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We find next-to-leading coefficients in the expansion of Sp exp(-tK) in powers of proper time t, where K is the differ- 
ential operator for the gluon, ghost or fermion in a background Yang-Mills field. This expansion provides a possibility of 
estimating functional determinants in arbitrary background fields. For example, for the instanton background our very sim- 
ple method gives the value of the determinants with an accuracy of a few percent, as compared to the labourious exact cal- 
culation. 

1. In the quasiclassical approach to quantum field theory one meets the problem of calculating gaussian func- 
tional integrals over small quantum oscillations around a given classical background field. In some cases (e.g. for 
the instanton [1 ] background field) the functional determinants can be computed exactly [2,3] by finding all the 
eigenvalues of  the appropriate Schr6dinger equations. This, however, is a lucky but not a general case. For example, 
in a monopole field as a background, and also in many other cases of  physical interest, the problem of  the exact 
cak:ulation of  functional determinants is hopeless. Therefore, in such cases one has to use an approximate method. 

In this letter we suggest a very shnple method of  estimating functional determinants in arbitrary Yang-Mills 
background fields , a .  The method is based on the marriage of  a quasiclassical calculation of  the high density of  
eigenvalues in a background field, with the accounting for zero (or approximately zero) eigenvalues. 

Let Aa(x, 71, ..., 7p) be a classical background field depending on p parameters 7i, of  which the classical action 
fl+~u(X ) d4x is, in fact, independent. Using the Faddeev-Popov trick of  "introducing a unity" one can write down 
the statistical weight of  a given field configuration ~T as an integral over collective coordinates 7i and a gaussian 
fum'tional integral over gluon (B), ghose (X) and fermion (4)  fields: 

Z(~.) = exp ( I ;d4xFZu(X))f~B~C-DX+q)X~ f ~]dTidet(kl)(fd4xO'~au~au(l))  
4gZ(M) ' ~Tk 

X ~ q 6 ( f d 4 x B g ~ a u ( i ) ) e x p (  1 ; d 4 x B a w a b R  b fd4xX+aD2(X)aOXb_ f d 4 x ~ [ i T u V u ( . T ) _ m ] ~ )  
2g2(M) ~ - u  u v - u  

(1) 

Here ~,~(i) are p functions fixing the zero modes which are not orthogonal to OXau/D7 i and which satisfy the back- 
" l)ab(A] ~bb(i) = 0. We use the background Feynman gauge with ground gauge condition [3] - u  ~ ~*u 

ab - c - acb 6ab + facb~c _ W,v(A) = -D2(X)ab6uv - 2 F u v ( A ) f  ' D~ b(x)  = Ou - u ,  Vu(X) = 3u itaAau" (2) 

The statistical weight (1) is usually normalized to the free gaussian integral with A =0, and also regularized. Ac- 
cording to, say, Pauli-Villars regularization scheme, one has to divide the ratio of eq. (1) to the free gaussian inte- 

+1 A detailed version of this work is to be published [4]. 
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gral by the same ratio with fields B, X and ~ having a regulator mass M. Hence, the normalized and regularized sta- 
tistical weight takes the form 

--~-U ~ a ( l ) ) d e t ( ; ; 2 ( f  d4xJ/au(k)qja~ (1)) Z(.4)reg=exp( I f d4xI"~v(.4)) f (l dTidet(kl) { f d4x &~a' 
4g2(M) 87k u 

M P[  det'W~°u t [ de t ( -D2ab))  (det(i~ ~m3-) )reg (3) X (g(M)__X/~_~) t' ab -1/2 - r n )  

\det(-828abfuv) ]reg \ det(-826ab)/reg ~ det(i~b 

Here det'W means that in calculating this determinant one is not to take into account the p zero eigenvalues of W. 

2. To calculate the three functional determinants in eq. (3) it is convenient to use the Schwinger proper time 
representation combined with the ~ regularization [5] (equivalent to the Pauli-Villars scheme). One has 

- ) 
\de--~-~0 / r e g (  det K ] = exp ( -  sli~0dsd Mp(s)2S . f d t  t s-1 Sp(e - tK - e-tKo) , (4) 

' 0 

where Sp is understood in the functional sense. For small t (corresponding to large eigenvalues of K) there exists a 
quasiclassical expansion in powers of t: 

Sp exp(-twaubv) = (1/16rr 2) 4d(G)V(4)/t 2 +'~C2(G)F 2 - tCz(G)(42-'sF3 + 6I 3) + O(t2),  (5) 

i F  Sp exp(t D 2ab) = (1/16rr 2) d(G)V(4)/t 2 - ~C2(G)F 2 + tCz(G)(-  90 3 + ~oI3 ) + O(t2) (6) 

Sp {exp [ - t ( i~  - m) 2 ] } = (1/16n 2) 4d(F)V(4)/t 2 + ~r(F)F 2 - tr(F)(4-~F 3 + ~ 13) + O(t2) + O(m2) • (7) 

Here d(G) and d(F) are dimensions of the gluon and fermion representations, C2(G ) and C2(F ) are the corre- 
sponding values of the quadratic Casimir operators, r(F) = C2(F)d(F)/d(G) • 

By F 2,3 and 13 we denote the gauge-invariant combinations built of the background field: 

F2=(1/327r2) fd4xFav(X)Fav(X  ) F3=(1/32,2)  f d 4 x F a  F b F e fabc 
' Ma ,uv v~ a ' 

i3=(1/32a2) f d 4 x  ab b a c c  (Dc~ Fc~t3)(D, F ~ ) .  (s) 

The latter invariant is zero for a background field with no sources, owing to the equation of motion. The first 
terms in eqs. (5)-(7)  are cancelled by the free operators in eq. (4). Note the absence of a O(t -1)  term, which is 
due to the gauge invariance. The O(t 0) terms leading to the charge renormalization were calculated in ref. [6]. 
The O(t) terms were calculated by us for this work ,2 

3. Let us first estimate det - D  2 . The operator is positive definite, and for background fields which are smooth 
enough, one can hope that the density of eigenvalues does not differ drastically from that of the free operator 
-82.  Therefore, the difference Sp(exp tD 2 - exp t82) should be a rapidly decreasing function of t, whose expan- 
sion at small t is given by eq. (6). Note that actually we have gone as far as the fourth term in the quasiclassical ex- 
pansion, so that one can expect that eq. (6) represents adequately the density of eigenvalues all the way down to 

.2 Actually, these terms can be extracted from the results of ref. [7] where the quasiclassical expansion up to the O(t) terms were 
computed for a differential operator on a general riemannian manifold. We are grateful to the referee for drawing our attention 
to ref. [7]. 

386 



Volume 130B, number 6 PttYSICS LETTERS 3 November 1983 

rather low states. (Our experiment with the instanton background confirms this expectation, see below). All the 
information about a concrete external field A is accumulated in the values ofF2 ,  3 and 13 . 

To estimate the integral in eq. (4), let us cut the integration range from above at some 8 and then find the best 
value of  8 (for the given number of  terms in the quasiclassical expansion) from a stability requirement. Substitut- 
ing eq. (6) in eq. (4) and differentiating in respect to 6 we find the best value of 8 

8g h = 15F2/(-F 3 + 313) , (9) 

and hence (3'E = 0.5772 ...) 

det D 2 ] ~ 1 
d e ~ - ~ - ] r e g  exp[gNcF2 (lnM28gh + 7E -- 1)] . (10) 

Naturally, this estimation has a sense only if 8 > 0. 

4. Turning to de(W, one should recall that the gluon operator W is assumed to have p zero modes. Therefore, 
in order to calculate det 'W according to eq. (4), one should subtract the number of  zero modes p in the integrand. 
After the subtraction one can assume that the quantity 

Sp [exp(-twa~bu) -- exp( to Z sab suv) ] -- p 

is again a rapidly decreasing function of t whose expansion is given by eq. (5). Repeating the same manoeuver as in 
the case of  det - D  2, one finds the stability point for the cut-off 

8gl = [~C2(G)F2 -P] /C2(G)(~F3 + 613),  

and, hence, one obtains an estimate 

¢ ab 

) exp[½[~C2(G)F 2 -p]( lnM28gl+TE -- 1)] 
det Wuu -1/2 

\det--o28abstav reg 

(11) 

(12) 

.5. The value of the fermion determinant depends significantly on the fermion mass m. We shall here consider a 
case of  small m. We shall also assume that the external field Aproduces  q zero fermion modes when m is set to 
zero. 

Calculating the determinant according to eq. (4), let us divide the integration range into two parts: from 0 to 8 
and from 8 to oo. In the first range we shall use the expansion (7), and in the second we shall take into account 
only the would-be zero eigenvalues, which are shifted to m 2. Thus, 

I M 2s ~ oo 
'[det(i~det(i~ -- m) m)i]reg ~ exp [ -  -12 s-01im dssd [ F - ~  J d t  " - 1 ( 3 4 - F 2 - ~ - s t F 3 - 8 t I 3 ) r ( F ) + q  6f arts-1 e-tm2)] . (13) 

Differentiating in respect to/5 we find its best value for this approximation: 

4 
6f = Jr(F) g F  e - q ] / r ( F )  @sF3 + 8 1 3  ) + O(m2) .  (14) 

Substituting this value in eq. (13) we get 
1 (det(i~ - m)/det(ii~ - m))reg ~ (m/M)q exp [ -  7 [4F2 r(F)  - q] (ln M28f  + 2¢E-1)] . (15) 

6. Let us now check, how this crude method works in the case of  an instanton background field for which exact 
calculations of  the determinants are available [2,3].  In the instanton case one has (p is the instanton size) 

F 2 =  1 , F 3 = - ~ p - 2 ,  i3 = 0 .  
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The number of  zero modes are: p = 4Nc, q = 1 (for fermions in the fundamental representation of  SU(Nc) r(F) 
= 1/2). From eqs. (9), (11) and (14) we find 

8gh = ~gl = ~f = .~p2 . 

Note that this is an anomalously large value. It means that the quasiclassical expansion [eqs. (5)- (7)]  indeed con- 
trols an anomalously wide range of  the operators' spectra, and one looks forward to a good accuracy in estimating 
the determinants. Indeed, we obtain from eqs. (10), (12) and (15): 

(det -D2)reg = (Mp) Nc/3 e 0"235Nc , exact: (Mp) Nc/3 1.15-1 e0.292Nc; 

, -1/2 e0.235(- 2Nc), (M,o)-2Nc/31.152eO.292(-2Ne) ; (det W uv)reg = (Mp)-  2Nc/3 exact: 

[det(i~' - m)] reg = (mp)(mo) -2/3 e0"235 , exact: (mo)(Mp) -2/3 e 0"292 . 

The fermion determinant is computed to an accuracy of  5.5%. In the case of  the ghost and gluon determinants 
the accuracy is better than 3% for SU(2) and SU(3) groups. For larger groups it is natural to speak of  the accuracy 
in the logarithmic scale, which is very good. 

t 
To complete the job, one has to calculate the zero-modes determinant in eq. (3), which can always be done 

analytically. For the sake of  completeness we quote the result of  this calculation for the instantons of  the SU(Nc) 
group [3]:  

dp [ 8a 2 ]2Nc r r -222-2Nc  
fd4xf Txg-fi  / (Mp)aNC(Nc_I),(Nc_2) , 

We note finally that an approximate method of  evaluating multi-instanton determinants was proposed in ref. [8] 

We acknowledge useful conversations with L.N. Lipatov and M.A. Semenov-Tian-Shansky. 
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