the surface at spatial inf ini ty  play an essential role in de- 

scribing the vacuum structure o f  Yang-Mills field. 

It is a pleasure to acknowledge Professor Bunji Saklta for encouragement ,  s t imulating discussions and critical 

comments .  
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