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1. Introduction

In (Gasser and Leutwyler 1983) we have shown how to systematically determine
the low energy structure of the Green's functions in QCD. The method is based on
a simultaneous expansion in powers of the external momenta and of the quark masses.
We have applied the method to an expansion in powers of m, and my at fixed mes
Meseoo (chiral SU{2)xSU(2)) and have shown that the observed Tow energy structure
of wr scattering offers a precision test of the theory. This confirms that m, and
my are indeed small parameters: if one expands physical quantities like Fw’ Mw’
form factors or scattering amplitudes in powers of m, and My and only retains the
first two terms in this expansion one obtains a very accurate representation of

the quantity in question.

In the present paper we extend this framework to expansions in powers of mg -
The approximate validity of SU(3) flavour symmetry indicates that the mass dif-
ference m, - m, (which is responsible for SU(3) breaking} is small in comparison
with the scale of the theory. Since m,, is small, this implies that mg must also
be small; an expansion which treats m,> My and m as perturbations should there-
fore converge rapidly. This hypothesis plays a central role in the determination
of the quark mass ratios m @ my : mg from experimental information about the
spectrum of the low lying states {for reviews see Pagels 1975; Gasser and Leut-
wyler 1982). The purpose of the present paper is to carry the quark mass expan-
sjon in powers of mys My and m beyond leading order and to show how to calculate

the first nonleading contributions in a systematic manner.

In the first part of this paper (sections 2 - 8) we construct the generating
functional of U{3)xU{3) which allows us to calculate all Green's functions to next
to leading order in terms of a few effective coupling constants which chiral sym-
metry leaves undetermined. In sections 9 and 10 we calculate the first nonleading
term in the quark mass expansion of the order parameter <0!ﬁq!0> and of the
masses and coupling constants in the pseudoscalar octet. We then discuss the role
of the n' in chiral perturbation theory. The considerations on large NC and on
the Zweig rule in section 13 allow us to estimate those of the effective coupling

constants which are not fixed directly by experimental low energy information.



2. Chiral symmetry

The Green's functions associjated with the vector, axial vector, scalar and
pseudoscalar quark currents and with the operator Guva”v are generated by the
functional

exp L2
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27,

where <Oout! Oin> is the vacuum-to-vacuum transition amplitude in the presence of
external fields, determined by the Lagrangian
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L%CDis what remains of the QCD Lagrangian if the masses of the three 1ight quarks
and the vacuum angle are set equal to zero. The external fields vu(x), au(x), s{x),

p(x} are hermitean 3x3 matrices in flavour space. (We have included the QCD
coupling constant in the definition of the gluon field strength: Guv = i[Du,DQ].
The symbol E; denotes the trace over colour indices.) Note that the mass matrix

uw

m = ™"Ma (2.3)
ARAT:

of the three 1ight quarks is contained in the scalar field s(x), whereas the mass
0

terms of the heavy quarks are retained in LQCD

If one expands the generating functional Z(v,a,s,p,8) around vu==au= s=p=0,
B(x}) = eo one obtains the Green's functions of QCD with massless u, d and s quarks.
The Green's functions of the real world are obtained by expanding Z around
= = :0, :M, =e-
v, =3, =P s{x) 8(x) o
Formally, the vacuum-to-vacuum amplitude is invariant with respect to local
U(3)xU(3) transformations:

qx) = V; (x) 5 Aads) QLo a VG L (4-¥5)q6«) (2.4
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which induce a gauge transformation of the external fields
’ ’ N +
7 / + s %+
13 L] +
5/+Lp"= \/p\(Sﬁ-bP)VL_
For an infinitesimal chiral transformation

\/ka) = A EWNY OL&%) -\-l@(x)_‘.

(2.86)
Vo (x) = Axid(x)-vB6) s ..
the change in the external fields is given by
éﬂ}'ﬂ_afap& -\—h[OL)fU‘M +pr)Q}J_]
Q= 9P +i [ ,ou] 4 L8 ]
(2.7)

8% = L{rd)e;]_'\ﬁap}

>p = “&d\)P] *"{@JS];
The anomalies of the fermion determinant however break chiral invariance - the
generating functional is not invariant under the transformations (2.5). The

change in Z may be given explicitly, provided one simultaneously transforms the
external field 9(x) (Bardeen 1969; Wess and Zumino 1971; Fujikawa 1980):

%9(54) = —-Ztrr @(%)

o2 = -%dx '\_‘;f { @(x)ﬂ(x)}

- NQ d(s“\) 4 4
Qe = Do e v, 0 4 U0 T« 5,0

> %QM’I{,{&&\, +%QJO©QMQV] (2.8)
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Vi = Ol _ Dgu, — LV g |
(2.8)

vokags'—' /aotq@ -\ {q}d)q@]

(NC is the number of colours and Ey denotes the trace operation in flavour space.

In the following we will often drop the index f, since the traces occurring evi-

dently concern flavour matrices.) The transformation law (2.8) of the generating

functional embodies all Ward identities associated with U(3)xU(3) (for a review
of the properties of the generating functional, see Crewther 1980).

In (2.8} the action of U(3)xU(3) on the angle s(x) is only specified for
infinitesimal transformations. Since the group U(3)xU(3) is not simply connected
one may arrive at the same global transformation by performing seguences of in-
finitesimal steps which cannot be continuously deformed inte one another. Con-
sider for simplicity only the Green's functions of the scalar and pseudoscalar
currents and of the operator Guvﬁuv, i.e, put Vu = au = 0 {only space independent
chiral transformations preserve this restriction). Since the contribution from
the anomaly vanishes in this case (2 = 0) we have

14 4 4 — , .
Z(0,0,%,0,0") = Z(0,0,8,0,0) (2.9)
The transformed fields s'(x), p'(x) are given in (2.5); the value of 9 depends
on the sequence of infinitesimal steps used to reach the transformation VR’ VL

from the origin. Consider e.g. the transformation Vo = exp (- 1v), VL =A where
Y is a diagonal matrix with only one nonvanishing eigenvalue. If we let this
eigenvalue increase from zero to 2™, the matrix VR makes an excursion from the
origin back to the origin. Since in this example we have ¢ = B = - l-Y, the
transformed vacuum angle is given by 8' = 6 + tr v. As the eigenvalue of Y in-
creases from O to 2r the vacuum angle changes by 27, whereas s and p return to
their original values. The transformation law (2.9) therefore requires Z to be
periodic in @{x) with period 2m:

Z(0,0,9, 0, ©+2m) = Z2(0,0,5, 0, 8) (2.10)

The scalar and pseudoscalar Green's functions of QCD, obtained by expanding Z
around the point s(x) =M, p(x) = 0, 9(x) = 80 are therefore periodic functions
of 90. In particular, the spectrum of the theory belonging to the mass matrix
and to the vacuum angle 80 is the same as the spectrum associated with M,
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eo+-2n. (In the above discussion we have implicitly assumed that the ground state
of the theory does not undergo discontinuous changes under the global transform-

ations considered - see section 4 for some comments concerning this problem.)

We add a remark about the form of the quark mass matrix. The quark masses
originate in the asymmetries of the electroweak vacuum. Since the electroweak
interactions do not conserve parity there is no a priori reason for the quark
mass term of QCD to be parity invariant. With a suitable U(3)xU(3) transformation
of the guark fields the general mass term E[(sO - iy5p0)q may however always be
brought to the form gMg where M is diagonal with real positive eigenvalues m,»
Mys Mg (Weinberg 1973)

4
Ng (Sexips) V. = MV (2.11)

If the determinant of 5ot ipo is not real and positive, this transformation
contains a chiral U{1) rotation (tr 8 # 0). In order for the theory to remain the
same one therefore has to transform the vacuum angle accordingly. If the theory
is originally characterized by the mass matrix s{x) = s, n(x) = Py and by the

vacuum angle 8(x) = 80, the equivalent set of parameters is

—_—

3G = M o) =0, - © (2.12)
where

—_—

© = ©, 4 arqg det(So+ip,) (2.13)

is the chirally invariant vacuum angle. The spectrum of the theory therefore
depends on s, Ps and 90 only through the positive eigenvalues of the quark mass
matrix and through the chirally invariant angle 9. We use a quark field basis in
which the mass matrix is diagonal and positive. In this basis the Green's func-
tions of QCD are obtained by expanding the generating functional Z around the
point v, =a = p = 0, s(x) = M, 8(x) = 8.

If & is not a multiple of 7 the theory does not conserve parity. From the
experimental upper bound on the electric dipole moment of the neutron one con-
cludes (Baluni 1979; Crewther, Di Vecchia, Veneziano and Witten 1979; 2 less
stringent limit is obtained from n > 27T, see Shifman, Vainshtein and Zakharov
1980) that & must be very close to a multiple of m. Since the theory is periodic
in 8 with period 27 we are faced with two distinct possibilities: §~0and By,
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In the chiral limit (mu =myo=mg o= 0) the nine vector currents are exactly
conserved. We assume that the vacuum respects this symmetry such that the spectrum
of the massTess theory consists of degenerate multiplets of SU(3). In the chiral
limit the 8 axial currents are also exactly conserved. We assume that the ground
state spontaneously breaks this symmetry with a nonvanishing order parameter
<0|qq|0> as a quantitative measure of the vacuum asymmetry. The spectrum of the
massless theory then contains 8 pseudoscalar Goldstone bosons which in the chiral
Timit are exactly massless. (In the real world these particles are not massless,
because the quark mass matrix produces explicit breaking of chiral symmetry. The
squares of the masses of w, K and n, are proportional to m, My, mo+m and
% (mu +my ot 4 ms) respectively.)

The divergence of the ninth axial current remains different from zero if the
guark masses are turned off. As pointed out by Witten (1979), the anomaly respons-
ible for the nonvanishing divergence is however of order I/NC. In the Timit NC-+m
the theory does contain a ninth massless pseudoscalar, the n'. For large NC the
square of the n' mass is of order AZ/NC. In most of the following we do not treat
Nc as large, but stick to the physical value NC = 3. The n' does then not play
any special role in the analysis of the low energy structure of the theory. (The
effect of the n' on the low energy properties of the Green's functions and the

large N, Timit are discussed in detail in sections 12 and 13).

3. Effective Tow energy Lagrangian

The behaviour of the Green's functions at small momenta is reflected in the
structure of the generating functional for external fields which vary sTowly in
comparison with the scale of the theory. An expansion of the Green's functions in
powers of the momenta corresponds to an expansion of the generating functional in
powers of the derivatives of the external fields. The low energy expansion is not
a simple Taylor series, however: the Goldstone bosons associated with ;he spontane-

ously broken symmetry generate poles at small momenta, e.g. at p2 =M = 0(M).

The Green's functions admit a Taylor series expansion in the momenta only if

p2 << Mg. To describe their behaviour for values of p2 of the order of ME or
larger we keep the ratio M,lzT/p2 fixed, i.e. treat both p and M as small in
comparison with the scale of the theory, but atlow the ratio M/p2 to have

any value. A method which allows one to systematically carry out the correspond-

ing expansion of the generating functional is described in detail in Il where we
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restricted ourselves to an expansion in m, and my at fixed m, - In the following
we assume that the reader is familiar with the external field technology and only
indicate the modifications needed to extend the framework from SU(2)xSU(2) to
U(3)xU(3). A detailed account of the method and references to the literature on
the subject may be found in II.

Since the spontaneous breakdown of SU(3)xSU(3) to SU(3) gives rise to
8 Goldstone bosons, the effective low energy Lagrangian involves 8 Goldstone
fields rather than three as in the case of SU(2)xSU{2). We collect these fields
in the unitary 3x3 matrix U(x):

U(x)U(x)+ = A (3.1)

which under chiral U(3)xU(3) transforms according to the Tinear representation

U (x) = Ve & Ubﬁ\/f(x) (3.2)

A unitary 3x3 matrix contains nine degrees of freedom rather than eight. To
eliminate the ninth field we impose a condition on the determinant of U{(x).
(Alternatively, one may retain this field to describe the degrees of freedom
associated with the n' meson. We will discuss the role of the n' in sections 12
and 13 in connection with the large NC limit. For N. = 3 the mass Mn' is of the
order of the scale of the theory. At energies small in comparison with this scale,
the region we are analyzing here, the n' degrees of freedom are frozen; the pole
factors (Mi. - pz)_] associated with the propagation of an n' may be expanded as
M;? {14—p2/'Mi, + ...}. In the low energy expansion the presence of the n' only
shows up indirectly, in the same manner as any other bound state whose mass re-
mains different from zero in the chiral 1imit, through a contribution to the ex-

pansion coefficients.)

The standard constraint det U = 1 is not consistent with the transformation
law (3.2), because det VRVE differs from one for chiral U{1) rotations. We in-

stead put

det Ux) = e:tg(x) (3.3)

which is consistent with (3.2).
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In accordance with (3.2) the covariant derivative of U(x)} is defined as

NpU=o,U-(mya YU o U -ay) (3.4)

The effective Lagrangian is a function of the meson field U(x} and its derivatives
as well as of the external fields and their derivatives. It is convenient to write

this function in the form
L. 1 (U0, WM)O,P)Q#UJV}LQJ- S, 0, Ny, - ) G5

where we have introduced the covariant derivative of §(x) as

Ve © = 9,0 &« 2%ca,, (3.6)

and have ordered the fields according to their low energy dimension (U, & count as
fields of order 1; vu, au, BUU, Bue as order p; s(x), p{x) as order p2 etc.)

To leading order in the Tow energy expansion the generating functional coincides
with the classical action

\o\x (3.7)

The transformation Taw (2.8} states that Z is gauge invariant up to a contribution
from the anomalies which is of order p4. The contributions to the generating
functional of order 1 and of order p2 must therefore be gauge invariant. Since
all other variables in (3.5) are of order p or higher, the general effective
Lagrangian of order 1 is a function of U and ¢ only. In order for this function
to be invariant under chiral transformations it can depend on U{x} only through
det U. The constraint {3.3) fixes det U in terms of g(x)}; at order 1 the La-
grangian is therefore independent of the meson field. Finally, since the external
field a(x) transforms in a nontrivial manner under chiral transformations, the
Lagrangian cannot depend on §(x) either. The most general chirally invariant ef-
fective Lagrangian of order 1 is therefore an irrelevant constant: the low energy
expansion of Z starts with contributions of order pz {chiral symmetry implies

derivative coupling},

To determine the general effective Lagrangian at order p2 we observe that
gauge invariance permits the fields Vu’ au only to enter through the covariant
derivative Vu and through the field strength tensors Fﬁv’ Ftv defined by



T —X 1T I -1 —
R

— L

Up to and including terms of order p2 the Lagrangian therefore only contains the
R L L

. . . R
variables U, 8, qu’ vue s Vuva, auvve, S, P va’ Fuo Terms linear in Fuv’ Fuv

are forbidden by Lorentz invariance and terms containing the second derivatives

vuvvu, auvve may be eliminated by partial integration. Using the identity
A (U+V U) =-v V.6 (3.9)
M = M

which follows from (3.3), one easily demonstrates that to order p2 the general
effective Lagrangian consistent with Lorentz invariance and with chiral symmetry

is of the form
{,- ?K_*f*V»U+V“U} +2'8, ¥r{(%-\p)u}+z’-?: #r{(s»;.o)UJfﬂ
N Eivpgvn@ (3.10)

where FO, BO and HO are arbitrary constants; F0 and HO are real, B0 may be

compliex.

4. Ground state

To obtain the generating functional at leading order in the Tow energy
expansion it suffices to evaluate the classical action associated with the La-
grangian (3.10); the field U(x) occurring in this Lagrangian is determined by
the external fields through the equations of motion

+ K *- .
UTHT, U, 9P UU 2B, Usm0) 4 2B, (8410)0 = M
_ (4.1)
(A is a Lagrange multiplier which stems from the constraint (3.3)). We first

consider the ground state of the system, i.e. analyze the equations of motion
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in the absence of external perturbations:

Vy=lyueP=0 ,0k)= 6 ,56) ="M (4.2)

(we discuss the properties of the ground state for arbitrary values of 8; as

mentioned in section 2 the physical value of & is either 8 v 0 or ¢ ~ ).

The equations of motion state that U(x) is to be evaluated at a Tocal
extremum of the classical action. In fact, in order for the solution to be stable
with respect to infinitesimal perturbations the extremum must be a Tocal minimum
of the corresponding Euclidean action. (The spectrum of the fluctuations around
a local maximum exhibits imaginary masses: fluctuations are not restored, but
instead explode {Dashen 1971}.)

In the absence of external fields, the minimum of the Euclidean action occurs
for a constant field U(x) = Uo’ characterized by the condition

+r*WL(B°UO+'-Bt U':)k = PN aximum (4.3)
subject to the constraints
+ e
UU, =1 | det U, =¢ (4.4)

The solution U0 in particular determines the vacuum expectation values of the
scalar and pseudoscalar operators:

4o\aL'7\qR\o§=_‘z:F§ B_Ae (’)\Uo) (4.5)

(This relation is easily obtained by calculating the response of the generating
functional to an infinitesimal change in the external fields s{x) and p(x}.)
The equations of motion require

B.U, M BT fmuf ~_ 24 (4.6)

A
=
z
Taking the commutator of this relation with the matrix Muz one obtains

lu,m, MU, ] =o
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or, equivalently,

LLL,”Yﬁ] =0 (4.7)

If the three guark masses m,> My and m. are different, The matrix UO must there-
fore be diagonal:
QLQ“

\(-Qd ——
an.( € ef% ) Qs Wa«Pe=-6 (a8)

(Often in the literature (e.g. Witten 1980) a different convention is used:
U0 > U;], ¢q—*-<%.) The values of the angles dr 94q and 9 at which the minimum
occurs depend on the phase of the constant B . To pin down this phase we invoke
the assumption that the ground state of QCD does not break parity spontaneously:
we assume that for the physical value of § (idealized to 0 or w) the ground state
is an eigenstate of parity. Accordingly, the expectation value of the pseudoscalar
operators aiyskq must vanish. The relation (4.5) shows that this is the case only
if +
3
?cuo = %OUO (4.9)

which, in view of det Ug = + 1 implies that B> is real, i.e. that the phase of
B0 must be a multiple of 7/3. Since one may always replace the field U(x)} by
U(x) exp 2 i/3 without Teaving the constraints (3.1) and (3.3) we only need to
distinguish twyo cases:

1. B0 real and positive

II. B, real and negative
In this phase convention the condition {4.9) states that the diagonal matrix U0

is real and the equations of motion take the form (Dashen 1971; Nuyts 1971,
Witten 1980; Crewther 1980)

muS.\\‘LC-Qu = Md e:‘\ﬂL?d =m5 %"h('Pd_‘a

Do+ Ld+Us --8

In principle, these equations determine the three angles as functions of 8.

(4.10)

Actually, for each value of 8 there are several inequivalent solutions; we are
interested in the particular solution which realizes the minimum of the Euclidean
action. It suffices to discuss the properties of this solution for BO > 0: de-
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noting the matrix U, which realizes the minimum for B0 > 0 by Uo(é) the minimum

for a negative value of BO occurs at - Uo(é + 7). Suppose, therefore, that B0 is
positive. If © vanishes, the minimum occurs at U0 =4, b, = bg = o = 0. As @

increases the constraint ¢, + Pq *+ b= -8 drives the angles ¢q away from the

origin. We refer the reader to Crewther (1980) for an analysis of the properties
of the ground state in the general case. For the physical values of the quark
masses which satisfy 0 < m, <My << mg the solution is approximately given by

.\("Pu -'“é- ‘lcpd -—\é

e =€ *Zhzt,e e *z¥Nzl , P =0

: (4.11)

+mdé

Nﬁn
[ ]]

Z2=mM, <

In particular, at & = 7 the matrix U0 is of the form U0 = diag (-1,1,1}. As shown
by Crewther, Di Vecchia, Veneziano and Witten (1979) the excitations of the
ground state U = diag (-1,1,1) have a mass spectrum which is at variance with
observation. If the constant B0 is positive, then 8 = 7 is therefore ruled out.
Accordingly, we have two possibilities for the physical ground state: either §
is ¢lose to zero and BO is positive or 8 is close to « and B0 is negative., In
both cases the matrix U0 describing the ground state is proportional to the unit
matrix. As far as the effective Lagrangian is concerned the two cases are equi-
valent, because what counts is the product BoUo which is a positive multiple of

the unit matrix in both cases.

Before we proceed we emphasize that the constants which occur in the effec-
tive Lagrangian are not basic constants of nature, but are induced constants re-
flecting properties of the ground state of the theory. It is not established that
the same effective Lagrangian describes the low energy structure of QCD for all
values of the ratio m, Mgt omg and of the vacuum angle 6. The Ward identities

of chiral symmetry which determine the structure of the effective lLagrangian are

infinitesimal constraints valid as long as the ground state of the theory responds

smoothly to changes in the parameters of QCD and in the external fields. It 1s
well-known that for some range of these parameters the matrix UO changes dis-
continuously as the vacuum angle & passes through mw: If m, is taken larger than
the reduced mass of d and s, the ground state U0 approaches a complex matrix as

8 = 7 is approached from below, signalling spontaneous breakdown of parity. If ¢
crosses w the ground state flips from UO to U; and then again varies continuously

as 8 is increased to 2r where the ground state returns smoothly to U = A1t ds
however not clear that the ground state of QCD does behave in this manner if one
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varies 8 all the way from O to 2v. An alternative possiblity is that the ground
state changes discontinuously already if 8 reaches w/2. If this is the case the
regions - %w:é < %-and %—< 5 < %ﬂ- are described by two different effective La-
grangians which differ in the sign of B0 (the sign of Bo is determined by the
ground state of the system: the sign may be the one for which the ground state

gnergy is lower.)

The point here is that if the ground state undergoes discontinuous changes,
we see no reason for the effective Lagrangian not to notice - unfortunately, this
implies that the effective Lagrangian framework is not good enough to determine
the values of 8 at which discontinuities in the structure of the ground state
occur. {Indeed one can construct an effective Lagrangian including the n' for
which the ground state jumps at g = gﬁ just as well as one can construct one

for which discontinuities occur only at 8 = w.)

In the following we consider the low energy expansion of the Green's func-
tions for the physical values of the parameters in the QCD Lagrangian. In this
context the problem just discussed is of no relevance: what counts is that the
ground state U0 is proportional to the unit matrix. For simplicity we disregard
the small parity violation permitted by the experimental bounds on the dipole

moment of the neutron and, for definiteness, take g =0, B0 > 0, U0 = 4

5. Low energy expansion at leading order

To work out the Green's functions at leading order in the low energy expan-
sion it suffices to determine the classical action associated with the tagrangian
(3.10) as a power series in the external fields. It is convenient to simplify the

constraint (3.3) by writing
Ux) = U(x)expx—%@(x)% (5.1)

such that det ﬁ = 1. The matrix U then collects the Goldstone fields in the

A%
standard manner. One may e.g. represent U in the form

Ux) < exp (@) (5.2)

where ¢ is hermitean and traceless and may therefore be decomposed as
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(5.3)

@ = QN

in terms of eight real fields $ps -ees dg The covariant derivative of U then

takes the form

VPU-_-{VMU—%VN@Ukexp-\-%@i (5.4)
where vuﬁ only involves the traceless parts of vu and au
Vol = 9, U v (&, +a,)U i ula,-a,)
o~ _ A (=} Q
rU'“—- %P-—_g““fnf)u. ﬂ(UM?mZ (5.5)
I
Op= Qu -Licay - g, 2F
2
Using the property
Nﬁw+
(U, UU7) - (5.6)

which follows from det U = 1, one obtains the following representation of the

Lagrangian

4 - i T e 0T Tt (X T U)]‘ <7 ov"e

X)) = 2B, 56 4 Pl ex oy OO (5.7)

s

—_—2
HQ =H°++D

The leading low energy representation of the generating functional is given by
the value of the classical action

Z, - go\x;f,.

(5.8)

evaluated at the solution to the classical equations of motion for U

NT\J+ ~a ~a ~ ~,
VP9, U T 0,0 UAT - 44 (G ix T -0
(5.9)
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The Lagrangian L] does not contain the field tr Vu. Green's functions in-
volving the singlet vector current QYuq do therefore not receive any contribution
at leading order in the low energy expansion. The field tr aU does occur in L],

but only through the contact term vuevue. At leading order in the low energy ex-
pansion the only nonvanishing Green's functions containing the singlet axial cur-

rent ayuy5q are therefore the two-point functions

‘ Vo (x=y) ~
L\dxe LT ARG ALV = gy €M, + O(p?)

\ o) o~
L \o\x e <ol TAL) WD = L PuMe + O(p%)

Aw =8 fulsq 510

A 4 G = v
LL)=\_é-—1—r-2‘r‘ lqu

The representation (5.7) also shows that (apart from the contact term
vuev“e) the external f;eld g(x) only occurs together with s and p, in the com-
bination {s + ip) exp 3 ig (this matrix is invariant under chiral U(1)-trans-
formations; the phase of its determinant is the chirally invariant vacuum angle
). A perturbation of the ground state s =M, v =a =p =9 =0 by &8 is therefore
equivalent to the perturbation &p = % Mga. I1lustrations of this property will be

given below.

The effective Lagrangian Ly contains three Tow energy constants Fo’ BO, Ho'
The physical significance of these constants is easily established by working out
a few Green's functions. The vacuum expectation values of the operators uu, dd,
5s are obtained by calculating the change in the classical action induced by a
change in the external field s(x). The result reads

40\5(">\qu> ~ T2 B { A O(rm)} (5.11)

To determine the two-point functions of the axial currents

(=¥

A = Qluls ,z\;q (5.12)

of the pseudoscalar operators
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a —_ a
L q Lis N q (5.13)
and of the winding number density GG we need to solve the equations of motion for

U to first order in the external fields ap, p and 6. Expressed in terms of the

field ¢ defined in (5.2} the equations of motion are

A A
i g.eﬂnl (erﬂTl}
Xs.12)

Q@ +BAMPY -2 B A(MY9)_ 295,42 B45

where %, i denote the traceless parts of p and au.

To diagonalize the mass term we introduce eight traceless 3x3 matrices

L ln with the properties

’Boﬂfmﬁxp}*_% (M%) = ™ '>\p (5.15)

'\"r(()pr)‘;;/) =28pp’
Explicitly, using the standard phase conventions (de Alfaro, Fubini, Furlan and

Rossetti 1973) the matrices AP are given by

fA +__._4.__, r?‘-\'\.. = . .
T 1[_2_( ) o N < (N )
Nobm A (ARiD) - A (A®)
T Tz Yz (5.16)

=iz
3
’)\Tr°= Cea &N 4+ Sin€ A = _SMEN 4 e\

The condition (5.15) fixes the #° - n mixing angle ¢

V3 mg-m Z A
..l_jzg_ = = - r/; ;™M = E(mu-\-md) (5.17)

&=
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as well as the eigenvalues

o 2
M-““l‘. = (mu‘*mé)%o
c 2
Mki = (mu*mﬁ)Bo
o 2 o 2
MKQ = M-\Zo = (W\d +‘m5)‘5° (5.18)
° 2
Mye = (Musma) S, - 3 (mg-m)B, ain €/cos 2€
1313\‘ = Z(M+2m)B, 4 4 (m-h) B, sirfe/con2€

0
(The index o in Mp is to remind us that these formulae for the masses of the
pseudoscalar mesons only hold at leading order; the corrections of.order M2

will be given in section 10}.

The low energy behaviour of the two-point functions involving the axial
vector and pseudoscalar currents and the winding number density w(x) may be read
of f from the expression for the classical action, calculated to second order in
the external fields au, p, 9. The Tow energy representation of <O|TG% GE{O>, e.g.s
becomes

dx e LoV T WO wPiod = 2 —
EELA Mp - PL

.Lg vp(x-) \ <ol WP\

2 [ ¥
— %’530 (g + g +Tg ) + %-\-\b o + Ole*) 510

2oVl B> = L (my-m,)BF, (4- ‘% sn€ ) /cos €

Lot win>=2_ (mg-m) BT, (A= ASinE)cost/cos2E
343

The vacuum-to-meson matrix elements of the operators Aﬁ and P® may be extracted

from the corresponding two-point functions with the result
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O\R P> = L p,T, 4 24 (W A A4 o(m)i

(5.20)
LoV PHPS 2 BT, B p) { 44 0(m)]

The expressions for the matrix elements of the operators w and P? illustrate the
general property of the generating functional pointed out above, which implies

LW Py =-é—§tr(mnf>\q_) Lo\ PPy 4 O(m?) 5.2

The matrix elements of the singlet operators ayuy5q and ﬁy5q do not receive

a contribution at leading order

8q fufsql?> = O(p,Mm)

olg ysql®> = Olm) )

6. Effective Lagrangian to order p4

At order p4 the generating functional contains three different classes of
contributions:

(i) The anomaly is of order pq; we therefore need to construct a functienal
ZA which has the property that its change under a chiral. gauge transformation re-
produces the anomaly. '

{ii) Once the anomaly is taken care of, we need to determine the most gener-
al gauge invariant effective Lagrangian Ly and add the corresponding action
Z, = fdez.

(ii1) Finally, we have to calculate the one loop graphs associated with the
lowest order Lagrangian Ly - these graphs are also of order pq.

Together with the Towest order term Z] given in the preceding section, the sum
of these contributions



2= 2 22, v (6.1)

one \- cop

generates the general solution of the Ward identities at first nonleading order in

the low energy expansion.

A functional ZA which does correctly reproduce the anomaly was construcied
by Wess and Zumino (1971) (Witten has recently given a remarkable geometric
interpretation of this egpression in the limit vu =3, = 0 (Witten 1983}). The
construction goes as follows. Denote the generator of an infinitesimal chiral

transformation by B(8)

DI (w,a,5,0,0) = (dx[te{i[B,a]3t .9 p 2t

+ —rarm————
S0 M Saum)

..{@;P}ég_ +{@,s}§'_ }__24_‘.\9,8—(- ] (6.2)

The condition to be solved,{2.8), then amounts to

D@ZE, =- \o\x +r{@(=c)52(x)} _ (6.3)

where @ is an expression involving only VU and au, explicitly given in (2.8).
The operator exp D(R) generates the global transformation

Vg (X)) = \/‘-_\-(x) = exp P(x) (6.4)

Indeed, one easily verifies that the action of this operator on the external

fields is given by

eD(@){ W, (<) + @ (x)} - eL@(’()( L 4 rly“cp)émx)

G‘:D(m\ Wy &) = Oy} = é;@m( VO W a},)eje@)

e:xe) { S0y 4t p(x)} _ e;@("){ 560 4 lP(“)] o 8O (6.5)
e:D(ﬁ) () = OG) 248G
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The equations of motion for the field U{x) determine this matrix as a functional
of the external fields. Under a chiral transformation of the external fields U(x)
transforms according to the representation

D(@) 180x) 18(x)
e ° Ux) ..-:E,‘P U(w:)e‘;3 (6.6)

This property may be used to transform U{x) into the unit matrix; it suffices to
choose the matrix B(x) such that

- 2180>
e. = UGx) (6.7)

(U(x) is a power series in the external fields, starting with the unit matrix.
Eq. (6.7) uniquely specifies B(x} as an analogous power series if we require B(x)
to vanish in the absence of external fields.) The condition (6.3) may be solved
with a functional ZA which depends on the external fields only through Vu’ au
and U

Za = 2a(m,0,V) o

The condition (6.3} amounts to a differential equation which determines the de-
pendence of this functional on the field U. If we supplement the differential
equation with the boundary condition

Za (v, a,4) =0 (6.9)

(which is consistent with the invariance of ZA with respect to the gauge trans-
formations generated by the vector current) then the functional is fixed unique-
ly. Indeed, if we apply a global chiral transformation specified by the particu-
lar matrix 8{(x) which satisfies {6.7) we obtain
e
e Z, (v, @,V) =0 (6.10)

Using (6.3) this implies the explicit representation

= h‘.

ZA(*’U,O«, U) = - DZO -L&o\x Jrn\ @QX)&D(@]“—:Q (x)}

(6.11)
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The first term in this series in particular contains the anomaly (Adler 1969;
Bell and Jackiw 1969) responsible for the decays - 2y, n > 2Zy:

Ne APHY
2, (w,a,0) = - D \dx %r{@(x)e Wy ) %E:E;

As is well-known, the higher order terms in (6.11) do not vanish even if the
vector and axial vector fields are switched off - the anomaly generates inter-
actions among five or more Goldstone bosons. (See (Witten 1983) for an analysis
of the structure of Z, (0,0,U).)

Next, we construct the general gauge invariant Lagrangian of order pq. Since
we do not intend to analyze the Green's functions involving the singlet currents
aYuq, aquBq or the winding number density w beyond leading order, we disregard

the corresponding external fields
feary, = fra, =O=0 (6.13)

The effective Lagrangian of order p2 then simplifies to

e i_-;{’tr WPU+VFU+JCF((7(+U +7<U*)} (6.14)

and the constraint which eliminates the U(1)-field associated with the n’ becomes

det U =4 (6.15)

Since we need the Lagrangian Ly only at tree graph level, we may use the classical
field equations (5.9) obeyed by U to simplify the general expression of order pq.
Using the procedure outlined in section 3 to impose gauge invariance, Lorentz
invariance, P, C and T one finds the following expression for the general

Lagrangian of order p4
£, = L <R U GUS + L, < U 7,ud< T U VP UD
+ L3 <P, UT U, U3 1 <TMUTT,UD <04 KU

4 L,é(VMU+VNU(’X+U+U+’7()> (6.16)
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_ 2
s LA US|ty ot
+ b XTUXTU ¢ XUt X UtS

(6.16)
NAVALCARVAZSL

+ A«v

R
_LLS;GM,,V“UV"U
s Lo UM R UF M D en (g S 3™ =L 300 o oof™ %>

where <A> stands for the trace of the matrix A. The field strength tensors Fﬁv’
Ftv are defined in (3.8)

At leading order two constants FO, B0 suffice to determine the low energy
behaviour of the Green's functions (recall that we disregard the singlet vector
and axial currents) - at first nonleading order we need 10 additional low energy
coupling constants Lys e L10. (Although the contact terms H], H2 are of no
physical significance, they are needed as counter terms in the renormalization
of the one loop graphs.)

7. Loops

To evaluate the one loop graphs generated by the Lagrangian Ly we consider
the neighbourhood of the solution G(x) to the classical equations of motion, De-
noting the square root of this solution by u(x)

U = u (7.1)

we write the expansion around U in the form

U = o (A+i% —-%i‘%21+---)'x» (7.2)
where £(x) is a traceless hermitean matrix. The number of flavours does not play a
crucial role in the following anlysis. We perform the one loop calculations for
the nonlinear o-model of SU(N)xSU(N) and put the number N of flavours equal to
three only at the end. (The case N = 2 offers a welcome check with the one loop
analysis of SU(2}xSU(2) described previously (ref. II}.) In the remainder of this
section (unless explicitly stated otherwise) the quantities U, £ etc.-are NxN

matrices.
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Inserting the expansion (7.2) in the expression for the action and retaining

terms up to and including gz one obtains
o (3 oy L -
%c\x(f,\ = 7, +:_ff' \dx{rivk (W (g'LC’)V,w(’U%'LL)—}z—VNU* T ()

IR VA A i I ‘{’(Mh LX) \

(7.3)
To simplify this expression we introduce the antihermitean matrices
A + N AR N ‘_—_\'-__L +
VM-_-. .-2:\_11,3/9“’11,]_.2_-’11 ’Fﬂum_z_'u, u W
{(7.4)

= AT, U = L uY, Ut
and define the covariant derivative of £ as

dﬁb% = IDN% + ‘-rﬂ)%] - (7-2)

In this notation we have
124 ) -
Vo (wgw) = 9 (ufuw)- T wfu + bugu™,

= 'u'(d:“(f "”\A/“J(‘H)u’

and the action takes the form

&dxi,\ =—4+:§\dx{r{dpﬂf 4’ [A}‘}“Ai%l _ %16‘\(7 i
G=4(uX"w WX |

More explicitly, in terms of the components ga
- a ~b ab
%= 207 A (WA= 2%

the guadratic form (7.7) may be written as

\o\xiA = —Z—A — %L(%)D%) (7.8)
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where
(§,9) = Z \o\x IO %q(x) (7.9)

and D stands for the differential operator

D%¢" - d'd, §T L &0

a a 2ab. b
R TS B (7.10)
r.)uo.b _ ,%—{F(i?\q,()bl (-:u)
G2 o (8,000 A1) 4 L4 ({5 2% o)

The contribution of the one locop graphs to the generating functional is given by
the Gaussian integral

. : 2
L Zo'ne \oop - ';—'_ :Fo (%)—DE)
- (dulsle
"%L_ (7.11)
= N (;cixa*_T:)')
To evaluate Zone Toop we therefore need to calculate the determinant of the dif-

ferential operator D

_ %_Lwol.q{‘.b (7.12)

one \oop T

We regularize the determinant by working in d dimensions (see II for details).

The ultraviolet divergences produce poles in In det D at d = 0,2,4,....

-~ P o~ ) A 2
zo“ = d)({—-ﬁ—gplﬁ.*d S G - A S (_ﬂ_rpvru+ﬂ_c )_‘__“
¢boop \ o e S HABARANCE: %(7.13)
where Sp denotes the trace in the space of the (N2 - 1)x (N2 - 1) matrices 4,
3, T T, The matrix
v

5
strength belonging to fu

b is defined in (7.10) and fuv stands for the field

Fa) -~

B w3 fu 2t 16T -
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The trace of T T may be worked out by noting that the matrix T is given by
[TAVARTAY: yv

ale

O = = L4 (IXN16,L) (7.15)

in terms of the field strength associated with the NxN matrix Pu defined in (7.4).
The generators 22 of SU(N) obey the completeness relation

N

T A(WVANB) 2z ke(AB) 4 2tcALe B (7.6
a =\ N

from which 1t follows that

2
N -\
Q
S (AL (A B) = 2 4c(ABR)_ 2 AcAkeB )
a=\ N
Using these relations one easily shows that
~ A — M"O

Analogously, one obtains
A z
S8 2o 4<a A" > LA B+ 248 8,5 L 2NLA AL A,

2N L AN AL — 24> LA AL (7.19)

z_ r 2
+ N4 dory | N2 (o>
2N 2MNZ
where <A> again denotes the trace of A; the matrix ¢ is defined 1in (7.7)

Finally, it remains to express the quantities Fuv and AU in terms of U, qu

and X, F- . Calculating (v V. - 7.7 ) (uEu) with (7.6) one finds
HV WV [SRRY) v i

o4 =R \ L 4
r#" = "‘.Al“)/—\’v - _Z‘L'IL +uv w —-;t'U-T‘Mv w (7.20)

Inserting this in (7.18)} one obtains
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A

A — _ —_ . _— — — —

Sp T M= B e UT 90 7,0 V,0>-N (k0,0 TUTGUS
. =R ouT oy . Ll VI VI S
N N R VAARVAD S NP VA VAL VAU

_R -
-—N4 U¥vaU >"-‘;~<+}w-\—nva"'¢MLv"_MVL>
(7.21)

whereas the explicit expression for Spﬁ2 becomes

-~

R RS AU AP PI RV A VAT UM VR VIN

_‘.

z :»\z_ oolz

AU AL AMUSRVRERS Sus AT SEXTT- TS

ISV G U+U*’X)>+N+?- X GAUAST

g

~4 LU XTTLUTX UK w2t s 0.22)

+
g N

The pole at d = 4 in 1n det D thus has the form of the general gauge invariant
Lagrangian L2 given in section 6 - with the exception of the term

<Mu vaqu+VvU> ocurring in Spfuvf“v. Indeed, for arbitrary N the general gauge
invariant Lagrangian of or‘dev"ﬁ4 contains an additional term. For N = 3 we how-
ever have the following identity

ABABS = 2 LR + 4LASLES + LABS T (7.23)

valid for any pair of traceless, hermitean 3x3 matrices A, B. Applying this
identity with

A= iT,0°0 B =UTYU

>

we obtain

LRt TYUT,UT, U = 2 Ut T,0 9UTY,0
(7.24)

4 :iw“u*v,,uf NP AUAVINAVRTAL RUN
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For N = 3 the pole at d = 4 in 1n det D may therefore be absorbed by the follow-

ing renormalization of the low energy coupling constants

r
\—L’=\—L+ rb?\ L= 4)...)40
«
Ri=H 450 L=4,2
-2 d-4( , y /
N =@ p LT-"Z _E(L»mr.\.r(q)+4 (7.25)
3 4
‘-A=5’2‘ 3r9_‘=?—)r3"o"—4=?Jr5=’3§‘
A _ 5 A - A
r(o.-_—/‘-;-; ) r:;_-:o) rx-—-;?— 3 |—8=2) l O_":"
AA“""% > A2-="i5—4

Expressed in terms of the renormalized coupling constants L:, H: the sum

22 + ZOne Toop remains finite at d = 4.

8. Tadpoles and unitarity corrections

To work out the explicit contribution of the one loop graphs to a given
Green's function we need to calculate the determinant of the differential oper-
ator D in a series expansion in powers of the external fields. If these fields

are switched off, D reduces to
alo alo a . b
O, =85 0 a3 ({227 fm) (8.1)

If M, and my are different, then this operator is not diagonal in the cartesian

basis spanned by A],..., k8. It is convenient to instead use the physical basis

A ys--.s A defined in (5.16), in which we have
m N

Dora = Spq {0 *‘?"zp} (8-2)
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In this basis the full operator D is given by

‘D:z.'Do-‘*&

s AnA (8.3)
&= 405,09, 4+ VITLLT
with
/\M A
— A X
Tra = S~ O (8.4)

6—361 - 3 {‘_(D‘?)&M]P‘Z;AA‘])

X o
G@Q = éﬁl‘_r ('{ (XP)?\-Z\ ('U.’X—“’u, “+ QJ+7(GJ+))_§>?Q Mg

The 3x3 matrices ru and Au are defined in (7.4)}. Since § vanishes if the external
fields are switched off, we may expand 1n det D in powers of §

Z x%&mum”

v = ~ R, =1 -
ove Voo “;_" \T(D:é)"i \‘_('Db g—\Dca é>+
{8.5)
where Tr denotes the trace in flavour and coordinate space. The term Tr(D;15) is
the set of all tadpole graphs (loop interrupted only at one point). The next term
collects all graphs with two vertices in the Toop etc. If we count the external
fields au(x) and p{x) as quantiEies of o;der b v“(x) and s{x) - M as order ¢2,
then A is 0(4) whereas I and o are 0{¢" ). The operator § is therefore of order
o°. Ifuwe stop the expangion (8.5) at the term Tr(D;16D;]6) then we obtain all
one loop graphs which contribute to the generating functional up to and including
O(¢4). This accuracy suffices to calculate all two-point functions, the vertex
functions containing at most one vector or scalar current, asrwe11 as the four-

point functions of Aﬁ and Pa.
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More explicitly, the representation (8.5) is of the form

Z = ZAP(O) \dx(_ip(x)

one\—oop 2 I~
N i \o\xd\){ My -3) e (0 T 5 ()
A —
s KH (x-9) CP'; (<2G5+()

. _ ¢
.\.l—‘_ 3(«-3) O‘?Q(x) S (7)% + O( )

Muv(@) = £{2, 809,86 42,852,584 %v BoBq- Lp uvlia
4 Guv @) (Bp0) 4 Bg o]

K@= L1 0uAastg - Bp0,0a]

b
Z

1(2) = SN AN e (8.6)

where Ap(z) = Ac(z, MS) is the Feynman propagator for a scalar fieid of mass MP
in d dimensions. The kernels M*Y and J have poles at d = 4:

My (@) = (- Juo )M (@)= Guo L) 2 0 (aﬂ,_jwn)g(z)
@)= - 9, W (z) (8.7)

322 3 @) 278@)

The poles are contained in the quantity A defined in (7.25). The Fourier trans-

form of the scalars Jr, Ky L, Mr, normalized by

- .

- "P;-L e
3 = \dae 3 @) | s=p
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may be expressed in terms of the function J(s)

3(s) =(321(2)'4{2_+ A foMa -2 Ly Mg
3 ™ A
e

3 (a-v)Z_ A%
4 2 2
v =5+MP+MQ _zs(M9+MQ szMa
2 2 2 -
T=M_ Mg , &=M5-Mg (8.8)

(See the appendix for a discussion of the relations {8.8)-(8.10).) One finds

r —
J = 3-—2\&
Ko & 3
2s
L= &3
45
‘25 3 s* PR yo &
with
IaMp _ M5 £y Ma
™ Mo _
“ 234“1 - E zQ =
2 2.
= — —
J3(s) = D(s) — 3 (o) (8.10)

Note that all of these functions depend on s, Mg and Mé and, in the case of Jr,

r . . . .
M , on the renormalization scale u occurring in the constant k.
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The generating functional Z, obtained by adding fdx(L] + LZ) + ZA to

zone 100p then takes the form

2242y +2a 4 O(D®) (8.11)

Zt denotes the sum of tree graph and tadpole contributions

Z,-Z (dxTfa2 vr g, M) o

P 6 T2 FE Ve

2 S 2.
+ Z‘dxi‘:“'o{/\_f‘__ Me &‘ﬂz}cx
P 16 €T2 2 VER A

s
+ (de d @12

where L; ts given by (6.16), except that the constants Li’ Hi are replaced by

r

the renormalized quantities L:, Hi‘ The "unitarity correction" Zu contains one

loop graphs with two vertices,

zZ % \o\xolyH Qs Gy O M -9) - Fuy LUt} o0 (7 ()

&

A — v — —_
_Bp\((x_j)rm (’()GQP(?) 4 ..} J (x-x))G‘?Q(x)GQ o (3)]

(8.13)
Finally the anomaly ZA is given in eq. (6.11).

To arrive at this result, note that the contribution from the difference
ro. . # 2 2 . P 2 .
Muu - Muv is proportional fg Sp(BUFv - avru) . Since Fu is of order ¢, this
quantity coincides with Spfuv at the order we are considering here. Furthermore,
extracting the pole in AP(O) (see the appendix)

, z A 2 Mo
NRVANAY ) R 2Mo N & \.ﬁszL\, ")G%- (8.14)
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and using the identities

Z

.)

A~ 2 - R— 4
Spalg e = ©F0 *ZZ?MPGPP .,,z%Mp

{8.15)
S +— ea 2
{r*%u VIUL KUY i=%{ G;:p-{-——G‘PP%—\-_?’_ZM
one shows that the tree graph contibution fdx(L]+‘ LZ) merges with the tadpole

term proportional to AP(O) and with the contribution from the difference J - J"

into the expression for Zt given in (8.12).

9. Vacuum expectation values

With the explicit expression for the generating functional given in the pre-
ceding section it is a simple matter to determine the vacuum expectation values
of uu, dd and ss up to and including contributions of order M: it suffices to
set s(x) = M + §s{x) [vu(x) = a“(x) = p(x)} = 03 in the absence of these external
fields U = 1, independently of §s ] and to extract the coefficient of the term
Tinear in §s(x). The result reads (Langacker and Pagels 1973; Novikov et al. 1981)

2 . L.
<olGuiod = _=F, %9{4“2”1\—4“2HW‘"‘ Mo (r_ose...v\_; sin€)
. t 2
_}J,\(_smﬁ +f_g<:ose) +m, K, 4 \(2}
2 \ . -
Lovddioy = - F) Bc{/{_ 2 gt -2 Mo _/u“.,(c.osi_v.__é_s.ue)

. kA
_}J,\(%.V\E.{.{‘%Cosa) +mak,‘+kz~}

— -z 4 2
olBslod o _F BQ*A_Z}JK.*__ 2Myo- 3 (Pgo SME + Mpcos €)
+ Mgk g (9.1)

with

- C _- -
K A= g%o¥02(2 L? -+ ul ) JKZ = (mu+mct+ms)3230_\‘°2\_é

s
Mo =(@an2) MEF > L g

(9.2)
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Note that the scale dependence of the chiral logarithms Hp cancels the scale
dependence of the coupling constants Lg, Lg, HE - the expectation values are in-

dependent of the chiral scale u, as they should be.

The ratio <uu»/<ss> measures the vacuum asymmetry induced by the quark mass
term. Neglecting the difference between m, and my this ratio is given by

<o\EBs\oS

= A43 2 M+ (Me-n )X (9.3)
0 S W S A .
<otGuiod> H H L
Since the constant K1 contains the contact term H2, its value depends on the con-

ventions used to specify the quantity <O|aq|0>. There is no ambiguity in the
vacuum expectation values to leading order, but the first order perturbation
theory formula
£olgqqlo> = a ~ W 3 z

olqqle> = Lolgqiod, -t \d=<oT3Mq qqlos O
requires subtractions to converge - <0|ﬁq|0> depends on the manner in which one
subtracts. The same ambiguity occurs in the ratio <dd>/<uu>. Eliminating the
constant H2 one obtains the following sum rule connecting the isospin asymmetry
<dd>/<uu> to the SU(3) asymmetry <ss>/<uu>

Lolddlo> - .
= A W\C\_mu{ A_ Lo\ssloy N 4_1 1(‘1.;_“;-“:‘&‘1:)
<oiTiut 0> Mo - <otltulod  6h-%, b
(9.5)

where we have dropped terms of order (mu - md}z. (The sum rule holds in any sub-
traction convention consistent with chiral symmetry.) If the expectation value of
5s is smaller than the expectation value of uu then this relation implies
|<dd>|<|<uu>|. Using the numerical values Fov F =93.3¥eV, (m -@)/(my-m,)=43.5
we predict that |<dd>| is smaller than |<uu>| by (a) 0.3%, (b) 0.6%, (c) 1% if
|<ss>] is smaller than {<uu>| by (a) 0%, (b} 15%, {c) 30%, respectively. Values
for the asymmetries in the vacuum expectation values, obtained on the basis of
QCD sum rules are given in (Shifman, Vainshtein and Zakharov 1979; Ioffe 1981,
Ioffe and Belyaev 1982; Mallik 1982; Pascual and Tarrach 1982; Reinders, Rubin-
stein and Yazaki 1983; Narison, Paver and Treleani 1983; Bagan, Bramon, Narison

and Paver 1983).
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10. Masses and decay constants

To extract the two-point functions of the axial current from the low energy
representation (8.11,12,13) for the generating functional we expand it to second
order in the external fields au, switching all other external sources off. The
explicit expression for Z contains the external field au both explicitly, and
implicitly, through the meson field ¢ which is determined by au through the equa-
tions of motion (5.14). The calculation of the Green's functions simplifies con-
siderably if we make use of the following observation. The equaticons of motion
state that the meson field realizes an extremum of the classical action fde]-
This implies that if we modify the field ¢ by 8¢ we change the value of fde
only by an amount of order (5¢) . In particular, if we determine the field ¢ by

2
X0

{rather than by the extremum of the Towest order contribution Ide] to Z) we

= o (10.1)

commit an error in ¢ of relative order p2 and hence generate an error in the
value of fde] of relative order p4. This error is beyond the accuracy of our
Tow energy representation - we may therefore use (10.1) instead of the original
equations of motion. This step automatically eliminates the double poles gener-
ated by mass renormalization.

In the case of the two-peint function of the axial current only tree graphs
and tadpoles described by Zt contribute (since au counts as O(¢) we need Z to
order ¢2; Zu is of order ¢ , ZA is of order ¢3). The positions (residues) of the
poles in the two-point function determine the masses (decay constants). For the
evaluation of these pole terms the contributions proportional to (auav - a\)au)2
generated by the constants L10 and H] may be disregarded. The terms linear qr
quadratic in the meson field are of the form {the components ¢a refer to the

octet basis)

-Z=_\olx ﬁA (3, 9% ar)('9"= a*®) B qe®
(10.2)

where the matrices A and B may be worked out from (8.12). The extremum of Z is at

A (3@ _ A@Ho.”“ (10.3)
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To solve this equation of motion we diagonalize B relative to A, i.e. introduce

a matrix F such that
A-FAFE | B- FME (10.0)

where M2 is diagonal. The solution then reads

-A ~ 1
W_ T (Qswm?) :Fapa“" (10.5)
and the value of the generating functional at the extremum becomes
X v
A 2
Z E&o\x%o’\ ) Ay, M) Cy) o

? »
K(x)= ZF T a0

The pole contribution to the two-point function is therefore given by

_ @ b +*
Lo\ Ap(x)Av(j)\()} _ ;g_ aMVA(X—-\)_;Mt,) ¥?q _T_'?‘o

This shows that the eigenvalues MP of the diagonal matrix M defined in (10.4)
are the physical masses, whereas the one particle matrix elements of the axial

currents are given by the matrix F:

= "
LoVA, 1P o> = ip,F ° (10.6)

M
With the explicit form of the matrices A and B which follows from the represent-
ation (8.12) of the tree graph and tadpole contributions, the masses and decay

constants are easily worked out. Neglecting the mass difference m - m, we

obtain
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N

M =2FJ\B@<\A+ Mo - S M + 2 ¥ 4 K,
Mkz CY/‘>\+V’V\5)B° ‘1 A+ %N{\ _{.(\‘,\’\ﬂ-\-mS)Ka “‘KA-}

MZI - 2‘3_( m+2me ) B -\4+2}4K -h/ur' + — (m+2m5)\<34\( ]I

'*‘ZM%O‘%"NW'*%H\( -t-%Hq} + Xg
(10.7)
:F_W=:F°.{A_2H“__ My +2m WK 4 V*JF}
— A
Tw '-':FO{ A *%Hw-%ﬂu—i—p-\ 4 (mamg) K -\»’Kq..s
Fr\= ?o{ A-Buy 4 % (&.\.z\us)\((ﬂ\(}k

where the constants Ki denote the following combinations of the low energy
coupling constants

K= 222 (aly - L)
Ka = (musma +wg )”;%" (2\-(:._\_;)
5=(W15 m) AZ?% (SL-]'_k..L;)

9 ¢z (10.8)

K}: (mu.pmc:\‘!'m&) g"":FB—; L:

o]
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The quantity Mo is defined in (9.2). As a check one verifies that the masses and
decay constants are independent of the renormalization scale p. {The nonanalytic
pieces in these expansions coincide with those found by Langacker and Pagels
(1973), if one replaces In Mg/pz by In MZ/U2 where M denotes a common meson mass.)

At leading order in the quark mass expansion the Gell-Mann-Okubo formula
holds exactly; at first nonleading order the formula receives a correction. De-

fining AGMO by

1

Agwmo (4“"&-‘“\:—5”?{ )/(M’r‘\-‘*’ﬁ}) (10.9)

we obtain

F4 z .
Do = - 2(4M iy - My gy -3My g )/ (Mg w1
. - (10.10)
2 2
- i ety el

{(Experimentally, correcting the masses for electromagnetic effects, one finds

beyp = 0-21-)

Likewise, the ratio ME : Mi is equal to the quark mass ratio (mS +@m) : 21
only at Teading order. The mass formulae (10.7) imply the following correction

z. ~
M _T_S__i“_{ A4 AM} ~(10.11)
tvqi? 2 ™

AM = - My .+N,‘ + ;—FS—Z(MZQ(—M:)(Z-Lg - LS)

o

The ratio FK : Fn is given by

v (10.12)
-
Ar =3 g _ Ly, -3 4 (M _w*
= T Hr-z M ZH"+=F"( w-My)ls
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Eliminating the constants Ke and K7 in (10.7) we obtain the following sum rule
expressing ﬁ} in terms of ﬂr and FK:

4
— (I LND 2 2
Fo=Fr () {1+ = (305 £a Y _m] LMy, ofm®))]
2
¥ %G'“Z:F‘f‘ Ni M“‘ (]0_]3)
With the experimental value (Leutwyler and Roos, 1984)
T _ A22 X 0.0A4 (10.14)
s
the sum rule (10.13) predicts
:i“_ - A.3 +0.085 (10.15)
o

The quark mass difference my = Mg generates the following first order
isospin breaking effects in the Kaon system

2 2 2 -
(MKo___ M\(+)QCD = (md“mu)%o'\ 4+% H"] + MK E;'_]ﬂl
M ME
“ Z(MS.;V'\\(\)KS '\V‘A'} A O(Wns)
T . 2
__5) A g 3B A (LML), Mm i
Tt /qep “rT M My-Mg

mg-m_ YK o(m?
4 (mg-mu) K + Of )(10.15)

At leading order in the quark mass expansion the ratio (Mﬁ0 - M§+): (Mﬁ - ME)

is given by (md - mu) : (mS - fi). Comparing (10.16) with {10.7) we find the

following correction to this relation
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2 z
(Muo_Mm)QcD . Md_my { A4 AM} (10.17)
Mo M2 Mg -

where A, is defined in (10.11): the correction factor is the same as in the re-

lation for ME : Mi. We therefore obtain a sum rule which does not involve unkown

low energy constants

(Moo_™Ms) = A
oM daco M maema 22| s o0
M\.:.Z‘—M:{ M:Z Me - ™ ms-\-v?\ (10.18)

Since the ratio (md - mu) : (m_ - i), which compares isospin breaking with

s
SU(3) breaking, is known very accurately (see I) this sum rule may be used to

obtain a value for the ratio mg i which is not known with the same precision.
To extract this information we first correct the mass difference between k° and

" for electromagnetic effects with Dashen's theorem (Dashen 1969)

2 2 2 2 2. e 2
(Mo - M gep = Mo~ Myr = Mo + ™M+ 0(eTm)
(10.19)

Next, in order only to use independent information, we determine the ratio
R = (mS - @) (md - mu) from isospin breaking in the baryon mass spectrum and
from p-w-mixing. This is easily done on the basis of table 4 given in ref. I.
Eliminating the contribution from k® - K™ in this table one finds R = 43.7 + 2.7,
Inserting this number in {10.18) and using {10.19) we obtain

ms - 2531 %20 (10.20)

N
iaal

where the error includes the uncertainties due to effects of order MZ in {10.18)
as well as the uncertainties due to the corrections of order e2M to the Tow
energy theorem (10.19). We thus confirm the value me M = 25.0 + 2.5 obtained
in I from the mass ratios Mﬁ : Mi : Mﬁ, i.e. from independent experimental in-
formation.

i - Mi) and
) : (mS - @) turn out to be the same within rather small errors. This

. 2 2 )
For later use we note that the two ratios (MKO - MK+)QCD : (M

(md -m,

implies that the quantity By defined in (10.17) is small:
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A = *0.03 (10.21)

In order to evaluate the isospin asymmetry in the constants FKO’ FK+ which

follows from (10.16) we express the constant K6 in terms of FK : F1T with the

result
T
00 WIS PR (bRl e AR SRR L)
- B M\ F Capiwx < W M
¥ ms-m o AT o 1.1
vt/ Qeo

(10.22)

With the experimental value for FI< : F1T given above this sume rule predicts that

the isospin breaking is very small
:F¥{¥

Furthermore, m, # my induces ﬂon mixing. To first order in m, =My the con-

) ~ 1004 (10.23)
RCD

tributions to the generating functional which are linear or quadratic in the
fields ¢3 and ¢8 may be written in the form (vu =p==0,s5=M):

Z=1 %dxﬁf (7,9% £,9,¢) . 71 (9,07 £,9,¢°)"

e C AN N N (TR R0 b S

Vpcpa - ’ap(_Pa*o:, (10.24)

where Mﬂ, Mn, Fw’ Fn are the isospin symmetric masses and decay constants given
in {(10.7). The two mixing angles €1s €, @re given by




_ a1 -

’{éw‘d mu (M )C

5..

EA’- Ez+

A

ez=ﬁ“:e_:rff_\4 By + 2ty 4 My + M7 C, 22 (nk N, )(sL,,ng)k

4 g
S 2
CA: A z X (/\__ ..‘kj_z‘!r_..—_-zu L‘v lj_‘(_) (]0.25)
W2 ¥ M- Mg M

They determine the off-diagonal matrix elements

2 o .
(10.26)

40\A3’,. ba> = -l pu®,Fy

Note that €
defined concept only at leading order in .the quark mass expansion; at the order

1 and €, are different. The notion of a 7°n mixing angle is a well-

we are considering here there is no ang]e € for which the two orthogonal combin-
ations cos€ A + sin eAﬁ and - sineg Au + cose Au would have nonvanishing matrix
elements on1y with the states lﬂ > and [n> respectively. To evaluate €, We express

the constant 3 L7 + L8 in terms of AGMO + AM' Using (10.17) we obtain

2 2
(M o_M 2
Ez-_;ﬁ : 1K+)QQD{4+ AG.:MO _\_CAM“.-»CZ}
4 M- wmMmg

(10.27)
C, =2 { 3 F4 JLvu z_ fﬂn- iln/ ‘1k }
m‘ﬁ} My-My My My
With the value (MKO - MK+)QCD = 5.28 MeV given in I this becomes
— 2 o
e, = 4210 = O _
A k R (10.28)

P
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to be compared with the lowest order mixing angle

md._. v -2 )
£ . V2 M-"Mu 66107 o ©.5% (10.29)

4 M A

. 2 2 0 .
The differences MW+ - Mno and Fﬁ+ - Fwo {where F1T0 measures the = matrix

element of Ai) are of second order in m, - m and are therefore tiny. We did not

d
work out the isospin breaking in the decay constants. The mass difference

M ; - Mo is discussed at the end of the next section.
m ™

11. Comparison with SU(Z}xSU(2)

The low energy expansion simplifies considerably if one limits the external
momenta to values small compared to MK’ M and treats m,s My 3s small in compar-

i
son to mS

2 =
P&y 5 ™My Mg &amg (11.1)

In this region the degrees of freedom of the K and n mesons freeze.

If we only consider Green's functions involving u or d quarks and, further-
more, ignore the 1soscalar currents uy u + dy U, Uy ysu + dy ysd,the generating
functional at orderp reduces in the 11m1t(11 1) to thecorrespond1ng Tow energy
expansion for SU(2}xSU(2) which we analysed in detail in II. In particular the seven
low energy constants E],...,£7 and the three high energy constants h1, h2 and h3
which specify the general effective Lagrangian of SU{2)xSU(Z2} at order p4 can be
L]O’ Hl,and H,. With these re-

lations at hand, the phenomenological information on the values of the low energy

expressed in terms of the parameters Ll"'

constants £1,..., £7 obtained in II may then be translated into information con-
cerning the SU{3}xSU(3) coupling constants. (Since the SU(3)xSU(3) Lagrangian
contains three additional Tow energy coupling constants we however need additiocnal
information, either from data on K£4 decay (or Tow energy Km scattering) and on
formactors or from theoretical considerations based on the large NC 1imit (see
section 13).)
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We now show how to calculate the SU{2}xSU(2) parameters in terms of the
SU{3)x5U(3) coupling constants.

Let us start with the parameters at order p2. In the case of SU{2)xSU(2) the
leading order effective Lagrangian is determined by the constants F and B, where
F is the value of the pion decay constant in the Timit m, =My = 0, m # 0 and
FZB is the vacuum expectation value of - uu in the same limit. The value of F is
easily obtained from (10.7) by setting m, =my =0

[ra— -~
¥=?%{4—ﬂx+8ggﬂw} (11.2)

(-]

In the same manner {9.7) Teads to

- * r -
%=B°\4_%p,‘_4‘*;§(L4 wz\_é)} (11.3)

(Barred quantities refer to the limit m, = my = 0, e.qg. MK = mSBO).

To find the relations between the parameters at order pq it suffices to
compare the generating functionals at order ¢4. It is convenient to compare the
two expansions in powers of the external fields around the point m, =My = 0. This
is a valid procedure since the coupling constants are independent of m, and my {in
the case of SU(2)xSU(2} they do however depend on m, see {11.2, 3, 6)).

In the Timit (11.1) the Toop integrals involving virtual K or n mesons reduce
to polynomials in the external momenta. Up to terms of order s/Mi the scalar
functions J" and M which occur in the expression {8.13) for the unitarity cor-

rections Zu become constant:

3\“ = - 2Y,
’ ~
I = ~2Vn
- (11.4)
3 = _2Y A
T L \ew %
™MT A
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where

A (LWF\'L
v = Me 4 L p=XK (11.5)
p 52—“2_ “2_ * ) 2 P 2 Yl

{Note that the functions Jr, M" depend on the masses Mp and MQ of the mesons
running around the loop. The quantity J;n e.g. stands for the function 3" evatu-
ated with MP = Mﬁ, MQ = Mn.) The functions K and L do not contribute, because we
have set m, = My (= 0): in this case the only unequal mass loops are loops con-
taining a m and an n - the vertex f#n is however absent, since A and X commute
if m, = My Likewise, there is no contribution from M;n or from M;n . because
F3n= fﬁn= 0. Inserting the representations (11.4) in the expression (8.13) for
the unitarity correction and adding the tree graph and tadpole contribution (8.12)
one finds that the SU{3)xSU(3) expansion indeed reduces to the SU(2)xSU(2) expan-
sion given in II, provided the renormalized coupling constants are identified as
follows:

l r
A

r - A
£2=4L2__._.v

2 ¥
- c \B . v r
--%Y, _al_ 46 A
is 4 s +Ablg gL -7
A= 8Ly valg - 4w
[ «
be = Lo » L vy (11.6)

\2-

.
~2bg 4+ vy

oS s
& 1
I

2
:F-o — « - [
¥ 7 o= (M) w4 (ba-le- 8L 3L 4 %)
hr bf’s \s ~ A
.= 8L, vabg_aly 2H, 4y,

74

r r
= _1 LI B
2 :1 L‘A() 3 A Z4 ‘ﬂ(
Lo
L.

i A A D A
pA+2H, Sty 4y 2
= e TS

Lol

3= 4

5
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As a check of the relations (11.6) one verifies that the dependence of the
right- and left-hand sides on the scale u is the same. Furthermore, one may com-
pare the guark mass expansions of the vacuum expectation values of uu and dd, of
the pion mass and of the pion decay constant given in sections 9 and 10 with the
corresponding SU(2)xSU(2) expansions given in II - the agreement of the two low

energy representations is a rather thorough consistency check on our calcutations.

We briefly discuss an application of the relation for £7. In II we have
shown that this constant determines the mass difference

(A

2z 2 = -
(M\T*—'M'n")G)CD = (mg-my) % 24{ 4+O(m3} (11.7)

Inserting the expressions for F, B and £7 given above, this becomes

(Mps— M —————(*““'md)LBoV* ‘;‘ Mo &+ 2 My

A
4 (mg &)

N
ve)@ep =
(11.8)

r i v
A N L Bl T +o(a)m;)’l
®

Note that contributions of relative order i are neglected - in principle these
contributions could also be extracted from our low energy representation. We are
shortcutting a tedious calculation here at the loss of some information. A re-
presentation for all nonanalytic terms in the quark mass expansion of M§+ - Mio
up to and including M2 log M is given in Appendix C of I. (Indeed one easily
checks that the chiral logarithms in (11.8) agree with (C.7)). The information
contained in (11.8) goes beyond leading logarithms: the scale is fixed in terms
of the coupiing constants L:. We eliminate these constants in favour of measured

quantities and rewrite (11.8) in the form

2 r 2
2 2 (M —Mo M z
(MW+—M“°)QCD= K)QCD{’\-q-%AGHO-i- K_L(A'f‘&’e“tl-‘—‘-)
3(™ME - ™M) ENEE, My -

N 'o(&,mg\k (11.9)

At leading order in the quark mass expansion the mass difference is exclusively
due to ﬂon mixing. At first nonleading order other effects such as mixing with
the n' contribute. The curly bracket in (11.9) accounts for these corrections

. .. . - 0]
in a parameter free manner. As was anticipated in I the correction to the m™n
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mixing formula is large, of order 50%. It turns out that the higher order
contributions amplify the perturbation generated by m, = my. Numerically,

(™ = 0.11% 0,03 MeV (11.10)

“+-V4“o)QC0

where the error includes the uncertainties in the value of (MKO - MK+)QCD as well

as the uncertainties due to terms of 0O{m, mg). This leaves

(MWJ' MMWO) QED = 4.43 * 0.02 MeV (11.17)

for the electromagnetic contributions.

12. The n'

In the systematic Tow energy expansion the n' does not play a special role
as compared to other excited states such as the p¢. The presence of these states
only manifests itself indirectly in the values of the low energy constants Fo’
Bo’ Lyseen. Both beacuse the n' is crucial for an understanding of the large Nc
Timit (Witten, 1979; Veneziano 1979; Di Vecchia 1979; Rosenzweig, Schechter and
Trahern 1980; Di Vecchia and Veneziano 1980; Kawarabayashi and Ohta 1980; Nath
and Arnowitt 1981) and because nn' mixing is known to affect the low energy pro-
perties of the n in a significant way we briefly consider an extension of our
framework which explicitly includes the n'degrees of freedom. It suffices to drop

the constraint det U = exp (- 19); the unitary matrix U(x) then contains nine
fields
U(x) = ex p{ %(-Pu (x).k e,xp'k'»q’(x)}

where ¢(x) is hermitean and traceless and where the single component field ¢0(x)
is related to the determinant of U : det U = exp (i¢o). In the 1imit of exact
SU(3), m, =my =m, the field ¢(x) describes the eight Goldstone bosons and
¢0(x) is the n' field.

It is straightforward to adapt the analysis given in section 3 to this more
general setting. We first note that the quantity ¢0(x) + 9(x}) is invariant under
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chiral transformations. Chiral symmetry does therefore not imply that the most
general Lagrangian of order po js a constant, but only implies that it is a

function of ¢0 + 0

i = _\/O((po+9)+-

To order pz the general effective Lagrangian consistent with Lorentz invariance

and with chiral symmetry now takes the form

I% = -Vo “"\l"{r V/“ U.\_VHU -\-Vz'Lr (s-e)Ux \/: H’(SM-P)U*
-\"\lavaovpg+VAQ~QV“@+VSVPLPOV”(QO (12.1)

where Vu¢o denotes the covariant derivative

Vo = Wy —2tcay = =it (U V) (12.2)

and where the potentials Vi depend on by * 0 only:

Vi 2 N (@0r0) 02.3)

The potential V5 may be eliminated by a change of variables of the type

Uu=-1u exp{if(¢o + 0)}; we therefore set V5 = 0. (For the Lagrangian to be real,
VO, V1, V3 and V4
variance under parity implies Vi(a) = V?(- a).)

must be real, whereas V2 may be complex. Furthermore, in-

To discuss the low energy information contained in the Lagrangian (12.1) we
again need to work out the minimum of the Euclidean action. To leading order in
the low energy expansion the field ¢ (x) sits at the minimum of the potential VO.
I[n order for the ground state to be an e1genstate of parity if e = 0 this minimum
must occur at U, 00 This implies that exp (+ 1¢ }=+11.e. ¢ =0 or ;0 =
If the minimum is at b = T we change variables, rep]ac1ng u by - U. In the new
variables the minimum occurs at ¢0( ) = 0 if 8 vanishes and at ¢ (x} = - g(x) if
the external field 8(x) is not switched off (but is close to 6(x ) = 0, see
section 4).

To determine the generating functional to second order in the momenta we

expand the potentials V. in a power series of ¢, + 8. This power series contains
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an infinite sequence of vertices, describing processes which involve an in-
creasing number of n'-mesons. (In contrast to the couplings of the Goldstone
bosons among themselves, which at order p2 are fixed by the two constants FO and
Bo’ chiral symmetry does not restrict the couplings of the n' very strongly -
the general solution of the Ward identities contains infinitely many coupling
constants.) To determine the mass spectrum and the one particle matrix elements
of the currents we need only consider those vertices which are at most quadratic
in the meson fields. Expanding the general Lagrangian {(12.1) in powers of ¢ and
¢0 one finds that the masses of the charged mesons are not affected by the
presence of the n', but ﬂo, nand n' mix. If we put m, =My = M there is no
mixing with the 7% and the mm' mixing angle & becomes

T, Wy = end + 0 510 s

Ia . . % ! g
g = - N Sin e (12.4)
1A aE ! 1

bq 28 — %Eg(‘c‘\;‘c‘v)/(b«ﬁq\@\q‘)

where the constants FO,Y and M0 are given by

2

T, = 4 V(o)
FoBo= 2V, (o)

=g M:= (,\/;’(o)+ %um\ \/2(0)+C>LV;(0).. 3\/2”(0)}

!
Yy = 2+ 31 Va2 (0) (12.5)
V, (o)
o ¢ 0
and the masses M , M., M stand for
™ k n
o
2 Py
MTT = 2Zm o
(-3 2_ A
My = (& am) D, V (12.6)
o 2 9
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Denoting the eigenvalues of the mass operator by Mﬂ, MK’ Mn’ Mn' one finds
L+ ] (-]

M.W-.-.-M“ N MK=MK

kA e 2.
Mg+ My = M5 M, (12.7)

=PFr swn

M;, - M,y =(cos2® 5"(»«';—\:4,;‘)

The mixing angle may therefore also be expressed in terms of the eigenvalues of

the mass operator:

(4MF M5 _3My)

A
2 (12.8)
3 2, +

( ¥4“ - h4q )

If one assumes (see however the discussion below) that the mixing with the n' 1is
the main reason for the small difference between the observed mass of the n

(Mn = 548.8 Mevg and the mass which one obtains from Mﬂ, MK with the Gell-Mann-
Okubo formula (Mn = 566 MeV), then the mixing angle and M0 become

S = -10.2° , Mg = 347 MeV (12.9)

{to be compared with Mn' = 957.6 MeV). Furthermore, (12.4) implies

Y - 0.5 (12.10)
The coupling constants of the eighth component of the axial current to n and n'
become
T =T, c0sS T o= F,u
q = o ces 3 o= , S > (12.11)

whereas the couplings to the singlet current (Ao =/§1L) are

F, - _FemsS - X, T ces®

(12.12)

———

?K = i‘, '\ A G\’B(")}
-

o
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Finally, the matrix elements of the winding number density are given by

w = —, *.(* GS Eii M

R %

Lolwlns = _ 3w LA > (57 Fe

! cosd I
Lolwlin'> = /{sa_ ﬁA M,] _I)}

(12.13)

A = —'%-"{M: ~ Ly (aMg MDD

Apart from Fo’ M0 and v, the one particle matrix elements thus involve a single
unknown F' related to VB(O)'

One may proceed to work out the couplings of the n' to the Goldstone bosons

(D1 Vecchia, Nicodemi, Pettorino and Veneziano 1981). In the limit m, = my = 0

the effective Lagrangian describing the decay n' -+ nmm e.g. is given by

{ - :f \/ (0) 2in 23 qr\ D, TOOMT (12.14)

2

Indeed, at order p2 this is the most general Lagrangian consistent with chiral
symmetry. Since V“(O) is an unknown constant, the total rate is not fixed by
chiral symmetry, but the distribution over the Dalitz plot is determined. Acutal-
1y, the Dalitz plot slope which follows from (12.74) disagrees with observation.
As pointed out by Singh and Dasupathy (1975) and Despande and Truong (1978} the
SU(2)xSU{2) Tow energy theorem for the slope parameter fails in this case because
the decay spectrum is distorted by the proximity of scalar resonances. We do not
discuss the matter further here, but refer the reader to the Titerature on the
subject.

What we instead wish to discuss is the validity of the assumption underlying
the value § ~ - 10° for the nn' mixing angle. As emphasized above this value
only follows if one assumes that the n' is the main source of the observed small
deviation from the Gell-Mann-Okubo formula. In section 10 we have given a
general expression for this deviation, based on the low energy expansion to
order p4

A

This expression does not involve the assumption that the discrepancy

Mo is dominated by the n'. To relate the effective n' Lagrangian discussed in
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the present section to the general framework we note that in the region of small

momenta and small quark masses

B,

Pﬁ)‘4§ <= My (12.15)

the propagator describing n'-exchange reduces to a constant

2. 1__—‘ z —A
(jqu’ -P ) > (3\4q’.)

If we restrict ourselves to 0 = tr au = 0 then the contribution from n'-exchange
reduces to the following local effective Lagrangian of order p4

0 % 2.
£ o8 T [e(XUT-uah] 4 0(et) 2
48 Mg,

In the general Tow energy expansion the n' thus only shows up in the form of a
contribution to the low energy constant L7

! 2 2
\I\ — -5—— '—;F:_ {12.17)
]. 2.
48 Mf\/

In connection with n'~dominance the natural question to ask, therefore, is
whether the contribution from the n' dominates the constant L7. To answer this
guestion we first note that L7 is not renormalized by meson Toops (T7==0, L7==L;).
Furthermore, one may verify that the exchange of scalar or vector mesons does
not contribute to L7. The exchange of the pseudoscalar octet containing the '
does contribute, however, with a sign opposite to the contribtuion from the n'.
It therefore appears to be reasonable to assume the n' contribution to be mainly
responsible for the value of L7, provided this constant turns out to be negative.

(At any rate the n' dominates in the large N_ Timit.)

The value of the constant L7 may be extracted from measured quantities as
follows. In section 10 we have introduced three asymmetry parameters AGMO’ A

and AM which are measured (AGMO = 0.21, Ap = 0.22, AM = + 0.09) and which (at
the order in the low energy expansion we are considering) are determined by the
constants Lg, L7 and Lg. It therefore suffices to solve the three relations
(10.10, 11, 12) for L, L, and Lg. The result for L, is
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L, =-(0.4*0.458).15° (12.18)

}

The sign is negative, as it is required if the n' is the main source of L7.
Using (12.17) to determine the value of the coupling constant y which measures
the strength of nn' mixing (see (12.4 )) we get v ~ 1.4. Since (12.17) only
holds to lowest order in mS/Mi. and does therefore not distinguish Mi. from
Mﬁ. - Mi, the value obtained in this manner for y only represents a rough
estimate. To obtain a reliable vaiue for v and for the mn' mixing angle § we
note that the crucial quantity is the amount by which nn' mixing drives the
(mass)2 of the n away from the value %—(4 ME - Mi) predicted by the Gell-Mann-
Okubo formula. In Towest order of the guark mass expansion the masses are given
by (12.6). The Zweig rule implies that the mass of the pion is affected only
little by effects of order M2 (see section 13). With m ot i = 25 we thus have
ﬁﬂ 2_135 MeV, ﬁK 2_487 MeV, ﬁn v 557 MeV. The overall effect of the corrections
of order MZ (which shift these values into the observed masses) is therefore
gquite small (é 10 MeV). To determine the mixing angle we however need to split
the second order contributions to Mn into a piece from L7 (which is blamed on
m' mixing} and a remainder, due to chiral logarithms and to the low energy
constants L, LS’ L6 and L8 {see (10.7}). With {12.18) one finds that L, shifts
Mn downward by 80 + 30 MeV {the remainder shifts it in the opposite direction by
almost the same amount}. The mixing angle required by (12.8) for such a large

shift 1is

S—_20 % 4° (12.19)

The corresponding value of the coupling constant vy may then be determined from
(12.4) and {12.7) with the result

X = A,AXO.3 (12.20)

Note that the values obtained for the strength v of the nn' coupling and
for the mixing angle § are twice as large as the canonical values y = 0.5,
8§ = - 100, extracted directly from the Gell-Mann-Okubo formula: the canonical
values underestimate nn' mixing by about a factor two. (We emphasize that this
statement holds within the specific framework wused here, which includes all

effects of order Mz. If one only takes nn' mixing into account and neglects
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other effects of the same order, one may just as well stick to the canonical

values.)

13. Large Nc’ Iweig rule

If the number of colours is sent to infinity and the coupling constant g is
sent to zero in such a manner that the product NC 92 stays constant, the Green's
functions of the theory are proporticnal to a power of NC (t"Hooft 1974,
Veneziano 1976; Witten 1979, 1980). We denote the general connected Green's
function containing Q quark currents and W winding number densities by

G = <N L) Ja @) W (9, - WIS rected
_‘\L -9 (‘;‘_C\ (13.1)

. ! PRy

where the colour neutral matrices Pi act on the spin and on the flavour of the

2
quarks (note that our normalization of G is L = - tr GquUv/(Z g )+ ...). For

large NC this Green's function is of order

(E; (:)( r\lé?-\hf> CQ = O
QW = e (13.2)
(:)(_FJ(1 ) R * o

(Note that this counting rule only holds for generic momenta. The exchange of an
n' e.g. generates a pole factor(Mi, - pz)-] which at p = 0 produces an additional
power of Nc’ see below.)} The leading contributions to Green's functions containing
quark currents {Q # 0) arise from graphs with a single quark loop (planar graphs
with the quark loop running at the edge of the diagram). These graphs are given
by the functional integral over the gluon field of a product of the form

tr(Fi] SFiZS...TiQS) where LERERR TQ is some permutation of 1,..., Q and where

S denotes the gquark propagator in the presence of the gluon field. If the quark
masses are set equal to zero, the propagator becomes flavour independent. In the

chiral 1imit the leading contribution to G W therefore depends on the flavour of

Q

»--.A; ) where A; Ts the flavour factor

the currents only through the trace tr(i iq

1
in the matrix Fi'
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The Tlarge NC behaviour of the generating functional is easily obtained from
(13.2)

2
Z{vas,0,0)= N S:b(%—) ,»Ncﬁ\(r\r)aﬁ,sj p}%) +0(1)
(13.3)

where the functionals fo(u) and f](v,a,s,p,a) are independent of N_.

The counting rutes for the one particle matrix elements are (Witten 1979)

2
Zoljlmeson> = O(N¢") | <oljl1gluebally = O(4)
y (13.4)
Lolwimeson> = X N-c_z))- Lol wl 3\ue\oqLL> = OQ)

To analyze the large NC behaviour of the effective Lagrangian {12.1) it suf-
fices to expand the matrix U in terms of the meson fields

U == ’l.\.'\ L_g? +‘|CP+... . (13.5)

and to look at the terms which are independent of by and ¢. Comparing these terms
with (13.3) we obtain (a = ¢g * )

z

\/(3 (0{ )= Nc_ (U‘o (oL/NQ_)

V, () = Naa, (d/Ne) (13.6)

Ng(d) = Uy (oL/NQ)

Vo) = vy (d/pe)
where the functions vi(x) are independent of NC. (Formally, these properties of
the potentials are in conflict with periodicity. If the potentials Vi(q;0 +6)
are periodic with period 27 then the representations (13.6) can hold only in a

neighbourhood of the origin (Witten 1980; we are indepted to G. Veneziano for
a discussion of this problem).) The relations (12.5, 12, 13) then show that the
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constants Fo’ Bo’ F'y v s MO and A have the following large N. behaviour

T - O(Ne)
o= O(4)
% Ty 1w Ok )] )
¥ = 4+ O(YNe)
M2 o \i_ 3V, (o) z?,{cfm}{a+o("/,\,c)§

in agreement with the rules (13.4) for the one particle matrix elements. The
coupling constant F' tends to FO,Zthe quantity v which determines nn' mixing
tends to 1. In the chiral Timit Mn‘ is of order 1/NC.Fbr'nonvan€shing quark masses
the mass formulae (12.4, 7) show that in the formal limit Nc +w the n' will only
contain strange quarks with Mi. =2 mSB0 whereas the n will only contain u and

d quarks and will be degenerate with the pion.

The prediction y = 1 is in good agreement with the value v = 1.1 + 0.3
required by the mass spectrum: the Targe Nc 1imit thus also predicts that the n
mixes more strongly with the n' than indicated by the canonical value y = 0.5
(the mixing angle which follows from (12.4, 6, 7) with y = 1 and with the ob-
served masses Mﬁ, Mes M, is & = - 20°, see also Kawarabayashi and Ohta 1980).

In order to understand why the value v = 1 does not imply a strong distortion of
the Gell-Mann-Okubo formula, one however needs to take all contributions of order
U2
n-mass based on the tree lagrangian alone would be Mn E.MK

to the meson mass formulae into account - the large NC prediction for the

A different test of the large N_ predictions is provided by the decays
n-> 2y, n' » 2y which are sensitive to nn'-mixing (Gilman 1979; Chanowitz 1980;
Minkowski 1982; Roiesnel and Truong 1982; Field 1983). The lowest order contri-
bution to these decays however originates in the anomalous piece ZA of the ge-
nerating functional which is of order p4. To reliably calculate SU(3) breaking
effects we would have to carry the low energy expansion to order p6. This is

beyond our scope,
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Finally, let us work out the large NC behaviour of the low energy constants
which appear in the general effective Lagrangian {6.16). This Lagrangian is
relevant for the behaviour of the Green's functions at momenta small in compar-
ison to Mn,. As pointed out above the large Nc counting rules do not apply direct-
ly in this case, because the exchange of an ' (not visible in the effective La-
grangian, but implicitly present in the lTow energy constants) generates a factor
1/Mi. whicg upse;s the power counting. To extend the validity of the counting
rules to p << Mn' we note that small denominators occur only if the Green's
function splits into two or more pieces connected by the exchange of one or
several n' mesons (one particle reducible contributions). The general structure
of the n' couplings permitted by chiral symmetry is given by the Lagrangian
(12.1) up to and including terms of order p2 (put 8 = tr a = 0). Since this La-
grangian does not contain any terms coupling the ' to thg other fields at order
p0 we conclude that the exchange of a single n' leads to a contribution of order
p4; with two consecutive exchanges we obtain a contribution of order p6 etc. To
obtain the Tow energy expansion up to and including p4 at most one exchange of
an n' can contribute. In fact, this contribution was worked out in section 12
with the result that all constants in the effective Lagrangian except L7 are un-
affected. The contribution to L7 is of order NE and is given explicitly in (12.17}.
The large NC counting rules therefore apply to all terms in the Lagrangian (6.16)
except to L7:

L‘L-.-.—.. O(NC) N \,5&:} ) l—x\,( = O(NQ)
(The Teading term in L4 and L6 happens to vanish, see below.)
As mentioned above, in the chiral Timit the Teading contribution to the Green's
functions involving quark currents are proportional to tracesover the product of
the relevant flavour matrices. To evaluate this property we again look at the
terms in the effective Lagrangian which are independent of the pion field, i.e.

put U = A . The contribution from L6’ L8 and H2 then reduces to

43, Ly () s (Mpa2ly) 4e(s™) L (Hpm2lg) e (pt))

The vertices generated by L8 and H2 are indeed of the required form, but the
contribution from L6 is of a different structure. Hence L6 is sppressed by at
least one power of Nc‘ Analogously, one concludes that L4 is also suppressed,
Concerning the constants LT’ L2 and L3 one has to keep in mind that the
algebraic identitiy (7.24) allows one to express products of traces in terms

of traces of products. This leads to the conclusion that only the combin-
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ation 2 L] - L2 is suppressed.

We thus have the following large Nc behaviour
-

O(N) ~ L, bz, Ly Lg, Ly, Lg, Loy ¥, M, (3.8

>

OCx) 2.Lq -Ls 5 L.‘4) L_c’

The suppression of L. guarantees that the vacuum expectation value <0|uu]0> is
not sensitive to the mass of the strange quark (see (9.1}). The suppression of L,
implies that the value of F?T is also not strongly affected by m (cf. 10.7).
Finally, as can be seen from (10.7) the contribution to MTT proportional to m
only involves L4 and L6 and is therefore also suppressed. The Targe NC Timit thus
gives a theoretical basis for the Zweig rule ('t Hooft 1974; Veneziano 1976;
Witten 1979). We emphasize that the suppression of the constants 2 L] - LZ’ L4
andL6 is a general feature independent of the chiral structure, in contrast to
the large NC enhancement of L7 which holds only to the extent that Mn' is small

incomparison to the scale of the theory.

The one loop contributions to the generating functional are of order 1, 7.e.
are suppressed by one power of Nc in comparison with the leading graphs. Shifting
the renormalization point in the coupling constant Ly e.9. changes the value of
this quantity by a contribution of order 1, in accord with the counting rules

(13.8).

14. Values of the low energy constants

We are now in a position to estimate the values of the Tow energy constants
Lyseees L]O' We have shown in II that the experimental information on the D-wave
7 scattering lengths, on the electromagnetic charge radius of the pion and on
the decay 7 + evy allows one to determine four of the seven low energy constants
of SU{2)x5U(2): L1s £ys Lg and Le- Using the formulae (11.6) which relate these
constants to the low energy expansion of SU(3)xSU(3), this information may be
taken over to determine four of the ten low energy constants Ly,..., Lyq4- The

measured value of FK : Fﬂ, the observed deviation from the Gell-Mann-Okubo
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formula and the relation (10.18} between (Mﬁo - M§+) : (ME - Mi) and the gquark

mass ratiol(md - mu) : (mS - i} {on which we have independent information from
isospin breaking in the baryon spectrum and from pw mixing) provide three further
constraints on these low energy constants. Among the three remaining unknowns,
one (L1) could presumably be measured in Kzadecay or in K scattering. The other
two (1.4 and L6) may be more difficult to measure directly; they determine the
amount by which the strange quark mass affects the values of FTT and of Mﬁ. We use
large Nc arguments (Zweig rule) tc estimate the three constants on which we do
not have direct experimental information and will point out some tests of the

predictions obtained in this manner,

Let us start with the constant L2. According to (11.6} this quantity is
related to the SU(2)xSU(2) Tow energy constant £2 which can be measured through
the D-wave wm scattering lengths

[ A o T )
£, =107 % (a,-a%) + 2 2_“’%“' 4 2E } (14.1)
A¥TW M 2.0

For definiteness we evaluate all coupling constants at scale

Mo = My

The observed scattering lengths as reported by Petersen in the compilation of
coupling constants and low energy parameters (Nagels et al. 1979)

a;_) = (r1x3). |64

2 —a (14.2)
a, = (1333). 10
(in units of Mﬂ+) lead to
27 = (6.8+23)16°
2 = 4 2.3 ) (14.3)

Using the relation (11.6) this value may be converted into a value for LE; the
result is shown in the table.

The D-wave scattering lengths also allow us to pin down the combination



of SU(3)xSU(3) Tow energy constants. Inserting the measured values (14.2) this

becomes

Ly 4 (zL:,_ L;_) = (.. 4.412.5)-\63 (14.5)

The constants LE, L7 and Lg may be determined from the measured values of the

asymmetry parameters Bemo? Ap and AM in the manner discussed in section 12. The

results quoted in the table include a rough estimate of the uncertainties due
to higher order effects. ’

The constant Lg is related to the SU(2)xSU(2) parameter KG which fixes the
electromagnetic charge radius of the pion

¢ T
A = 2 M

With the value (Dally et al. 1982)

Lea>' _ 0.433 %0 03£-m (14.7)

we obtain
c -3
£, = -(145%* A.4) 10 (14.8)

The relation (11.6) then Teads to the number for LY contained in the table.

9

As was shown in II the value of the constant 25 may be extracted from data
on the structure term in the decay ™ > evy. The value gz = 13.9 + 1.3 quoted in
IT s equiva]ent 1o

= -(58.9%+0.7)-1 (14.9)

The table shows the corresponding value of L?O’ obtained from (11.6).



- 60 -

We now have pinned down all SU(3)xSU(3) Tow energy constants except three:
L] (which together with the known constant L2 determines L3 through (14.5)), L4
and L6' To estima?e these constants we invoke the Zweig rule: at large NC the
combination L1 -5 L2, LG and L6 are suppressed. The Zweig rule thus in partic-
ular predicts that Lq is close to %—Lg (note that the difference Lq - % Lg is
independent of the renormalization scale u). The experimental uncertainty in the
value of Lg is of order 30%. We consider it very unlikely that the deviations
from the Zweig rule could be of comparable size. For this reason the value guoted
for the constant L; in the table is the number %VLE. Since 2 L¥ - Lg is small
the constant L3 must be close to the value of the r.h.s. in (14.5). Again the
uncertainty due to the Zweig rule violating contribution is expected to be small
in comparison with the experimental error in (14.5). It should be possible to

test the Zweig rule predictions for L; and L3 in KK decay or in Kr scattering.
4

The value of the constants LZ and Lg depends on the renormalization peoint u:
the meson loops violate the Zweig rule (the large NC limit forbids contributions
of order NC to LZ and to Lg, the Toops only contribute at order 1). To estimate
the size of the Toop contributions we consider the change in the value of the
constants Lz, Lg produced by a change of the renormalization scale py by a factor
of two. The change is given by

——

r c « .
AL = Lo (pa)-L (p) = L o (14.10)
Vo M2,
With My YoMy = 2 this gives
r -3 v -
AL, = 05407 Al ~0.3.16° (14.11)

If the main contribution to L4 and L6 arises from the loops then one expects Lz,
Lg, normalized at a scale p of order 500 MeV or 1 GeV to be of order ALZ, ALE
respectively. To substantiate this crude estimate we look at the sensitivity of
the pion decay constant to the mass of the strange quark: F1T should be less

K" The relation (10.7) shows that the ratio FW : Fw {where

F'ﬁis the value of F in the limit m_ = 0) is given by

sensitive to mS than F

.
+ - 83@""5

T = A= Mt M+ — L. (14.12)
*r °
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The renormalization point dependence of the constant Lg is cancelled by the
chiral logarithms appearing in this formula. At the scale u = Mn the quantity
M - QK is less than 1%; the value of LZ at this scale is therefore a good
measure for the Zweig rule violating contributions to F_. Denoting the value of

FK in the limit mg = 0 by ?K the Tow energy representation (10.7) gives

Ty -~ A 23, m “ ©
EN %(Hwﬂk)‘%(ﬁﬁ'ﬂ@* ———"25({'4*:3_1'5)
W

° (14,13}
Again, at the scale u = ﬂqthechira1 Togarithms amount to less than 1%. In order
for F,'T to be less sensitive to m than FK we must have

L« ".2 \ \:5\ (14.14)

j.e. the reference value for the size of the Zweig rule violating quantity LZ
is %—Lg = 10_3. In view of this we consider the estimate for LZ given in the
table as conservative. (Expressed in terms of‘Lz the preliminary value

7, = 4.6 + 0.9 given in II is equivalent to Ly = (0.5 + 0.7) - 1073,

The size of Lg may be estimated either by investigating the dependence of
the vacuum expectation value <0|du|0> on mg or by calculating the amount by which
the pion mass changes if m is varied. The estimate for Lg given in the table
implies that the change in <0|uu|0> as m, varies from m. = 0 to its physica]
value is less than 25%, the corresponding change in Mi (due to both L and L6)
could still be as large as 40%. (The value of the SU(2)xSU(2) low energy constant
23 2.9 + 2.4 given in the above reference is equivalent to the est1mate
P o2 i =105 107,

4 6
with m, = 0 differs from the physical value by less than 20%).

This bound guarantees that the value of M in a world

To some extent these attempts at quantifying the Zweig rule are arbitrary
- the fact that the rule holds to an amazing degree of accuracy e.g. in the mass
spectrum (p-w degeneracy, § - S* degeneracy etc.) does not necessarily imply that
the large N arguments can be trusted in the context of the matrix elements we
are d1scuss1ng here. (A rough test of the Zweig rule prediction for L is des-
cribed in the reference quoted above: the value of the scalar radius of the pion
extracted from 7 scattering is consistent with the value one predicts on the
basis of the Zweig rule. Since the experimental uncertainties are however rather
large, only a large deviation from the Zweig rule is excluded by this test.)



- 62 -

15. Summary

We have analyzed the structure of the functional Z which generates the
Green's functions of the quark currents and of the operator tr Guvﬁ““. The Ward
identities associated with chiral U(Nf)x U(Nf) specify the manner in which this
functional transforms under local chiral transformations of the external fields.
If the quark loops did not generate anomalies, Z would be invariant under these
transformations., The anomalies imply that an infinitesimal chiral transformation
produces a specific, explicitly known change in Z, given by a polynomial of
fourth order in the external vector and axial vector fields. (The anomalous con-
tribution from the gluon operator tr GUJE““ is accounted for by a change in the

vacuum angle which is also treated as an external field.)

We construct the general solution of the Ward identities by power series
expansion in the external momenta and in the masses of the three light quarks u,
d and s. The leading contribution in this expansion is governed by classical
field theory: the leading Tow energy representation of the generating functional
D){pz,Mj] is given by the classical (unquantized) action of the nonlinear g-model
which is characterized by two constants F0 and Bo' The main result of the paper
is an explicit representation of the generating functional at first nonleading
order in the Tow energy expansion [0(p4,p2M,M2)]. We show that at this order the
Ward identities determine the Green's functions of the octet of vector and axial
vector currents and of the nonet of scalar and pseudoscalar densities in terms
of ten Tow energy coupling constants L1,..., L]O‘ We evaluate the corresponding
quark mass expansion of the vacuum expectation values <Qjuu|[0>, <0|dd{0>,
<0]ss|0> to order M, the masses of the eight Goldstone bosons to order M and
the decay constants FW, FK’ Fn to order M. (The expansion of the vacuum expect-
ation values in powers of the quark masses involves an additional constant which
specifies the conventions used in the subtraction of the perturbative infinities
occurring in these guantities.)

Forming suitable combinations of physical low energy parameters the con-
stants Li may be eliminated. Examples are



~ 2
md-":‘u .?_m _ - M M\("‘ Mw"*Mw* M\T{,‘_‘_O(rm) O('LW‘S‘M)
Mg~ ™M  Mgam Mu - “I:; Mk M-y
—_ s 47?3
n = AD2 -+Hr(5F\<'/:¥aT ) (15.1)
e, €cx 0.13
a = — S+
435 ( )
where €qs € stand for the vacuum asymmetries
ddlo> Za\0>
Lo\ = A-€4 R <ol\sS =A-E¢4 (152
o' Tulod Lo\ T U0

With the rather accurate value of (md - mu) : (mS

breaking in the baryon spectrum and from p-w mixing the above relation between
quark mass ratios and meson mass ratios implies

- M) obtained from isospin

™m
S =253 %26 (15.3)

~
M

which is in good agreement with the value 25.0 + 2.5 obtained from the ratios

ME . M2 and M2 : ME in ref. 1.
b n ™

Analyzing the Tow energy representation for observables which are sensitive
to the low energy coupling constants (such as FK : Fﬂ, determined by L5) we show
that the values of seven of the ten low energy constants may be extracted from
measured quantities: the values are given in the table. To estimate the remaining
three low energy constants (L1, L, and L )we study the low energy expansion in
the large N limit. In this limit the n' plays a special role. We show that the
large N pred1ct1ons for the constant L7, which in this limit is dominated by
n-—exchange, is consistent with a direct measurement of this quantity. (In this
connection we point out that it is m1s1ead1ng to evaluate the nn' mixing angle
on the basis of the small deviation between the mass of the n and the mass pre-
dicted on the basis of the Gell-Mann-Okubo formula: other effects of order Mzcon-
tribute to the n mass.) We show that in the large NC 1imit the constants 2 Ll' Lys
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L4 and L6 are suppressed and make an attempt to quantify this suppression by
giving an estimate of the range in these quantities which is permitted by the
Zweig rule.

The vacuum expectation values and the decay constants and masses of the
Goldstone bosons characterize the chiral properties of the ground state. In these
basic quantities the corrections of relative order m turn out to be smail, thus
confirming that the mass of the strange quark is small in comparison with the
intrinsic scale of the theory. The infrared singularities of chiral perturbation
theory turn out not to amplify the flavour asymmetries generated by the quark
mass term (such as <0|uu|0> # <0|ss|0>, Fy # FW) in a significant manner: these
quantities are infrared stable. This is illustrated in the figures where we plot
the masses, decay constants and vacuum expectation values as functions of the
quark masses (at fixed ratios m,tmy ms); The infrared singularities manifest

themselves in the curvature of these functions.

As will be shown elsewhere it is by no means the case that all low energy
observables are infrared stable. The amplitude of the decay n + 37 e.g. is
strongly affected by the corrections of relative order m -

In the present paper we have shown that the coupling constants of the ef-
fective Lagrangian can be pinned down in terms of infrared stable observables.
The Green's functions of the theory may now be worked out to first nonleading

order in a parameter free manner.
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Appendix

The kernels Muv{z), Ku(z) and J(z) defined in eq. {8.6) are linear combina-
tions of the functions - 1AP(2) A(ﬁz), - 1auAP(Z) Ang) and - 18u8vAP(z)AO(z).
We consider therefore the Fourier transforms (s = p~)

d P2
qt\dae &P(Q)AQ(Z> ~ 3(s)
. d ipz
-t &d ze  9,8,2)8,G) = -ip,Jd, ()

gd 26 9,9y 4 @8, @ "'[Pu\ovj (s) +3W53 (s)]

(A.7)
which are given by the standard one loop integrals

—L\dq(ﬁp q) (Mq (P‘U> (45 qu;9ua. ) =
ot
(35 Pu3da; PaPv Izt 9us s 33) (A.2)

The scalar functions Jq, J, and J3 may be expressed in terms of J(s):

4
J. (&) = ~ 4..- (aglo)-ng(o)) . E‘_é(erA) ()

() = - (e1,-d1,) (A.3)

d-4 g

I T
J5() - (e1,-T3)

where AP(O) is the Feynman propagator evaluated at z = 0,

....LA (O)a\ﬂp VAGK)(
\oTr %

T



and

}—}
©
~
|

K¢

J(s) _ 4 AQ(O)

H

2
=4
{ 85(0)- Ay (e)) (84A) - 22 Dg (o)

%

1
4
2.
+ (Sa 45:) :3(55).\
R -~
A= Mg Mg (A.5)

It suffices therefore to discuss the function J(s) - the kernels Muv and Kv
may then easily be obtained from egs. ((8.6) and (A.3)-(A.5)).

For the following it is convenient to make use of the integral representa-

tion

e d-4 4
3o T (zwr) C(a- <) \30« <)

(A.6)
G(x32) = Mo = Sx (A=) — &=
which follows in a standard manner from eq. (A.2}.
J(s) develops a pole as d = 4. The quantity J(s) defined by
J(s) =« XNs)-2o0)
remains finite as d » 4:
A
— =1
() = —(6T?) \ L Ra(x‘j%)/g(x}o)] dx
- A M M"-

S
[P ™%

_,1’5,&,\,(5“’)—& ]‘.{.O(o‘-4)

(&-v)*- A2z
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where

2 4

(A.8)

vz Lo-(Mpamg Yl (Mo-Mg)

The pole is contained in J(0):
o) = ~22 -2k 4 O(d-4)
d-4 /
A= _M { A ,’\_(Ln4r+("(4)+4)} (A.9)
T 2 d-4 2
Mo M
k= 2 iM% s =2 20, 0a ] 1
A 57 7% {Mng/ﬂ Mz _MQL\NL%K

For convenience we also give the values of the derivatives of the function 5(5)

at s = 0, which are easily obtained from the integral representation (A.6)

—_ 2 T z
3,(0) = _A-—-« { _E..:.._._ A 2 M___,__p M__ R '&n, MQ
32m% |\ A% A3 M"P (A.10)
=4 A 2 52, 2 M2 Mg 5 4, Ma
3" (o) = * (37%24) 4 a e 8 Mg
3272 | 3% A ™M

If the twomasses are equal, Mg = MS = MZ, the function J(s) and the constants

J'(0), J"(0), k simplify to

f

‘Ej(;5>) A { <o JLJ qz:il. - SL.}

ow# S A

T = (A 4L V2
( /%) (A.11)

30) A v 3. A
LTE ™2 O ayotnz m4

2

32W* Ja?
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Table: Valuesof the low energy coupling constants (running scale
taken at p = Mn).

Value Source rs
r -3 mn D-waves, 3
L (0.9+0.3) - 10 Zweig rule 37
r -3 _ 3
L2 (1.7 + 0.7) - 10 7 D-waves 16

-3 7 D-waves,
L3 (- 4.4 +2.5) - 10 Zweig rule 0
r -3 . 1
L4 (0 +0.5) - 10 Zweig rule g
r -3 3
L5 (2.2 +0.5) - 10 FI< F,'T g
r -3 . 11
L6 (0 +0.3) - 10 Zweig rule v
L7 (- 0.4 + 0.15)- 10—3 GeH[ManE—Okubo, 0
- 5* 78

r 3 0 + 5
1_8 (1.1 +0.3) - 10 K* - XK', R, Lg 8
r 3 2. 1
]_9 (7.4 +0.7) - 10 T m. T
" | (-6.0+0.7) - 107 T+ evy )
10 = 4
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Figure captions

Fig. 1: The masses of the pseudoscalar octet as a function of me at fixed ratios
m, :my :m (calculated from eq. {(10.7), using the central values of the

low energy constants quoted in the table). The dashed line gives the

value of Mi without the contribution from nn' mixing (L; = 0). Note that

the curves are independent of the absolute value used for mzhys'

Fig. 2: The decay constants Fﬂ, FK and Fn as a function of m at fixed ratios

m :m, :m
u d

.
Fig. 3: The order parameters <O|uu|0> and <0|ss|0> as a function of m, at fixed
ratios m, @My {compare Novikov et al. 1981). These quantities
depend on the high energy constant H2 which specifies the subtraction
prescription in <0)gq|0>. We show the results for two values of this
constant, chosen such that at the physical value of mg the asymmetry
e, = 1 - <0]ss|0>/<0fuu]0> becomes e, = + 0.3 and - 0.1 respectively.
(The isospin asymmetry <0]dd]0> - <O|uu|0> and the sensitivity of
<0|uu|0> to e, are not visible on this scale.) For comparison we also
plot the large m prediction of Shifman et al. {1979), with
6= <02 Giveu\’a\m - 0.012 gev’.
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