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which may be identified with the coupling constants of a unique
effective low energy Lagrangian. We then calculate the Tow
energy representation of several Green's functions and form
factors and of the mnm scattering amplitude. The values of the
low energy coupling constants are extracted from available ex-
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to measure the scalar radius of the pion, which plays a central
role in the Tow energy expansion.
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1. Introduction

If the quark masses are set equal to zero, the QCD Hamiltonian is symmetric
under the chiral group SU(Nf)xSU(Nf). One assumes that the ground state of the
theory spontaneously breaks this symmetry (Nambu 1960; Nambu and Jona-Lasinio
1961; Koyama 1967; Glashow and Weinberg 1968; Gell-Mann, Oakes and Renner 1968)
down to SU(Nf). The hidden symmetry then manifests itself in the occurrence of
N? - 1 pseudoscalar Goldstone bosons. Furthermore, the symmetry fixes the low
energy couplings of these particles (Weinberg 1966) in terms of the matrix element
<0[Auln>. For massless quarks these low energy theorems are exact.

In reality, the QCD Hamiltonian contains a quark mass term which breaks the
symmetry. The vector and axial currents are not exactly conserved:

BM(U X"‘E‘:) == L(mu—ms)ﬁ‘s

(1.1)
(T "fsd) = (Musma) Tijsd

Since the masses of u, d and s are however small, the divergence of the currents
which generate SU(3)xSU(3) approximately vanishes. Accordingly the 1low enerqy
theorems of SU(3)xSU(3) should be approximately valid in the real world. The sub-
group SU(2)xSU(2) is an exact symmetry if m, = my = 0. Since the masses of u and
d are tiny, the low energy theorems associated with this subgroup should show even
smaller deviations. The deviations from chiral symmetry may be studied by treat-
ing the quark mass term in the Hamiltonian as a perturbation, with massless QCD
as the unperturbed system (chiral perturbation theory) (Dashen 1969; Dashen and
Weinstein 1969; Pagels 1975). To have a rough estimate of the order of magnitude
of the perturbations to be expected one may compare the size of the quark mass
(for a review see Gasser and Leutwyler 1982)

~
Y\ o=

7 (Musmy) (1.2)
{ft ~ 7 MeV) with the typical energy of a light -quark participating in the Tow
energy process in question. This energy is of the order of the characteristic
scale M of QCD, say M = 500 MeV or 1 GeV. The corrections to the soft pion
theorems are expected to be of the form 1 + M/M: the Tow energy theorems of
SU(2)xSU(2) should be valid to within one or two percent. This rule of thumb

is confirmed if one compares SU(2)xSU(2) with SU(3). In order of magnitude
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the matrix elements of the densities Us and Giysd are expected to be the same.
According to (1.1) this implies that the breaking of SU(2)xSU(2) should be smaller
s " mu) =1: 12
which measures the relative size of the symmetry breaking terms in the Hamiltonian.

than the typical breaking of SU{3} by the factor (mu + md) : (m

Since the SU(3) relations generally hold at the 20% level, the predictions of
SU(2)xSU(2) should have an accuracy of 20% : 12 ~ 2%.

Note that these crude order of magnitude estimates only concern the size of
the matrix elements of the perturbation muﬁu + mdad. The effect of the perturb-
ation may be amplified by small energy denominators. As pointed out by Li and
Pagels (1971) the fact that the unperturbed system contains massless particles
(Goldstone bosons) implies that the energy denominators may vanish - chiral per-
turbation theory contains infrared singularities which may enhance the size of
the perturbation and lead to deviations from the soft pion theorems that are sub-
stantially larger than what is indicated by the above rule of thumb. Furthermore,
we will show that some of the corrections generated by the quark mass term are
accompanied by Jarge numerical factors. In the case of the scattering length a}
e.g., we find corrections of order 7 Mi/Mi n 20%. Although this ratio is algeb~
raically of the type @/M it happens to be larger numerically by about an order of

magnitude than what is suggested by the rule of thumb.

The low energy theorems provide us with very sensitive tests (Gasser and
Leutwyler 1983) of QCD, allowing us, in particular, to test whether the observed
Tow energy structures are consistent with the standard picture of a spontaneously
broken chiral symmetry, as proposed by Nambu, Jona-Lasinio, Glashow, Weinberg,
Gel1-Mann, Oakes and Renner. To quantitatively compare the theoretical predictions
with experimental data it is however necessary to first calcuiate the corrections.

In (Gasser and Leutwyler 1983) we have proposed a method which alliows one to
systematically determine the low energy structure of the Green's functions in QCD.
The method extends Weinberg's analysis of S-matrix elements (Weinberg 1979) to
an expansion of the Green's functions in powers of the momenta and of the quark
masses. Since QCD does not contain any free parameters apart from the renormaliz-
ation group invariant scale A and from the quark masses the expansion coefficients
are fixed by these basic parameters of the theory. Unfortunately, we are not able
to exploit the full content of this information in a quantitative manner. What
our method allows us to do is to exploit the symmetry properties of the theory.
Chiral symmetry implies a set of Ward identities which 1link the various Green's

functions and therefore interrelate the expansion coefficients. As is well-known
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the leading terms in the low energy expansion are determined by two constants,
viz. the pion decay constant and the vacuum expectation value of the scalar quark
density (Weinberg 1966; Gell-Mann, Oakes and Rerner 1968) (both of these constants
are determined by A; crude numerical evaluations on a lattice {Hamber and Parisi
1981, 1982; Marinari, Parisi and Rebbi 1981; Hamber, Marinari, Parisi and Rebbi
1982; Weingarten 1982; Bowler, Marinari, Pawley, Rapuano and Wallace 1983) in-
dicate that the observed values of Fw and of <0|qq|0> are indeed consistent with
the theory).

As will be shown in the first part of this paper {sections 2 - 9) the re-
lations among the expansion coefficients which follow from the Ward identities
allow one to work out the low energy expansion of all Green's functions to hext-
to-leading order in terms of a few effective coupling constants which chiral sym-
metry leaves undetermined. In the second part (sections 10 - 18) we determine the
explicit low energy representation of some Green's functions, form factors and of
the mm scattering amplitude; in particular, we calculate the corrections of order
Ms to the current algebra low energy theorems for the wr scattering lengths. Final-
1y, we show that the values of the low energy coupling constants may be extracted
from available experimental information and confront the improved low energy theo-

rems with the experimental wrn phase shifts.

2. Symmetries of the Green's functions - anomalies

We consider the Green's functions of the vector, axial vector, scalar and
pseudoscalar currents. These Green's functions are generated by the vacuum-to-

vacuum amplitude

2l a,s,p] (2.1)
o= {Oou*‘.\ O;\A>qu/ S/ p

associated with the Lagrangian

QC© .
L - im, LAl (MP+OPXS)ﬂ*a(5-'*HsP>q

qucarkto (2.2)
QCcO

v ,
imquomr\‘-;o B hzizﬁ—z tr Guo@ g YH(9-16,)q

where the external fields vu(x), au(x), s(x), p{x) are hermitean, colour neutral

matrices in flavour space. Note that the quark mass matrix M is included in s(x):



%(’4) = m <4 .-

Formally, the Lagrangian (2.2) is invariant under independent unitary transform-
ations of the right- and left-handed components of q:

C‘(x)-»-{\a(/\—\- {s)Ng &) 4 %(4- XS)VL(x)&q(X) (2.3)

provided the external-fields are.subject to themgaugehxxanﬁfgﬁﬂEEiED
+ +
/ / .
/ / + . 1
W -~ = \/L (Np-qp)VL 4 L \[\_ a‘, VL (2.4)

o'sip’ o Vg (s +Lp)\/:

As is well-known the U(Nf)xU(Nf) symmetry of the Lagrangian is however afflicted
with anomalies (Adler 1969; Bell and Jackiw 1969; Jackiw and Johnson 1969;

Adler and Bardeen 1969) - the generating functional Z[}, a, s, p] is not in-
variant under the full group of chiral transformations. The general structure

of these anomalies was given by Bardeen (1969) and by Wess and Zumino {1971).
For completeness we sketch a simple derivation of their results based on an
anglysis of the feriwion determinant in Appendix A.

The anomalies are due to the fact that the determinant of the Dirac oper-
ator, det D, which embodies the quark contributions to the vacuum-to-vacuum
amplitude, requires renormalization. There is no regularization of this object
which preserves the full chiral symmetry. Consider an infinitesimal U(Nf)xU(Nf)
transformation:

\/R (%) = /\+L01(~=4) +L@k>¢) A -

\jL’()C) = AL 01(3() -t FS(»{) a4



7

The matrices o, B are hermitean; a is the infinitesimal transformation generated
by the vector currents, 3 is a chiral transformation. The corresponding gauge
transformation of the external fields is given by

oMy, = ok ai Lo, )4t (B, an]

A = %P 2 [ a ]+ LR, wa]
S = ild,s] —{8,¢} |
op = vld, 0] + {8, s}

(2.6)

Since there are regularization schemes which preserve the subgroup U(Nf) gener-
ated by the vector currents, the fermion determinant may be renormalized in such
a manner that it is invariant under the transformations generated by o. The same
is true of the generating functional Z[u, a, S, p]. The chiral transformations g
on the other hand necessarily affect the fermion determinant. In particular, the
flavour singlet piece of g generates a change in detD which involves the giuon
field through the winding number density Guv&““. Since the Green's functions of
this object are not known explicitly, the Ward identities for the singlet axial
current gy y5q merely allow us to relate the Green's functions involving gy qu
to the Green s functions involving G &uv. To explicitly exhibit this re]at1on
in terms of the generating funct1ona1 we supplement the Lagrangian with an ex-
ternal field contribution proportional to the winding number density:

o~

I - £ - —— O0) tc G,,G v (2.7)

(4am)*

such that the generating functional now also depends on the function {x). In
this extended framework the change of Z[v, «, s, p, 6] under an infinitesimal
U(Nf)xU(Nf) flavour transformation is known explicitly (see Appendix A): if the
fields Vi @ s, p are subject to the infinitesimal transformation (2.6) and
g is shifted by

&0 = _24¢ @J(x) (2.8)
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then the resulting change in Z[v, a, s, p, 8] is given by

oA Buv

$2 o _ MNe dee

(At _E;-K@(q&g qrp~u+ %%Qﬁvpav

(2.9)
+ %"—{“&e >C‘Mqv} + %ap"l);{eav + 3%%uay) ]

(The sign of &Z is convention dependent; we use the metric + --- and take
Yy = = 1Y Y YpY3o €9123 © + 1). NC is the number of colours, UQB denotes the
field strength associated with %

’b;us=8dm‘g_’aaﬂf&._;.iﬂ}d]ﬂf5] (2.10)

and V& stands for the U(Nf)—covariant derivative of a_:

B
QOLC\E, =9qu_L&ﬂ)qu§] (2.11)

The relation {2.9) guarantees that the Green's functions which one obtains by
expanding the functional Z in powers of the external fields, obey the relevant
Ward identities. Conversely, this relation allows us to characterize the general
solution of the Ward identities: Suppose that 21, 22 are two generating funct-
jonals whose Green's functions obey the Ward identities. The relation (2.9) then
implies that the difference Z; - Z2 is invariant with respect to local chiral
transformations. The Ward identities thus determine the generating functional

of QCD up to a contribution that is gauge invariant with respect to U(Nf)xU(Nf).

3. Low energy expansion

The Tow energy structure of the theory strongly depends on the size of the
quark masses. In particular, heavy quarks only play a minor role, because their
degrees of freedom are frozen at Tow energies. In the following we restrict our
attention to currents built out of the first two flavours u, d. (We plan to
discuss the extension to currents involving the strange quarks in a subsequent
paper.) Accordingly we restrict the external fields v, a, s, p to the 2x2Z sub-
space associated with the first two flavours. (In the notation used in the Tast
section we reduce the foNf matrix s(x) to a space-dependent Zx2 block supple-



mented by the constants Mgs Mos oo along the diagonal.) Likewise we restrict
the flavour transformations to U(2)xU{2). The transformation law of the gener-
ating functional Z under this subgroup is again given by (2.9) with the only
difference that the trace over the flavour indices is reduced to a trace over
2x2 matrices. In this restricted framework we will be able to study the depend-
ence of the Green's functions on m, and My but we will not be able to discuss
the dependence on the remaining quark masses which are fixed at their physical
values from now on. To simplify life further we disregard the isoscalar vector
and axial currents as well as the winding number density (i. e. take

tr v, = tr a.u = 6 = 0) and correspondingly restrict the symmetry group to
SU(2)xsU(2).

One easily checks that there is no anomaly in the subset of Green's functions
we are left with: the right-hand side of (2.9) vanishes if tr 8 = 0 and if the
external vector and axial currents are of the form

Vet .

:
T (3.1)
2
The information contained in the Ward identities thus amounts to the statement
that the generating functional Z[u, as S, p] is gauge invariant under
SU(2)xSU(2):

SZ =0 (3.2)

To analyze the structure of Z at Tow energies (external fields of long wave-
length) we momentarily put s{x) = p{x) = 0, i.e. look at the Green's functions
of the vector and axial currents in the chiral limit. If the theory did not
contain massless particles the Tow energy expansion of 7 would start with the
terms of lowest dimension that can be built out of the fields vu(x), au(x) and
their derivatives in accordance with gauge invariance (3.2) and with parity:

— R
Z=hn gdx)\‘\'r * 0 T avR Lt "—k:;, = } (3.3)

where FR , FL
w? v

are the field strengths associated with the external gauge fields
Uu i-au' In particular, the axial vector two point function which is given by
the second derivative of Z with respect to au would be of order p2 at smail

momenta p. In QCD the spontaneous breakdown of the symmetry however generates
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Goldstone bosons which, if the matrix element <0EAu|ﬂ> does not vanish in the
chiral limit, produce a pole in this two point function: <O|TAUAV|0> is of order
one rather than of order p2. The corresponding contribution to Z reads

Z-F" \dxd\) ‘fr{ (Qya,-9pay), O, ('a™. &% “), e

(3.4)
where F is the value of the pion decay constant in the chiral Timit. The term
(3.4) by itself is not gauge invariant - it requires the presence of correspond-
ing low energy contributions in Green's functions with more than two currents.

A technique that allows one to displace these contributions in concise form is
well known (Weinberg 1967, 1968; Coleman, Wess and Zuminc 1969; Callan, Coleman,
Wess and Zumino 1969; Dashen and Weinstein 1969; Weinberg 1979; Boulware and
Brown 1982): one considers the action of a suitable classical effective Lagrang-

ian,

4, Effective Lagrangian

To solve the Ward identities for the vector and axial currents in the
chiral 1limit to leading order in the Tow energy expansion we consider the non-
"”"E\"—-—..
linear U-mgggl_coup1eq¢;g_g5§§[g§] vector_and axial. fields. We denote by U (x)

a four-component real 0(4) vector field of unit 1ength,UTU = 1, define its co-
variant derivative as

vp,uo = B}J U° o Q;‘L(%) Ub

(a.1)
N Ny AL A ‘ °
Vil = U L8 U —a wu

and consider the effective action

2, = F° \o\x '\z" V},UTV“U (4.2)

The field UA(x) is determined by the external fields uu(x), a”(x) through the
classical equations of motion which follow from the requirement that Z] be an

extremum:
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<o, 0t _ut Ut g, u) o (4.3)

(Note that the solution of the equations of motion is not unique, even if positive
(negative) frequency boundary conditions are imposed at t > + «» (~ ). One in ad-
dition needs to specify from which direction in flavour space the chiral Timit is
to be taken in QCD. The situation is analogous to a system that develops spontane-
ous magnetization: the direction of the magnetization is arbitrary. If we specify
the chiral Timit as the limit of the massive theory with s(x) =Ml , M > + 0 then
the corresponding prescription that specifies the classical solution uniquely is

U {x) » GA as t » + w.) This determines Z] as a funct1ona1 of the external fields -
one eas11y checks that this funct1ona1 is gauge invariant. and reproduces the low
energy behaV1our0f <01TA A |0> as ~given in (3.4): in the chiral limit the leading
low energy behaviour of the vector and axial vector Green's functions is deter-
mined by a single constant F (the symbol F1T is reserved for the value of F in the
real world, %{3 93 MeV). One may e.g. determine the leading low energy behaviour
of the four point function <O|TAuAvApA0JO> by working out the value of the clas-
sical action to fourth order in the external field qu. The residue of the pion
poles in this four point function describes the leading low energy behaviour of
the nw scattering amplitude (Weinberg 1966) in the chiral limit [A(s,t,u) =

s/F + oL j.

In the above the external scalar and pseudoscalar fields ${x), p(x) were
switched off. The Tow energy structure of the scalar and pseudoscalar densities
is not determined by the pion decay constant alone, but involves a second low
energy constant B which measures the vacuum expectation value (Gell-Mann, Oakes
and Renner 1968)

Lo\Tulo> | o <o\ao\\o>°=._..=&="B (4.4)

of the scalar densities in the chiral Timit. The expansion of Z in powers of the
external field s(x) contains a Tlinear term:

£ - \O\x e Q=) <o\T o>, o ... (4.5)

which, by itself, is again not gauge invariant, because tr s(x) transforms like
a component of a chiral four vector. Writing
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) = &6 A 4 S T
(4.6)

]

PG = P74 + PGT”

the transformation law (2.4) shows that (so, pi) and (po, - si) transform as in-
dependent 0(4) four vectors. The linear term in Z is proportional to s, To re-

produce this term in a gauge invariant manner it suffices to add the contribution
2F2 B(sOU0 + p1U1) to the effective Lagrangian (4.2) which then becomes

Z,= ¥ {dx{% 9.0 VU L XUl (4.7)

where we have absorbed the constant 8 in the external fields,
A o :
AT () = 2B (76, 0°) . (4.8)

If the effective action Z1 is evaluated at its extremum by solving the cor-
responding classical equations of motion

9, 9PUA_UA(UT9*7,0) = XA U UTX)
(4.9)

one obtains a functional Z1EJ, a, s, p] of the external fields. Expanding this
funq?iona](in powers of the external fields around v = a = s = p =0 we get a
setvof Green's functions which satisfy the relevant Ward identities and repro-
duce the value of the pion decay constant F and the vacuum expectation value

oliul0>y = - F*
QCD and Z] must be a gauge invariant object which leaves the leading low energy

B. The difference between the full generating functional Z of

behaviour of <0|TAuAvl0>0 untouched and does not contribute to <0[du|0> . We will
show in the next section that the general gauge invariant functional which admits
a local series expansion in terms of the fields U, v, 4, s, p and their deriv-
atives reduces to Z1 in leading order : {4.7) represents the most general ef-
fective Lagrangian of order p2 consistent with Lorentz invariance, parity and
chiral symmetry (since the fields uu(x) and au(x) occur on the same level as the
derivative Bu it is convenient to count them as objects of order p, whereas the
external scalar and pseudoscalar fields s{(x) and p(x) are booked as quantities

of order pf see below). Alternatively, one may derive the leading low energy
behaviour of these Green's functions directly by solving the Ward identities

step by step - the result is the same (Weinberg 1968; Dashen and Weinstein 1969):
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in the chiral 1imit the leading Tow energy behaviour of the Green's functions is
determined by the two constants F and B. Whether one uses the effective Lagrangian
technique or directly solves the Ward identities one makes the same basic as-
sumption: one postulates that the Green's functions may be expanded in powers of
the momenta once the leading low energy singularities (which follow from cluster-
ing in a theory that contains Goldstone bosons) are extracted. It has not been
shown that the Lagrangian of QCD spontaneously breaks chiral symmetry, much less
that the ensuing Goldstone bosons dominate the low energy scene in the above
technical sense. We refer the reader to (Coleman, Wess and Zumino 1969; Callan,
Coleman, Wess and Zumino 1969; Dashén and Weinstein 1969; Weinberg 1979) for a
discussion of the generality of the effective Lagrangian technique.

The effective Lagrangian (4.7} thus allows us to ca1cu]ate the Teadlng 1ow
energy behaviour of the Green's functions associated with V s A , qq and qr 1y5q
in the chiral limit. The information contained in this Lagrang1an is however not
restricted to the chiral 1imit. To take the quark mass term in the Lagrangian of
QCD into account we simply have to expand the external field s(x) around s = M
rather than around s = 0. Consider e.g. the two point function of the pseudo-
scalar density aTiiY5q. To calculate this object we need the value of the funct-
ional Z; to second order in p(x) for vy =& S 0, s°=n (we disregard the mass
difference mu - my for the moment and put mu =my = ). It suffices to determine
the field U' to first order in X =2 Bp . In this approximation the field equat-
ion becomes

Ou XU =X (4.10)
with XO =2 MB. The quark mass thus shifts the pion pole according to the well-
known Gell-Mann-Oakes-Renner relation:

Moo~ 26D RRTRIP

and we get

U 28 gdx Do le-y; ME) 0°(Y)

. .
o .

U = 4 1uu

(4.12)
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The leading low energy behaviour of the two point function may now be read off
from the expansion (see (2.1} and (2.2))

= .;__.L&dscdy p(x)p (3)40\ L LXSC‘N CL, xb 10>
(4.13)
with the result

1plx-3)

vi¢
on\xe <o\t "\xL ”Xsc\gqv LXs%\(» = \::F S
w

In the language of chiral perturbation theory which expands the amplitudes in

Mi - pz)'] represents the sum of a geo-

powers of the quark mass, the factor (
metric series which arises from repeated quark mass insertions connected by a
single pion line. Even if the quark wass is very small it thus produces a sub-
stantial change in the Green's functions at Tow energy: it shifts the poles from
2 =0 to p2 = Mi. To maintain a coherent low energy expansion for i # O we have
to treat M2 as a term of the same order as p2 and expand in powers of the momenta
at fixed rat1o M /p (Weinberg 1979). This is the reason why we count the external

field s(x) v @~ Mi as a quantity of order p2.

5. General form of effective Lagrangian to order p4

Consider a general effective Lagrangian of the form

{- i(U LU ,S,05 M L Due, DU, ) (5.1)

The low energy properties of this Lagrangian are governed by the terms with the
least number of derivatives. We count the field U{x) as a quantity of order 1.
Uu(x) a (x) and 3 U( ) as order p, $(x), p{x), 3V (x), a U( %) as order p2 etc.
To d1scuss the restr1ct1ons imposed by gauge 1nvar1ance 1t 1s convenient to re-
place the ordinary derivatives by covariant ones The covariant der1vat1ve of
U{x) is defined in (4.1). Since the vectors (s s P ) and (p , - S ) transform
Tike U we may define their covariant derivative in an analogous manner.
(Equivalently, one may use the relations (A.21).) Gauge invariance then implies
that the Lagrangian involves the fields RIS only through the covariant deriv-

atives of U, s, p and through the field strengths Fﬁv, Ftv built out of the
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right and left-handed gauge fields uLl ¥ au:

£-4 (U, VU 9L0,U 0,505, T, TrFS,)

) M\)J-..

To lowest order (po) the Lagrangian can only depend on the field U(x). Since
U(x)} transforms 1ike an 0(4) vector, the only invariant that can be built out of
it is the length of this vector which equals one. To order p°® the effective
Lagrangian thus is an uninteresting constant. At order p2 Lorentz invariance
permits four types of contributions:

B A A
PP U U L T et U LW st et

For this expression to be invariant under SU(2)xSU(2) the functions f; and f,
must be of the form

(5.2)
%ZA (U) = CE’UA

Since (UTVUU) vanishes, the constant c, may be dropped. Furthermore, on account
of

(U 9*9,U) = - (T,U7 T*U)

the constant c3 may be absorbed incl. Finally, ?hg terms 1inear.ip s and p must
be proportional to the scalar products sO0° + p1U1 and pOU0 - s'u'. The latter
term has the wrong parity. To order p2 the general effective Lagrangian con-
sistent with Lorentz invariance, parity and chiral symmetry therefore involves
only two low energy constants:

2 ° Coa
cfAL-—’_‘;__VpUTV"‘U +ZB"FZ (s°U + p'U ) (5.3)

As claimed in the last section, the Towest order effective Lagrangian coincides
with the nonlinear o-model coupled to external fields.
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It is straightforward to extend this analysis to the terms of order p?.
Lorentz invariance and chiral symmetry again restrict the Lagrangian to a
Tinear combination of terms involving 0(4) - covariant tensors fA]"‘A"(U) of
the field UA. These tensors may be expressed in terms of a few constants in a
manner analogous to (5.2). (Note that the 0(4)~invariant tensor eABCD
G-parity and does therefore not occur.) Invariance with respect to space-reflect-

breaks

ions reduces the number of allowed coupling constants by about a factor of two.
Finally, the field equations (4.9) imply the following identities (the use of
the classical field equations associated with‘}]_yj]1 be justified be1ow):

(K79, 9% 1) « (U, u) - (%) & OTW) =0
(5.4)
(Y*Q U7 979, U) - (F*UT 9 ) - (™) « (XTUW) =0

Using these relations to eliminate two of the invariants the general effective
Lagrangian of order p4 consistent with Lorentz invariance, parity, chiral sym-
metry and G-parity may be written in the form

£, = £, (TFUTU) 4 4, (S U UN(TUT v, U)
+ 4, ('XTU)z_‘. &,f (V”?(TVP W 4 85 (UTX—"WﬁNU) (5.5)

Mo v o~ 2 - .
A (VIR TIU) L L (XTUY L T L, e E T
+ \ﬂ53'7(1-CX
where the tensor Fﬁi(defined by

(VPQ-\)“Q»\QM)U -_—¢M9U (5.6)

contains the external fields Uu’ au and their derivatives. The vectors XA, ;A

are proportional to the external scalar and pseudoscalar fields:

x> 28 (s°, 0")

X2 2B (p%-sY)

(5.7)
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Note that the external fields po(x) and si(x) do not occur in L1 and only enter
quadratically in Ly. There is therefore no contribution 1inear.in the quark mass
difference m, = my to the Green's functions of the operators V;, Al, a9, ar1iy5q
at leading and first nonleading order in the low energy expansion. The isospin
breaking piece of the QCD Lagrangian has very little effect on these Green’s
functions - the symmetry properties of the vacuum protect isospin symmetry almost

perfectly {Weinberg 1979).

6. Loops

In the preceding sections we have used classical fields to construct the

Teading terms in the low energy expansion of the Green's functions of QCD. The

,,,,,

classical field theory associated with a given Lagrangian is equivalent to the
set of tree graphs of the corresponding quantum field theory: if we use the clas-
sical field equations to determine the value of the action Z1 as a functional of
the external fields we are in effect calculating the vacuum-to-vacuum amplitude
of the nonlinear o-model in the tree graph approximation (Feynman 1963; Delitt
1967).

What about graphs with Toops ? On the one hand, if we simply disregard these
graphs the theory violates unitarity. On the other hand, since the nonlinear
og-model is not renormalizable, the contributions from graphs involving loops are
not well-defined. This apparent dilemma has a remarkably simple solution (Wein-
berg 1979): Consider for definiteness graphs containing one loop. The infinities
which arise if one calculates these graphs require counter terms. Using dimension-
al regularization (which preserves chiral symmetry) one finds that the counter
terms necessary to renormalize the one loop graphs are of order p4. Since the
reguiarization is consistent with Lorentz invariance, parity and chiral symmetry,
the counter terms have the structure of the general order p4 Lagrangian Lo
determined in the last section. With a suitable renormalization of the constants
21,..,,h which occur in L, one thus gets finite results for all Green's funct-
jons to one loop order. The fact that the nonlinear og-model requires counter
terms which do not have the same structure as the Lagrangian L] one starts with
is characteristic of the low energy expansion: one needs only two constants F,

B to specify the low energy behaviour of the Green's functions to Jeading order,
one needs 10 additional constants EI,..., h3 to characterize the behaviour at

next-to-leading order. One needs counter terms of increasing complexity as one

<)
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evaluates the o-model to higher orders, one finds an increasing number of in-
dependent low energy constants if one carries the low energy expansion to higher
orders. (In principle, all of these low energy constants are determined by the
parameters A, Mes Moy oo which specify the underlying renormalizable theory; we
are however not attempting to make use of this implicit information, but only
exploit the symmetry properties of QCD.) Nonrenormalizability is a problem only
if one elevates the nonlinear o-model to a theory of its own. In the context of
the low energy expansion chiral symmetry only guarantees that the o-model des-
cribes the leading order correctly - there is no reason for this model to re-
produce the Green's functions of QCD to all orders in the momenta, even if it
could be elevated to a mathematically self-consistent framework.

The crucial point here is that the loop contributions are of higher order
in the momenta than the tree graphs. This is due to the fact that chiral symmetry
requires the pion couplings to vanish at zero momentum. The T-matrix elements for
any scattering process involving pions tends to zero at zero momentum (exact
chiral symmetry, massless pions). At lTow energy the T-matrix is therefore small.
(For processes that exclusively involve pions which furthermore all have small
momenta of order p the T-matrix is of order p2.) It is this property which allows
us to solve the constraints of unitarity, clustering and chiral symmetry in a
perturbative manner by expanding the Green's functions in powers of the momenta.

General power counting arguments {Weinberg 1979) show that graphs containing
n loops are suppressed by (p2)n in comparison to the tree graphs. The loop graphs
do therefore not modify the leading low energy behaviour which is given by the
classical theory, the one Toop graphs do however contribute at first nonleading
order. To solve the constraints imposed on the Green's functions by chiral sym-
metry and by unitarity to first nonleading order we may therefore proceed as
follows. The generating functional is given by the vacuum-to-vacuum amplitude in
the presence of external fields. The first two terms in the low energy expansion
of the Green's functions are obtained by evaluating i) tree and one loop graphs
in the nonlinear o-model coupled to external fields (L]) ii) tree graphs which
contain one vertex of L2 together with any number of o-model vertices. The sum
of these contributions is finite, provided the constants 21, £2,..., h3 are suit-
ably renormalized. Since the vertices of the Lagrangian L2 only occur in tree
graphs, the contribution from L2 to the vacuum-to-vacuum amplitude may be calcul-
ated by evaluating the action fde2 at the classical solution of the equations
of motion. This justifies the use of the field equations in simplifying
the structure of LZ‘
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In terms of the Feynman path integral the above prescription may be written
in the form.

\ci><

2 Ao,
EEiEW%.“ % &Apiu]e.

(6.1)

where the integral over the field U(x) is to be calculated in one loop approxim-
ation. The explicit form of the Lagrangians L] and L2 was given in the last
section; L] contains the two constants F and B which determine the behaviour of
the Green' 's functions involving the currents qy T 9, qy YST q and the densities
qaq, q1y5r q to leading order in the low energy expans1on To determine the behav-
iour of these Green's functions to first nonleading order we need 8 additional
constants E},..., £6’ h1, h2' The two remaining parameters £7 and h3 specify the
leading Tow energy beheviour of Green's functions which involve the second chiral
multiplet aiYSq and g7gq.

The three constants h1, h2 and h3 multiply terms which do not contain the
pion field. These constants are inessential in the following sense. The Lagrangian
of QCD m%st be supp]em%nted with counter terms proportional to tr F F
s% 4+ p v XTX and p +sl XTX The values of the finite p1eces of these
counter terms which remain after renormalization of the QCD Toops depend on the
renormalization prescription.For this reason the constants h1, h2, h3 are not
directly measurable and accordingly do not occur in the low eneray expansion of

physical quantities.

We add a remark about the scale dependence of the scalar and pseudoscalar
densities in QCD. The normalization of these fields also depends on the convent-
ions used (MS, MS, MOM, choice of scale'n etc.) - the renormalization group trans-
formation law is contragredient to the transformation law of the quark masses. The
products mqq, mﬁY5q etc. are convention independent. The value of the constant B
e.g. depends on the renormalization prescription, the quantity (mu + md)B is
convention independent. We circumvent this problem by absorbing the constant B
in the external scalar and pseudoscalar fields. In contrast to s and p the
quantities y and ¥ do not change under a change of the renormalization pre-
scription used in QCD - the same is true of the constants ﬂ1,..., 37. The quanti-
ties F, Mo = (m, +m,) Band £ ,..., £, (more precisely the sum of £; and of the
corresponding pion Toop contribution) are the proper physical low energy para-
meters at order p4.
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7. Nonlinear g-model to one loop

The evaluation of the Feynman path integral in the one loop approximation is
& standard problem ('t Hooft 1973; Ramond 1981). One expands the action

2M=%ﬂ%f41‘:z\dm%%VPUTV“U.+%TU\ (7.1)

in the vicinity of the classical solution U(x), which is determined by the
external fields through the classical equations of motion:

— A A /=T — A — A T
V’"‘VP_U -U™ (@ VP,V*‘U);—-’X -u (A X)) oy
We write the expansion of U in the form
A A R = A L A T A
W -0 2 B LT UL (7.3)
-A -A -A =A .
where the three vectors €19 5> £ ATE orthogonal to U and are normalized by
—_—

—_ 7.4

The gquadratic term in (7.3) insures that the vector U satisfies the constraint

UTU = 1 to order gz. The field equations quarantee that there is noc term linear

in £ in the expansion of the action:
Z\-i, __‘Ez.:_lgdx Ed’\j@%@_‘_”. . (7.5)
The differential operator DOLB may be written in the form
-Dolﬁ %_(5 - FDM'DP’ "Fd‘ N Gokﬁcf@’ 7.6)
where Du is a covariant derivative defined by
D¢ = 98, TP’

ol & =T =

(7.7)
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and the mass matrix o®®(x) is given by

o¥® L (T, T 4XTT)- (F] 9O (ES 9,0)
(7.8)

Next, we express the measure dp[U] in terms of the variable £. The explicit
expression for the SU(2)xSU(2)-invariant measure reads

A 2 3
dp lul & NTTau Céj‘idu (7.9)

Inserting the expansion (7.3) we get

auautdu’_ u°d‘§do\§1d§3(4+o(§"))

To the required accuracy the measure is therefore translation invariant in the
space of g-variables:

3
dulul = NTTd § (7.10)

and the functional integral reduces to a Gaussian integral

- _ <%
N\‘Q‘dsfs‘ exp - I (d (5¥DPEP) N (et D)
(7.11)

The generating functional therefore becomes

2= \c\x.f,‘ < x&sz ~ _%)?.M dek ™D O(p") (7.12)

where all quantitigs are to be evaluated §ﬁh§hﬁh91§§$jca7w$°1U§iQﬂ_QL§l;

What remains to be done to have an explicit representation of the Green's
functions to first nonleading order in the low energy expansion is to evaluate
the determinant of the differential operator D. This determinant is a formal
object which requires renormalization. In the following section we determine the
relevant counter terms which may_be given in closed form. (The finite part of
detD cannot be given in closed form; we will work out the first few terms in an
expansion in powers of the external fields later on.)
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8. Dimensional regularization

The short distance properties of the operator dxﬁ

are governed by the
d‘Alambertian. In d-dimensional Minkowski space the exponential kernel as-
sociated with O 1is given by
d

-0 5

1Z
x\e ly) =i law?) e (8.1)

where A is taken on the positive imaginary axis and z = x - y. Extracting the
leading short distance behaviour we write the kernel exp (- AD) in the form
(Schwinger 1951} 2
AD d L1Z
- : )
(x\e \y) = i1@aT) “ e R (<\ly) 6.2)

where H is a 3x3 matrix which satisfies the differential equation

0 A2PD, n o, DPDuM Lo =o
oo Wy Eizi TR M
(8.3)
The d-dimensional determinant of D may then be defined as
L 00
-2
A2 T
Lo dadD = -\ 92 Tce -

-~

4 __d

ann * %dx e MGt

In this representation the ultraviolet divergencesproduced by the loops show up
at the lower end of the integration over A: detD has poles at d =0, 2, 4, ... .
To identify the residues of these poles we split the integration over X into an

integral from O to X_ and a remainder. Using the Taylor expansion

o

VG = M, Gady) o AN ) N, (xly) g

' 8.5
in the integral from 0 to Ao We find (8.3)
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s hn ded D - _ﬁolx{_;_ Yo M) 4

4$-UA(x\x)
4T(d-2)
A M
e R — Arr' . (><\><)
@v)d-4) - N

(8.6)
Note that we are interested in an expansion of the determinant in powers of the
external fields around

L] o 2.
Vp=@,=X =0 ,X =253 =M

If the external fields are switched off, the differential operator D reduces to
L + M and the function H therefore tends to exp - AMZ - there is no infrared
divergence at the upper end of the integration as long as the quark mass is not
set equal to zero. The contributions omitted in (8.6) are finite for d < 6.

The differential equation (8.3) implies the following recursion relations:

(Z‘M’D)u__\_ h+4)Hh+4 -\-DM’DP_HH *\-G'\-\r\ = O

Adbs
27D, H, =0

(8.7)
Solving these relations (cf. Appendix A) we get
W, (xix)=1
HA (<\x) = -G (8.8)
av

where

a—

2 M
S "%" [.D ) [D}”G'.&]
r‘)“\’ = /BM \_‘V —-,D\’ rﬂ“ + Er‘}u)r\’]

(8.9)
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9. Renormalization

The counter terms necessary to renormalize the one lcop determinant may now
be worked out by calculating the traces over the matrices o and Fuv which occur
in (8.6), (8.8). This may be done without invoking an explicit representation of
the vectors eg. These vectors perform the change of basis from the four-dimens-
ional linear representation to the three-dimensional nonlinear representation of
SU(2)xSU{2). The derivative vu defined in {4.1) is covariant with respect to the
linear representation, the derivative Du defined in (7.7) is the corresponding
covariant derivative of the nonlinear representation. In contrast to Vu the
derivative Du involves the pion field. The connection between the two may be
obtained by expanding the vector vu(s@ga) in the basis ey, £, g4 U

A A
Ul §%) = € DT -UES v, WE o

{We omit the bars here - all fields are to be evaluated at the solution to the
classical field equations, denoted by U in section 7.) The field strength ruv
of the gauge field Tu which specifies the nonlinear covariant derivative contains

two contributions:

(3 T
FHAA\D = Eici ( j;AAV -+ kul;av ) Elﬁs

(9.2)
AD
Uy, = YU 7,u® v, U9, u®

M

The first term is proportional to the field strength Fuv associated with the
external fields Uu, au; the second term involves the derivatives of the pion
field.

Using these properties and the completeness relation

- u (9.3)
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one finds

Yo = 29U U L 37X U
2 TV
beo?= (QMUT TLUY (T, U7 ZUNTHUT T U)
4 (XTW (T, uT oMUY + 3CXTUW 0.
Fe 0L T2 2 B F2 o UTF,,F*U-4T,0 £,
2
~2(T* U, W)+ 2 (QuT 2,uX(e*uT v u)

The trace over the last term in (8.8) does not contribute, because it is a total
derivative. The poles of the determinant at d = 0, 2, 4 are therefore given by

e det D= \o\x{-aé_ _.,;‘_‘{r_é\_:;{zv“u*vpu 377U}

. A Ao F EMLAUTE, FA
-2 7Tr - +
+(41r)’-(d~4){ \2 MoT Y dad |

+ AU T,0) LA (FPUT g, W)
_ %_(vp_u*vvu)(v“ UT oYW -2 (U (F*UTg,u)

~ 2 (XTW) ]H]

(9.5)

The residue of the pole at d = 2 only contains terms which are already present

in the Lagrangian of the nonlinear o-model, in agreement with the well-known fact
that this model is renormalizable in two dimensions. The divergences produced by
the two-dimensional loop integrals merely renormalize the pion decay constant F
and the field y. In four dimensions F is not renormalized: the counter terms are
of order p4 rather than of order pz. Using the first one of the two identities
{5.4) one finds that the pole at d = 4 is removed by the following renormalization
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of the constants which occur in the Lagrangian LZ:

{. =£.r+XL7\ LA}

L v

hL =_-\f\‘: -\-glf) it\) 2—)3
N -2 d-4 A /
A = (@4T) o {m_ _.‘i(r@n4'ﬁ+v(4)+4)‘

_ ﬂ* _ < \ ‘
X"“ 3 D Xz.—"g) 33*"5} 3422) Xs"""%‘) g=-%>h=°

éﬁ":z;éz.‘—‘;?;:}gaﬂo (9.6)
(We have included a finite piece in A for later convenience.) The occurrence of
counter terms which are not linear in the external field X (or contain derivatives
thereof) is related to the problems which one has to solve (Honerkamp 1972;

Tataru 1975; Kazakov, Pervushin and Pushkin 1977, 1978; de Wit and Grisaru 1979;
Bardeen, Lee and Shrock 1976; Appelquist and Bernard 1981) if one calculates the
Green's functions of the pion field in the standard manner. In contrast to that
procedure the external field technique retains the full symmetry of the theory

at every stage of the calculation and, furthermore, specifies the Green's funct-
ions associated with the currents. Note also, that an effective Lagrangian which
only allows one to deal with on shell matrix elements does not determine the
manner in which the low energy parameters depend on the quark mass. In our frame-
work all low energy constants refer to the massless theory; the quark mass ap-
pears as an explicit symmetry breaking parameter contained in the external fields:

A =288 o (myama)B 4 ...

~ 3

; (9.7)
X =-2Bs = (mg-m ) B4...

10. One loop integrals for.1-, 2-, 3- and.4-point functions

We calculate the finite part of the determinant by treating the external
fields as perturbations. If the external fields are switched off

(ﬁj= a=ps= 0, s = M) the differential operator D reduces to
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Dy, = Oa™? (10.1)

We expand the determinant of D in powers of the difference D - DM:

D=7+
& = { F‘MDB“]‘ N NT*LG (10.2)

~~
G = G-M?

To second order in & the expansion reads

b ded D = nded D 4 Te O 8L Te(B, 5T, 8) 4.

(10.3)
The term TrD&} § is the set of all tadpole graphs (pion loop interrupted only at

one point). The next term collects all graphs with two vertices in the loop etc.
To see how far we have to go in this expansion in order to calculate the loop
contribution to a given Green's function we first look at the classical equation
of motion which determines the pion field Ui in terms of the external fields.

Retaining only terms linear in the external fields Vi & x' and %° = xo - M2
this equation reduces to
2 N M L v
@im2)u" =2 ay 4+ X (10.4)

The quanFities Uu’ 20 affect the pion field only through terms of order va, uxi,
%%, %%"'. It is therefore convenient to associate a weight factor with the dif-
ferent external fields. We count &, and xi as quantities of qrder ¢ whereas vy
and 2° are counted as 0(¢2). The field equation shows that Ut is of order ¢,
hence U® is of the form ]-+0(¢2). One easily checks that in this manner of count-
ing weights the guantities I’u and § are poth of order ¢2 and the same therefore
applies to &, The terms given in (10.3) thus allow us to calculate the determinant
to order ¢4. This information suffices to extract the one loop contributions to
all two-point functions as well as to the four-point function of the axial cur-
rent or of the pseudoscalar density. The one-point function <0|gq|0> or the
three-point function <0|TVAAUAJ0>'are also included. The 3- or 4-point functions
associated with the vector current or with the scalar density qq are not account-

ed for at this level of the expansion: these objects receive contributions from
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loops containing more than two vertices. Note that the Green's functions of odd
weight such as <O|'FVAVuAv|O> vanish; this is due to the fact that the G-parity
of these objects is negative.

In the following we restrict ourselves to order ¢4. To this order the
determinant is given by

_E_&vcb/l—D = const 4 L A0) \O\x -\-r‘e‘(x)
2 z (10.5)

+ gdxé9{ Mpv(x~3)+"'\-‘p (x)r,,(y).. g(x-3)+r %m&g)}

13
A

where A(z) = Ac(z; MZ) is the Feynman propagator of a scalar field with mass M
in d-dimensions and Muv(z) stands for

Mun(2) =488 _ A8 4 44, A) @)} (10:)

The functions Az(z) and M _(z) develop a pole at d >~ 4. The Fourier transform of

Y
Az(z) is the standard loop integral

W) = 4 (dze ™ K

(10.7)

I

-d d -A -
Len) (d k%) (M- (q-9Y)
The quantity 3(g°) defined by

A(q") = I(g*) = Io) (10.8)

remains finite as d - 4:

3 (-Ciz') — :;2:;;?5‘ { (3'z€4nv & 2 l
(10.9)

G = (4= 4;:_")



29

The pole is contained in J(0):

3(0):-2')__ (iﬂ/b_z-l(")
T2 M (10.10)
_ A d-4l 4 Ao 4T, T A
’)—\G_szv {d4 ( (Ah)}

The result may be rewritten in the form

i‘.&(z) _ 3(2) {2_9«*___(14\ ,M)}S(z) (10.11)

L \GT2

where J(z) is the Fourier transform J(qz). The function Muv(z) may be evaluated
in an analogous manner. With

LA(o) = {29\+ ___._‘awM ? (10.12)
L 1 b M

one finds

Mus(2) = (G- )P -2 {20 A (L, 1] 5]

(10.13)
where M(z) is given by

\0\2 e:q%p\(E) (A~ )J( (10.14)
2

The generating functional Z, obtained by adding fdx(L1 + LZ) to %—1n detD then
takes the form

Z=2, 42, + O é’) (10.15)
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where Z; 1s the sum of the tree graph and tadpole contributions

Z, = \o\x u *(4+3‘“" )’X“'u

3274F 2

A4 (v,,u"‘v”u)’; Y72 ) (GUTU)(TUT W)
+ a3 (T-2) (TU) s & (£,-0) 9,07 @MU

s T HUTFU Y, (£ -1 0 uT T,
4 O, R X K4 8,(h,-4) 4o T, w}

A f:‘. (&TU)1+ \qa &T:Xu ] (10.16)

and Zu is the unitarity correction which contains the finite part of the Toop
integrals;

Z, \o\xc\\)% x-yyte b, 60 f (‘3)+ j(x_s)JrrG(x)Gb))}
(10.17)

(We have made use of (9.4) and (5.4} to evaluate the traces over 5(x), c"r(x)2 and
Tuv(x)ruv(x).)ln the above representation of the generating functional the re-
normalization scale u which occurs in the dimensional regularization scheme, has
disappeared: in contrast to the constants E:, h:, which logarithmically depend
on u, the parameters Ki, hi’ defined by

v

L

‘ 552.n 2

e -

v

('e' +£""M ) ;’=A)"')6

(10.18)

_(Rs (;W\::ﬁ;) L=1,2
M

?:2 w4
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are scale independent. (The coefficients vy, ='%-etc. are given in (9.6))}. Up to
a numerical factor the quantity Ki is the value of the renormalized coupling
constant £: at scale p = M E.Mﬂ- The price to pay is that Ei does not exist in
the chiral 1imit, but contains a chiral logarithm with unit coefficient (in the
Timit M_> 0 the constants I, F. tend to infinity Tike - log MTZT).

The representation (10.17) for the unitarity correction Zu is not fully
explicit, because it contains the quantities Puv and & which involve the polariz-
ation vectors 52. An explicit representation for these vectors is

o o . v o—‘ . QL
€, =-U" , €, -y —(A7) LU (10.19)

To order ¢2 the matrices Fuv and g become

r.cl@

o ol o G _d
= 9,U 9, uP_2,ute, U9, (Uaf_ufast)

e

+3,(utal-UPa) e (3,0, L )+ Ot )
A @ 2 2 2L 2o

G4 - &L U ap) U xut

- (a»Ud—q;'f YORUP_aM®) L O(dH) oo

Finally, the pion field U is determined by the equations of motion (4.9). To order
¢3 the solution reads

U= U, + Uy « O(&°)
Waa_ AU U « O(dY)
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" ~4 ! L 1 ¢ 2
u3=(D+Mz) [--\-i{aiq’u‘u‘u&.(.qpa“tu..

e £ £
+ € (LM iUy cvrart)

v a Ie ‘e- At;; L
U Butat o Ut R U |

(10.21)
What remains to be done to obtain the Green's functions is to read off the Taylor

coefficients in the expansion of the generating functional in powers of the
external fields,

11. The expectation values <O|uu|0>, <0|dd|0>

To determine the one-point functions <0|uu|0>, <0|dd|0> we need to calculate
the change in the generating functional produced by a change in the scalar ex-
ternal field s{x):

- Rdx%'&%o <o\gqlod e <o\a"c"6\\ o> }m-l)

3 =<% (m, = my}, all other external fields

around the value s° = % (mu + md), s
being switched off. In the representation of the generating functional given in
the preceding section we have replaced s(x) by the fields ¥9 =2 Bs® and

%i = -2 BsT. We therefore need to consider the changes §y° = 2 Bss®,

5§i =~ 2Bgs' around the values X = (rnu + md) B, X3 = (my - ) B. Since GX
counts as order ¢ we only need the generating functional to order ¢2 The unitar-
ity correction Zu is of order ¢4: the vacuum expectation values therefore only
receive contributions frgm tree graphs and taqpoles. As shown in the preceding
section the pion field U vanishes for a, = X1 = 0% the $am§ isTtrue 0£T3¥U.

Us (x U)7s x'x and x ' in
(10.16) contribute to <0|uu|0>,<0|dd|0>. The change in the generating functional

This implies that only the terms proportional to x

is given by

222 (o DX F [ A L3y (R-n) 129, (R 0]

(11.2)

32WEL

_+%K32M30m%ww531
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and we therefore obtain

<o\Bu+BA0S = 272 Bias M1 (4% -T.) . Ot
. Pt (0T oo

(11.3)
Zo\uu-adlo>_ + 4(md‘mu) ‘\32\,,3 A OU"\;—*,)

The contributions of order m involve the "high energy constants™ hI’ h3: in

contrast to the vacuum expecgziign value in the chiral limit, <0|Gu|0>0 =
<0|&d|0>0=— FZB,the vacuum expectation values in the real world involve an addi-
tive, convention dependent rencrmalization (the same remark applies to the dif-
ference <0juu - §5|0>). The origin of this ambiguity may be seen in the first

order perturbation theory formula

<o\Gulod = <o\au\o>o-LRdx £ §Mq Tuted + 0(M?) (11.4)

The renormalization dependence of <0|uu|0> reflects the fact that the scalar two-
point function explodes Tike x'6(1og x)-zY as x - 0 - the representation (11.4)
does not make sense as it stands. (The situation is somewhat similar to the
problems one encounters if one evaluates the quantity <O|trGqu““|0> on the

basis of QCD sum rules: one has to make sure that the perturbative contributions
one neglects are smaller than the nonperturbative contributions one retains.)

In the following we do not make use of the vacuum expectation values
<0|uu|0>, <0|dd|0> except in the chiral 1imit where they are unambiguous. As
pointed out by Novikov, Shifman, Vainshtein and Zakharov {1981) the nonanalytic

contribution proportional to M: log Mi is also unambiguous:

2

<o\au\o>_—_zo\ﬁu\o>o\A_;5M: Z&M:*...} (11.5)
20 %

n

Since this term dominates the corrections for small quark mass we may conclude
that the modulus of the expectation value increases as the quark mass is turned
on. The quantity |<O|uu|0>| reaches a maximum at a quark mass value of the order
of the scale of QCD and then decreases like (mu)_] as mua-«s(Shifman, Vainshtein
and Zakharov 1979).
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12. Axial vector and pseudoscalar two-point functions, M;, Fy

In the terminology introduced in section 10 the two-point functions contain-
ing the axial current and the pseudoscalar density are determined by the gener-
ating functional at order ¢2. To first nonieading order in the Tow energy expans-
ion these Green's functions are therefore determined by the tree and tadpole
graphs and one may extract them from (10.16) in the manner described in the pre-
ceding section. We first disregard isospin breaking effects by putting m, = mys
we will discuss the modifications produced by m, = My below. Expanding Z to
second order in the field au (which also fixes the pion field v’ through (10.21))
one obtains the following explicit expression for the two-point function of the

axial current:

A;), = E\X}“’XS%"C‘

\plx-9) y "
L%o\x e AT ALGOA, (9) 10y (12.1)

Ve v—'\::’ —2 . —- =
-3 {% + 3P0+1r * (PMPW" juv P "f‘"{ (hz' PS )} + 0(94)
HI'P 49T

with

r%1= M2*4_ Nﬁ--ks-eO(M4w

v 32w2 %2
(12.2)
—_— 2 Py
Tro=F{ae M4 00
W22
4, . . 4 2.2 4
(The symbol O{p") in (12.1) includes terms of order p ', p"M~ and M'.) The tree

graph contribution fmm1£3 (and the tadpole graphs which renormalize this constant
to 23) thus shift the position of the pion pole from M2 = 2 @B to Mﬁ. The constant
24 determines the physical value of the pion decay constant which measures the
matrix element
b . AN
A - S F S {12.3
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(We use the normalization F1T = 03.3 MeV.) Both M and F,. contain a chiral loga-
rithm (Langacker and Pagels 1973)

V“1z = T“\z.{ A4 _E:1fl__ L "\z:* e ‘

w 32WEEL
(12.4)
2 2
Fooe T4 M Lot
w2 ¥ 2

For small values of the quark mass these terms dominate the corrections and we
get M_ <M, F_ > F. Note that the terms of order p2 in <0|TAuAv[O> involve the
high energy constant h2. The fact that this constant is convention dependent
reflects the high energy behaviour of the spectral functions - the free quark
loop produces a quadratic divergence in <0|TAuAv|0>.

The terms proportional to a;xk and to x1xk in the generating functional lead
to

Y2 qLXS’C e

‘ el-v) % e

Lgo\xe NAL P oy =3 TG iom |, O(e)
Mg -p?

L1

. 1 pGe-v) N NP 2
Lgdxe LOVT P P (9103 = S {Gw

Mg-p* 272

+ O(e™) (12.5)

where

2 — —
Gw-:z.'B?«{A_%’\_“_ﬁl(,?s-zh)_‘.O(vﬁ)‘ (12.6)

is the coupling constant of the pseudoscalar density to the pion:

éo\c—}i,xs“c"q k> = K G, (12.7)
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The relation between the divergence of the axial current and the pseudoscalar
density implies

2 A
FoM = C_:,_“_ (12.8)

One easily checks that the Ward identities linking the two-point functions (12.1)
and (12.5) are indeed satisfied. (The Ward identity for <0|TAUP10> contains the
expectation value <0|qq|0> determined in the preceding section.)

We now consider the effect of the quark mass difference m, - my on these
quantities. The quark mass difference enters the generating functional through
the terms involving the field %3 = (my - mu)B + ... We are interested here in
the expansion of Z with respect to a.u and y . Only the term 2 (mu - md)sz(U3)2
contributes to the two-point functions of the axial and pseudoscalar densities
(the field U s determined by auai
only effect of the quark mass difference is therefore a change in the mass of

the FOI

+ X3 through the equation of motion). The

4. —
fe= M 2 £3 - (mu'md)zﬁlgq * O(m:uam) (12.9)
32v%F2 F2

We merely have to replace Mi by Mio in the Green's functions of Ai and P3. There
is no isospin symmetry breaking effect in the pion decay constant F1T or in G1T at
this order of the low energy expansion.

Finally, the two-point functions inveiving the isoscalar

o

P = TLLXSLL -\-abxsa

are obtained by expanding Z in powers of the field %O. We find

1p(¢-y) o . — =
(axe oW AL ()P lo> = L0 F G _+O?)
P Mz A
7o~ P
X elx-y) 3 o -
i \adxe Lol\T PGP (Wlod =_.<::IL§L + O0p*) (12.10)
z 2
Mge -0
Vo(x-9)

L \o\x e L0VT P () :?o(\)) 10> o~ 8B*( ?}+\f13)+0(pz)
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ny
where the coupling constant Gﬂ of the isoscalar to the pion

<Ol-<5\i,x5q\’“°> = G“. (12.11)
is of order m, = My
o 2
G, = - (m“-ma) 4___?_ ,2_+ (12.12)

To check the Ward identities one has to take the term of order m, = m.  in the

d
divergence of the axial current into account:

au(q XV‘ Ks c() =

[

— . 3 -
S Ty LB e i g

(12.13)
This relation implies, in particular
- [ d
FeMio = 3%1’.".‘&* Gy + ‘“‘“;"‘"d G, (12.14)

13. Vector and scalar two-point functions

Since the fields ui and io = XO - M2 count as quantities of order ¢2 we
need Z to order ¢4 to th the two-point functions containing the vector and
scalar densities. In particular, the unitarity correction Z does contribute
to these objects. The pion field 0’ and the covariant der*vat1ve v U vanish if
the fields al and y i are switched off and we obtain

be T T (9) <23y - 2,m), (0072 T,

(13.1)
‘e 6’(%)6‘(y) = B&O(x)&o(j)
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Inserting these expressions in the representation (10.17) for Zu we get
oy e o _ .
= L . .
Vp =85Tq s S=-8a; 5=97°9q

\P( "9) — v 1%
dxe <OVT VLGN, (V0y =

AV " 2 - —
= & (a9 B 5 (- 250) T 2, (i} 06

-

L \dx e Lo\T So(x) So (\))\03 = (13.2)
~ 6B 3 (e0) & BT (an, -1, -3): O¢)
EW*
A (":"“‘) L v
aee® V0TS 08 505 - 88T, 1 0(p?)

where the two body phase space integral J(pz) is given in (10.9). The contrib-
utions proportional to J(pz) arise from two pion intermediate states which pro-
duce a cut starting at p2 = 4M§.

There are no isospin breaking effects in the vector and scalar two-point
functions at the level of the 10w energy expansion we are considering here. The
low energy expansions of <0|TVuS |0> and <0|TV ) |0> e.g. start with terms of
order (mu - md) C Py = O(p )} which are beyond the reach of our accuracy, because
these terms correspond to contributions of order p6
(the external fields Ua
ively).

in the generating functional
and ¥, % count as quantities of order p and p2 respect-

The contact terms in all of the above Green's functions are sensitive to the
high energy constants h1, hz, h3. These constants however drop out in the dif-

ferences ( % Mg M2 +3 Mg = MEO):
oGe-w) . " ‘ 13
\o\x LOT N, GV, (9) — TARGOA, (0> =

A 2 2., ,
* EM—QV?:\: LI YA wk-’«-& (Pqu"ij){%(ﬂ—%)a(P)

e ( ts-%) }+ o)
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.p(x V)

Wdee ™ o1 5 T3S (y)- TP W) PRy 10>

2.

Vg S

L 6B 3(e) - B (4_,, 4£4+a)}+o(p)

v v ek o °
\c\x P 4o\‘\"$(x)5k(9)ng> TPGOIP Lo

L\ 2 2
- - 81 /?.:‘_ + O(¢*) (13.3)

because the leading high energy behaviour of the relevant spectral functions is
the same.

14, Spectral representations

Expressed in terms of the corresponding Kdllen-Lehmann spectral functions
the above low energy representations for the two-point functions contain two
different pieces of information: (i) they specify the leading low energy contrib-
utions to the spectral functions and {ii) they imply a set of sum rules which the
spectral functions must satisfy (Weinberg 1967; Das, Mathur and Okubo 1967;
Glashow, Schnitzer and Weinberg 1967; Oakes and Sakurai 1967).

For simplicity we disregard isospin breaking. There are then six independent
spectral functions which we normalize as follows:

VO (=) ‘ s
AGdxe LOANGGOVS (910> = (Pupr-Fuv P Sy (6?)

dxe |P0<-3) : & °. 2 2y, (2
E_IT L0\ Au)AG (DI0> = Rup, ?A(P ) -\'(QMP\"'%M"P)?A(P )

1p<~3) 0 o
2 (dxe’ <ol LIS = g (¢7)
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W(x-) v & o
4 \ox e \SG)S Y = BR (oY)

(- o ° ~
A \dxep y><c:>\P ) PS> = o (e*) (14.1)

2T

The spectral function pP(S) involving the pseudoscalar P1(x) may be expressed
through the spin zero piece of the axial spectral function

p(e) = S 61 (/32

The low energy structure of pb, pg and bg is obtained by evaluating the imaginary

part of the corresponding two-point functions:

7
0L (#) = 2 ©e—am)(U- A Y 4 O(p?)

48T2
Qal®) = F2S(s-™MZ) + O(cH) (14.2)
(o) = 38 ©(s_am®) (4= 4aMr " O(p*
S§E= Ry L - ) -+ P")

The remaining three quantities p;, Bé and BP are of order p2 at low energies.

At high energies perturbation theory shows that pL and pl tend to a

constant, whereas pg tends to zero:

-1
<§\: () > (:g?_“:z/)
2 |
?; (s) , (37%) (14.3)

¢a () —> 34 (e) (4178 )

where f{s) is the running quark mass at scale vs. The other spectral functions,
Pg > BS and BP all grow in proportion to s(log s)_2|< with « = 4 (11 - %—Nf)"1.
The formal dispersion relation for the scalar two-point function e.qg.

‘GD(S‘-fi) 2] ) = i
i\dxe OVTSG)S GO = i%t;?' QS(S) (14.4)
-
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requires two subtractions to converge. This is why the Tow energy representation
(13.2) for the two-point functions involves the convention-dependent high energy
constants h], h2, h3.

Whereas the leading short distance behaviour of the individual two-point
functions is of the type 2_6 (up to Togarithms) the leading contributions to the
differences which occur on the left-hand side of (13.3) are of order
@)% 274 + m <0|5q]0> 272 + ... (Fritzsch and Leutwyler 1974; Hagiwara and Moha-
patra 1975; Bernard et al. 1975; Weisberger 1976; Ong 1977; Sazdjian 1977; Flora-
tos, Narison and de Rafael 1979; Broadhurst 1981). The renormalization group
improved leading singularity is given by the same expression, provided i is re-
placed by the running quark mass @m(s}. Thanks to the presence of anomalous
dimensions, the dispersion relations involving the differences,ps -~ Pp and ES - SP
do therefore not require subtractions. On the other hand, the high energy behav-
jour of the spectral function S(pé - p;) is not improved by an addiZiona] loga-
rithm from anomalous dimensions. The contribution proportional to Z ° is however
of order (rﬁ(s))2 and only shows up if one carries the low energy expansion beyond
first nonleading order. At the order we are considering here the leading short
distance behaviour is proportional to 272 . the dispersion relations invelving
the difference S(p& - pk) does not require subtractions (one may e.q. cut the
integrals off at some large value S ~ the result depends on so only through
terms of order (m)z. An analogous remark applies to the sum rules eqs. (14.6),
{14.7).) We may therefore rewrite the low energy theorems (13.3) in the form of
sum rules, obtained by evaluating the corresponding unsubtracted dispersion re-
lations at p2 = 0:

Tds{ gi,(s)- éﬁ\(s)} =:F:+ O(M.;')

t:od )
\_g{g (s)_gAw)}_MT (f5-1) +O(M:)
) 2 -2
‘:'}gs Rals)=F ™M o O(M%)

42 0 {R(-8p} = Fral s M1 (1,27, +5) ] 0ME)

az‘rt" rr

0/"‘8 0../’8 e/"gc

wl%

z{ Q. (s)— QP(&)} = _zM (’,4 A O(M‘“_) (14.5)
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(To obtain the sum rules associated with the low energy theorems for the differ-
ence YV - AA one separately considers the coefficients of gW and of pupv.)

The first one of these relations is eguivalent to the first Weinberg sum
rule (Weinberg 1967). The second Weinberg sum rule holds up to terms of order

i (see the references quoted above):

CHD
1 ’ z
(de s{gq( - gAtsﬂ = O(My) (14.6)
and the same is true of the sum rules for the differences of scalar and pseudo-~

scalar densities:

(D88 Qp(} = 0(Mg)
N (14.7)

Come
o~ o~ T
Rds-\ (&) —Rel0) | = OMy)
)
(The relations (14.6) and (14.7) follow from the short distance behaviour of the

relevant two-point functions.)

15. Vertex functions and form factors

The explicit expression for Z given in section 10 allows one to read off the
low enerqy representations for the vertex functions VAA, VAP, VPP, SAA, SAP and
SPP. In particular, one finds the following expression for the Green's function

<0|TVAP|0>:

qx P’y - p2 ' % A
%o\xol\) <ol'v \/; GAAL (V)P @)\
VB
£ . T Gy “%Mv + (Pu+ Pu) P
A
~5m (- 4: DEICHEIC -9uvq +(q”pq i’fq)p"}(ls.n
w u;‘“ ©
= ‘ ,
+;l‘?‘3?1 (4s - 5‘){ Puly - ﬁMvp'Cl}
T
A

- (h-Y)le. OuPA-PAOY 1 s
49“21:2 )"P P - P+ g O(P)]



43

with p = p' + q. (Recall that the symbol O(pz) includes terms of order (momentum)2
as well as terms of order m, or md_) The only effect of isospin breaking at this

order of the low energy expansion is that the masses occurring in the pole fact-
ors (05 - p)7, O - 92!
current and by the pseudoscalar field: M] = M2 = Mﬁ+, M3 =M

mo”*

depend on the electric charge carried by the axiatl

The residue of the pion poles at p2 = ME, p'2 = Mi is proportional to the
vector form factor of the pion, defined by

L% Y 4 2
e IN, l’uﬁp> =€ (phypu) Ty (9 (15.2)

Explicitly, we obtain from (15.1)

T =40 4 (k-av®)J) 4 X £, A 4
v + — Y+ __ (£-4) .0

There are no isospin breaking contributions to FV at this order of the Tow energy
expansion (Ademollo-Gatto theorem) (Behrends and Sirlin 1960; Ademollo and Gatto
1964). The low energy representation of the form factor in particular determines
the electromagnetic charge radius of the pion:

-
FoR)= A4 ﬂct <ets, 4 OKS)
(15.4)

L) A ry
Lrrd, = fi-4) L O=
CoN WﬁF;( 6=+ Otvy)

The constant EG thus measures the electromagnetic charge radius. Note that this
radius explodes as M1T + 0 (Bé&g and Zepeda 1972; Volkov and Pervushin 1974,1975)

T A 2
b Y Lo ™M . 15.5
Y WHeEZ T (15.5)

The reason why there is no charge radius in the chiral 1limit is that the pion

cloud surrounding any particle, in particular, the ¢ioud surrounding the pion
becomes long range as M1T -+ 0: there is no Yukawa factor ~ exp (- Mﬂr) to cut it
off at large distances. In the chiral limit the charge distribution only falls
off 1like a power of the distance, the mean square radius of the distribution

diverges.
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The Green's function <0 |TVAP|0> also determines the amplitude <0|TVA|m>which

contributes to the decay m—+evy. Extracting the pion pole and setting the photon
momentum g on the mass shell, q2 = 0, we get

L\ dx Q:GIM it Lo\ \/ (x)A <) It e>-e¥
(15.6)
- € Je,, E0l-s Il»‘?s)(gv?ﬂ‘%g'?)}
X m
+ O(p*)

where &, is the polarization vector of the photon, eq = 0. This result is equiv-
alent to a low energy theorem established by Das, Mathur and Okubo (1967): the
constants E6 and ES may be expressed in terms of the elec?roma%netic charge
radius and in terms of the spectral function difference Py = PA respectively
(¢f. (15.4) and (14.5)). The structure term in (15.6) then becomes

L =

A A 2
491;24-’1('?" ? ) = ‘4(' > ; d_é_(gl_gl) A+ 0OMy) (15.7)

The three point function <0|TSPP|0>, which occurs in the Ward identities for

the off-shell pion scattering amplitude, may be obtained by expanding the gener-
ating functional to order iox1xk. The result reads

% \P -1 o v 3
&o\xdy eI Lo\TS GOP (PP @) lod

" 3
4 C S ] 2
=é 2 gz /2‘. 2 ~ G(q ’Ptp )
™M L-P H“-p *r

G (qszri-pz) =14 A - (chz.y-p'ipz__BMz‘)a—(qz) (15.8)

+ A (-0 (q-p = e")

\GT Z-Fl
(47, -25-3) (g 4 p=™M?)
an T2
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Again, the quark mass difference m, - my only affects the positions of the poles
- the residue, which is proportional to the scalar form factor of the pion:

<”W;'p/\-c_{o\l_lfkp> = Estk -'\:‘s({)

—— 4 2 —
Fo )= T )1 + o5 (24-M) 3 W)
T

(15.9)

t 7 - O?
+Y€F¢T§(€“ 1) + OW»)]

2 L —_
™M A 4
+*, (o) = 28,{ A Mw l(f_,,--?_) + OMT)
U3 ok e
does not show any isospin breaking at this order of the low energy expansion.
The scalar charge radius which measures the slope of Fs(t) is given by

u e
4>y = 2 (1a-13) L O(ME) (15.10)
s P 4 LY
-3 R AZ
Note that the coefficient of the chiral logarithm contained in <r2>g
W
Y 3 z
~<r >5 = ’EﬂaMT+. .

232
FRRE

is six times larger than the corresponding coefficient in <r2>v. Since the
constant £4 also measures the difference between F and Fw we have the following

relation:
z. 2
I a4, LMwérSZ*. A3 My +O(M;') (15.11)
£3 b 1322 F2

It is clear from this relation that the value of the scalar radius plays a central
role in the analysis of the low energy theorems.

The value of the form factor FS(t) at t = 0 is proportional to the expect-
ation value of the quark mass term in the Hamiltonian of QCD. According to the
Feynman-Hellman theorem (Hellman 1937; Feynman 1939; Epstein 1954) the expectation
value of the perturbation in an eigenstate of the total Hamiltonian determines
the derivative of the energy level with respect to the strength of the perturb-
ation. In the present case the perturbation is caused by fqq and the theorem says
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that the response of the pion (mass)2 to a change in the quark mass is given by
the expectation value of qq in the physical eigenstate describing a massive pion:

i N
oMy
D™

indeed, FS(O) is the derivative of Mﬁ with respect to fi (note that 23 logarithm-

= éT\E\C{\TTB (15.12)

ically depends on @},

The same argument, applied to the perturbation produced by the quark mass
difference m, =My leads to

2
2 My

= A <T\’E{"C3q\\‘r‘> (15.13)
’a(mu-md)

2

The change in M2, s given in (12.9); M 4 is not affected at order (m, - my)°.
This leads to

. ) i3 W@ A3 ik .
:FZ
{15.14)
(Note that the form factor vanishes for m, = m, on account of isospin invariance
and Bose symmetry; the Tow energy representation of the generating functional
given in the preceding sections does therefore not contain any information about

the slope of this form factor which remains hidden in the higher order terms.)

16. Four-point function

As a final application of the low energy representation given in section 10
we consider the four-point function <0LTPiPkP£Pm|O> and first look at the contrib-
ution to this quantity generated by the quark mass differgnce m, = My If the
external fields %0, %1 (which are the sources of P® and S1) are switched off,
the mass difference enters the generating functional only through the term

\dx (\-nwmc\)szzEjr (U3 )Z (16.1)
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We need this term only in tree graph approximation - since it is quadratic in

the pion field U3 it may be absorbed in the pion mass term contained in the

zero order generating functional. The mass of the ™ js shifted from M2 to

M2 -2 (mu - md)282€7/F2; otherwise isospin breaking has no effects at first
nonleading order in the low energy expansion. We therefore merely have to equip

the pion propagators associated with the four legs of the four-point function with
the proper mass; the amputated four-point function is isospin symmetric. For this
reason we in the following disregard the mass difference m, ~ My altogether.

The four-point function is of the form

WP X wuPr Xo+ 103 X5+ P4 Xg

v £ "
i \o\on\x,_o\x 3€ <o\ ?’(x,)"Pk(’gz P, P)o)
4 i den 2 o a 2
L {B > A(SJ*-;U_;P\JPz;Pa)PA;)

T (mk-pr
A (Me-p3) ‘R ke (16.2)

2 2z 2
1d > Ale,su50,,0% 00,04)

.

im &2
£+ > A('U,JC,S.;PﬁPi}PS‘,P:)}
with
PaxP2+Pa3+ Poa =0C
2 , S e
S=(f+e2) ;t=(P+€3); u={(p.+pPa) (16.3)

2
Saki+u = 2-Q;
L

Explicitly, the ampiitude A is given by

A z
A(cﬂ’t‘)u:\ P\z) P:/ P;;P: ) = ; (S‘Mz) '\"B(sl{luj P\Z)"')PJ.\.)

+ C(S:£1MJP?)"') P:;) * O(pc)
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Ble, o, 04) =6F *yb(s-v'\‘)(zs*’c +u-3M2) J(s)

-\-'{ZM’“(u-s)_zlcu—-st+3(PTP§*P Pa)~Lys 24("*2M )} «)

P_M (-)-2ut -su+3(ple; 4 pips )- =B, Ay (1420 l(](“)

r

By = PT—Px
Clsp, u; 02 ,P:)=(3(:1{21:"5‘[2(5\‘%){_5(-&+u)+(P.z-\- P:'.)((’;+PZ)}
+2(4,-$){-sWawztus (phip Xp3 464 +2(Ftes+ 5 e0) |
5 3= M ataw) - (14 )(F3+ P2)
4 6 (11 (o-m) (sat v u- 4 ™)

— 12 M58 4 \5 M ] (16.4)

B(s, t, u; p?, cees pi) is the unitarity correction, preoportional te the phase
space integral J(pz) given in (10.9); C(s, t, u;p%,..., pi)contains tree graphs
and tadpoles. Note that we have expressed the leading contribution in terms of

F and Mz, not in terms of FTT and Mﬂ.

As a check one may verify that A{s, t, u; p?, vens pi) satisfies the Ward
identity
2.
g - ™
Als,x,u;0,940) = 2% Gls%, ) (16.5)

2.
:F1r
where G(qz, p'2, pz) is the vertex function <0|TSPP|0> given explicitly in
(15.8). G{s,t,u) itself satisfies a Ward identity which, in particular requires

G(M; Jo, ML) =4 (16.6)
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17. mw-scattering amplitude

The scattering amplitude is easily obtained from (16.4) by putting ail
momenta on the mass shell:

¥
/\(25*5\1) ==,Eé;£;j_ A '35(E5*;,LJ).* (:(15‘4;,L1) “+ C)(GDG)

+
Bled,u)= (F9 [3(L-m*)T(s)
TS EYTRH LS AL v SR IGAY
rdulu-t) —2Mu s At -2 ™ T(0)
—1 _— 2 2.
Cls b, u) = (‘3(,121:4) {z (9\—%)(3*?_\\4 )
A (G-3){ &' ol oizme g as M ]

2 =
s'e»-l

and EZ (recall that F is the value of F1T in the chiral Timit and M2 stands for
B(mu + md) rather than for the square of the physical pion mass which we denote
by Mﬂ).

This representation involves only four of the low energy constants: F, M

In the chiral 1imit (17.1) takes the form first given by Lehmann (1972)
(see also (Ecker and Honerkamp 1973; Lehman and Trute 1973)):

Alsd,u) = £, ¢ @it {3 laflid)
-3

:Fz.
(17.2)

)} +0(e°)

2.
2

+{(+_u)£w(/g_£) s ulue) Lo (X

-
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where the scales M and o are given by

z —

s = 2 14, .5

2 — (17.3)
u 3

{Note that U and Hp remain finite as Mﬂ + 0.)

The Tow energy representation (17.1) provides us with a generalization of
this result to nonvanishing quark masses. The general structure of the amplitude
A{s, t, u) as given in (17.1}) is a consequence of unitarity (Iliopoulos 1967,
1968; Morgan and Shaw 1972; Volkov and Pervushin 1974, 1975; Bel'kov, Bunyatov
and Pervushin 1979, 1980; Truong 1981). Indeed, it is straightforward to check
that the contribution B(s, t, u) does generate the proper imaginary parts re-
qguired by unitarity. What unitarity does not determine is the structure of the
polynomial C{s, t, u); the general crossing symmetric polynomial of order p4

contains four unknowns:

Clst,u) = C, 5y CL(Jc-u)L-a- CBSM?‘.\. C4M4

The constants C1s Cps €35 Cy correspond to the coupling constants at order p4
occurring in a general effective Lagrangian for on-shell pions (Weinberg 1979)

- the effective on-shell Lagrangian leaves these constants alsc undetermined.
The analysis of the off-shell amplitude carried out above furnishes additicnal
information: it fixes the constants ¢;,...,C, in terms of only two unknumﬁ;iland
ZZ. In particular, this analysis shows that the constants Cys +ves €y all contain
a chiral logarithm, i.e. explode if the quark mass is sent to zero. In the case
of ¢ and Cy it is easy to see where the chiral logarithm comes from: we have
chosen to normalize the "unitarity correction" B(s, t, u) by subtracting the
dispersion relation for J(s) at s = 0. This normalization cannot be maintained
if the pion mass vanishes - the contributions proportional to 1o0g Mi in < and
<, precisely insure that the sum B + C remains finite in the chiral limit. The
chiral Togarithms in ¢3 and C4 are more subtle - their presence can only be
understood on the basis of the Ward identity (16.5) satisfied by the off-shell
amplitude.
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18. Partial wave expansion and threshold parameters

To compare the calculated amplitude with low energy data on mw-scattering
(Petersen 1971; Martin, Morgan and Shaw 1976) one expands the combinations with
definite isospin in the s-channel

T%(s4) = 3A(s4,u) + A, u,e) + Al )
T' (s4) = A u,8) - A, g,4) (18.1)
T2, A, u,8) L Ay, s, 4)
into partial waves:

TI(S)U = Bzwg(zlm)a(cﬂe)-q ()

S = 4 (Mﬁ + q) (18.2)

b= -297(A-cevB)

Unitarity implies that in the elastic region 4 Mi <5< 16 Mi the partial wave

amplitudes tI are described by real phase shifts 5I

2 A
T
{
I / g z A ELLEBQ‘(SQ
- 18.3
() {2 2 {e 4} (18.3)

The behaviour of the partial wave amplitudes near threshold is of the form
X 2 £ I 2 X
4
Ret, () = q {Q‘e + q b}a + O(q)} (18.4)
The quantities aé are referred to as the gr-scattering lengths. (Note that the

standard definition of the S-wave scattering length A, based on the effective
range formula

qa‘!’ig =__g\_+.‘2.:(‘°qzﬂ+...

is of opposite sign: A= - a /Mﬂ_)
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It is straightforward to extract the threshold parameters aI, bé from the
representation (17.1) of the amplitude. To leading order in the low energy ex-
pansion (B = C = 0) the amplitude is a linear function of s and therefore only
the $- and P-wave amplitudes are different from zerco. At the next order in the
Tow energy expansion all partial waves contribute. For those threshold parameters
which are nonzero in leading order we get corrections of relative order Mi:

o 2 ., - -—
a I T4 5 Mt a8 29 211 0MmY

¢ 321\'%“\ Ay ;’-* ‘ 2 0 3% a‘k ]
b"m_._'t_p 1 nga 32, } O(w)]

* TarEE| Tazve =\'-’- Y 26T

. -
C!i =__™ {4_ A {f, A2 ‘e i} + O(M4)] (18.5)
GT¥2 | 2rr x2 8

i

by \«_4 vt Lasl, o5 L omY]

gT T2 PRI

““-‘I
L
53]
I il
4
O
X
E-N
N
| S |

4 ——
a, =2 (4.4 _ M ln4,
24T F2 \2 e T2

Note that we have expressed the resylt in terms of F and M rather than in terms of
the physical values F1T and Mﬁ. {The definition of ag however involves the physical
value of the pion mass - this is why the quark mass expansion of this quantity
contains the constant 23 which relates M1T to M.)

For the remaining threshold parameters which vanish in Towest order we obtain
new low energy theorems which specify the leading term in an expansion of these
quantities in powers of the quark mass (or, equivalently, the pion mass). The
P-wave slope and the D-wave scattering lengths are given by

1 ~! Y T
b = (2837 F4) {—f,.» o« 9120} 4 O(M™)
-\ —
a, = (1440WF") {f. 448 o53/sf 4 oMY (s

azz = (‘440.“3?45‘\[ :'T‘*_ fz - 10_3/40} “+ O(Mz—)
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Similar expressions may be given for the scattering lengths of all higher
partial waves (Gasser and Leutwyler 1983), e.q.

4-2 4

A M ‘a\. (£—3)l. 2'2 S’E" O(M‘L)
“ T szud ¥4 [(zfu)!'.]’-(/‘s * 22HA+ }

£-3,5,1 ... (18.7)

These low energy theorems of course satisfy the Martin inequalities (Martin 1967,

1968)
T

Qya

< Q’E (’?-1-/0(?4—2-)

4(2£+3) (2. £45)
The improved soft pion theorems (18.5) imply that the quark mass expansions of the
quantities ag, b0 o bg and a} contain chiral logarithms (Gasser and Leutwyler
1983). Consider, e.g., the S-wave scattering length ag. Rewriting the low energy
theorem in terms of the physical pion decay constant and the physical pion mass

we get

z 2z — - — e

a’ .3 Ml 5 Mg {1.4,2? 3‘93-»&{4-\-’—‘—']-*0(“4)]
2% IE|  gant T+ & \0 ¥

L} w (18.8)

2

As M_ = 0 the low energy constants E], cees Z4 all tend to infinity like - TogM_

The quark mass expansion of ag is therefore of the form

<
al = IMr t4_ 8 MEg ML .
32TEE 32w* 3= Ve ‘

The correction to the soft pion theorem is not of order Mz, it is of order

M2 log M2 Taking the scale of the logarithm at w = 1 GeV we get a correction of
order 25% rather than 1 or 2% as suggested by the rule of thumb given in the
introduction. This example shows that general order of magnitude estimates are
quite misleading if they are applied to quantities like ag for which the quark
mass expansion contains a nonanalytic term with sizeable coefficient. Note that
the nonanalytic correction to ag goes in the right direction to decrease the
discrepancy between the soft pion prediction

o 2
° 3zw B
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and the observed value

4]

a, = 0.26*0.05
Exp.
The numerical value of the correction to the soft pion result depends on the
choice of the scale u in (18.9), i.e. on the size of the analytic terms of order
.
term the full expression (18.8) is scale independent. To evaluate the correction

In contrast to the representation (18.9) which only exhibits the nonanalytic

of order Mﬁ, including both nonanalytic and analytic terms we need an estimate
of the coupling constants Z,, ..., £, to be inserted in (18.8).

19. Phenomenology of the low energy coupling. constants

In principle, the coupling constants Lys Los «ens £7 which occur in the ef-
fective Tow energy Lagrangian are fixed by the scale A of QCD and by the quark
masses. In the absence of a computational scheme that allows one to extract the
vaiues of these constants from the Lagrangian of QCD we retreat to a phenomeno-
logical evaluation based on experimental information at low energies. We analyze
the constants £95 £2, e £7 in turn.

As can be seen from (18.6) the constants £y and £, are measurable through
the D-wave scattering lengths:

£, - AroT> 3;: (-Ol:+ 4qi)+ 43/4 0

. (19.17)
7 -2 4 © 2
L, = 40T F (a, ~a.) + 2%+/20
With the experimental values given by Petersen (1977):
0 -4
Q, = (\Fx3)0
2 tt3) (19.2)
2 —
A, = (4.3+3).\0%
{in units of Mﬂ+) we thus get
L, = ~2.3+3,
" 1 (19.3)

A, = 6.O+43
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The constant £, cannot be measured directly. In (Gasser and Leutwyler 1983) we
have given a crude estimate based on the additivity rule: E3 = 1.8 +2.2. A more
sophisticated analysis based on chiral SU(3)xSU(3) runs as follows (Gasser and
Leutwyler, to be published). Denote by ﬂﬁ the value of the pion mass in a world

in which the strange quark is decreased from its physical value to ffi = %-(mu-fmd).
The 0ZI rule (for a review see Okubo 1978) implies that the difference between

M and M
i T

‘C\“’_‘ (A4 D) (19.4)

is small. Next, consider the ratio (MEO-M§+) L (M - Mi) in pure QCD. In Towest
order of the quark mass expansion this ratio is given by (m, - mu) : (ms - m).

Denote the difference to the lowest order formula by e:

2
MK“ —MK* LAWY}

-m
— —= % (4x€) (19.5)
MS ™ M, - m
Y Ny S
The constant ES is related to € and & by
2T F
/Ln_J_ 1 _ 3 (e45) (19.6)
3 ML
w T
The observed value of the K® - K™ mass difference (corrected for electromagnetic
effects with Dashen's theorem) leads to (Mo - M2,) = (M2 - MC) = (43.7 + 2.7y,

(An independent determination is provided by the rate of the decay n—+ 3w which,
within the errors,leads to the same value (Roiesnel and Truong 1981; Minkowski
1982; Gasser and Leutwyler,to be published).) Since this value agrees very well
with the quark mass ratio (m, - mu) : (ms - 1) obtained (Gasser and Leutwyler
1982) from the baryon mass splittings or from p-w -mixing the quantity € must be
sgall.z(Note, incidentally, that € also measures the deviation of the ratio

MK » Mp from the lowest order mass formuia

TV11' Mg + o1
K = 2" (AxE) (19.7)
7 FaN
‘“\1r 2 m
A small value of £ means that the ratio me fi must be cliose to 26.) In order
for the sum € + & not to exceed 20% the value of 33 must be in the range

Ly,=23%2.4 (19.8)
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\

confirming the estimate quoted above. Although the uncertainty in Z3 is rather
large, we willsee that the effect of this uncertainty on the scattering lengths
is extremely small - all that counts is that we are not underestimating 23 by an
order of magnitude. Note that the value (19.8) requires the difference between

.M2 = B(mu + md) and Mi to be very small:

™M o (4_04-5:0.04)(*’\_“. (19.9)

The constant 24 is related to the scalar radius of the pion (cf. (15.710)}. In
{Gasser and Leutwyler 1983) we have given the estimate 24 = 4.6 + 1.2 based on
data for the analogous scalar form factor <r|us|K> which is measured in K£3 decay
(Particle data group 1982).

TW =
Ler> = 60, = (0.25‘&0.05)3}«-«\ (19.10)
The essential point here is that it is misTeading to apply plain SU{3) to these
quantities (i.e. to take <r2>ﬂK = <r2>“),because they contain chiral logarithms

™o

with Targe coefficients. Since M

is much smaller than ME the chiral logarithms
2.m
>

m
contributing to <r are numerically quite different from the analogous contrib-

K

utions to <r2>1T . In (Gasser and Leutwyler 1983) we have argued that these effects

lead to a value for <r°>™ which is more than twice as large as 2™ A more
systematic analysis of the problem is given in (Gasser and Leutwyler.to be publish-
ed) where we show that <r'2>1T may be determined in two independent ways in the
framework of chiral perturbation theory of SU{3)xSU(3) with the result (using

either experimental information on Ku or on Ku decays and applying the 0ZI ruyle)

3 2
™ 2.
<e?>y = 0.6 0. 48 m (19.11)
This value implies
£ = 46+0.9 (19.12)

In view of (15.11) the pion decay constant therefore decreases by about 6% if the
masses of the u and d quarks are sent to zero:

T =0.34F_ _ 8¢MeVv (19.13)
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The constant Lg may be estimated by saturating the two sum ruies (14.5) for
the difference p; - o; with w, p and A]. Using the measured values FD = 144 MeV,

Mp = 770 MeV, MA] = 1275 MeV one finds

Ae =14 (19.14)

(In this estimate the two pion continuum which is responsible for the chiral loga-
rithm in E5 is neglected. With the Tow energy representation (14.2) one finds

that the integral over this continuum up to s = Mg increases the value of ES by
less than one unit.) A direct experimental determination of £ will be given
below.

The constant £6 determines the electromagnetic charge radius of the pion
(cf. (15.4)) which is measured. The most recent value (Dally 1982)

— 2.
2y’ o 0.433 x0.03{m (19.15)

is consistent with the analysis of the older data performed by Heyn and Lang
{1981). (See alsoc Gourdin 1974; Adylov et al. 1974, 1977; Zovko 1975; Dally et
al. 1977, 1982; Perez-y-Jorba and Renard 1977; Quenzer et al. 1978; Dubnicka,
Meshcheryakov and Milko 1981.) The value (19.15) implies

£, ~ 46.5%t 4.4 (19.16)

As a check we note that the structure term in the amplitude associated with the
decay m > evy is determined by the difference 26 - Z; (cf. (15.6)). There is an
ambiguity in the experimental value of

A (L -T 19.17

= A (4,-85) (19.17)
A

(see Stetz et al. 1978; Bryman, Depommier and Leroy 1982):

[ =0.44%0.42 or ¥ =-2.367%0.2 (19.18)

The positive solution implies

= 2.64 —Lo.t}z_ (19.19)
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in good agreement with (19.14) and (19.16). The negative solution leads to
EG
also Nasrallah, Papadopoulos and Schilcher 1982. A refined experiment which

- ZS = -~ 14.2 + 0.7; this solution is inconsistent with our framework. (See

should resolve the ambiguity is currently performed by Bay et al. at SIN.) We
replace the crude estimate (19.14) by the experimental value which follows from
(19.16) and (19.19):

—

25 = 43,32 A3 (19.20)

Finally, the constant £4 may be estimated on the basis of the sum rule (14.5)
for the difference s'T('BS - BP). In this sum rule the contribution of the n-meson
is enhanced by a small energy denominator: in the limit mg - 0 the n becomes mass-
less. The contribution from this state represents the Teading term in the quark
mass expansion of 'z with respect to M« Using SU(3) to relate the n coupling
constant to Fn we find '

2
34 - ':,5-\0'3 (19.21)
¢ 2
Mn
This estimate agrees with the familiar lowest order formula for wo-n mixing
(Gross, Treiman and Wilczek 1979)

z.
M T A (memd) e (19.22)

-“-4*"' e

)
m:-:—m

(compare (12.2) and (12.9)). As pointed out in (Gasser and Leutwyler 1982) the

contribution of the KK and nn continua to Mi+ - Mio, although of relative order
me log me s is not negligible. Since we do not need an accurate value for 27 here
we do not analyze the problem further, but emphasize that (19.21) should only be

taken as an estimate for the order of magnitude of this constant.

Are the values of the low energy constants given above consistent with the
general picture underlying our analysis or are they unduly large ? If the pion
poles and cuts were the only low energy singularities of importance we should
expect the main contribution to the Tow energy constants to be given by the chiral
Tegarithms (E] = .,, = EG = 1n(u2/M§)), which with a scale u somewhere in the
range from 500 MeV to 1 GeV gives £1 = 2,6 — 4, The observed values of £5 and
£6 are clearly outside this range. The constant 26 measures the electromagnetic

charge radius. The observed value is consistent with p-dominance:
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2. - m
<r>V26Mp VéO.]fm
based on the chiral Togarithm (Bég and Zepeda 1972;Volkov and Pervushin 1975). To

understand the size of 36 one therefore needs to understand how the presence of an

2 2

= 0.4 fmz, but is not consistent with the estimate <r2>

exited qq state at Mp=77GMeV affects the low energy structure of the Green's func-
tions.In the literature there is some confusion about the jmportance of the p-me-
son contribution in the context of the Tow energy theorems. Chiral symmetry of course
does not exclude the presence of such a state, as long as the mass of the p-meson
remains finite as m,> My~ 0. To study the contribution of this state to the Tow
energy structure of the Green's functions we construct an effective low energy
Lagrangian which includes the p-meson and is consistent with chiral symmetry
(Appendix C). We show that in the region p2 << ME the o manifests itself only in-
s £_. Indeed

19 +oor A
the observed values of these constants are quite well accounted for by supplement-

directly through a contribution to the low energy constants £
ing the chiral logarithms with the contribution from p-exchange. In this sense

the p is the only non-Goldstone singularity seen in the low energy expansion at
one loop order.

20, Measuring the scalar radius of the pion

With the experimental information about the coupling constants of the ef-
fective low energy Lagrangian given in the last section we could now work out the
predictions for the wr scattering lengths. Instead of simply quoting the result-
ing numerical values (which perfectly agree with the data, see (Gasser and Leut-
wyler 1983)) we analyze the available data in the following manner. We first
observe that the improved low energy theorems for a}, bg, bg and for the combin-
ation 2 aﬁ -5 ag of S-wave scattering lengths do not involve the low energy
cgnstgnt 23. gxiressingj the quantities F, M, £1, £2 and £4 in terms of Fﬂ, Mﬂ,

’s

Ans &g and <r the low energy theorems may be written in the form

2 k1 i A 2 o 2
A 2y 24FF { _A40 Sa* 43 4
gty g = 20T A - F)] - e w00y

(20.1)

v 2 9 2 o R
AxAMpde®> 2 avF {b, _aoM 2y 39 M 4
(20.2)
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Since the threshold parameters appearing on the right-hand side of these relations
are measured,we obtain four independent determinations of the quantity 1+u% M2 <r2>.
m

The results are shown in Table I. [We use the value (Sirlin 1972) F1r = 93.3 MeV
and identify MTT with the mass of the charged pion. The experimental values of the

threshold parameters are taken from (Petersen 1977): a} = 0.038 + 0.002,
b2 = 0.25 + 0.03, bz=-0082+ooos,ag=(17+3)1o‘4,a§—(13+3)10'4
In the case of the comb1nat1on 2 a -5 az we have eva1uated the "universal curve"

(Morgan and Shaw 1968) at a 0.20 with the resuit 2 ao -5 ag 0.614 + 0.028.

The error bars are obta1ned by treating the experimental data on the various
threshold parameters as uncorrelated. This is probably not correct: the errors
are presumably correlated with ags but we are not aware of an analysis that
exhibits these correlations.]

For comparison we list the values of the right-hand sides in (20.1...4) which
one obtains if the corrections of order Mi are dropped (last column of the table).
The fact that the numbers in this column differ from 1 is equivalent to the state-
ment that the data show deviations from the soft pion theorems,

Note that the guantity 1 + %-Mﬁ <r2> is larder than 1 in all four cases. The
mean value 1.12 + 0.04 may be taken as a measurement of <r2>:

¢St - 0.320.2 4 @

consistent with the SU{3)xSU(3)} estimate <r2>g = 0.6 +0.15 fmz obtained from
either Ku3 decay or from FK/Fﬂ’ neglecting Zweig rule violating contributions.
(This estimate leads to the prediction quoted in the last row of Table I. The
agreement of the two values confirms the approximate validity of the 0ZI rule in

this context.)
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Apart from the D-wave corrections which essentially eliminate the contrib-
utions quadratic in s, t, u, the main effect responsible for the observed devi-
ations from the soft pion theorems is the fact that the pion decay constant in
the chiral Timit is smaller than the physical decay constant. The soft pion pre-
dictions are proportional to F‘2 and hence systematically underestimate the
threshold parameters by about 13% {the quant1ty T+ l-M2<r2> roughly represents

3
the ratio F /F , see (15.11)).

The improved low energy theorem for the S-wave scattering length ag involves
the Tow energy constant £3:

2 —
alee X _ M {ArdMT <o M (\sﬁs_assj}

2T %2 632>
5 28 My (Qg 203 ) + O(Mf;) 10:0)
With the estimate £, = 2.9 + 2.4 given in section 19 we obtain
a’, - 0.20% 0.04 (20.7)

to be compared with the experimental value ag = 0.26 + 0.05 and with the soft

. — 0
pion prediction g =

is minute; the prediction for ag is quite accurate, despite the fact that £3 is

0.16. The main point here is that the contribution from £3
poorly known. (Note that E3 would have to be of the order of - 70 for ag to have

the value 0.26 . In the notation used in (Gasser and Leutwyler 1983) this value
of 23 corresponds to B, = 50 instead of By ~ 1 as estimated there.)

21. Summary and concluding.remarks

In QCD the Green's functions of the quark currents are functions of the re-
normalization group invariant scale A, of the quark masses and of the external mo-

menta: G(A, mquark’ p
Green's functions in addition depend on the renormalization point). We have ana-

) (if fields of anomalous dimension are involved, the

lyzed the behaviour of these Green's functions in the region of small momenta and
small quark masses. More precisely, we have studied the dependence of the Green's
functions on the momenta and on m, and My at fixed 4, Mes Moo ooes treating p, m

and my as small in comparison with the scale A.
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This analysis exploits only part of the information contained in the La-
grangian of QCD, viz. its symmetry properties. Lattice calculations are of a
wider scope: they allow one to calculate the full set of Green's functions at
any value of the momenta in terms of the scale of the theory and of the quark
masses. In principle, these calculations include all the low energy structures
we are painfully sorting out here; furthermore, in these calculations the quark
masses are free parameters that one may vary at will. One may pin their physical
values down by simply calculating those physical quantities which are measured
most accurately. Unfortunately, we think that one will have to wait a long time
before this program achieves the accuracy we are aiming at. The reason for this
pessimistic view is precisely in the structure of the Tow energy singularities
we are analyzing here. To calculate F o ©-9.» One may attempt to evaiuate the
two point function of the axial current, <0|TA x) A y)|0> on a lattice. The
fact that MTT is small however implies that th1s quant1ty receives important
contributions from field configurations which extend far away from x and y. In
Fig. 1 we indicate a typical graph which contributes to Fﬂ: graphs of this type
are responsible for the fact that F is not an analytic function of @, but contains
a chiral Togarithm of the type i 1og . To make sure that the lattice calculation
reproduces contributions of this sort correctly, the Jattice must extend to
distances large in comparison to M;]. What is worse is that one cannot see these
contributions in the guenched approximation - the calculation has to include the
fermion determinant to reproduce the chiral logarithms. It seems fair to say
that a Tattice calculation that accurately accounts for these long range effects
is not in sight. Note, incidentally, that these problems are not specific to a
calculation of Fﬂ. A11 hadrons are surrounded by a cloud of pions, which, by
virtue of their small mass, are allowed to walk away rather far from the object
which generates them. In particular, the mass of the proton receives a contrib-
ution of order 140 MeV from the long range part of the meson cloud (Gasser and
Leutwyler 1982, Appendix C). There is no reason to be worried if lattice calcul-
ations of the proton mass in the quenched approximation tend to produce too high
a value.

The dominating feature in the low energy region is the occurrence of Gold-

stone bosons: in the chiral limit (mu =my = 0) the Green's functions develop
poles at p2 0 and cuts starting at p2 0. If the masses of the u and d quarks

Z . M2 =Q(m + md), the cuts start at 4 Mz,
i u i

etc. To describe the structure of these lTow energy singularities we treat

are turned on, the poles move to p

9 M2
m

the momenta as quantities of the same algebraic order as Mw, i.e. consider an
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expansion in powers of the momenta and of the quark masses at fixed ratio
2,2 2
Mﬂ/p v+ my)/pt.

The Tow energy properties of the Goldstone bosons are to a large extent fixed
by the underlying, spontaneously broken symmetry group SU(2)xSU(2). In fact, the
Ward identities associated with this symmetry determine the leading low energy
behaviour of the Green's functions associated with the vector (isovector), axial
vector (isovector), scalar (isoscalar) and pseudoscalar (isovector) currents in
terms of only two low energy constants: the pion decay constant FTr and the pion
mass MTr (or, equivalently, the vacuum expectation value <0|uu|0>). Instead of
solving the Ward identities directly, we use an effective Lagrangian, a technique
which has been shown to be very useful in the context of soft pion theorems long
ago (Weinberg 1967, 1968; Coleman, Wess and Zumino 1969; Callan, Coleman, Wess and
Zumino 1969; Dashen and Weinstein 1969; Weinberg 1979). The main difference
between the effective Lagrangian technique we are using and the standard pion
field Lagrangians is that in our context the pion field does not play a crucial
role - what we are using the Lagrangian for is to calculate the Green's functions
associated with quark currents, not Green's functions associated with a pion
field.

Note that the effective Lagrangian only involves the 0(4)-vector UA, it
does not depend on the choice of the pion field coordinates used to parametrize
this vector. Our technique avoids the problems which one has to solve (Honerkamp
1972; Tataru 1975; Bardeen, lLee and Shrock 1976; Kazakov, Pervushin and
Pushkin 1977, 1978; de Wit and Grisaru 1979; Appelquist and Bernard 1981) if
one calculates the Green's functions of the pion field in the standard manner.
In contrast to that procedure the external field technique retains the full sym-
metry of the theory at every stage of the caiculation.

The Teading low energy behaviour of the Green's functions is given by the
tree graphs of the effective Lagrangian. One loop graphs are suppressed by two
powers of the momenta and thus contribute at first nonleading order in the low
energy expansion. Graphs with two or more loops are suppressed by four or more
powers of the momenta and can therefore be ignored at the accuracy at which we

are working.

The choice of the effective Lagrangian is not unique. At leading order
either the nonrenormalizable, nonlinear ¢g-model or the renormalizable, Tinear
o-model may be used - the results are the same, because all that counts is that
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the tree graphs of the effective Lagrangian in question lead to the proper value
of the two low energy constants FTr and M1T which completely determine the leading
low energy behaviour of the Green's functions in QCD. At the one loop level the
two models however differ. In the case of the nonlinear o-model we need a set

of counter terms which are not present in the Towest order Lagrangian, whereas
there is no need for such additional terms in the case of the renormalizable
o-model. This difference should however notbe misinterpreted: even though the re-
normalizable g-model does specify the Green's functions also at one loop order,
there is nc reason for these Green's functions to be correct, i.e. to coincide
with the Green's functions of QCD. Chiral symmetry only guarantees that the lead-
Aing low energy behaviour of the two theories is the same {as long as FTr and M,'T
are the same), it does not imply that this is true to all orders of the momenta.
At first nonleading order the general solution to the Ward identities of
SU(2)xSU(2) contains 10 additional constants £1,...£7, h], h2, h3. The Tow energy
expansion involves a set of new unknown constants at every level of the expansion
- this is not what happens in a renormalizable theory, it is precisely what happens
in a nonrenormalizable theory. (In QCD all of these constants, including F1T and MTr
are fixed by A and by the quark masses; we are however only exploiting the chiral
symmetry properties of QCD which leave these constants unspecified.) To explicit-
1y demonstrate that the renormalizable o-model by itself is not a reliable ef-
fective Tow energy theory we show in Appendix B that this model leads to relations
among the low energy constants 31,..., h3 which are not borne out by experiment,
The model does however provide us with a useful check on our low energy expans-
ions: it does contain the proper logarithms characteristic of chiral perturb-
ation theory.

The effective Lagrangian is unique if it does not contain any dynamical
degrees of freedom other than the pion field. We give the general expression for
this unique effective low energy Lagrangian of QCD up to and including terms of
order p4. The Lagrangian is characterized by FW, Mﬂ, Lyse-vs £75 h1,.., h3. We
calculate the Tow energy representation to first nonleading order of several
Green's functions, form factors and of the g scattering amplitude (equations
{(10.16) and (10.17) provide an explicit representation of the generating funct-
ional to order p4 in the momenta and to order ¢4 in the fields). Only the
constants £ys..., £7 appear in guantities of physical interest - the constants
h1, h2, h3 are contact terms which depend on the conventions used to specify the
time ordered products, they do not occur in observable quantities. We show how
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to extract the values of the constants KT,..., £7 from experimental data (D-waves
in mm scattering, SU(3) mass formulae, the decays K -+ mev and - evy and
elastic we scattering, see Table II). The phenomenclogical values obtained in this
manner show that the most important low energy singularity which is not explicit-
1y included in the low energy expansion is the p-resonance. In Appendix C we
exhibit an effective Lagrangian which contains the p degrees of freedom and is
consistent with chiral symmetry. We show that in a systematic Tow energy expans-
ion in powers of the momenta the o does not play any special role - its presence
only manifests itself indirectly in the values of the low energy constants. In
fact, the observed values of these constants are quite well reproduced if one
assumes that the renormalized low energy coupling constants at a scale of order

u = 500 MeV or u = 1 GeV are exclusively due to p-exchange (see Table [11).

We then confront the low energy expansion for the my scattering amplitude
with experiment. The soft pion predictions for the threshold parameters receive
corrections of order Mi and ME Tog Mi, which turn out to be sizeable: in contrast
to the soft pion theoremsthe five improved low energy predictions agree with the
data to within 1¥2 standard deviations (Gasser and Leutwyler 1983). In fact, the
experimental information on the threshold parameters is so accurate that it
allows one to measure the deviations from the soft pion predictions and thereby
obtain an independent value for the low energy constant £4. This constant
determines the scalar radius of the pion: Whereas the radius of the electric
charge distribution is measured in elastic me scattering, the scalar radius of
the pion is measured in elastic mm scattering. The value one obtains in this
manner is consistent with theoretical estimates based on SU(3)xSU(3).

We conclude that the Tow energy theorems do provide us with very sensitive
tests of the chiral structure of QCD - to compare these Tow energy theorems with
experiment at the available experimental accuracy it is however necessary to work
out the corrections of order Mi; in some cases the corrections modify the lowest
order {soft pion) predictions by more than 20%.

It might be worthwhile to reanalyze the experimental data using the low
energy representation given here as a constraint. In fact, the information con-
tained in this representation goes considerably beyond the threshold parameters
of the S-and P-waves. We expect such a reanalysis not only to provide a rather
accurate value of the scalar radius of the pion, but also to lead to a more
precise determination of the D-wave scattering lengths.
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Appendix A: Fermion determinant in the presence of external fields

To work out the anomalies of the Green's functions in QCD it is convenient
to integrate the fermions out (Fujikawa 1980). In tuclidean space the vacuum-to-
vacuum amplitude then takes the form

_2 '2_32 gd"*c‘: Guv Guw
e = de[@ﬂ& ded D (A.1)

where detD is the determinant of the Dirac operator:

R Xa (9 -+ rp;l. — vy XS) + 8 - ise (A.2)

The quantity Ga(x) includes the gluon field Gu(x)

ot

(Ua"ﬂf s and p are external fields, represented by colour neutral matrices in
flavour space). The y-matrices are normalized by

.{XO'\)X@‘& = chlﬁ 3 XS = X\XQ.X3X4 (A-4)
They may be chosen hermitean, Yg =1,

The determinant of D is defined only up to counter terms of dimension less
than or equal to four. In the present context, dimensional regularisation is not
a convenient method to handle the singularities, because the anomalies are con-

nected with Yg and with ¢ N which do not admit a straightforward extension to

aBu
d # 4, Instead we use the ¢-function technique to specify the finite part of the

determinant. The definition

d —
‘ewoldp_A = - _._—\-(s)\s

de =
oo A.5)
2% S-\ .  ~AA (
F(s) = M \om 2 Tre
(= &

makes sense for a large class of operators (a necessary condition is that the
real parts of the eigenvalues of A are nonnegative). For finite dimensional
matrices det]A is the ordinary determinant. The formula (A.5) cannot immediately



67

be applied to D or to - D2 the operator iD is not hermitean and - D is not
positive. In the present context we are however only interested in the Taylor
series expansion of detD with respect to the external fields. It therefore suf-
fices that the relevant differential operator becomes positive if the external
fields are set equal to zero. The operator

A = 6?_ 5 O - XSD (A-6)

does have this property (D is hermitean for a, =p = 0; neither the gluon fields
nor the quark mass term contained in s spoil the hermiticity). We may therefore
define the finite part of detD by

2%
&ou D _d \ \ \r(e ) (A.7)
dss‘,z
The operator B> is of the form
D2 _OD, LT (A.8)
where Du is a covariant derivative:
Dy = 9,. 0
M R (A.9)

Tp = (Ve 4 U 11 Y59 4 Jup)

and the mass matrix o is given by

G= 20,0, +8"+ BPQ—Xa.(aoLS“”l'{\’;,ﬂ-kz'{ Q,L)P} )

+ 114, X@]( +’5;a"7“p+%%)+lé(42fs[%%]
- XS(Q,LQQL __L\’C;)qd] _'{%,P]) (A.10)

In the representation (A.7) the ultraviolet divergences of the determinant
are related to the behaviour of the integrand near A = 0. To study this behaviour
we note that the short distance properties of 52 are governed by the four-dimens-
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jonal Laplacian. Accordingly the Teading short distance behaviour of exp (-hﬁz)
is given by the free heat kernel exp A0 . We therefore put

<" 1y) =(41t'>~3?’ e-xp(—-‘*i,; z) N <\\y) e

with z = x - y. The kernel H satisfies the differential equation

@) - .
ﬁu+%z},b~u _’DM“DNH+GJ\-\..O (A.12)

and the boundary condition

H (X\O\K) = 'l

The differential equation for H may be solved recursively with the expansion

Bl y) = M, gy AH 6N £ N1, ely) 4.
(re a2, D) H,, +(-DOu+ts) M, =0 (A13)
2y Dy M, =0
The first three terms in the series expansion of H produce poles in the integral

(R.7) at s =2, s =1 and s = 0 respectively. The pole at s = 0 is responsible
for the scale dependence of the finite part of detD:

P% L d.wlP'D - 41\‘32go\¥_ Ao M, Ge\x) (A.14)

The quantity H2 also determines the anomalies. Consider an infinitesimal
local flavour transformation of the type (2.6):

2V = Dol + Ll ]y L 1B a,]
20y = 9B+t Ld,a,] 4i g, Ml
°& = ldsT —{f.p}
S p tld,f] + 465}

(A.15)

il
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where o and B are hermitean matrices in flavour space; the transformation o is
generated by the vector currents, B is a chiral transformation. The corresponding
change in the Dirac operator is given by

5O = 1|1 Dd] _ 24 6)62{57! (A.16)

and the change in Tr exp (- AD7) is
S Vrexp(=20D)= ,2’)'\1—{%—66 exp(-’)ﬁz)}
. ~ —)
= 4nd Te{BYs exe(-n )

=4 ’)\}&(ﬂ'ﬁzxdx be{ pafs Mo

The transformations generated by the vector currents thus leave the determinant
unaffected, whereas chiral transformations produce the change

> Lo d.vl},’D =-'2L@1;j7- \o\’ﬂ 3‘~r{ RG) ) 5 L\Q_(K\X)} (A17)

What remains to be done is to determine Hz(xlx) from the recursion relations
(A.13). Putting n =1, x = y we get

U, 6 = DD, M ede) L L S6n) M (el

The value of D DUH1 may be obtained by first applying DuDutO the recursion re-
lation with n = 0 and then taking x = y:

B'DPDF H|(¥\ﬁ) = (FDM’DM)&M o — K:DMJ[.'D#JG]] .\-l o
-2 KTE)’JJCf]’E)A;lJ o cs‘j)}li)}l H o

H o) =T (e) M (x\x)
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Finally, the derivatives of H0 may be obtained by repeatedly applying the dif-
ferential operator Du to the differential equation satisfied by H0 and using the
property

'DM’DV ”'D*)’Dp = '\_‘M\)
In this manner one easily finds

MOLK\S() = A
Dy M, <) =

—y

DP’Dv Ho(\(‘%) = ji. \H")
(DuDu ) H,Gelx) =

Putting things together we obtain

— fam]

\

A W A Z A
X ) =
H, (x1x) = ;;_-rw\nv NN Z‘-’D"“K—D‘“‘Gﬂ (A.18)
[t is now a straightforward, although somewhat tedious matter to calculate the
relevant traces of H,. The last term in (A.18) does not contribute to de'hﬂHz,

because it gives rise to a total derivative. Evaluating the traces of the first
two terms one obtains the following result:

/&molb!}u’\) @v) \dx{lNg‘-\-rG e“u+Nch(

u‘\)* v uv)

(A.19)
-2 Ne i (Sus Vs 4 940V 0)-2N¢ "; (s+ipXS-ip)(ssip)(e-ip)]

where Qy and E; denote the traces over colour and flavour indices respectively.
RT oL

The symboTsFﬁ\f Fuv stand for the field strengths associated with the right- and
left-handed combinations FE = uu + au, Ft = Uu - a of the external fields

R R—R A.20
SN T ANECTC IR E S (.20)

BTN =
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and the covariant derivatives of s and p are defined by

Vuo = s~ vy,0e] «{a,, el
(A.21)

va"‘" Dup-t \_ﬂ)’p)p] - "\QM)S}

The first term in (A.19) is the familiar contribution of the quark loop to the
B-function of QCD. The remaining terms are interaction independent and are in-
variant unter local U(Nf)xU(Nf)-transformations. (Note that we are considering
the integrand of the Feynman path integral over the gluon field. The renormaliz-
ation of the scalar and pseudoécalar densities comes from loops involving gluons.
In the language used here these loops arise from the finite part of 1n detD

upon integration over the gluon field variables.)

The trace of BYSH2 which determines the transformation properties of detD
under local chiral transformations may also be worked out in a straightforward
manner. One obtains two categories of contributions: terms which contain the
tensor EuBYG and terms which do not. The second category is unessential in the
following sense. One may modify the Green's functions of the theory by adding a
polynomial in the external fields and their derivatives to the generating
functional:

—Z:Z = 2 + Rd"(’?(mJGJ$) p)

This operation only changes the Green's functions by contact terms (no change un-
less all arguments coincide). Equivalently, one may replace In det b, by

Lo dok © < La dad , O _ Rdx'?(qu}nb)p) (A.22)

without changing the content of the theory. If P is invariant under the trans-
formations generated by the vector currents, but is not invariant under chiral
transformations then the transformation law of In HEE[klpicks up a contribution
from P which is linear in B. It turns out that one may absorb all c-independent
terms in tr BYSH2 by such a redefinition of the Green's functions. The trans-
formation law of the determinant then simplifies to
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S Ln kD = £ (dx p(lﬂ-(s Neo \—r(@ﬂ.)]

(4‘5‘)

X <€

MY

B a\—cr' Go(pG

(A.23)

Sl = 8&@”" ‘_m_ckﬁ Vv + % oetqﬁquv *%“m&maﬂqV}

+ La,vga,+ 3,88 9,a0]
where

Q)'okfb = L Ve — Dﬁm ...u{rvd (3] (A.24)

is the field strength associated with vy, and VmaB stands for

V, g = 94qg _1\_&)‘4)@(@‘] (A.25)

The external scalar and pseudoscalar fields do not contribute to the anomaly. The
term proportional to x is the familiar anomaly in the divergence of the flavour
singlet axial current (Adler 1969; Bell and Jackiw 1969; Jackiw and Johnson 1969;
Adler and Bardeen 1969). The remaining terms were first given by Bardeen (1969).
If we restrict the flavour transformations to the subgroup SU(N JXSU(N )xU(1) by
putting tr B = 0 the transformation law of 1In detD becomes interact1on indep-
endent. Adler's nonrenormalization theorem (Adler 19g9) asserts that this re-
mains true to all orders in the strong coupling constant. The transformation law
of the Euclidean generating functional under SU(Nf)xSU(Nf)xU(1) is therefore
known explicitly:

$2 = =

N, (dx \—r o) (A.26)
@1‘) R (e

It is not difficult to extend this framework to include the Ward identities
involving the flavour singlet axial current: one simply includes in the gener-
ating functional a contribution proportional to the winding number density of the
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gluon field. With this extension the change of the generating functional under an
arbitrary U(Nf)xU(Nf)—transformation may be given in an interaction independent
form (see section 2).

We close this appendix with the following observation concerning the chiral
structure of the anomalies. The transformation law (A.23) hides a property of the
determinant which is very easily established at the formal level: since the gauge
fields conserve helicity the determinant of the massless Dirac operator is the
product of the determinant of the right-handed components with the determinant of
the left-handed components. The terms that break the invariance of the determinant
with respect to local chiral transformations are independent of the external
scalar and pseudoscalar fields; one should therefore expect that the contributions
to §1n detD split into a sum of two terms, one coming from the right-handed
components, one from the lTeft-handed components. This property may indeed be
explicitly exhibited as follows:the quantity detD defined by

Lo ok D < A I D (e @R

(A.27)

G =735 Eggu Te| i1 B, 0} - 426 B, AR 0 )

which differs from detD by an irrelevant local renormalization of the type (A.22)
obeys a transformation taw of the form

Sl dd D o

\olx‘v (CWIVNE LY

@“)7‘ (A.28)

(A be L (d-@) ACE Y]

(4“)

R

where F and FL are the gauge potentials seen by the right- and the left-handed

components respect1ve1y
A R
L Fal
T o= (v,ray)

(Guinciudes the gluon field). In this form the explicit expression for the anomaly
becomes
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AE) < A Eiﬁuvl+d6¢uv + \‘{il@j*;ﬁv% ~ s Te
_ _ (A.29)
2%, Ty TuF]

{The nrice to pay is that the quantity det D is not invariant under the trans-
formations generated by the vector currents.)

Appendix B: Renormalizable o-model

It is instructive to compare the general low energy representation of the
Green's functions given in the first part of this paper with the low energy
structure of a specific renormalizable model. An obvious candidate is the Tinear
0(4) o-model, a well known example of a theory that leads to spontaneous break-
down of 0(4) ~ SU(Z)xSU{2) to 0(3) ~ SU(2). It turns out that the one loop cor-
rections can as easily be worked out in the O(N) model with arbitrary N. We
analyze the low energy structure of this slightiy more general version of the
0(4) model and set N = 4 only at the end of this section in order to compare with
our general SU{Z)xSU(2) results.

To analyze the Green's functions we couple the N-component field ¢A to a set
of external fields of spin zero and spin one

A A z A AL AL 2
icagvpcb VAR NI ¢A_§_(¢ ™)
(B.1)

I S TE T

(Note that in our metric m2 > 0 corresponds to the spontaneously broken phase.)
The external vector and axial vector fields are contained in the covariant deriv-
ative

A A - AR R
V™ m 0" 4 T TP
% - a, (8.2)

ik wd 4
‘\'» = - C f\),u
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as well as in the c-number term tr ﬁA)Fuv which represents the trace over the
square of the field strength tensor FAB associated with the nonabelian field FA.
In the one loop approximation the generating functional becomes

Zc=gd"‘fc-\- ZLLMD

where D is the differential operatof
T T
(9,03) = \O‘*{*Vu‘j Yy 4 (o gl b,) 3Ty

+ 29 (Cb;rj )2-7]

and ¢A s the classical solution of the equation of motion in the presence of the

externa1 fields fA and FAB

(8.3)

The d-dimensional determinant of D contains a pole at d = 4

Lﬂ,uob,{ D \cl,( .Lf _}w*M:-EGz} . 0(4)

(‘W) d-4
(B.4)
- AB
A% (my gd6,)8 4 2l 0>
This pole is removed by the following renormalization of g, m, h
G =g A- 2(N+8) g Mo} 4+ 0(9%)
3
z ! 2
m = M { A Z(N*ZD(O‘MX)CJ:-} +0(99)
(B.5)

= b r i&ij“ g o T+ O« 9~ )

A -4
R R F it 1a )

where 9ps Mr and hr are finite but arbitrary otherwise. We have included in the
rengrmalization of m2 the finite piece v for later convenience, see the remark
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after equation {B.11). With these substitutions the effective one Toop action is
finite at d = 4.

We wish to expand this action in powers of the momenta. (This amounts to
consider the model in the 1limit where m2 is large.) We generalize known tech-
niques (Akhoury and York-Peng Yao 1982) to allow for the presence of external
vector and axial vector fields. We first parametrize the classical solution ¢g

by

CboA“n—OA— RUA LUV 4 (B.6)
7

(One might be inclined to first integrate over the fluctuations of the radial
variable R, and to take the large m-l1imit before integration over the fluctu-
ations in the unit vector UA. This procedure does however not produce the correct
large m=~1imit for one loop graphs which involve both internal pion- and internal
o-1ines. Regularizing in d dimensions the virtual pion momenta occurring in these
graphs are of order m and the interchange of the limit m + « with the momentum
integration is therefore not permitted.) We next write the fluctuations around
¢ﬁ as follows:

¢A=d?? +
A_SUNL T eAy
Yy = * v N

LA

A

with

N-4
ALD A
Z EL E; = AU UDB ‘E~E~:;%~- E.‘U=o (8.7)

‘L=.4

The differential operator D defined in (B.3) then acts in the flavor space &, n1
through a matrix of the form

D4z +O(1) | O
O( 1) O(A)

(B.8)

where 0(1) denote differential operators which tend to finite Timits as m » =.
To diagonalize D we introduce new differential operators d, §, ﬁu’ b:
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d = 2" LML i (aREA)
SN = 4, (OFY™ ", o (44"

~ [174 . -
(L) N 20,0y e7 9,80
(ﬂ)g\—?)é (S‘\)Qg) (8.9)
D - ADP@’“_ &; &“k+m2(9&4)8m

_\;M = UTVPL €

el

Then one finds with £ 2 ¢ + d_16n

(3,Vy) = (3,4%3) 4 (n,00) - (q)gd"'ér]) (B.10)

Note that (for targe m) D is the differential operator of the nonlinear g-model
{compare section 7). Hence, we write

,ﬂuw’\):&uw%+a

A -
A= dudd (A 5'STE8), Auded d
and it remains to expand A for large mz. Writing

d= 0a2m*s G, =dos G,

it turns out that nonvanishing contribtuions are produced only by the terms

Audd do Ludedd o ide dia, _ 4 4el(dls, ] 4.

2

Yedn (4.T'87d &) o 4TSS 1 (B8 ...
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where the dots denote contributions which vanish for large values of m2. We

then find that the low energy expansion of the generating functional up to and

including terms of order p4 indeed is of the general form given in section 7

(eg. 7.12). The (unrenormalized) constants E] - £7, h] - h
X" and the pion decay constant F are given, for any N, by

2.
SARSMLIN S SO (O PN LN eI
29¢ + 2272 it
L, = A__ A2, A 35
49 3 av)? 3
Ly 22,2 2
3 (4w)t A®
Byw A, o2 _ 3, A 14
3 4-\-4‘3 5 e Gr e ¢
£y = A a0, - A3
29 (4T)*
Y A A A
5= T3 2
@1)" 32 (B.11)
/efo:" "%’/\o-%- —-A——— ’LA--
C4m)* 36

W, o /4 A2
A 4—‘*"(4_“)2_2—5-
s o
A
ar - A

327 (N+z2)

Remarks: i)} The constant y which defines the renormalized mass has been fixed
such that FZ = 2/2g . ii) The infinities in £; and hy are cancelled by the
contributions from the loop integrals over the pion momenta of the nonlinear
o-model {In det D). 1iii) Since the model is renormalizable, all constants that

appear in the general low energy expansion are fixed in terms of the three

33 the external fields
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Let us now consider the case N = 4. The scale independent quantities Ei and
h.. the external field AXA and the pion decay constant F are found to be (see
j
also (Bessis and Zinn - Justin 1972))

21 ME AL gﬁ{,,_&_ +0egt )]

2qc . ’ 2.1 327* ‘
bim - 3528
Lot
Lyw A(28, .0, 4)
Zﬁﬁg %(E4+277_+f'£) (B.12)
Too 2.2
to= 14,
T\4= %(Tu-k'z?z +%)
W, = 39472\ _ Ao My
MeE

The pion mass does not occur in the o-model Lagrangian (B.1); it shows up in the
above expressions, because the constants Ei’ Ei are by definition normalized at
running mass Mﬂ. Note, in particular, that these expressions for the low energy
constants Lyseens £6 and h]’ hz do contain the proper chiral logarithms. {The
model does not allow for isospin breaking - the constants £5 and h3 vanish.)

On the leading level of the Tow energy expansion it is impossible to
distinguish between different models - the leading low energy properties of dif-
ferent models are the same, as long as the values of F, and M. agree. This is not
any more the case at first nonleading order: different models in general lead to
different values of the Tow energy constants 21 and ﬁi‘ In the case of the
o-model these constants are fixed by a single new parameter, the mass Mr' The
model clearly fails to reproduce the observed low energy structure: the relations
(B.12) among the constants Ei,..., 26 are not consistent with the observed values.
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(Note that the relation 9, = ME/ZF2 requires the mass of the o-particle to be
rather low for a first order perturbation theory in g to make sense. In order

for the coefficient in front of the logarithm in the relation between the bare
and renormalized coupling constants not to exceed unity the mass Mr must be below
400 MeV. A firm believer in the o-model may therefore argue that perturbation
theory is not adequate to analyze the properties of this model and insist that
more work is needed to dispose of it. In the present context we merely use the
model as a mathematical illustration of the general low energy structure - the
model does obviously not qualify as a realistic alternative to QCD.)

Appendix C: The p

The low energy representations given in this paper are perfectly consistent
with the presence of resonances. To explicitly show how the excited gq states
manifest themselves in the low energy structure of the Green's functions we con-
sider the p-meson and construct an effective Lagrangian which contains the p
degrees of freedom and is consistent with chiral symmetry. The standard descript-
ion of the p in terms of a vector field p;(x) with a pmm coupling of the form

€ikePy $ 3 ¢£ breaks chiral symmetry. We instead describe the degrees of freedom
of the p in terms of an antisymmetric tensor field p (x) which transforms accord-
ing to the nonlinear realization D(]) of SU(2)xSU{ 2) (For an alternative scheme

see {Weinberg 1968).) The kinetic part of the Lagrangian is given by

-

Q ) v L"J,U‘ A v TEY)
i - —*D Q';.P.’D«.a.'g “ 4M ?M-ugp (c.1)

where the covariant derivative Du is defined in (7.7). To lowest order in the
external fields the p-propagator associated with this Lagrangian is

1pGe- » v ik .
\dx 49\‘\ gH.,.',(x)‘ ?:P (N> = > k'A}NdG'
e | e s,
Apvap == &‘gpaﬂv(&—‘jnﬁ‘}va + (M¢-¢) (C)uo\ PvPe

~ G pp P Pu '--%va. Cu e +.Jre Pu b ) | (c.2)
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corresponding to the normalization

v 174 -\ v
<o\gp,,\g,p>=(-L)Mg(pM E,,_.p,,epu)% (C.3)

(The wave equation associated with the Lagrangian (C.1) implies that only the
longitudinal components - pufﬁn)bf the field oscillate, the transverse components
are frozen.)

At order p2 chiral symmetry and G-parity permit the following couplings
linear in the p-field:

g A B CoVi P 1 My CO
i Aaco?;wU {;v“u AVARS! *Z$5 } (C.3)

where the field pjv is obtained from p: by performing the change of basis which

takes the nonlinear representation (1) into the 1inear representation pl¥2,¥2)

(see section 7):
A

AL v
Swr = %E Su

The quantity FMY denotes the nonabelian field strength associated with the extern-
al vector and axial vector fields. FThe constant Fﬁ measures the matrix element of
the vector current:

v A
oW e> =D £, T ™M (c.5)

S

and the constant f determines the strength of the pmm coupling; in terms of f the
width of the p is given by

co. A 47 (Mg_AM ) (C.6)

§ = =4
4&3‘“’ T

In the Green's functions associated with the quark currents thep only ap-
pears virtually. To lowest order in f and Fp the contributions arise from ex-
change graphs which are easily evaluated by solving the classical equations of
motion of the Lagrangian Ls + L?. The contribution of these graphs to the gener-

ating functional Z is given by
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2 ves A
FANB S VAL ATRVNOLAR vAVRR AUy

N f’_:.ji Ve UAV” UBAWW?ﬁ':B (C.7)
+ f‘g; _M:\% e FY:'B
_ 1_;& BT RS
In particular, the p-contribution to the vector form factor reads
o) o s (c.8)

z 2
and the contribution to the wr scattering amplitude becomes

a

S J; 2 \% A -1
A (S,JC,U) EW (._Z(S—ZM.W) + _2:43 A ("c-fu)z}
zf . (€.9)
At (smw) L (e-0)]
\“\g—ft ™ t -

In the lTow energy region p2 << Mg the presence of the p only manifests it-
self indirectly, through a contribution to the low energy constants K],..., h3.
The p-contribution to the form factor Fv(t) e.g. reduces to a term linear in t.
Comparison with {15.3) shows that this contribution merely renormalizes the
constant Zs. Likewise the low energy 1imit of the expression {C.9) for the
p-contribution to the scattering amplitude is a polynomial of order p4 which may
be absorbed in the constants E] and 22. More generally, since for p2 << Mg the
propagator Auvp becomes momentum independent, the guantity Z° veduces to a local
expression of the form given in section 5, as it should. The change in the value
of the low energy constants produced by the p is easily obtained by comparing
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(€.7) with (5.5):

@f = _ 86"11“2,(1/M§ &2 smr’JrﬂFg /Mz
7$ 2 2% 2, 8
’tz = 43N _‘,/Mg ’qu_ = o -
f; = O T-\f =0 (€.10)
78 T8 -
’64 = O \’\2__ A 8T +;/H2§
- 3 —2 , 2 R
5 = 43"‘”2"}/"‘@ W, =0

To evaluate these contributions numerically, we use the experimental value

Fp = 144 MeV and determine the coupling constant f from the experimental width
of the p which implies f = 69 MeV. Note that the experimental vector form factor
is quite well reproduced by the vector meson dominance formula

A+:F\§ &) o M?/(Mzg..t) (c.11)

This relation requires f to be positive (with f = F12T/Fp = 60 MeVY, in good agree-
ment with the value given above). With these values for Fp and f we obtain

35S e 78
£‘=—8 ’ e ] 85 o (€.12)

2
FIANEIR IR R AT

4 ) >

A comparison with the observed values of the low energy constants given in sect-
ion 19 shows that the p is indeed the most important Tow energy phenomenon apart
from the poles and cuts due to the Goldstone bosons. In fact one obtains a good
estimate for the Tow energy constants 21,..., £6 if one assumes that the running
constants at a scale of the order of M, are given by the p-contribution alone:

i’,i = ,_Q.-Lg " y» ‘:‘_13-_ (C.13)
&
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(There is no particular reason for choosing Mp as the scale of the chiral loga-
rithms. One could just as well take u = 1 GeV or u = 500 MeV - this changes the
values of the low energy constants by less than one unit.) The prescription (C.13)
fixes all threshold parameters discussed in this paper (except for isospin break-
ing effects related to £7) in a parameter free manner, with Fﬂ, MW, Fp, Mo and Tp
as experimental inputs. The resu]ting predictions are shown in Table III. Note in
particular, that the D-waves are well reproduced. Although the contributions of
the p are given by corrections of order Mi they do affect the values of the thres-
hold parameters significantiy. This can be seen directly in the I = 1 amplitude

1 2

T (s, t): in the Tow energy Timit p~ << Mg the p-contribution modifies the Towest

order expression (t-u)/Fi for this amplitude as follows:

2
T‘(S)-E) = _t—:" { A L 35___.__"’;.1 % (C.14)
'4:‘* . §1g

At threshold, s = 4 Mi, the p-contribution amounts to a correction of the form

(1 +7 Mi/Mg) which increases the soft pion value for a} by more than 20% - the
p-contribution is at the origin of the difference between the experimental value

1
of a

and the §bft pion result. Note that the o pole generates sizeable contrib-
utions to the higherlpartia1 waves. Although the p-contribution to a; e.qg. is
algebraicaily of relative order Mi compared to the leading term given by the low
energy theorem (18.7), it increases the value of this term by about 60%. (The

=1.9 - 10'5,the o contribution increases this to
-5
-)

lTeading term amounts to a;

3.1 - 1072, The experimental value is (6 + 2) - 10
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. Leading 122w .

Equation contribution 14-3 Mﬂ<r >g Soft pions
(20.1) a 1.12 + 0.11 1.28 + 0.07
(20.2) b 1.13 + 0.19 1.40 + 0.17
(20.3) b2 1.18 + 010 0.92 + 0.09
(20.4) 2a0-5a5 1104005  1.15+0.05
Mean value 1.12 + 0.04

Prediction 1.10 + 0.02 1

Table I: Scattering lengths interpreted as measurements of the
scalar radius of the pion.
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Obtained

Yalue from Equation
L, - 2.3 +3.7 D~-wave
_ scattering {19.3)
£, 6.0 +1.3 lengths
£, 2.9 + 2.4 SU(3) mass (19.8)
formulae
Z, 4.6 + 0.9 K+ mev (19.12)
or
FK/FTT
ES 13.9 + 1.3 T > evy (19.20)
= 2.m
Le 16.5 + 1.1 <ty (19.16)
-3 0 s (12.9)
£7 05 - 10 7) ™ -n omixing  (19°57)
Table II : of the low energy coupling constants.
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Experiment T+ p
0
a? 0.26 + 0.05 0.20
b 0.25 +0.03 0.24
2a% - 542 0.614 + 0.028 0.60
0 2 614 + 0. :
a - 0.082 + 0.008 - 0.069
a; 0.038 + 0.002 0.038
o1
1 0.0069
a3 (17 + 3) 107 20 - 1074
2 (1.3 +3) 107 0.5.107%
Z +
] 0.60 +0.15 fm®  0.40 fn’
T 0.439 + 0.03 fn®  0.52 fn®
y 0.44 +0.12 - 0.1

Table III: The third column gives the values of various physical
quantities in case the running coupling constants at
scale Mp are assumed to be given by the p-contribution

alone.
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