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The ordering of operators in the Yang-Mills Hamiltonian is determined for the ¥, = 0 gauge and for a general
noncovariant gauge y (V;) = 0, with y a linear function of the spatial components of the gauge field V,,. We show
that a Cartesian ordering of the ¥, = 0 gauge Hamiltonian defines a quantum theory equivalent to that of the usual,
covariant-gauge Féynman rules. However, a straightforward change of variables reduces this ¥y =0 gauge

' Hamiltonian to a y(¥;) =0 gauge Hamiltonian with an unconventional operator ordering. The resulting
Hamiltonian theory, when translated into Feynman graphs, is shown to imply new nonlocal interactions, even in the

familiar Coulomb gauge.

I. INTRODUCTION

Gauge theories have a wide range of applications
in physics, from quantum electrodynamics (QED)
to quantum chromodynamics (QCD) and the unify-
ing theory of weak and electromagnetic interac-
tions. Because the gauge transformations contain
arbitrary functions of time, the usual canonical
quantization procedure can only be carried out in
a specific gauge. It is natural to inquire whether
there are rules to ensure that the quantum the-
ories in different gauges are indeed the same.

As we shall see, this question is closely connected
with the ordering problem of operators, especially
in the non-Abelian Yang-Mills theory because of
the intrinsic nonlinear nature of the interaction.

In this paper, we will show that the Yang-Mills
theory has a Cartesian realization in the V=0
gauge; in this gauge the naive ordering of oper-
ators in the Hamiltonian is correct. We may then
go from the V=0 gauge to other gauges such as
the axial gauge, Coulomb gauge, or covariant
gauges via either the operator or the path-inte-
gration formalism, thereby resolving whatever
ambiguities may arise in these gauges.

The fact that the Euler-Lagrange equations of
motion may allow arbitrary functions of time is
by no means restricted to relativistic field the-
ories. For convenience of nomenclature, all such
theories will be referred to as gauge theories. In
the next section, we give one of the simplest exam-
ples of such a system.

In Sec. III we review the operator formulation of
the Yang-Mills theory in the V=0 gauge and es-
tablish our notation. Next, in Sec. IV, we exploit
the residual symmetry of the V;=0 gauge to make
a change of coordinates from the Cartesian basis
provided by the gauge potentials V,(x) to new vari-
ables ¢ (x) and A;(x): ¢,(x) are pure gauge vari-
ables while the gauge potentials A;(x) obey the
constraint y (A ,.) =0. When expressed in terms of
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these new variables, the gauge-invariant sector of
the theory is recognized as identical to the Yang-
Mills theory formulated in a noncovariant, x(4,)=0
gauge with a specific ordering of operators in the
Hamiltonian. This discussion is in precise analogy
with the treatment of the simple mechanical sys-
tem given in Sec. II. As shown in the Appendix,
many of our formulas are also identical to those of
rigid-body rotation, when one changes from the
laboratory frame to the rotating-body frame.

In Sec. V we justify our assertion that the V,=0
gauge provides a Cartesian realization of the quan-
tum Yang-Mills theory: Using functional integra-
tion we demonstrate the equivalence of that the-
ory and the usual, covariant-gauge Feynman
rules.

The Hamiltonian formulation of the quantum
Yang-Mills theory obtained in Sec. IV is not a
convenient one for weak-field perturbation theory.

. In Sec. VI, this Hamiltonian operator theory is

translated into the Lagrangian, path-integral lang-
uage with careful attention paid to the question of
operator ordering. This path-integral description
implies new nonlocal interactions, called U, +7,
in our paper, that must be added to the usual Feyn-
man rules. Finally, in the conclusion we show
explicitly how to equate our Hamiltonian to that
obtained by Schwinger for the Coulomb gauge.!"3
Although the U, term is new, the U, term was de-
rived by Schwinger in 1962; both have been left
out in the conventional treatment* of Coulomb-
gauge Feynman rules.

II. A SIMPLE MECHANICAL EXAMPLE

Let us consider a point particle in a three-di-
mensional space at position r. Its Lagrangian is

L=iF-GxPP-v@), @.1)

where g is another coordinate vector, but § is ab-
sent in L. As usual, the dot denotes the time de-
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rivative and » = |T|. From (2.1), one sees im-
mediately that L is invariant under the transform-
ation

F-T+EXT
and (2.2)
§-4+2+8x3
where €=¢€ () can be an arbitrary infinitesimal
vector function of time ¢, Except for the 3(q X I')?
term, this would be the problem of a nonrela-
tivistic charged particle moving in a central po-
tential and under the influence of an external mag-
netic field.
We may further simplify the problem by impos-
ing the constraint that T lies in the (v,y) plane and

q=2q, where 2 is the unit vector along the z axis.
Equation (2.1) becomes then

L=3(*+9%) - (xy —yx)g+ 347 -V(r),  (2.3)

where x and y are the Cartesian coordinates of T
which is now a two-dimensional vector. In terms
of the polar coordinates x =7 cosf and y = siné,
(2.3) can be written as

L=3[*+7r*(0-q)*]- V() (2.4)

and (2.2) is simply the Abelian group of transfor-
mations

0—-0+¢€(t)
and (2.5)
g-q+e(t),

where €(#) can now be any finite function of ¢.

The invariance group of this simple example
shares with the gauge groups of QED or QCD
the special feature that its elements contain ar-
bitrary functions of . Consequently, the canon-
ical procedure from the Lagrangian to the Hamil-
tonian and to quantization requires a specific
choice of the “gauge.” The Lagrange equations
of motion can, of course, be written down with-
out specifying the gauge. We find in polar coor-
dinates

.9_q=0 (2.6)
and
w4V _
v+ ar =0, (2.7)
A. =0 gauge

Because of (2.5), any orbit r=7(t) and g =¢(¢)
can be transformed to one in which ¢ =0 at all
times. In this gauge, L =41~ V(r), the momen-
tum p is ¥ and the Hamiltonian H is 3p%+ V().
Thus, in quantum mechanics, p=-:iV and

H==3V2+V(r). (2.8)

The angular momentum operator

. 9 9
i 2 2) oo

commutes with H. To be consistent with the equa-
tion of motion (2.6), only eigenstates of H with [
=0 should be accepted. These eigenstates are all
6 independent, and that leads to

1 d d
Hemige L (’r d7>+V(r). (210
B. y =0 gauge

From (2.5), we see that any orbit T =7(¢) and
q =q(t) can also be transformed to one with y =0
at all times, albeit there are two branches: x
can be >0 or <0, with x =0 being the point that the
Jacobian of the transformation is zero. Inthey
=0 gauge, 7*>=x% and the Lagrangian (2.3) becomes

L= +5g%2 = V(x), (2.11)

where, for definiteness, we choose the branch of
positive x. Since the above L does not contain ¢,
we may follow the standard procedure to eliminate
q through 8L/8q =0, which in the present example
is simply x%g =0. Hence, (2.11) becomes

L=5x*-V). (2.12)

The conjugate momentum p is ¥ and the classical
Hamiltonian is

H=3p*+V(x). (2.13)

In passing over to quantum mechanics, in order
that the spectrum of this Hamiltonian be identical
to that of (2.10), it is important not to treat x in
the y =0 gauge as a Cartesian coordinate; in
(2.13) p? is the operator

1 .é_( i)
“x arx \Vadx
and not —d %/dx>.

The g =0 gauge is the analog of the V;=0 gauge
in QED or QCD; the y =0 gauge corresponds to
either the usual axial gauge or the Coulomb gauge.
In this simple example, the choice of which coor-
dinate in what guage is Cartesian can be deter-
mined by the one who makes up the problem. In
the Yang-Mills theory, however, one is guided by
the requirement of relativistic invariance. As we
shall see, that leads to the choice of the V;=0
gauge as the starting point.

Before leaving this example, we note that if one
wishes, one may choose a more general gauge in
which an arbitrary function y(x,y,q)=0, provided
that any point in the (x,y,q) space can be trans-
formed onto the surface y(x,y,q)=0 through the
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gauge transformation (2.5). Since this mechanical
example is such a simple one, we shall refrain
from exhibiting further details, except to remark
that in passing over to the path-integration for-
malism, it is useful to absorb a factor of #*/2 into
the state vectors so that H, given by (2.10), be-
comes

= 1
H=r"2ErV2i=—2 % _4y(r)-

2 ar

which changes the volume element from »dv to dr
and adds to the potential V() a new term —(8%2)!,

57,  (214)

III. ¥y =0 GAUGE

For definiteness, let us consider an SU, gauge
theory consisting of a spin-3 fermion field  which
belongs to the N-dimensional representation of the
SU, group and a spin-1 gauge field V}, with !
=1,2,...,M and M=N?-1, The Lagrangian den-
sity is

L==3V,, Vi, =¥vy. DY, (3.1)

where all repeated indices are summed over, a
dagger denotes Hermitian conjugation,
9

1 = Vl -
Vull axu v ox

1 Imnymyrn
Vitgf™MVILVY,
v

(3.2)

9 .
D,= ox. -igT'V},
x, =(T,it), the y,’s are the 4 X 4 Hermitian Dirac
matrices, and the T'’s are N X N matrices that
satisfy

TI=TI1‘, Tr(T'T’")OCGI"'
and (3.3)
[T’, Tm] '—'if’m"T"

with F'™" the antisymmetric structure constants
of the group algebra, For simplicity, the fermion
mass has been set equal to zero. The electric

. and magnetic fields E! and B§ are given by the
usual expressions

EBl=iV},==V}|-V,Vi+g/ ™VyV]
and

€uBi=V =V V=V, Vi+gf "V IV T,

1
where V!=~-iV} and the subscripts i, j, % denote
the space indices which vary from 1 to 3. The
Lagrangian equations of motion are

v.D,¥=0 (3.4)
and
9
- Vit g(fIMV LV, +1) =0, (3.5)

n

where
I =ity y, TH.
It is convenient to introduce the matrix function
V,=T'VL. (3.6)

The Lagrangian density (3.1) is invariant under
the SU, transformation

i oul
V,~uV,u'+—u
g ax

(3.7

m

and

b-up, (3.8)

where # =u(x) is any N XN unitary matrix function
of ¥ with detu=1. From any configuration V,,
=F,(F,t), we may choose u' to be the following
time-ordered function:

t
u'(r,t) =T exp [—zj gFo(F,t')] R 3.9)
0
where F =-iF, and T is the time-ordering oper-
ator. Hence, u' satisfies

ou' .
o =—igFqu'. (3.10)
The transformation (3.7) then brings V, from the

configuration F,(x) to the gauge in which

Volx)=0. (3.11)
In the V,=0 gauge, E§=—f/§ and (3.1) becomes
£=% (VIV! =BIB)) = o',y D,¥. (3.12)

The conjugate momentum of V} is simply

ni=vi, (3.13)
and the Hamiltonian density is

j¢ =z (IGNi+BB) - gV i+'yy,Vid.  (3.14)
The usual canonical quantization procedure leads
to

[ViE,t),0mE,t)]=i5,,6'm6*(r - '), (3.15)

@&, 0,97 @, 1)} =6%F - ). (3.16)

The equal-time commutators between the V,’s and
between the II,’s are zero; likewise, the equal-
time anticommutators between the ¥’s and between
the y!’s are also zero.

Remnants of the original gauge transformations
(3.7) and (3.8) remain important. In accordance
with (3.6), we denote

V,=T'V}
and (3.17)
I,=T'T.

It can be readily verified that the Hamiltonian den-
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sity € and the commutation relations are invari-
ant under a time-dependent SU , transformation

i .
V,~uVu' - ra (V' ,

IO, ~ullu®, (3.18)

and

ZP"W/),

where « =u(r) can be any N XN unitary matrix
function of T with detx =1, Since the u(F)’s are
time-independent, the invariance group {u(r)} is
generated by the r-dependent operators § which
are conserved:

g=J'+y'Thy, (3.19)
where
Jt= é D~y

and (3.20)
D:m__. Glmvi _gflmnvzl .

It is straightforward to verify
[J'(F,8),Jm@F )] =if g3 (F = F)I(E, 1), (3.21)
[§H(F, 1), §"(F", 1)) =if ™63 (F - ) S"(F, 1), (3.22)
[91(F7t)>¢'(FI’t)]=-63(;"F’)le(;yt) bl (3-23)

),

[¢'(F, 1), 0P, 1) ]=if ™63 (F - TOI(F,¢), (3.24)
and

[¢'E, 1), VIE', t)]=if '™6°(F = T') VI(F, £)

1 - =
-z p'"v.6(r-r’), (3.25)
where V, is the differential operator with respect
to . Consequently, §' commutes with the Hamil-
tonian H = [3¢ d % and

$I(F,t)=i[H, ¢'F,1)]=0. (3.26)

By commuting H with ¥, we obtain the equation of
motion (3.4) for y. Likewise, by commuting H
with V! and Il}, we derive (3.5) for v=7 which can
be 1, 2, or 3 but not 4. We note that i§'/¢ is iden-
tical to the left-hand side of (3.5) when v=4. Thus,
in order to be consistent with all the Lagrangian
equations of motion, in the V=0 gauge we require
all state vectors | ) to satisfy

g'| y=0.

In the Schrédinger picture the operators vV}
= V}(F) and I =I1}(T) are all ¢ independent. The
state vector in the V{ representation is the func-
tional

¥(v)=(vi]).

(3.27)

(3.28)

In this representation, the Hamiltonian H is

H=%+0 , (3.29)
where
-1 5 0 3
x Z.f TR (3.30)
and
v+ [ (BIBI-glVi+ ity v0d.  (3.31)

In Sec. IV we shall see how the introduction of curvi-
linear coordinates can be used to eliminate the
constraint (3.27), in complete analogy to the pas-
sage from (2.8) to (2.10) in the simple mechanical
example discussed in the previous section.

IV. NONCOVARIANT GAUGES

Let us start from the V=0 gauge quantum
theory of Sec. III and show how to reach other
noncovariant gauges such as the axial or Coulomb
gauges. For notational clarity the gauge field in
these other gauges will be referred to as A4,
=T'A!. The spatial components of A, obey a
gauge condition

x(4,)=0. (4.1)
Among possible choices for x one has

Ay in axial gauge
x(4,) ={ ’ 4.2)

V;A; in Coulomb gauge .

For simplicity we will treat x as a linear homo~
geneous functional of A;. As in (4.2), we assume
x=T'x! to be an NXN Hermitian matrix with zero
trace. Thus at any given space-time point, (4.1)
expresses M =N?-1 conditions:

0=x 4, D)= [ a1 | T, F,mApE,, (4.3)

where the matrix element of I is real, and as
before, the parameters [ and m can vary from 1 to
M. In addition, we will assume that for every
field configuration V,(T,#) in the V=0 gauge there
exists a unique gauge-transformation matrix
u(T,#) such that’

V,=udul+ ;‘—uV,u'1 . (4.4)

If we view the NXN matrix u as a function u(¢,) of
M group parameters ¢,, 1 <q <M, then the gauge
transformation u(¥,#) in turn specifies M functions
¢,(T,t) such that

u(T,t) = ule (F,1) . (4.5)

Equation (4.4) can thus be viewed as expressing
the gauge field V(F,#) in terms of the curvilinear
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coordinates A,(T,t), ¢,(T,t). For example, if our
group is SU,, then M =3 and we might choose the
¢,’s to be simply the three Euler angles. (See
the Appendix for details.)

Because of (3.30), the V}’s can be regarded as
the Cartesian coordinates. We recall that in any
coordinate transformation from a set of Carte-
sian coordinates g4, g3, . . ..to one of curvilinear
coordinates Q(q,), @:(q,), . . . , the standard
kinetic energy term in the Lagrangian may be
written as

KE%; q.a2=

In the quantum Hamiltonian, the corresponding op-
erator in the coordinate representation is

%Zs QaMaB:QB . (4.6)

2 9qq
1 Mml-1728 ( - 1/2_8 )
2 g‘ I aQa M aBl | aQB
(4.7)
where
9Qa _._L
ZaQa 0Q, * e 28517 o, 49
and |M|=detM. Hence,
| M| /2= det(aQ“> (4.9)
8¢5

in which 8Q,/9q; is the (a, 8)th element of the ma-
trix.
Applied to our case, (3.30) becomes

x=3 [/ [ @by [ @ Tn@ | M| M ET )b, (E) +u B | M) GNP

+PYE) | M|V M E )L p,(F) + PUE) | M|V M E,E)ITPTE), (4.10)

where p, and P} are the momenta conjugate to ¢,
and A}. In the coordinate representation of the
Schrodinger picture, ¢,(T) and AL(Y) are all ¢ in-
dependent. Clearly,

Do(E) =i w%. (4.11)

However, because of the constraints (4.3) obeyed
by A}(T), its conjugate momentum must be de-
fined more carefully. We can expand A}(T) in
terms of a complete set of real orthonormal func-
tions f}(¥)y, each obeying the same set of con-
straints

[ @ r, [ my =0 (4.12)
for all N, T, and I. The expansion is

AY(E) =; QufiEy - (4.13)
The @,’s may now be viewed as the independent

generalized coordinates. The momentum Pi(¥) is
then given by

P(¥) Zf (r)N< T ) (4.14)

Thus, P}(¥) also obeys the constraints
X (P, 1) = [ asrE, ilr, [, mPpE) =0, (4.15)
The following construction for the functions

FL(F), will be useful. We may view (F,|T'][F,7)
as a transformation matrix which maps a vector

I

|£) in the functional space 2 ={|¥’,1)} to a vector
|€) in a larger space h={|i, T, )}, where |£) is
given by

7’:?’”5 E(?,llf'ﬂE) . (4.16)

Let |N) be a vector in 7 that is orthogonal to all
such |£)’s. If we denote

Fi@) y=G,F, 1N, (4.17)
then since
EW = [ Iy F, 0 @) =0 (4.18)

for all the |¢£) vectors in %, (4.12) follows.
The inverse of the mass matrix M appearing in
(4.10) has been divided into four blocks with

-1 T+’ 3,/ 6¢ (_’) 5
M-Y(F,T )ab J’d OV"("II) 6V"('”) ’
M_l(","’ i M-—l(*/ d 5’1
3. 5(1)“(-.) OA (—.)
f ar 6Vn(‘>”) 6Vn("n) ’ (4.19)

-1 k1) m 3. GAI(.) Am(-f)
i eip= | a8 B -

Next, let us determine these functional deriva-
tives in terms of the gauge-fixing function x(4,,7).
Solving Eq. (4.4) for A;, and considering small
variations of A;, ¢,, and V; we obtain '

8A; =du"'Viu+u o Vu+u ' V;6u

+ 26UV Su U (4.20)
g 4
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By using (3.3), we may convert the above equation
into the form

bAl=0™5 v¢+§®§m(xg*a¢a) , (4.21)
where 1A} is defined by

. ou

iu™t a¢a5)\a =T\, (4.22)
U™ satisfies

uTmu=UmTY, (4.23)

and D™ represents the covariant-derivative opera-
tor containing the field A}

Dﬁ"‘=6""vi-gf”""A’;. (4.24)
Because of the first two equations in (3.3), the ma-
trix U= (U™) is real and orthogonal, and therefore
also unitary.

The requirement that x(A; + 64;,T) should also

vanish then relates 6V, and 6¢,:

0= [ a%ris, v, |5 m [U""'(f')a VIGE)

+§n;""<x:(f')a¢,(f'>>] ,
(4.25)

which can be solved for 6¢,(F), thereby determin-
ing

2800 = -\ FE | (T2 [F, 0 07,

(4.26)
where (I';D;)™* is the inverse of the matrix I',D,
whose matrix elements are
(F, 1T, (8,10 = [ @%@, T, 57, m

-

X(F (4.27)
with D; as the antisymmetric matrix, defined by
(&, llo,;|F',m) =D [F)o*F - T') . (4.28)

The matrix A~*(F) is the inverse of the M X} matrix
A(@F) = (A2(F)), with A1) 7=56™", If (4.26) is used in
(4.21), we can also obtain

" mlDy[F, 1)

GA"n ‘ 3 E4
%'17';_(%= U @)0,,0%F - )

— (F,m| D, (T,) 1T, [F, 1) Un(E).
(4.29)

J

Note that (4.29) automatically obeys

[ asnien, i 18, 228 <o (4.30)

)

The determinant |M| in (4.10) can now be deter-
mined explicitly. From (4.9), we see that |M| is
invariant under an orthogonal transformation
among the Cartesian coordinates q,. By using the
notation of (4.13) and (4.16), we may consider the
variations

AN = 2 L) 0@y (4.31)
N

and
COVEE) = 0o VEE), +0 VI E) ], (4.32)

with
GWG’"),E;<F’,IIFZ(FjFD'1/2|£>6qg (4.33)

and
SVAE )= 2 ) woax » (4.34)

N

where £ runs over any complete set of orthonor-
mal basis vectors |£) in #. Hence, the matrix
(0Q,/9g ) in (4.9) now takes a 2 x2 block form.
We find

o -1 ) )=1 fy1/2
0] /2 = det {gk (0 (T,T) 0] (4.35)
X 1

where Xis a rectangular matrix whose matrix ele-
ments are

_9Q
9q¢

NET
=- f FL@E) F, 1D, (0,D,) (T, TDY2|E)d *r .

From (4.35), we see that
|M[*2 = det(-g~(T',T])/*T' ;D)
=const g|r| , (4.36)

where x| =II; detA (), g is the Faddeev-Popov
determinant

g =det|T", D, |, (4.37)

and const =det|-g~*(I",T'})/?| which is independent
of both A;(F) and ¢,(F).

Our partial derivative formulas (4.26) and (4.29)
may also be substituted into the expression (4.10)
for X yielding

x:és-lf d3rP§(F)3P§(‘f)+§g-1|x|-1ffd3rd3r'[-P§(f):),.-gpa(f)(x-l);]g

X (0D, T, TI@®, T 1 | [0, P E) - g0 ) p, ()],

(4.38)



where in the double integral the matrix element
(%, 1|O|F’,1") between any pair of momenta is sim-
ply written as O. The above formula appears quite
similar to the familiar Coulomb-gauge formula,
Pﬁ(f‘) replacing the transverse momenta, the quan-
tity in square brackets the charge density, and the
central matrix element the Coulomb Green’s func-
tion. However, the analogy'is not yet completely
precise because of the presence of the angle vari-
ables ¢,(T), their conjugate momenta p,(¥), and the
matrix A.

In order to eliminate the angular dependence, it
is useful to first construct the group generators in
terms of the p,’s. Let us introduce the following
parallel expression to (4.22):

PR ; 4.39

3¢a =A,=T'A} (4.39)
Because of (4.23), Al and A" are related by

=o' (4.40)

which implies
detA=detr. (4.41)

Since u is unitary and 7' Hermitian, both A} and
Al are real. We define:two sets of operators
{j* @)} and {* @)}
pas)\;j'EAéJl . (4.42)
Hence,
it= 0, J'=(Ap,,
jt=0mJ™ and J' = U™, (4.43)

On account of (4.5) and (4.11), the T dependence of
j',J*, AL, and Al is entirely through their depen-
dence on ¢,(¥) and p,(F). By using (3.3) and by dif-
ferentiating (4.22) and (4.39) with respect to ¢,, we
can verify that

[ @),im @) ]=—if* ™" (F)6° (F - F') (4.44)
and

[ (F),dm(F) | =if "I (F)S°(F - 7). (4.45)
Similarly, through differentiation of (4.23), it fol-
lows that

[J* @), U @)]=if' U (@)6°(F - F) ,

(4.46)
[ @), U (@) ]= =i U™ ([F)6°F - T') ,
which together with (4.43)-(4.45) lead to
[P @),imF)]=0. : (4.47)
Furthermore, by using
M7 5o =05

and by differentiating (4.22), we can derive, after
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some manipulation, a useful commutation relation
[Py A 1)gA[]=0. (4.48)

Thus, for arbitrary functions f(¢,) and g(¢,), j’
satisfies the Hermiticity condition

I fHlgdry =<f g*j’ded,)* , (4.49)

where d74 = |x|lld¢,. Likewise, J' is also Hermi-
tian, That there should exist two sets of operators
{71 (#)} and {~jl(¥)}, both satisfying the same group
algebra and mutually commuting, has a simple
geometrical meaning. In the case of the SU, group,
this situation is identical to the familiar problem
of rigid-body rotation, with J* as the angular mo-
mentum operator in the laboratory frame and j'
that in the body frame. The details will be given
in the Appendix.

We shall now show that the operator J? defined
by (4.43) is equal to g~*D!™II7", given by (3.20).
From (4.4), (4.23), and (4.39) we find

1
Vi=UmAn -EA;viqsa , (4.50)

which together with (3.20) and (4.24) leads to
Dimymn = Ui, (4.51)

The operator Di™[I" can be written as a linear com-
bination of the momenta p, and P}:

Dtm(r)nmr) = ZDlm(*) 5 Vm(-»)

-f d%'[ng(f)

lm" 1(») n—>/
- D" Sy P

8p, ("), =,
sV Pa®)

(4.52)

The substitution of Eqgs. (4.26) and (4.29) simpli-
fies this considerably. For example, by using the
transpose of (4.51), we find

= OATE') _ ) -
Dim(F )w"'((:)) (F,n|(U%;; - D,(T,®,)"'T,0"D; |F, D
= "(F', nl(éij - Dj (rki)k)_lri)s),‘ml-f; l>
=0 (4.53)
in which the matrix <* HU|F ,m) = U""(?)53(f—f') is
real, and (%, I|D;|¥',m) = D\"(¥)5*(¥ ~ ¥') is antisym-
metric, like ;. leeW1se

5¢,&')
6 VIHE)

Consequently, (4.52) becomes
D™t =g(A")p,=gJ", (4.55)

D""(*) =A@ E)FE - . (4.54)
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which establishes the identity between the two def-
initions of J*, (3.20) and (4.43).

Let us finally examine the requirement (3.27)
that the physical subspace of the V=0 gauge Hil-
bert space be annihilated by the operator §* =J*
+3TT%). Under the transformation (4.4), the state
vector (3.28) becomes a functional of A; and ¢,.
Equation (3.27) can be written as

5 oAt z] -
[5Gyt ¥la,, .1-0, 4.56)
an equation which is easily solved:

¥4, ¢,]=u(9,)¥(A,). (4.57)

Here \TI(A,.) is any state vector depending on the
vector potential A; and the fermionic degrees of
freedom, but independent of ¢,. U(¢,) is the uni-
tary transformation acting on the fermionic de-
grees of freedom which represents the group ele-
ment u(¢,). Since the generators of u(¢,) are sim-
ply ¢y¥T%p, 1<I<N, the equation

ou
3¢,

is the Hilbert-space analog of (4.39) and this equa-
tion implies directly that the state ¥[A;, ¢,] defined
in Eq. (4.57) does indeed satisfy Gauss’ law, Eq.
(4.56). [In the SU, case, if we represent « in terms
of the Euler angles a, b, ¢ as in (A1) of the Appen-

at=—gATTHY (4.58)

A(P,4)=487 | @rpi@)gpl @

dix
u= e‘"zb /ze-irya /ze"“'zc /2 .

then the corresponding «u is given by
U= e-iT:b /2p-iTya /2,~iT,c /2 s

where T, = [d3ry'57,y].

If the Hamiltonian H is applied to this gauge-in-
variant subspace of the Hilbert space, it is con-
venient to work directly with the ¢-independent
state vectors ¥(4) and to absorb the unitary oper-
ator au(¢,) into H. The resulting Hamiltonian,

H=u(p)"*Hu(¢) , (4.59)

is then extremely simple. For example, (4.58)
and (4.40) imply that under conjugation by U, the
combination (\~*)™, appearing in X becomes
ADruTpu == FA U YT
= =AU YIT Y
=—ytTmy, (4.60)

Likewise,

UYla (0¥, = gVi T Ju =9la(~iv, - gALT")9.
(4.61)

Thus, from (3.29), (4.38), and (4.59) we find

+387 f dsrf @' {[ =P} @)D, +g9"T'p]9 x (T, D,)"'T, T (D], T ) D, Pl (F)+ g 1" y]}

N f d*{3B] B +yTa, (-iv,; -gA[T' }Y],

where, as in (4.37), g=det| I, D,|. The angle var-
iables have now been completely eliminated from
the problem. The Yang-Mills quantum theory,
when restricted to the states ¥(A), becomes very
close to the canonical theory that would have been
naively proposed for the gauge x[A]. However,
the precise ordering of the operators in (4.62), in
particular, the appearance of the Jacobian J, is
not the conventional one. In fact, as will be shown
in Sec. VI, the operator ordering in (4.62) yields
additional vertices in the Feynman rules. Although
for the case of the Coulomb gauge, the operator
ordering implied by (4.62) can be shown to be iden-
tical to that proposed by Schwinger® as will be dis-
cussed in Sec. VII, the derivation presented above
appears to be particularly simple and clear, the

(4.62)

kinetic energy in (4.62) being essentially the fam-
iliar formula (4.7) for the Laplacian in curvilinear
coordinates.

Let us conclude this section by specializing our
resulting Hamiltonian operator in (4.62) to the
Coulomb gauge for the group SU,. In that case the
matrix T'; becomes

(F,1| | T ,m)=v,863(F =7 )o'™ . (4.63)
The operator I', D, becomes
[D,=V,D,=V,(V, 0" —ge'mAl) (4.64)

so that the Jacobian d of (4.37) can be recognized
as the familiar, Coulomb-gauge, Faddeev-Popov
determinant. Equation (4.62) becomes
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I}=J‘d31’[%3_lﬁ?°3ﬁi+% +la, (-iv,) -3gT- Azp]

vig* [ erarg T @X K @+ 3 OFvO
(F, ml (9,0, (= 9T, ) E  m)g [ Ky XTI, )+ 59T EORE Y, (4.65)

where T =§‘r all SU, vectors are indicated by arrows, and P} is replaced by the more famlhar notation
(7). Both A; and nTare transverse. Note that the matrix (¥, m| (T, D,)" (T, T%) (D] I7) ¥, m’) has
reduced to precisely the usual non-Abelian, Coulomb, Green’s functlon.

V. COVARIANT GAUGES

We will now show that the Cartesian operator ordering of the V=0 gauge Hamiltonian (3.29)-(3.31) de-
fines a quantum theory identical to the theory determined by the usual covariant-gauge Feynman rules.
The transformation of the V,=0 gauge quantum theory of Sec. III into a covariant gauge is most easily done
using the Feynman path-integral formalism.®

For the case of a single coordinate g and conjugate momentum p the path integral for the Schrédinger
Green’s function applied to a state | ) is‘obtained by writing

N
RUACELA D EEL H f dgn){qm+1)| {1 -iecHPp, ¢)]| ) {q(1)]), (5.1)

where g(n) denotes the coordinate g at time ¢, =t + # —1)e with e = (¢’ —=¢)/N and ¢(N+1)=¢'. Each matrix
element in the product on the right-hand side of (5.1) is represented by

Catr DI 1= m(p, @) aow) = [ BEL errwmor e [1 ey (pu), L Ller )], 5.2

so that (5.1) becomes

(gm0 = 1im I M_ exp{ie[ﬂn)[q(ml)-q(n)] _ H(P(”)’ ﬂ%ﬂ&)]}wm,

Nosw n: €

)

(5.3)

the familiar Hamiltonian path integral for a one-dimensional problem. Our substitution of the variable

3 ge+ 1)+ g(n)] for the operator ¢ in H(p, q) of (5.1) corresponds to the Weyl-ordered form of the Ham-
iltonian. As can be readily verified, for a classical Hamiltonian p?f (q) + pu(q) +v(q), the Weyl form of the
quantum-mechanical Hamiltonian is

H=%[p*f (@) + 20f (@)p + f (@)p?] + 3] pu(q) +u(g)pl+v(q) , (5.4)

where g and p are operators. By substituting this expression into the left-hand side of (5. 2) one sees that
it leads precisely to the right-hand side.

Equation (5.3) can be immediately generalized to represent the ¥,=0 gauge Schriodinger Green’s function
by a path integral for the gauge theory without fermions:

RN
v'em @ =0 =tim [ [T alven)a(ne)]
-0 n=1

X{exp[ zef drtr{ 11, (n[V‘(n+1) Vim)]e™
n=1

=311, (o)1 () —%B;.(n)B‘(n)]]}‘I’[V;(I)] ) (5.5)
I
where ¥[ V,] is introduced by (3.28), V;() and simplicity, the position dependence is suppressed,
I1,(n) refer to the matrix form (3.17) of the fields V; @+1)=V}, and the differentials d[V (#)] and

V,(¥,t,) and (T, ¢,), with ¢, =t+ (@ —1)e, For d[I1(n)] stand, respectively, for the products
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IL.:.7 dVi(F,t,) and]l, , 7 41} (F,¢,).

To include fermions in the path-integral des-
cription, it is necessary to introduce a represen-
tation of the fermion Hilbert space as a space of
polynomials of generators §,, q,,...of a Grass-
mann algebra’

{aw ?Ia}=0

for all @ and =1,2,.... Their differentials dg,,
and derivative operators 8/84, satisfy

o ~|_24gp
— = q =
{aaa ) qa} aaa () (5.6)
and
{daw &B}:{daw daﬂ}=0 . (6.7

In addition, there are the usual integration rules

j dq,=0 and f 4oddp =04p - (5.8)
Let
{v@} (5.9)

be a complete orthonormal set of c-number
single-particle spinor functions. By introducing
for each ¢,(¥) a Grassmann generator &a, we

can represent a multiparticle state vector | ) with
the probability amplitude C, (a,, ..., a,) for the
states Yo ,..., %' to be occupied by the poly-
nomial

ah=r .

r=0 u1< a2<0--<(xr

x [1 ae (5.10)

B = oy

C,(a,...,0a,)

in which, for definiteness, the product of the
dp’s is arranged in the order of increasing §.
Equation (5.10) is the g representation of the bra
vector | ); its ket vector ( | in the ¢ representa-
tion then assumes the form

(la=2 2
r=0 °‘1<°‘2<"'<°‘r
+Ch(0y, 00y 4, )00 80y " " da, »  (5.11)

where the % sign is determined by the normaliza-
tion condition

<D= [T dasaly
-2 X

‘ |C, (a,...,0a,)|2.
r=0 :x1< a2<---< o,

(5.12)

With the above definition, a multiplication g, onto
(gl ) becomes the annihilation operator for the ath
state, while the differentiation /64, is the corre-
sponding creation operator.

The “Fourier transform” of any polynomial
¥(q) is given by

s@= [ ew(Srav@laa., 6.1
o o
where the §,’s anticommute with each other as

well as with the g,’s. By using (5.6) and (5.8), we
see that

dp ¢(ﬁ)= f exP(Zq: aaaa)gaia((z_)g daa ’ (5-14)

and therefore the usual partial-integration rule
holds. The “6 function” is defined by

Glg"y=%@-3"
fnd—q_a exPz qa(aa - ZI&)

=3 § (CPrA (5.15)

since, for arbitrary y(q),
v@-= [ s@-a T aasva), (5.16)

where the order of productI‘L is the transpose of
that inll; i.e., if in (5.15)]1, dg,=dq,dq, - -, then
8(G-q')=(q! -4,) (G, -4, in the same order,
but in (5.16)I1, dg%,= -+ * d§.dq! in the transposed
order. Hence, the inverse transform of (5.13) is

¥(@) = f exp (;&aﬂa)¢(ﬁ)gfa . (5.17)

As an illustration, we first examine the case of
a single mode with only one generator q. The
corresponding basis vectors of the Hilbert space
can be chosen to be |1), where I =occupation num-
ber=0 or 1. In accordance with (5.10)-(5.12), we
may write

(a|0>=?1, (lﬂl):l ’

(5.18)
Ol gy=-1, (11§ =4,

Therefore, we have the usual orthonormality re-
lation

= [ (1 paacary=o,
and the completeness condition

2 (@ D=3 +3=0G -3 . (5.19)

1=0,1
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If a Hamiltonian Hhas | I) as its eigenvector with Returning to the general case, with the help
eigenvalue E;=1lE, then the matrix representation of these equations we can easily write down the
of e”#4t jg fermionic analog of (5.2):
(@'lemm|q)= 20 (@11) e ™ (1] Q)
1=0,1
=-q"+e"#q. (5.20)

J

s 1 1-ien| 0= | TTaguess| Tasoastor -

X [1+i€ E' Ey(n)H”;(}.’: (n)] N (5.21)

Yoy
where in our case, because of (3.1),

Hypr==i [ @ro}®ap, v, @ (5.22)
with zpy(I') as a member of the c-number spinor set (5.9). Thus, if we define the anticommuting functions

Yo =9(F, )= va@ia0m) ,
= (5.23)

P00 =P(F,t,)= —E 6 Do),

where 9, = l[Ja'}/4, t, =t+ (@ —1)e as before, and wrltefIqua(n) and fILdEa(n) as fd[ Y@)] and de(n
respectively, the fermlomc Green’s function becomes

(lemsnw=)y-tim [ TT a[gea)dl veo
Tl n=1
N
x {expL): [ @rl-Fmm. v+ 1) -4 - i, D, w(n)]]}wwu)], (5.24)

where ¥ [9(1)]=(9(1)| ). Equations (5.5) and (5.24) can be combined to give a path-integral expression for
the Yang-Mills and fermion Green’s function. By using the Cartesian form II;(z) Il (z) for the kinetic en-
ergy in (5.5), with no additional terms we have explicitly incorporated the operator ordering of the V,=0
gauge Hamiltonian (3.29)-(3.31).

We can now transform the V,=0 gauge quantum theory defined by (5.5) and (5.24) into a noncovariant
gauge, x(A;)=0, by a simple change of variables. Of course, we must be careful when transforming
Vm+1)=V(n) and y(n+1) —p(r) to keep all terms in the exponent through order ¢ if we intend the trans-
formed theory to be equivalent to the original one. Such a procedure is completely equivalent to the oper-
ator manipulations of Sec. IV and leads to the same result.®

In this section we wish to use the path-integral formulation to transform to a covariant gauge. This can
be done most economically if we introduce into the integrand of (5.5) the factor

1=] IS:I d[%(n)]ﬁ(exp{i fd%'—— tr[v A; (F,t, )+ (A (T, t ) =A,F, t,))] }) (5.25)

where A;(n)=A,(F,t,) and A,(n) =A(F, t,) are Hermitian matrices, defined by

Ay () =1 0)", ke 1)+ 1) ) (5.26)
and

A )= _giE Infu ) u(n+1)]= —éu(n)‘l (u+1) —u(n))+é ()2 (e + 1) = (0))]24e -+, (5.27)
with

u@n)=u( ¢, n)) (5.28)
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the N XN unitary matrix function of the M group parameters ¢, ()= ¢, (T,,) in (4.5), and the differential
dlo, m)]=1,; do,(F,t,). Except for a numerical factor, the Jacobian |J| is given by

91=det(F, £,|31 ¥, t,)

(Ao(n’+1)—A0(n'))] . (5.29)

6 !
=det 56, @) [ViA‘(n )+ .
In order to match the final configuration of (5.5), we set A; (M+1)=V,(X+1)=V], i.e.,
u@+1)=1. (5.30)

Furthermore, since the integrand of (5.25) is invariant under A ()~ A () + constant for allz=1,2,...,%
+1, we may choose A,(N+1)=0,

We now examine the region where the summand in the exponent of (5.25) is of order 1. Because in the
summand the coefficient of [A (e +1) —A,(®)]? is proportional to €™, we expect only those configurations
with Az +1) —=A () of order €'/? to contribute to the integral over ¢, (®). Thus since A,(N+1)=0, A ()
should be of order (N —n)t/2/2=0(1) and, from (5.27), u (@ +1) —u (n) is only of order €.

If we perform fd[l'l(n)] in (5.5) we find, up to a numerical factor,

f d[l'[(n)]exp(iez: f Erte{ll;0)[ V(e + 1) = V;(n)]e™* —%Hi(n)ﬂ,-(n)}>

= exp(iéz_f arte[ V(e +1) —V‘(n)]2e“) . (5.31)

Next we can use (5.26) to express this exponent in terms of A; and #. A particularly symmetrical form is
obtained if the quantity in square brackets in (5.31) is conjugated with the matrix [« () *u® +1)1*/2u(n
+1)7%

etr[V,n+1) -V;(n)]?= e'ltr{[u(n)’lu(n + 1)]1/2A,(n+ D[u@m) tum+1)]"/2

+§ ) ub+1)]2 /29, [u@)  u@m+1)]1/2

~[um) tulm+1)]"24, @) u@) um+1)]1/2
--g[u(n)'lu(n+ 1)]"/2Vi [wle)  uln+ 1)]1/2}2 . (5.32)
Using (5.27) to replace u (z)"*u(rz +1) by a function of A (),
um) 'um+1)=1+ige A ) +0(€?) ,
we can expand® the right-hand side of Eq. (5.32) through order €:
e itr[Vn+1) =V, ) 2= tr{[A, (0 +1) —A;@)] €+ i g[Agln), A,()]+7,4,m)}+0(e¥/?) (5.33)

where we treat A;(n+1) —A;(r) as of order €'/2, Thus, if we change integration variables from V, (),
¥(»), and P(r) to the unitarily equivalent set A;@x), ‘

Y’ () =u ) P@n)
and (5.34)
V) =Fw)um) ,
the exponentials in (5.5), (5.24), and (5.25) combine to give the usual covariant-gauge action up to terms
vanishing with €:

i€y, f dSrtr{—‘g[(A,(m 1) -A;m) et +ig[Aym), A,m)]+V, A m)]?

-i[B; m)]? - % [V,A; () +(A,m+1) -Ao(n))e”llz}, R
(5.35)

i€

-—iéz J-d3,r{$/(n)['y4(lp' m+1)=y’'(n)) +ng(n)74lP'(n+1)+7,~(Vi -—igA,»(n))zp’(n)]}.



Finally, we must use Eq. (5.27) to change the
integration variable ¢,(n) to AT(r) where T™AZ(n)
=A,(n). The resulting Jacobian det[6¢ (' )/
6A"(n)]|g| can then be worked out explicitly. By
using (5.27), we see that the matrix 8A7(n)/6¢, ")
can be resolved into two terms:

0AT () 1

56,00) g (Gnn<alG(n |m)
+0,,1.{a]G (n) |m)), (5.36)

where, on account of (4.22),

(a|G ) |m) = A2 () - tgef ™\ m)AL(n) + O(€2).
(5.37)

Because of the boundary condition (5.30), A7(91)
depends only on «(31). Hence, we have

(a{G’ (fn)]m) =0,

and therefore

0A™(n) (a|G @) |m)
detgs )= gd t—————-— (5.38)

From (5.37), it follows that

Jd

(v |emife=t 1) =I d[A,)aly’ 19’19, exp {ie f d*x tr [—-;-

where

. N
dlA,Jdly 1afe" 1= 1im [] ala, @alv’ )lalp’ @)].

n-° nzl

VI. NONCOVARIANT-GAUGE FEYNMAN RULES

The quantum Yang-Mills theory in the gauge
X(4;)=0 is completely specified by the Hamil-
tonian operator (4.62) derived in Sec. IV. How-
ever, if this Hamiltonian is divided into free and
interacting pieces,

Hfree+Hint ’ (6.1)

the resulting Dyson-Wick perturbation theory in
H,, will be complicated because of the quadratic
dependence of H,,, on the canonical momenta P}.
In the interaction representatlon the P' become
A' the Wick contraction of A’ “(x) and A'(y) con-
tams noncovariant 6(x, —v,) terms, these 0-func-
tion terms can be systematically resummed and
the result represented as new, nonpolynomial
additions' to H,,,. The vertices implied by this
modified H{,,, when joined with “naive” Feynman
propagators, then provide the correct Feynman
perturbation series for the original quantum
theory.

In this section we will derive these simplified
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det(a|G(n) |m) =[1 - sgef* N2 ()AL ()X ()]
x detr () + O(e?)
=detA(r) + O(€?), (5.39)

where \(r) stands for the M X M matrix \(n).
Since M=0(c™), when € -~ 0 we can drop the O(ez)
term in (5.39) and derive

6
de tdjz"'(zt))— const X [g detx () ] . (5.40)

By following steps very simi_lar to those that led
to (4.36), we may express |§| of (5.29) as

|9 | = const x g, x Hdetx(n), (5.41)

which when multiplied by (5.40) gives, in the limit
€ -0, a constant times the usual, covariant-gauge
Faddeev-Popov determinant

J,=det{o,D,}. (5.42)

Consequently, apart from a constant multiplicative
factor, the original V,=0 gauge Schrodinger
Green’s function has been transformed precisely
into the usual covariant-gauge expression

F2-0'y, D,y -5%(3“;;“)2] }, (5.43)

Feynman rules for the noncovariant-gauge Hamil-
tonian (4.62). In practice, these Feynman rules
are most easily obtained using functional inte-
gration.® We first represent the Schrodinger
Green’s function by an integral over classical
trajectories in phase space as in (5.1). Instead

of immediately evaluating the Gaussian integral
over P}, we next replace the term in H,,, quadratic
in P§ by a Gaussian integral with respect to a new
variable A} coupling linearly with P!, Finally,

the integration over P§ is carried out leaving a
Lagrangian functional integral over A} and A}
which, if the original Hamiltonian was Weyl
ordered, directly specifies the proper Feynman
rules.

The first step in this procedure is the most
difficult. We must rearrange the operators in the
Hamiltonian (4.62) into Weyl order. The Weyl
ordering of the Laplacian (4.7) in curvilinear
coordinates,

9
-1 M2 —_pm-
EB' 5

is quite straightforward. The result is particularly
simple if we extract a factor of |M|™/* from the
state vectors:

)
M, @
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‘M}l/flx‘Ml-l/‘i__._

118 o 12
{4 5, 5q, " **"375q,

in which the differentiations appearing inside the
curly brackets are arranged in Weyl order, as in
(5.4).

However, complications arise because what we
are interested in is the Weyl ordering of the

B Ay 2 2 100 aQN(0 8Q,
Masgg, *aM essq, BQ} 3(ee; aq)<36;?q‘;>’ (6.2)

T

this simple formula to the case at hand, we must
return to the form (4.38) for the gauge-theory
Hamiltonian in which the angle variables ¢, and
their conjugate momenta p, appear. Equation
(6.2) then gives a Weyl-ordered form for H, from

Hamiltonian (4.62) which, having been simplified
by restriction to gauge-invariant states, (4.57),
no longer has the form (4.7). In order to apply

which ¢, and p, must again be eliminated as
follows:  The terms in curly brackets in (6.2)

which contain derivatives with respect to ¢, are
, d

-4 J d‘*'rf dSV’{(F,l[(FkS)k)'ll"jI"* @LTL) T, g2

l-—é—.—ﬁ_ “L(F )N L(F ) i 6 “1(F)Ex 17
x[4 56,0 o, At 5 g5 B E 55 (r)

5
FEATL @I 6

8¢, (F) 56, F") ’)

+ig[PLEXF, 1|D,(T,®,) T, TT@LTL) £, 1) +(F, 1D, (T,®,) T, T} @LTL)* [F7, 1)yPL(F)]

l 6 1 154 -l 5
|3 )]} (6.3)
If this operator is applied to the state

2, ¥@,), (6.4)

the result is ,

—%!x]l’z‘u(gba)f dsrf dar'{(F,H(I‘k:D,,)"I‘jF}(‘D;, r} )'ﬁllff,m;2
<[-w e e erie e Er) )
+g[PYENT, 1D (T,0,) 1, T ®LT]) |77, 1)

+(F, 1|D,(T,,)'T, T} @} TL)* |7, Z'>P'-(P)]zp*(f’)T"zp(Fl)}@(A ). (6.5)

In obtaining this expression we have made repeated use of the identities (4.48) and (4.60). The state (6.4)
above is simply (4.57) multiplied by |x|'/2, the ¢,-dependent part of the factor [M /4 introduced in (6.2).
Next let us examine the remainder term in (6.2):

s(oa: 30, 50
8\2Q, 8¢, /\2Q; g,
__Lf &r fds fds ,,§ [P (F), (¥, Z']:D', (TD,) ‘I‘ lr” 1% Pt;(f, (F, Z’D-Fkﬂ)k)"f‘jlf”,l"ﬂ
= 2ig[PY(E), N F)LE, 1 | (T D) T, [F7, ) U™ F )]

(M X (r 110, - D(T,D) T, | F7, U™ "(r”))
g (&zi;‘(‘?')*

w(—2
(5¢a,<f')

The last term in (6.6) can be evaluated quite explicitly if we use the commutation relation (4.44) in the

LENE 1 | Ty T, |7, m) U™ (5 )

NEEKE, L (T,) T, | F7, myut n (F )) } (6.6)
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form
g OANEENY (T s -1 (F\n A3
by (r)’js—(b—(—;)-b- ATHEL 56, (*)-f” ATH(F)0%(F ~ (6.7)
with the result
1 3 I VS - -1|=, g o N1 (= N 6 -1 /=
gng d*r J-d 7 {(r, 1(T,0)' T, T @L T} |F ’l>(__5¢a(F)A 3 )é,)(—————ad,a'(F,)x (r);)
—(F, I | (T,D,) T, = t1(T,D,) T, | F, )(F, 1] (T, )Tyt | F, ) 82 (F — F7) ¢, (6.8)

where (t'),,,= —if '™ is the adjoint representation analog of the generator T'. The ¢-dependent term in this
result cancels the ¢ dependence of (6.5) so the combination of (6.5) and (6.8) will not depend on ¢.
The second term in (6.6), linear in Pi(¥), is also not hard to simplify. Because the vector |2 defined

by

(i, 7, 1|1 & =(F, 1][5,, - D,(T,0) )] £, n)
is automatically orthogonal to | &),

(i, 7, 1|5 =(F, 1| T}] &

given by (4.16), we can replace
9
= LT (———-)
;f'( I ZBQN

by —i6/8A} (¥) so that the second term becomes

1 f d"rf &Er (1 [(T,D,) T |F, m)(F, m | (TD,) 2T, | F7, n)(F, 1] (5,

(6.9)

- 0,([,.D,.)7 Tt |F/,n). (6.10)

This result can be combined with the second, ¢-independent term in (6.8) to yield

V,(A) =% ¢ f ar(F, 1

(T,D,)'Ty |7, I)(F, m’(l"tz D, )T (1 + £147) 'r m

+1g f &r f Ay (F, 1 | (Ty0,) T, |F, m)(F, m | (T @, ) T, 7 |72, m)(F, 11D (T D,,) 1T, 177, 1),

which, on account of the identity, valid for arbi-
trary states |X), |Y), and |2),

[@rrrdE |, X, ] YXE, | 2)
+(F, a|XXF, b|D, |Y)F, c|2)
+{F, a|X)F, 0|V)F, c|D,|2)}=0  (6.11)
can be further reduced to
v,(4) 2%'3'2_[ a&r(T, U ‘ (rka)_lrj )F’ )

x{(F,m| (T D, )Tt | F, m) .
(6.12)
In order to simplify the first term in (6.6), we
observe that
19}

A,,(,)(r 1|D,(0®,) T, |77, 1)

=g(F,1][=0,,+D,(T,D,) T )" |7, m)
X (F',n|(TpD,) T, |F7, 17)

v@)=tg* [ ar [ ErliE, v 5, -

#(TpD) T lr,n><r lfé

T
and therefore

[PL(E"),(F, 1|D (T, TP, [F7, )], (6.13)

regarded as vectors in the functional space
{li, %, D}, are both orthogonal to (i, ¥, 1| £) given
by (4.16). Since in the operator identity

9
HF) = —f e
Pi®)=~i5zm

0
+if &7 (¥, 1| THTTE) Iy | F, z)m
the second term is parallel to (i, T, [ ]f} and con-
sequently orthogonal to (6.13), we can simplify the
first term in (6.6) by replacing P}(¥) by —i5/0A%(F),
and PY(F') by —i6/8A%L(F’). Thus, the first term in
(6.6) becomes

- (T,D,) T, | F 7y m)

i

x(¥,n ’t’(l";ﬁD;) I, T @LTE) " [, )} (6.14)
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The results (6.5), (6.8), (6.12), and (6.14) can now be combined, giving a Weyl-ordered form for the x(4,)
=0 gauge Hamiltonian

HP,A)=9"?H(P, a)g™/?

=3 f &r Pi(T)PL(F)+V,(A)+V,(A)
+3 f d*r f &r {[-PiE)D,; + gV T'P)([,D,)* ,T1®L TL) 2 [D, PLE) + o' T ]},

v [ @rlEBBL a7, - gAlT' ], (6.15)

where g and H(P, A) are given by (4.37) and (4.62), respectively, and { }, indicates that the enclosed
operators are to be Weyl-ordered, i.e., arranged in the same order as those inside the curly brackets in
(6.2). Thus, with the substitution

¥(4)=917%(4), (6.16)
the time-dependent Schrodinger equation i A) =P}(P,A)\'if(A) becomes .
T (A)=HP,A)TA). (6.17)

As was discussed in Sec. V, the Schrodinger Green’s function, applied to the state ¥(4), can be written
as

@m0 y=1im J T] @) dpe) d 7] diven)

X (exp {z‘e E J- d%’[P{(n)(A{(n'l— 1) -Al(n))€*

H(P(n),ﬂ’ilz);“(”—))]})ﬂA,(1)] , (6.18)

where all notations are the same as those in (5.5) and (5. 24) except for the replacements of V) and I1(r).
by A(r) and P(r); hence, A,(O+1)=A} d[A(n)] I, ;: dA} (r W)y Alm)=A} (r o) Pln)= (T, ¢ W) Yay o oo o
The quadratic mteractmn of the momenta P} (r) can be removed by introducing a Gaussian integral over

a new variable AX(n)=AX(T, t,):

exp{— ze—;‘[j f &r f @7’ [- PYT) D, + g TH](T,D,) T, T} (®f T} ) UDPh () + go?T" ¢]}
f II d[Ao(n)]élexp{ze [f Er{Pi(n) DAG(n) - g ()T h(n)A(n)]

+%fdsr f @r' AYT, n)l, T | D} TLT, T T e, |17, THAY (?’,n)]}, (6.19)

where, apart from a constant factor, §=det|I',D,| as in (4.37), which differs from
[det (@ITH(T, )™ LDy )] /2

only by another Al-independent factor. One should note that just as H in (6.18) is evaluated at the sym-
metric point 2 3 [A(n+ 1)+A(n)], the same rule must also apply to the operator D, wherever it appears in

(6.19). Finally, we can perform the P} integrations. Because P, obeys the constraint (4.15), r,P,=0
we have

f d[P(n)] exp(zef d’r{P}(n)[(A (n+1)-Aln))e*+D,Al(n)] - zP,(n)P’(n)})
=exp {ie[f &r HAkn+ 1) —Aln)) €1 +D,A (n)]?
-3 f Fr &' AYT)(, T |DITHT, T Ty o |17, ThA (F')]} . (6.20)

Substituting (6.19) into (6.18), applying (6.20) to the P} integrations and taking the limit €—-0, we find
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@A |e-tme-0 |y fd[Au 19d[p(n))d[d (n)] exp(ij: ! dtl{-'Ul -V, + f &r[-31F, Fl —D,y] }) . (6.21)

Perturbation expansion of (6.21) gives the usual
Feynman rules for the gauge x(4,)=0 with the
addition of the new term v, +7,.

In order to justify this statement, we must re-
call the connection between occurrence of the sym-
metric combination % [A(n+1)+A(n)] in our defini-
tion of (6.18) and (6.19) and the usual Feynman
rules. This connection canbe mosteasily illustra-
ted by considering the case of a simple one-di-
‘mensional harmonic oscillator with frequency w.
Let the “contraction” between any two functions
F(¢) and G(¢) of the coordinate ¢(f) and the vel-
ocity dgq/dt be given by the standard expression

vnonye. J A FOGE) expl - i [ L(g, dg/dt)dt)
F@EyG') = [dlqlexp(—i [ L(q, dq/at)at) )
(6.22)

With our convention of replacing q(t) by the sym-
metric form 3[q(e+1)+q ()] and dg/dt by the anti-
symmetric form [g(+1) - g()] €™, and then taking
the limit € - 0, it is straightforward to verify that

~ikg(t=t')

q(t)'q(t’)'=D(t—t’)=2—fT e—kz—_w—zdko, (6.23)
dg®)] (n._4d ,
[ ¢r= o6 -0, (6.24)

and

=w?D(t -#')+i0¢ ~1'). (6.25)
These equations correspond to the usual “covar-
iant” Feynman propagators.
We note that in (6.22) when ¢=¢’, the product

F ()G (@) for F =dq/dt and G=gq is, because of our
choice,

S [gbe+1) =g (g +1) +g)]

=5clati+ 2~ q0ur,

which, after thedg(z) and dg (n +1) integrations,
clearly gives zero, in accordance with the right-
hand side of (6.24),

4 _Lf ko -
i PO=5; ) grla k=0

For F =G=dq/dt, the factor F()G(t) is

E—lz[q(n+1)—q(n)]2

whose integrated value is zw+i€l, which in the
limit €~ 0 agrees with the right-hand side of’
(6.25). This is to be contrasted with the usual
Wick definition: the vacuum expectation value of
t([dq (t)/dt] [dq ¢')/dt']), or T(p(t)p '), which is
finite when ¢=¢' and differs from (6.25) by i0(t —¢').
It is this difference that, when summed directly

in the Dyson-Wick perturbation formalism, leads
to the Jacobian'® or Faddeev-Popov ghost'' term.

Our result (6.21) implies that for the gauge x(4;)
=0, in addition to the Jacobian ¢!, the usual Fey-
nman rules must be augmented by the potential-
like term U, + U, given in (6.12) and (6.14). Al-
though the derivation is somewhat lengthy, the
physical origin of both terms is the same as that
of #*/2 and —(8r2)!/2 \in (2.14), for the simple
mechanical example.

The Jacobian is usually converted into an addi-
tional term —:6(0)1nd in the Lagrangian. In con-
trast, the new U, and U, terms have very differ-
ent characteristics; they are both real and without
the 6(0) factor. When expanded in power series of
A], each can be written as

V,= O(g*A%) + O(g°A%) + O(g®AY)++« -,
where @=1 or 2. [There is an O(g?) constant term

in U,, which can be dropped.] For example, in the
Coulomb gauge and for SU,, to order g* we have

(6.26)

4
V,(A4)= -%—fdsrd3r'd37"

XK, (T =T)K; (T =TA (T - A (F"7),

(6.27)
where
> 1 3> 1 2 1
Kij(p)': 55 ;0°(D) 'W@Piﬁj"w@ 0; ;) m ’
(6.28)

where p= ]5] and the components of K, are A;.

The corresponding expression for V,(4) is sim-
ilar, but more complicated. In (6.28), the singular
term «<63(p)/p gives rise to infinites which are
presumably relevant for the cancellation of diver-
gences from the usual two-loop g*-Feynman
graphs; the remainder is finite when p# 0 and
leads to new nonlocal interactions between the
gauge fields which could be of physical importance.

VII. CONCLUSION

The x(4;) =0 gauge generating function Z(J,)
implied by the discussion of Sec. VI is
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27,)= [ 4,154 ) |
xexp(fd4x{—4F' F! +JIAL
-38(0) {x, I [In(T",D,) |x, 1)
~v@-v@l). @

The first two terms in the exponent make up the
usual classical action which, if a factor of g is
absorbed into A, is of order g2, The third
Faddeev-Popov term is of order g° and although
peculiar to the functional-integral description,
makes an essential contribution to the Feynman
rules. The final two terms, of order g%, have
been the object of the discussion in this paper,
and are given explicity by (6.12) and (6.14). If
Planck’s constant is distinguished from one, then
these three classes of terms are of order 7, #°,
and %, respectively.

As we have seen, the extra terms U, and U,
are precisely those which arise when the term in
the quantum Hamiltonian H, quadratic in the con-
jugate momenta P}(F), is Weyl ordered. In the

Y RS PHN [R Y LI R
Q N+ N5Q, = - 8 5Q, 3q, N.+2

in which we may let @y be that given by (4.13) and
F} be

—ﬁ’—) de Ifl (r,)N(.' llﬁu—m T Dk)drllr .
(7.6)

The last term on the right-hand side of (7.5) can
then be written as

Jerse ) o). @

which is precisely the first term inside the curly

brackets in (6.6), the quantity defined as V,. Thus,

[E}()y]? equals [E!(T)?];,+ U, and the Hamiltonians
(7.2) and (7.4) are identical.

Although the detailed arguments used in this
paper to deduce the Hamiltonian operator H differ
significantly from the method used by Schwinger,
there is a close relationship between the initial
physical assumptions. While Schwinger! deter-
mines H so that the Lorentz group generators obey
the proper commutation relations, we show that
H is equivalent to a V,=0 gauge Hamiltonian with
Cartesian operator ordering. Of course, the
Lorentz group generators are gauge invariant and

F;F;,,

pure Yang-Mills case, Eq. (6.15) can be written
as

BP,4)=} [ ar{EIOP+ [BIOF,

+0,+0,, (7.2)
where
Ei®=Pi@)+ [ a%'F, 1|T}0Ir)" s, 7, 1)
x PY ("), (7.3)

and, as before, the subscript Wdenotes Weyl
ordering. For the case of the Coulomb gauge,
our result (7.2) can be directly compared with
that of Schwinger.»? In our notation, Schwinger’s
Hamiltonian takes the form

s [ e BI@, P+ [BIOP v,, 0.0

where the operator E!(r) defined by (7.3) is first
to be Weyl ordered and then squared. The equality
of the expression (7.4) and H in (7.2) follows from
the identity

1 8F} 8F},
8 9Qy. 3Q

+FIF%,—— (7.5)

9 9
Q 9Qy 3QN:]

I

can be easily seen to obey the proper commutation
relations when expressed in the V,=0 gauge.
Hence, these two methods lead to the same Hamil-
tonian operator. However, it is the Weyl-ordered
H of (7.2) given in this paper that must be used to
deduce the Feynman rules.

Note added in proof. We wish to thank J.-L.
Gervais, I. Muzinich, and T. N. Tudron for in-
forming us of the following papers which have
also discussed the transformation from the V=0
gauge to the Coulomb gauge along lines similar
to those in Sec. IV of our paper: V. N. Gribov,
lecture at the 12th Winter School of the Leningrad
Nuclear Physics Institute, 1977 (unpublished);
J.-L. Gervais and B. Sakita, Phys. Rev. D 18,
453 (1978); M. Creutz, I Muzinich, and T. N.
Tudron, ibid. 19, 531 (1979); T. N. Tudron,
Syracuse University Report No. SU-4217-156
(unpublished). Finally, we are indebted to R.
Marmelius for bringing the work of R. Utiyama
and J. Sakamoto [Prog. Theor. Phys. 55, 1631
(1976)] to our attention. These authors discuss
the Coulomb-gauge operator-ordering problem
from a viewpoint quite similar to ours. However,
their technique for solving the Gauss constraint
is significantly different from ours and the result
seems more complex.



FIG. 1. The bas1s vectors of yap are X, ¥, Z and
those of Zpody 2T€ %, 9, 2. The rotation sequence “cab”
takes T, t0 Sy first an angle b around Z @,), then
an angle a around &,, and finally an angle ¢ around z(ec).
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APPENDIX

In this appendix, we consider the special case of
SU, and give a simple physical interpretation of
the operators j’,J? and their commutation rela-
tions (4.44)-(4.47). There are three group param-
eters ¢,, which may be chosen to be the Eulerian
anglesa, b, and c. Thus, the # matrix of (4.5)
can be written as

u=e-i‘rgblze-i1'y 4/Ze—i'rzc/2’ (Al)

where 7,7, 7, are the usual Pauli matrices.

We recall that the origin of Eulerian angles
a, b, c lies in the description of a rigid-body rota-
tion. As shown in Fig. 1, there are two reference
systems, the laboratory frame =,, and the body
frame Zyp.g,. Each frame is defmed by a basis of
three orthogonal unit vectors: X Y Z for Ziab
and %, y, z for Zyegy. To go from T, to Zpodyy W€
first rotate an angle b along

A__A
Z=g,,

which moves the y axis from ¥ to €. then an angle
a along ¢ e, which rotates the z axis from Zto z;
finally an angle ¢ along

z=2,.
Consider now a point P in space, whose coordinates
in Ty, and Z,.,, are, respectively, X, Y, Z and

x,y, 2. Let us define
R=5(1, X+7,Y+7,2)
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and

r=z (T, x+T,y+7,2).
From the definition of the Eulerian angles, it
follows that

R=uru',

where u is given by (Al1). (Here, R plays the role

of V, in the gauge-field case, and # the role of 4,.)

We keep Zy,;, fixed, and consider the rotation of
Zvody Py changing a, b, and ¢. The angular velocity
vector is

ae,+be,+ée,, (A2)

where the dot denotes a time derivative. Let us
refer to the components of (A2) in Z,.4, and T,
as w! and ', respectively. It is useful to define

- -
un=w=5T W (A3)

it =Q=57Q. (A4)
Then, the matrices w and £ are related by
Q=uwul, (A5)

and the components of @ and & are the aforemen-
tioned w? and §!, related by

Ql=Uimym (A6)

with U™ given by (4.23). The quantities 1! and
Al defined by (4.22) and (4.39), are related to w’
and Q' by
w'=Nlp, and Q'=Alp . (A7)
The Lagrangian L of a rigid body with no extern-
al forces is a function only of w!, w?, and w®:
L =L(w’) .

Through (A2), L is also a function of @,b,c and
b ¢. The conjugate momenta of a, b, and ¢ are
given, respectively, by

_dw! 8L dw! o and _dw! aL
«" g dwl’ PoT = B WP
(A8)
A comparison between (A8) and (4.43) gives
oL
=gt (49)

which is simply the component of the angular mo-
mentum vector'in Z,,4,. The same vector viewed
in Z,, carries the component J*:

R4 42 = KT + VP + 20, (A10)

or J'=U""  as in (4.43).

In the quantum theory,

J=RI L VI24 28 (A11)
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is the rotational operator. Its components in Z, .
satisfy the usual commutation relation

[J?, dm]) =ieimmd . (A12)

On the other hand, its components the j”ain

Zpoay 40 nOt. From (A10), we have j'=% °J and
similar expressions for J2 and J°. Since %, y, and
z are unit vectors fixed in the body frame, under
a rotation they transform like 3 all rotate hke
vectors Hence, the scalar products % * J ye J
and z * J are invariants, and that gives

[J%,i™]=0. (A13)
Likewise, we can show that
[4,5"]==ie™j" (A14)

Equations (4.44)—(4.47) are simply generalizations
of these standard commutation rules, but for the
gauge field.

It is important to note that in the generalized
Laplacian, X of (4.38), the angular momentum
(i.e., charge) operator that appears naturally is
j'. Since j'=UmWJ™ the Gauss theorem (3.27)
takes on the form

)= -Umy'Tiy)),
which is the alternative expression for (4.60),

In terms of a, b, and ¢ the components of w and

& are glven by
=4 sinc - b sina cosc,

(A15)

w?=4 cosc +b sina sinc , (A16)

3_7 .
w°=p cosa +¢
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and

Q'=_4 sinb +¢é sina cosb

Q%=¢ cosb +¢ sina sinb , (A17)

Q3=p+¢cosa.

The matrices X and A can be obtained by dlfferen-
tlatmg these expressions with respect to a, b and
¢é. Likewise, the components j! and J? can be ex-
pressed in terms of p,=-i8/8a, p,=-i8/8p, and
p.=-id/dc:

j —smcp _co pb+ cosc s1::zlp
j2=coscpa+§%pb—sinc :;):: be, (A18)
i*=pes
and
J'=—sinbp, - cosb cf:;p,,: %pc,
- J%=cosbp, - sinb :?:: Dyt :22 Pes (A19)

I3=p,.

By using (A18) and (A19), one can also verify the
commutation relations (A12)-(A14) directly.
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