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Abstract: We call attention to the possibility of constructing field theories for the dual string. 
As an example, we show that a Higgs type of Lagrangian allows for vortex-line solutions, in 
analogy with the vortex lines in a type II superconductor. These vortex lines can approxi- 
mately be identified with the Nambu string. In the strong coupling limit we speculate that 
the vortex lines make up all low energy phenomena. It turns out that this strong coupling 
limit is "super quantum mechanical" in the sense that the typical action of the theory is 
very small in comparison with Planck's constant. 

1. Introduction and motivation 

The many good experimental and theoretical features of  the Veneziano model 
seem to suggest that an underlying string structure [ 1 - 4 ]  of  hadronic matter is a 
likely possibility. On the other hand it is not unreasonable to expect that some 
field theory describes relativistic physics (presumably including strong interactions 
and certainly electromagnetic interactions). For example, crossing symmetry which 
is crucial for the Veneziano model, is based on ideas taken from field theory. It is 
therefore o f  interest to see if one can cook up a local field theory which gives string 
structures behaving like dual strings. The spectrum of  the Veneziano model would 
then be brought into contact with a local field theory. 

It is the purpose of  the present article to point out that it is easy to build up 
classical field theories allowing for vortex lines (or similar string-like structures) with 
the property o f  having equations o f  motion identical with those o f  the Nambu dual 
string [2]. The string description (and thus also the dual string equations of  motion) 
are obtained only in the approximation where the radius o f  curvatures o f  the string 
is much larger than the width o f  the string. The width can be computed in terms of  
the parameters o f  the specific field theory model that one uses. 

There are several motivations for being interested in field theories for dual strings: 
(i) We have good reasons to believe that both field theory (of a kind which is so 

far not known) and dual strings (with some yet unknown degrees of  freedom) are in 
fact realized in nature. It is therefore likely that nature has decided to merge some 
field theory with some dual string structure. 

(ii) One may hope that by building some field theory for the dual string one is 
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able to secure that the good properties of  the former are inherited by the latter. Thus, 
for example one might hope that by choosing a field theory with positive definite 
Hamiltonian one might avoid tachyons in the corresponding dual string model. As 
we shall see by an example, this hope is apparently not supported when quantum 
mechanics is taken into account, at least not if this is done in the sloppy way of this 
paper. But we can still hope that a more careful treatment of quantization can re- 
solve this difficulty. 

(iii) One may hope to understand the features of  dual strong models better by 
considering the corresponding field theories, and it would be of great interest to 
translate the requirement of  a critical dimension (d = 26 in the conventional model, 
d = 10 in the Neveu-Schwarz model) into a field theoretic language. In particular, 
the question is as to whether the unphysical amount of dimensions needed in dual 
models [4] may be related to internal symmetries of  the hadrons. Also, the possi- 
bility of  understanding what happens when a couple of  strings collide seems to have 
a chance in field theory. 

(iv) We may use field theory to get ideas for how to modify the existing dual 
(string) models to get perhaps some day the right model. The trouble with general- 
izing dual models is that they are so tight, whereas field theory allows many possibil- 
ities. 

As the main example of  a field theory with a dual string structure we consider the 
theory of an Abelian gauge field coupled to a charged scalar field. This model has 
been used by Higgs to illustrate the Higgs mechanism. The relevance to dual models 
of an Abehan gauge field was first pointed out by us in ref. [5]. The Higgs model 
may also be considered as a relativistic generalization of the Ginzburg-Landau phe- 
nomenological field theory of superconductivity (see ref. [6]). In the Ginzburg- 
Landau case one knows the existence of a vortex-line solution, and it is exactly this 
fact which allows us to connect the Higgs-type of Lagrangian with the dual string, 
provided we identify the vortex-line with the dual string. 

It turns out (see end of sect. 4) that the limit in which the Higgs Lagrangian gives 
the dual string solution is a sort of super-quantum mechanical limit. Although this 
may be bad from the point of view of quantization, it is still interesting that in order 
to understand hadronic structure in the sense of dual strings one has (in some sense) 
to consider the quantum of action h to be very large. That is to say, the typical ac- 
tion in the theory is much smaller than the fundamental quantum of action given 
by Planck's constant h. 

In sect. 2 we consider the Higgs Lagrangian in the static case, and it turns out that 
this Lagrangian becomes identical to the Ginzburg-Landau free energy in the theory 
of type II superconductors. We recapitulate the most relevant features of this theory, 
and we discuss how the vortex solution comes out. In sect. 3 we show by a very 
general argument how the vortex solution leads to a Nambu Lagrangian [1]. This 
argument is very independent of the specific features of the Lagrangian. In sect. 4 
we deal with the problem of getting the width of the vortex line sufficiently small 
in order that we can get a sufficiently good approximation to the dual string. It is 
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shown that we have to consider the strong coupling limit. In sect. 5 we give a very 
brief and preliminary discussion of  the problem of  quantization. In an appendix we 
deal with the case of  a Yang.Mills Lagrangian. 

2. An example of a static vortex solution of the Ginzburg-Landau type 

In this section we shall consider a special example of  a field theory with a vortex 
solution. We start from the Lagrangian 

£? =-~F4 uvF~U +~l(a~ + ieAt~) Cl2 + c21Cl2- c41q~l 4 ,  (2.1) 

and the equations o f  motion are 

(a u + ieAu)2¢ = - 2c2$ + 4c 4 ~b 2 q~* , (2.2) 

~VFuv --/u = {ie(~b* O u ¢ - ~a  u ~b*) + eXA u 0" ¢ .  (2.3) 

We are now looking for a solution of  the vortex type*. In this case the field Fur 
has a simple meaning: the field F12 measures the number of  vortex lines (going in 
the 3-direction) which pass a unit square in the (12)-plane. This interpretation is 
identical to the one proposed by us in ref. [5]. We want to identify the vortex line 
with a dual string, and it is thus necessary that the flux is quantized. To see that this 
is the case, we use that the flux is given by 

~,= f F. do"" =¢A.(x)dx", (2.4) 

where de~v is a two-dimensional surface element in Minkowski-space. Writing 

¢ = I ¢1 e TM , (2.5) 

we get from eq. (2.3) 

_ 1 ]u 1 
A e 2 I~ 12 eO X . (2.6) 

Next let us perform the integration in (2.4) over a closed loop without any current. 
Then 

e~ = CA . ( x )dx  ~ = __1 ~ a  ×(x) dx ~ . (2.7) 
e 

* Most of the results obtained in this section are known m the theory of type II superconductors 
(see e.g. ref. [6]). The main new result is the identification of the Gmzburg-Landau theory 
with the static solution of the Higgs type of Lagrangian (2.1). 



48 H.B. Nielsen, P. Olesen, Dual strings 

The line integral over the gradient of the phase of ¢ does not necessarily vanish. The 
only general requirement on the phase is that ~ is single valued, i.e., × varies by 21rn 
(n = integer) when we make a complete turn around a closed loop. Thus, 

2~r 
= - - -  ( 2 . 8 )  4~ = n ~  0 , ~0 e 

Thus, the flux of vortex lines is quantized, - 2~r/e being the quantum. 
We still have to show that the equations of motion (2.2) and (2.3) allow a string- 

like solution. Let us consider the static case, with a gauge choice A 0 = 0. We look 
for a cylindrically symmetric solution, with axis along the z-direction. We write 

a(,) ez IA(,)I, (2.9) 
r 

where e z is a unit vector along the z-direction. The flux is given by 

4~(r) = 2rrr IA(r) I, (2.10) 

so that 

1 d , ~ ( r ) = ~ - d  
IH1=2~--7 d r  _ T;  ( r l A I ) .  (2.11) 

With cylindrical symmetry around the z-axis the equations of motion (2.2) and (2.3) 
give 

1 d ( r d l ¢ l ) + [ ( l _ e l A i ) 2  2c2+4c41¢1~ I¢1=0 (2.12) 
r dr 

- d - ;  r ~ - = 0 .  (2.13) 

The exact solution of these two equations has so far not been obtained analytically. 
We shall be content with a solution of the type where 

I q~ I ~- const (for large r ) .  (2.14~ 

If we treat [~ [as a constant, eq. (2.13) can be solved without further approximatic 
One finds, with c a constant of integration, 

I A I = I +  Kl(el~lr  ) --~ er er 
r ~  

I 

Ce !l/2e-~-~ e-etOIr +lower order terms. (2.H 

Eq. (2.11) then gives 
C |/~lCl e-Clair + lower order (2 .1  [Hl=clq~lKo(el~lr) --~ e V ~ 
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Eq. (2.12) is then approximately satisfied if 

V c2 (2.17) I ~b I~  2c 4 , 

with c 2 and c 4 being large so as to take care of deviations of I A I from 1let.  
We next define the characteristic length ;~ (called the penetration lenffth in super- 

conductivity), 

1 1 /2c4  (2.18) 
X = e l ¢ l -  V e 2 c  2 

X thus measures (see eq. (2.16)) the region over which the field H is appreciably 
different from zero. 

To estimate the variation of I¢ I we notice that eq. (2.17) gives the minimum of 
the potential, i.e., 

V c'2' (2.19) 
I¢  I = ¢  0 = 2c 4 , 

is the vacuum-value of  the field I ¢ I. Let us wri te 

I¢ I= ¢0 + p(x) ,  

where p (x) give the fluctuations around the vacuum. The first derivatives of the 
potential 

1 * ~b2~b .2) (2.20) ~(-- C2 ~b<~ +¢4 

,vanish, whereas the second derivative is 

2c 4 I¢ 0 12 = 2c 2 , (2.21) 

which is the mass square of the scalar particle in Higg's mechanism. Then the oscilla- 
tions in the potential are 

2c 2 p(x) 2 (2.22) 

leading to a solution for p of the Yukawa-type, 

p(x )  ~ e - x / ~ 2 r  . (2.23) 

We then define a new characteristic length ~. 

1 
- 2 x ~ 2 .  (2.24) 

Thus, ~ measures the distance that is takes before the field I @ I reaches it vacuum 
value. 
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,, i ' ~  

Fig. 1. An example of the behaviour of the fields I H I and t ¢ I for a vortex solution. 

In fig. 1 we have illustrated the behaviour of  the fields I HI  and I ~ I. It is seen that 
if ~ and k are of  the same order of  magnitude, then we have a well-defined vortex line, 
or a well defined string. The vacuum state is described by H = 0, and I q~l = v/~-~c2/c4, 
and the extension of  the string is given by ~ ~ k. The main point of  this section is 
thus that the Higgs type of  Lagrangian (2.1) allows a string-like solution. This is 
simply due to the fact that the Higgs Lagrangian is a relativistic generalization of  the 
Ginzburg-Landau Lagrangian, which is well known to have vortex solutions. 

The constant of  integration c introduced in eq. (2.15) is determined by the re- 
quirement that the flux q~(r) = 21rrlA(r) lshall go to zero for ~ < r  ,< ~. Now, for 
0 < e  I ~ l r , <  1 we have 

1 
g t ( e  I ¢ I r) ~ - -  (2.25) e l ¢ l r  

and consequently 

c = - e l ¢ l .  (2.26) 

3. The Nambu Lagrangian from vortex-line structure 

In the preceeding section we pointed out that the Higgs-type of  Lagrangian 

Z? = - ~F~vFaV + ½ I ( 0  + ieAu)~b 12 + c 2 I ~b 12 - c 4 1¢ I 4 , (3.1) 

has solutions of  the vortex type. By a suitable choice of  parameters we can arrange 
that the width of  the vortex-line is much smaller than the radius of  curvature of  the 
vortex-line. Of course, in addition to the vortex solution, (3.1) certainly has other 
solutions. In the next section we shall discuss how to handle some of  the other 
solutions. 

In this section we shall concentrate on the vortex contribution to the Lagrangian 
(3.1), ~vortex say. We shall assume that the other solutions can be effectively de- 
coupled from the vortex solution, so that it has a meaning to separate out the special 
vortex-line in the Lagrangian. 
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In the last section we saw that by choosing the characteristic length X sufficiently 
small, the field Fuv(x ) is non-vanishing only in a small region, whereas the field I¢1 
is nearly always equal to its vacuum value x/c-2/2c 4, apart from the region in space 
where Fur is non-vanishing. Taking ~ ~ X, I¢1 practscally speaking vanishes when 
Fur is non-vanishing, and vice versa. 

The field Fuv(x ) therefore acts as a smeared out 6-function, which is only non- 
vanishing along the vortex-line. The quantity - (~)F 2 in eq. (3.1) therefore also 
acts as a smeared out 6-function. 

In fig. 2 we have illustrated the vortex-line. For simplicity we shall assume that 
the end-points are at spatial infinity, or (perhaps better) that the vortex is a closed 
loop. Since the vortex-contribution to the Lagrangian (3.1)is a smeared out 6-func- 
tion, which is non-vanishing only along the vortex-line, .6? is itself a smeared out 
8-function. Of course, Z? is also relativistically invariant. It therefore follows that 
Z? vortex is Lorentz-contracted in the transverse direction, i.e. 

vortex ~ ~/1 - 0 2 , (3.2) 

due to the motion of the vortex-line in the transverse direction. Let ds be the ele- 
ment of length along the vortex-line. Since the "transverse length" of the string, 
X "" ~, is a constant, it follows that the action is given by (we ignore constants of 
proportionality) 

Svo~x= f d4x ~vor~x~ f dtds~/1-o~. (3.3) 

Now 

o I = ax/at - ax/Os(~x/~t, ax/as) (3.4) 

and hence 

1/1 Svortex~dtdsf - ~ a t ]  ~ ~s] " 

Introducing a different parametrization of the vortex, x(s, t) = x(a, t) this leads to 
the Nambu action [2] (discussed in detail by Goddard, Goldstone, Rebi and Thorn 
[4]) 

+~ ds 
Svortex= f dr f 2  d o ~ - ~ x / l - v  2 , (3.6) 

- - o o  Or 1 

provided one chooses a frame [4] where the parameter r is identified with the time 
t. 

It is rather clear that the arguments presented above do not depend on the details 
of the Lagrangian (3.1). All we need is that a vortex solution exists. 
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Lorentz contraction: k ~ X 

Fig. 2. Lorentz contraction of the vortex in the transverse direction. 

Thus we have obtained the following rather remarkable result: the action of the 
vortex is proportional to the area of the surface swept out by the vortex in space 
and time. 

This result forms the basis of our identification of the vortex solution of the 
Higgs-type Lagrangian (which is, of course, only a special example) with the dual 
string, described by the Nambu Lagrangian. It must be emphasized that our con- 
siderations are entirely classical, and so far no quantum effects are included. 

4. The strong coupling limit 

Our example, namely the field theory of the Landau-Ginzburg type, is the one 
used by Higgs to illustrate the Higgs mechanism. He showed that the theory by ~a 
appropriate gauge choice is revealed to be a theory of a massive scalar and a massive 
vector meson. In fact he chooses a gauge where the phase of the charged scalar field 
vanishes. (This would be a very inappropriate gauge choice for a vortex state). 
Choosing this gauge and putting 

¢(x) = ¢0 + p (x ) ,  (4.1) 

where ¢0 is given by 

Vr2r2 (4.2) 
¢0 = C4 ' 
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c 2 
_ llt;, ~t~v +½(Oup)2 +LA2t~ +p)2 + ~ 2  - - - 4 " u . "  2 u~,'vO 4c 4 2c202--2~X/~2c4p3-c4 p4" 

(4.3) 

This form is easily seen to describe a vector meson with mass 

m V = e¢0 = e , (4.4) 

and a scalar meson with mass 

ms = 2x/ 2 (4.5) 

interacting with each other. 
The compton wave lengths of  these two mesons 

~. = m v  1 , (4.6) 

= m s l  (4.7) 

give the width of  the string. In the case k >> ~ discussed above, ~ is the radius of  an 
inner core in the string where I ~ I deviates appreciably from its vacuum ¢0, while 

is the radius of  the string determined by  the width of  the flux bundle (compare 
with fig. 1). In order that the strings are really strings, that is to say are thin*, we 
must have the penetration depth ~ and the coherence length ~ small compared to 
the characteristic length, which for a dual string model is qc~ "r. Here ~ '  is the univer- 
sal slope for the state o f  the string with two ends. According to the paper by Gold- 
stone, Goddard, Rebbi, and Thorn [4], the energy density along the dual string is 

T± 1 
energy density = - -  = , (4.8) 

2~'ot t 2ffot' ~ 

where v x is the transverse velocity of  the string. 
F 

We can thus make a classical estimate of  the connection of  the universal slope 
to the three parameters, c 2, c 4 and e of  the Landau-Ginzburg-like Lagrangian (2.1) 
by  calculating the energy-density at rest for the vortex solution given in sect. 2. 

The magnetic energy-density along the vortex string is 

' f IH1227rrdr=½¢4e2; Ko(e¢or)22rtrdr=rt¢~20; Ko(y)2ydy 
0 0 0 

= c2 ~r f f  X0(y)2  Y d y .  (4.9) 
c 4 2  0 

The integral f~* K0(Y) 2 y dy  converges because K 0 ( y )  behaves no worse than a 
logarithm for y ~ 0 and decays exponentially for y -~ ~o. The integral is thus of  order 
unity. 

* A string is by definition a thin practically one dimensional structure. 
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A crude estimate of the energy per unit length of the string due to the core where 
I~1 no longer has its vacuum value also gives something of the order of magnitude 

c2 d do, (4.10) 
since e2¢20 is the energy density. Thus we can conclude that the energy-density along 
the string to be identified with _l]2not' in the dual model is 

..1 ~~2,~c2 
21ro~' 0 ~-4" (4.11) 

The exact ratio ct'e2/c 4 can be computed numerically by solving the differential 
equations. What is important, however, is just that it is of order unity. 

The order of magnitude of the characteristic length for the hadrons, being the 
lower quantum mechanical levels of the dual string, is thus 

'qrar~ V~cC~42 . (4.12) 

In order that thin strings are a good approximation, we thus need to have 

X/'~r~" X, ~, (4.13) 

which again implies 

X/r~r ~ e~, 1 (4.14) 
X 

and and 

' ~, ~ 4  ~" 1. (4.15) 

These requirements might also be written 

1 
mv, m s ~, ~ , (4.16) 

which means that the particles corresponding directly to the local fields have masses 
m v and m S much larger than the typical hadron masses. Thus in this limit low energy 
phenomena (low energy meaning energies of the order of 1/X/d') should be dominated 
by hadrons, i.e. dual strings, and not by the fundamental vector and scalar particles 
in the theory revealed by Higgs. 

We may hope that a third kind of excitation is not going to be important at low 
energies, so that we may have a pure dual string theory in the low energy range of 
this strong coupling limit of the Landau-Ginzburg-like theory, in which the two 
coupling constants e and c 4 are infinitely large. 

We thtls would like to suggest that such a strong coupling limit is the one in which 
a dual string theory emerges, and so we would like to postulate that if nature were 
to be described by the Landau-Ginzburg-like model of ours, it would have chosen 
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fairly large values of e and x/~4, so that we could get pure dual string properties of  
the theory at low energies. 

The limit e, x~4  large, make however, classical field considerations very doubtful, 
because it is in a certain sense a super quantum-mechanical limit, i.e. something like 
h -+ ~. This is at first unclear in our formulation, because we used the quantum of 
action as a unit/~ = 1. 

To see that our limit e, x~4  ~ ~ is a super quantum mechanical one, we may just 
remark that the masses m v and m S of the fundamental particles of  the field theory 
are typical harmonic oscillator frequencies, the classical solution of the equations 
revealing the particles as solutions ~ ( x )  .~ ~ e - ~  x ,  A u ~ e u e - i px  , where the coeffi- 
cients e and e~ are small quantities. But the typical energy of the field theory is 
rather the energy of say a vortex line, with a length of the order of magnitude of its 
width, and that is of  the order of  magnitude ;k/a'. 

So in our limit e, x/~4 "-> ~ the typical energy is much smaller than the typical 
frequency, since from (4.14) and (4.16) 

- s ~ m s ,  m v (4.17) 
a 

in the strong coupling limit. That means that the typical action of the theory is, 
using eq. (4.6) and (4.14), 

X _ 1 1 ~ 1  ' (4.18) 
, , 2 e 2 a m v a m V 

so that from the point of  view of strong coupling theory in this limit the quantum 
of action ]~ = l is tremendously big compared to the typical amount of  action e -2 .  
So the theory is very very far from being classical, since in a classical theory the 
typical action, say 1 erg. sec, is very large compared to h. 

The extreme quantum mechanical nature of  the theory in the strong coupling 
limit (e, x/~4 --> ~ )  has the implication that if we want to justify our classical solu- 
tion of the fields around and in a vortex line in sect. 2 by estimating the fluctuations 
in a coherent state simulating our classical solution, we may be in a very bad shape. 

5. The problem of  quantization 

We now mention a few words concerning the problem of quantizing the above 
string scheme. As mentioned near the end of sect. 4, if one calculates the character- 
istic action of the present theory, then it turns out to be much larger than Planr.k's 
constant. Thus we have an extreme quantum mechanical problem, where one might 
expect important fluctuations in a coherent state approximating our classical vortex 
solution. Thus we may be in serious trouble in going from the classical theory to the 
quantized theory. We have no real solution to offer to this problem. The only thing 
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we can say at present is the following: suppose that one could show that in the strong 
coupling limit the classical theory has only one stable solution, namely the vortex 
solution. The arguments in sect. 3 then shows that the Nambu Lagrangian comes out 
from the field theory Lagrangian, i.e., 

(classical ~ ~classical~ 
Z? ~field theory] --> Z? ~Nambu ] (strong couplinglimit). (5.18) 

This limiting behaviour would of course not be correct if we had other stable solu- 
tions in addition to the vortex solution, and in spite of various attempts we have not 
succeeded in convincing ourselves that only the vortex solution is stable (classically). 
However, suppose that the limit (5.18) is correct. Then we could quantize the theory 
just by quantizing the Nambu Lagrangian, in which case we should obtain the usual 
quantized dual string. 

Actually the somewhat optimistic remarks above are dubious. The point is that 
we have formulated our theory in four dimensions, and hence we should run into 
trouble with respect to quantization*, and we should also obtain a tachyon. How- 
ever, the classical Hamiltonian is certainly positive definite, and it appears as a mys- 
tery how it can generate a non-definite spectrum in the quantized version. However, 
it may be that the solution to this apparent paradox is that the positive definite 
character of a classical Hamiltonian may not carry over into quantum field theory. 
For example, if the theory has to be renormahzed, it is not at all guaranteed that 
the signs of  the renormalized couplings are the same as the signs of  the bare couplings, 
and hence positive det'miteness may impose different conditions on the couplings in 
a classical theory (where the bare couplings enter) and in a qunatized theory (where 
the renormalized coupling enter). A recent discussion of this possibility has been 
given by 't Hooft [7]. We do, however, not yet know to what extent the strong 
coupling limit (the vortex solution) should be renormalized. 

6. Conclusions 

We have seen that it is possible to make field theories that (classically) have solu- 
tions corresponding to vortex-lines that are one dimensional structures moving 
around e.g. according to the equation of motion of the Nambu dual string. In order 
that the length of the string in one of the lowest mass eigenstates (i.e. one of the 
lowest hadron states) should be much larger than the width of it, we had to choose 
a strong coupling limit e, c 4 --> 0o in the Ginzburg-Landau model used as the example. 

It should be stressed that the Ginzburg-Landau model is only an example. Many 
models could easily be proposed, that would all lead to the simple Nambu string 
with no extra degrees of  freedom in the strong coupling limit at low energies. For 

Notice that in order to formulate the theory in an arbitrary number of dimensions, we have to 
generalize the Higgs mechanism to an arbitrary number of dimensions. This has not yet been 
done. 
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instance it is easy to add some extra fields giving particles with high masses of  the 
order of  magnitude of m V and m s to the Ginzburg-Landau theory discussed above, 
without giving further vortex-lines so that the vortex-lines would still behave like 
Nambu dual strings. Also, in the appendix we discuss the case of Yang-Mills fields, 
which does not lead to additional degrees of freedom. 

One is also not restricted to work in 3 + 1 dimensions. In fact, probably the sim- 
plest non-trivial vortex-line model is the so-called Sine-Gordon theory in 2 + 1 dimen- 
sions having the Lagrangian 

.~o = l(O/~t~(.g)) 2 + c cos (d~o(x)) , 

giving the equation of motion 

a bu~(x) + cd sin (d~(x)) = O, 

i.e., the Sine-Gordon-equation. It is readily seen that this theory classically allows 
for a static solution 

4 
tp(x) = ~arctan exp (x/c-dx2) 

describing a vortex line along the x 1-axis. The field ~0(x)changes by 2rr[d across the 
vortex line, which has a width of  the order of magnitude 1]x/'cd. Analogous to the 
case of the Ginzburg-Landau theory, this width is equal to the Compton wavelength 
for the particle of the theory, as is seen by considering the Klein-Gordon equation 
with mass square m 2 = cd 2 obtained as the weak field limit of  the Sine-Gordon- 
equation. The energy density along the vortex line is 

27ra' _ ~ arctan exp (x/cdx) + 2c sin2(2 arctan exp (x/-cdx dx  ~ . ~ d ,  

so that strings that are narrow (vortex lines) compared to the hadronic length 
~gr~ ,  d~ c 4 are obtained in the strong coupling (and super quantum mechanical) 
limit rn-v/~ -,~ c - I  are obtained in the strong coupling (and super quantum mechar~cal) 
vortex lines move as Nambu dual strings. 

"fie have shown the equivalence of string models with a certain set of  solutions 
of  some field theories in a classical approximation, namely the vortex lines. We be- 
lieve, but we have not proven that in the strong coupling limit at low energies all 
states of  the Ginzburg-Landau field theory are states that can be described as states 
of  some system of strings. This hope cannot be taken to be true for all theories 
ha~6.ng vortex lines, since theories can be cooked up, which have e.g. zero-dimensional 
structures in excess of the one dimensional one. That is to say one could make a 
field-theory model which also had kink like type of singularity similar to the solu- 
tion in the 1 + 1 dimensional Sine-Gordon theory. Such theories could be built in 
higher dimensions too. 

That we have to take a super quantum mechanical limit necessitates that, (i) the 
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field theories to be used should be quantized and (ii) the equivalence of the field 
theory and the corresponding string theory be proven on a quantum mechanical 
level (that can only be done, if at all, in a low energy and strong coupling limit). 

Also we have to understand how it can happen that tachyons appear in a model 
having at first a positive definite Hamiltonian density, as is easily seen to be the 
ease for the Higgs-Ginzburg-Landau model. Further, we should like to know what 
the sifnifieanee of the critical dimension (d = 26 in the conventional model) is in 
terms of field-theory models like the ones discussed, but we have not even made the 
26-dimensional classical Ginzburg-Landau model yet. 

If some day one understands the quantum properties better, the possibility of 
constructing field-theory models for strings like the ones we discussed, might be 
an easier way to come across a good (possibly unitary) Veneziano-model than to 
make a string model directly. 

First of all we want to thank Don Weingarten for pointing out how to make 
vortex-line Sine-Gordon models in any dimensions, and C.H. Tze for finding litera- 
ture. We also thank B. Zumino for calling our attention to the fact that the equation 
we discussed is well known as the Ginzburg-Landau equation. Secondly we want to 
thank our colleagues at the Niels Bohr Institute and CERN for helpful;discussions. 

Appendix. Discussion of the Yang-Mills type of  model 

It is natural to ask whether it is possible to produce strings from Lagrangian 
having internal degrees of freedom, e.g. isospin or SU(3). If we can manage to keep 
the vortex solutions for such Lagrangians, this would indeed be very nice from the 
point of view of the dual string, since the string would then carry internal degrees 
of freedom, and would therefore perhaps lead to a more realistic spectrum of hadrons 
(and perhaps to a more realistic dual amplitude, provided we could solve the problem 
of colliding strings). This, unfortunately,does not seem to be the case. 

An example of a Lagrangian with internal degrees of freedom which immediately 
comes to the mind, is the Yang-Mills type of Lagrangian. Here we introduce a field 
Buy,  

Boy = a u n .  -- O~B, - gnu X B ,  . (A.1) 

Defining the dual field 

B .  _ l e B a# ( a . 2 )  

it is easily seen that 

(a ~ +gBOX) B~. = 0, (A.3) 
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which is the analogue of the Maxwell equation 

a~F~v = 0 ,  (A.4) 

which states that magnetic monopoles do not exist. 
The form of eq. (A.3) poses a problem with respect to the interpretation of  

(magnetic) flux lines. From eq. (A.4) one can derive that 

v~ S t S 2 

where W is a volume bounded by the two surfaces S 1 and S 2. Eq. (A.5) tells us that 
no magnetic flux lines can start inside the volume. As far as eq. (A.3) is concerned, 
a similar procedure leads to 

- g  f B~XB*vdVV= f B,,vdo V- f da uv . (A.6) la 
v,, s, s2 

Thus, at least in general flux lines can originate inside the volume. If, however, we 
concentrate on the static situation, we can take B o = 0, and Bok = 0, and hence we 
have the interpretation that the flux is given by 

• = fB~v  do ~'v (static case). (A.7) 

Next let us consider a specific Yang-Mills Lagrangian, namely 

2 = -  !B s ~ +} [(a~ + g B x )  ¢]2 + ½[(a +gB~X)~ ]2 
4 p.V 

+ c2~b2 _ c4(~b2)2 + d2 ~ 2 _ d4(~  2)2 + e2 ~ ~ _ e4 (~ ~)2 , (A.8) 

where the fields ~b and qJ are isovector fields. The reader may wonder why we intro- 
duce two fields 4J and 0/and not just one field. The reason for this will turn out 
later, where we shall see that in order to have a vortex solution at least two isovector 
fields are needed. 

Now we are looking for a solution which quantizes the flux (A.7) in a way similar 
to  the Higgs (Ginzburg-Landau) Lagrangian discussed in sect. 2. Defining the current 
to be 

- a ~  B~, v + gBla v X B ~ - i v "  (A.9) 

i.e.,/v = 0 for a free Yang-Mills field, we obtain from the Lagrangian (A.8) by 
varying B u 

lv = g ( 0  x a vO)+g(*X av~,)+g2(Sv x o ) x ¢  +g2(Sv x ~ , ) x ~ ,  . (A.10) 

Considering now the static solution with cylindrical symmetry we see that the term 
B u X B v in eq. (A.1) is smaller than the term avBv - ~vBu in Buy for large distances 
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from the axis of symmetry. Thus we can write the flux (A.7) as 

~ B #  (x)dx  # (static case, large distance), (A.11) O 

provided we integrate over a circle with large radius. For such large distances]v 
vanishes, and eq. (A.10) leads to 

( B  x ~ ) × ~  +(B~ × ~ )  x ~ -- (B ~)~+ (O~ ~,)~ - (~2 + ~,2)B ~ 

=l( t~X av~ + ~X av~ ) . (A.12) 

Now the ground state (the vacuum) of the Lagrangian (A.8) corresponds to 

c 2 d 2 e 2 

C 2~ 4 , l?  = = - - , 2 d 4 ,  ~ $  = ~ e 4 ,  ( A . 1 3 )  

where we assume that ~ and ~ are not in the same (or opposite) direction, i.e. 

c2d2 ~> {e2 ~ 2 (A.14) 
c 4d 4 \ e  4 ] " 

Thus, in the vacuum the lenghts of the isovectors d~ and ~ are fixed, and in addition 
the projection of one vector on the other is fLxed. This ensures that in any frame of 
reference in isospace at least three components of ~ and ~ are non-vanishing (e.g., 

~1, ¢1 and ¢2). 
Now let us go to a frame of reference where ~3 = ¢3 = 0. This corresponds to 

selecting the flux lines in the 3-direction. It is easily seen that the condition (A.12) 
for the current to vanish at large distances imposes the condition on B u that 

B 1 = B 2 = 0  

1 (A.15) 
B 3 = - ~ u X  

where X is the phase of ~1 + i¢2. Notice that due to the last condition (A.13) the 
phase of ¢1 +i¢2 is the same as X + constant. Inserting eq. (A.15) in eq. (A.11) and 
using the fact that the phase is only unique modulus 2~rn we get that the flux is 
given by 

I@ I= 2~rn/g, (A.16) 

i.e., the flux is quantized*. This result only follows if we have at least two fields 
~and q .  

Having obtained the flux quantization we then go to the strong coupling limit, ii 
order that the width of  the vortex line is made sufficiently small. The width is giveI 

* We have not convinced ourselves that there are no other quantas than 2n/g. 
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by the order o f  magnitude o f  the Compton wave lengths o f  the Higgs particles. As 
before, we have scalar particles with masses 

I 

m s =  2 V ~ 2 ,  m s =  2 V ~ 2 .  (A.17) 

The Higgs vector particle is obtained from the seagull terms in the Lagrangian (A.8), 
i.e. from 

 g2(s , x +  g2(s , x __ [s (C + (AjS) 

Inserting the vacuum values (A.13) it is easily seen that all vector mesons B~ acquire 
a mass, 

c[//~c 4 d2 m v  = g  + 2d--4 " (A.19) 

Proceeding as in sect. 4 we can now go to the strong coupling limit g -+ 0% c4 -+ 0% 
d4 -+ oo (or ms, m~, m v >> 1/x/~) ,  which then gives us the string solution. From 
the very general argument in sect. 3, we know that this solution corresponds to the 
classical Nambu Lagrangian. However, one can easily see that due to gauge invariance 
no new degrees o f  freedom are introduced in the string Lagrangian. 

Note added in proof 

In addition to the term (4.9) the magnetic energy-density also contains a term 
coming from the seagull term in the Lagrangian. The latter term gives rise to an 
energy-density of  the order of  magnitude 

(c2/c 4) log (x/G). 

As long as log (X/G) is not too large, this term does not change any of  the conclu- 
sions in sect. 4. See ref. [8] for example. 

A preprint of  L.J. Fassie [9] with a similar idea has appeared. 
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