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The zero energy eigenvalue problem for quantum fluctuations about the ‘t Hooft-Polyakov monopole solution is solved 

explicitly in the Prasad-Sommerfield limit, by exploiting the formal similarity with self-dual euclidean field configurations. 

The relevance of the results to the spin of the quantized monopole is examined. 

A renewed interest in the quantization of the 
‘t Hooft-Polyakov monopole solution [l] has been 
stimulated by the recent work of Olive and Montonen 
[ 21, who advance the intriguing hypothesis that 
Yang-Mills gauge theories actually possess a greater 
symmetry on the quantum level than is apparent from 
the classical lagrangian. This new symmetry would in- 
volve an interchange of the roles of electric and mag- 
netic charges. It is proposed that a “dual” formulation 
of the gauge theory exists, in which the magnetic 
charge is an explicit Noether symmetry generator on 
the fundamental fields whereas electric charge is pure- 
ly topological in character, The field quanta are mag- 
netic monopoles and the vector bosons of the usual 
formulation appear only in the soliton sector with a 
topologically conserved electric charge. 

In order for this hypothesis to be tenable, the spin 
of the electrically charged vector boson and the mag- 
netic monopole must be the same, since in the “dual” 
formulation, the ‘t Hooft-Polyakov solution, when 
quantized, is the vector boson. Thus, there would 
seem to be required some subtlety in the quantization 
of the rotationally symmetric (up to a gauge transfor- 
mation) monopole solution which endows it with a 
unique non-zero value of angular momentum, fi, in its 
ground state. However, if the quantum ground state 
of the monopole system is to be rotationally asymmet- 
ric (and three-fold degenerate), one would expect to 
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see some evidence of the phenomenon in the excitation 
spectrum of quantum oscillations about the classical 
configuration and, in particular, in the zero energy 
eigenmodes. This work reports on the explicit solution 
of the zero mode problem in the special limit of the 
monopole model, considered by Prasad and 
Sommerfield [3] where the classical fields may be ex- 
pressed in terms of elementary functions. 

Begin with the model lagrangian, 

p= _ +F;,Fipu _ ~(p~)i(D,~)i -.$qQ@i _ b2)2, 

where 

and the spherically symmetric static ansatz for the clas- 
sical fields: 

A$$” = Em ii fjA(r)/e, A:’ = 0, DicQ = ?@(r)/e. (2) 

In the limit X + 0 but @a is still required to ap- 
proach b2 as Y + 00, the field equations are satisfied by 
(2) with: 

A@) CC_!- 
sinh(Cr) Y ’ 

C=eb. 

(3) 

Now, when X = 0, the static Euler-Lagrange equa- 
tion for the scalar field, @j is formally identical to that 
for A6 [4] . This formal similarity between @ and AL 
persists at the quantum level and allows a solution to 
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the zero mode problem by methods primarily devel- 
oped for the pseudoparticle solutions of the pure 
Yang-Mills theory [ 51,. 

Explicitly, in the Ah = 0 gauge, the hamiltonian 
density for the monopole theory with h = 0 is: 

. 
H = $F&, F,&, + +(aoA&)(aoA~) 

(4) 

The classical solution (2) is time-independent and 
we are seeking the lowest eigenvalue of the energy 
about that static configuration. Because of the posi- 
tive definiteness of each term in (4), the lowest eigen- 
value is obtained when the quantum mode functions, 
~6 and $’ in the expansion of the fields, 

Ai = &$Q f ai 
m rnj 

ai = QicP + +i 
(9 

are also time-independent. In that case, the hamilton- 
ian density (4) is identical to the action-density of a 
pure Yang-Mills theory in euclidean space-time, if 
the former scalar field, Qi is identified with Ai of the 
new description. 

Furthermore, the pure Yang-Mills solution: 

A’CQ = f 
m m ijfiAir)/e/ A? = f#(r)/e, (6) 

is euclidean self-dual, F,& =i eMLtvpo Fio (with ~0123 

= +l) so that the zero energy eigenmode problem for 
the actual monopole solution (2) is identical to the 
problem of finding the zero-action modes about the 
self-dual euclidean solution (6) with A6 identified 
with Qi. 

The zero action eigenmodes about a euclidean self- 
dual Yang-Mills field have been found by Brown et al. 
[5]. The zero mode eigenfunctions can be constructed 
from spinor solutions of the equation, 

_ic~D~Xj= [-ia.V6’i_iEiikA(r)(sX f)k 

(7) 
t eVk $~)ik] xi = 0, 

where u. = (-b -0) and Q are the Pauli matrices. xi 
=(p”i’)’ t - p 1s a wo corn onent Lorentz spinor and a vector 
in the SU(2) group space. Expanding the gauge fields 
about the self-dual solution (6), 

Af =A;” +& 
c1 (8) 

the eigenmodes of zero action, in terms of the solu- 
tions to equation (7) are: 

-icing =( ii -:.I) , 

_iatai = icu’ ipi* 
ccp ( ip’ ) _icui* ’ 

(94 

(9b) 

which satisfy a background gauge condition: 

(D,p,J’ = apa,$ + eeiikApQai = 0. (IO) 

Thus, each time-independent spinor solution to (7) 
yields nyo zero-energy gauge field modes in the back- 
ground gauge. 

Now, precisely the spinor equation (7) has been 
thoroughly analyzed by Jackiw and Rebbi [6] in the 
somewhat different context of fermion-monopole 
scattering. The results of their analysis are summarized 
here. 

There are two distinct normalizable solutions to 
(7), given by: 

xi = N[ji(r)iia*f +&(Y)(Ui - &*i] Xt, 4 

where 

The functions fi(r) and f2(y) may be expressed in 
terms of the functions, 

(11) 

(12) 

and the regular solution to the differential equation, 

(13) 

through 

f~(r) = -) u(r) exp [ - id?‘F(r’)l , 

0 
(14) 

The factor N in (11) is a finite normalization constant. 
The four zero modes obtained from (11) in con- 

junction with (9) may be written in the concise covar- 
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iant form, 

U:(h) = Nfj~~77j~~(fl - f2) + NrljpXf2, (15) 
where h = 0, 1,2,3 labels the four modes and vipv is 
the self-dual tensor defined by: 

[ %fiv p,v=l,2,3 

I &lJ /1=O;v= 1,2,3 

q&v = -6, 
Z/J u=O;p= 1,2,3 

(16) 

I O /l=v=o 

Furthermore, it is readily verified that the differential 
equation (13) is solved by: 

u(r) = r2 _13! exp 
dr 

(17) 

so that (14) givesfi andf2 explicitly; 

fl(r)=$=f - c2 
sinh2(Cr) ’ 

(18) 

Each of the zero modes possesses a simple interpre- 
tation in terms of the classical solution (6). For h = I 
= 1, 2,3 we obtain three translational zero energy 

modes in the background gauge (IO). In fact, perform- 
ing one of the three infinitesimal gauge transforma- 
tions given by: 

A’(Z) = Nclii?i A(r) (19) 

brings a;(l) into the form, 

a;(r)’ = a;(l) t (D,A(z))z = Na,A;“, (20) 

which explicitly is the form of translational zero 
modes. 

The fourth mode, X = 0 is a pure gauge mode, pres- 
ent because (10) does not completely eliminate gauge 
degrees of freedom. Explicitly, 

US@= O)= (D,R)‘, A’= -Nii@(r). (21) 

Thus, returning to the original ‘t Hooft-Polyakov 
solution (2), we have obtained all of the zero energy 
eigenmodes for the gauge fields (I&) and the scalar 
field (@‘). There are the anticipated three translational 

modes, 

ai(Q=N?iij~jmlCfi -f2) fNcimlf2, (22) 

~'(')=N~iil(fi -f2)-N6ilf2' (22) 

satisfying the condition, 

a ,i + &kAjcQ k + &jkajcQ4k = 0 
mm m a~ (23) 

for each I and there is a pure gauge mode permitted 
by the gauge condition, eq. (23). This condition, 
which is imposed only on the time-independent zero 
energy modes restricts the time-independent gauge 
transformations left free by the AL = 0 condition 
alone. Of course, the AL gauge choice completely 
fures the time dependent gauge freedom and specifies 
ah(l) = 0 to complete (22). 

These are exactly the results to be expected if the 
monopole has zero spin. With the zero energy spec- 
trum completely determined, the system can be 
treated by any of the established canonical techniques 
for the quantization of soliton solutions [7] , once a 
suitably well-defined choice of gauge has been made. 
We simply have collective position coordinates, corre- 
sponding to the three zero energy translational modes 
(22), and a spectrum of positive energy excitations, 
corresponding to monopole-boson scattering or bound 
states. Any asymmetry or degeneracy in the ground 
state would have to be artificially inserted. Canonical 
quantization appears to preclude any subtle one loop 
effect which would realize the spin one conjecture for 
the ‘t Hooft-Polyakov monopole, necessary for the 
proposed electric-magnetic symmetry in the Yang- 
Mills gauge theory. 

This work was initiated at the suggestion of 
Professor N. Christ. 1 am pleased to acknowledge my 
debt to him and Professor E. Weinberg for helpful dis- 
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