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1. INTRODUCTION

Realistic quantum field theories are difficult to solve because they are governed
by nonlinear operator equations. In the usual perturbative tli'ea.'tr'rélen't -‘onxe‘Begins
with the solution to the linearized (free-field) version of the theory and then in-
corporates the effects of the interactions as a power series expansion in some small
coupling. A complementary approach, in which the nonlinearity of the system is
retained at all stages in the calculation, is based on an expansion about solutions of
classical field equations; the higher order corrections in this approach are obtained
as a power series in the same small coupling. This approach has led to new insight
into the properties of quantum field theories. In this article I will give an overview

of these methods and describe some of the most important results.

In many cases one finds that the classical field equations have solutions which
suggest a particle interpretation. They are localized, with their energy density
concentrated within a fairly well defined region of space. Outside this region, the
fields rapidly approach their vacuum values. These solutions are stable and main-
tain their form as time goes on. Finally, they can be boosted to give linearly
moving solutions. These carry linear momentum, and display the proper relation-

ship between mass, momentum, and energy.

The existence of these objects, known as sc:»litons,1 depends crucially on the
nonlinear nature of the field equations. This is reflected in their nonanalytic be-
havior as the coupling constants of the theory approach zero. In particular, the
soliton mass typically diverges in this limit, behaving as an inverse of a coupling

constant.

The quantum theory contains particle states corresponding to these classical
objects. These states are not accessible to ordinary perturbation theory. Neverthe-

less, they are most easily studied in the weak coupling limit, where the Compton

1 This usage differs from that in other fields, where the term soliton is applied only to localized
solutions which maintain their form even after scattering. Except in the sine-Gordon theory,
none of the classical solutions encountered in high energy physics are solitons in this more
restricted sense.



wavelength of the massive soliton is much smaller than the spatial extent of the
classical solution. This makes it possible to localize the soliton, and allows one to
use the classical field configuration as the basis for a description of the internal

structure of the particle.

How do we know that a particular theory has soliton solutions? One way, of
course, is to actually obtain analytic solutions to the field equations. However, this
turns out to be feasible only in a very few cases, most of them idealized models
rather than phenomenologically relevant theories. In any case, simply displaying

the solution does not explain the physical basis for its existence.

In many theories with spontaneous symmetry breaking, topological arguments
can be used to establish the existence of solutions. In these topological solitons,
the fields approach different degenerate vacua as one approaches spatial infinity
in different directions. These vacua are chosen in such a fashion that they cannot
be continuously deformed to a single vacuum. This guarantees the stability of the
soliton, and gives rise to a new type of conserved quantum number, known as the

topological charge.

A second class of solutions, nontopological solitons, are also stabilized by a
conserved charge carried by the soliton. However, in this case the charge 1s of the
same kind as that carried by the elementary particles of the theory. For stable
solitons to exist, their mass to charge ratio must be small enough to prevent decay

by emission of these elementary charged particles.

For the solutions discussed above, the quantum interpretation is a straight-
forward extension of the classical meaning. This is not the case for instantons,
which are solutions of the Euclidean field equations; i.e., the equations obtained
by continuing to imaginary time. These are associated with quantum mechanical
tunneling. This connection can be motivated by recalling the WKB treatment of
one-dimensional barrier penetration, where the exponent in the tunneling ampli-
tude is of the form of an action [ pdg, but with the “wrong” sign in the equation

relating the momentum to the energy. This nonstandard sign is just what one



would obtain by doing mechanics with imaginary time. The one-dimensional WKB
approximation can be extended to systems with many degrees of freedom, where
the barrier is in a multidimensional configuration space. The tunneling amplitude
is then obtained by considering all possible paths through the barrier, and finding
the one for which the one-dimensional tunneling probability is the greatest. In
a field theory, each point along this path corresponds to a specification of a field
configuration over all of three-dimensional space. The path, being a sequence of
such configurations, can itself be viewed as a configuration in a four-dimensional
space. This configuration turns out to be given by a solution of the Euclidean field
equations, namely the instanton. Thus, the instanton is not an object existing in

real space, but rather a device for calculating a quantum mechanical amplitude.

One application of such solutions is to the decay of a classically stable, but
quantum mechanically metastable, state. This situation arises in some cosmo-
logical scenarios, since the early universe could have been for a time in a “false
vacuum” state, corresponding to a local, but not global, minimum of the field po-
tential V(¢). Such a state would have decayed by the nucleation of bubbles of the
true vacuum, with the nucleation occuring (at low temperatures) through quantum
mechanical tunneling. The Euclidean solution associated with this process is often

referred to as a bounce solution.

In nonrelativistic quantum mechanics tunneling plays a role in the treatment
of systems which have two or more degenerate classical minima separated by po-
tential energy barriers. The standard example is that of a particle in a double well
potential where, because of tunneling, the ground state is a linear combination of
the ground states of the two wells, and the splitting of the ground state from the
first excited state is obtained from the WKB tunneling amplitude. Similar phe-
nomena can also occur in field theory. In particular, non-Abelian gauge theories
can be viewed as having multiple vacua separated by finite energy barriers. Tun-
neling between these vacua, described by the Yang-Mills instanton solution, has
a number of important consequences for both QCD and the standard electroweak

theory.



Of course, there is more than one way to get to the other side of a potential
energy barrier. At high temperature, a system may have enough kinetic energy
that it can go over the barrier without the need for quantum tunneling. In a
multidimensional configuration space this process will occur most readily across
the point where the barrier is lowest. The saddle point, i.e. the high point on the
lowest path over the barrier, is a stationary point of the potential energy and thus
a static, although unstable, solution of the field equations. Such solutions have

come to be known as sphalerons.

To illustrate some of the features of solitons and the issues involved in going
from the classical solution to the quantum theory, I begin in Sec. 2 by discussing
the kink, a soliton in one space dimension. Although not of direct physical interest
(except as a model for some cosmological domain walls), this example has the
advantage of being simple enough that much of the analysis can be done explicitly.
I then go on in Sec. 3 to discuss more complex solitons, both topological and
nontopological. As examples of the former I consider two-dimensional vortices
(which find applications in three dimensions as models for magnetic flux tubes and
cosmic strings) and three-dimensional magnetic monopoles. Sec. 4 discusses the
application of Euclidean solutions to the treatment of tunneling phenomena as well

as a brief description of sphalerons.

In a review of this size many aspects of the field must be left uncovered. Re-
views containing a fuller discussion, including further references, of many of the
topics covered here include several on magnetic monopoles (1-5) , nontopological
solitons (6-8) , and instantons (9,10), as well as some covering a broader range of
topics (11-16) . A recently discovered family of solitons in Chern-Simons theories

is reviewed in Ref.17.



2. THE KINK - A ONE-DIMENSIONAL EXAMPLE

A useful illustrative example is provided by a theory containing a single scalar
field in one space and one time dimension. While containing many of the features
encountered in more physically interesting cases, this model has the advantage
that much of the analysis can be done explicitly. The theory i1s governed by the

Lagrangian
_ 1 2 A2 a2

There 1s a symmetry ¢ — —¢, but this is spontaneously broken by the existence
of two degenerate vacua at ¢ = +m/ v'A. In either of these vacua the elementary

particles of the quantum theory have mass v/2m.

The classical field equation following from this Lagrangian i1s

$—¢"=2¢ (as? - m{) (2)
where dots and primes refer to time and space derivatives, respectively. Of interest
to us are soluttons which remain localized in space. In principle, these could be
static or they could have a periodic or quasiperiodic time dependence. In practice,
however, it turns out to be rather difficult to find solutions with any but the
simplest time-dependence. Restricting ourselves therefore to static solutions, we
can drop the ¢ term and multiply both sides of Eq. (2) by ¢'. The resulting

equation can be rewritten as

d |1 ,2 A/f ., m? 2 B
a[a‘ﬁ "1(05‘7”—0 (3)

implying that the quantity in brackets must be an z-independent constant. Since

any finite energy solution has ¢ = +m/v/X at spatial infinity, this constant must



vanish. It follows that

This can be integrated to give

Hz) = i% tanh [%(m - a,)] (5)

where a is a constant of integration.

Taking the upper choice of sign gives the so-called kink solution (18-20}. (The
solution with the opposite sign may be termed an antikink.) The kink is rather
localized, in that it deviates from a vacuum solution only within a region of width
~ m~! centered about the point z = a; the fact that it approaches different vacua
to the left and to the right is irrelevant to any local observations, since the two
vacua are indistinguishable. We may think of it as a kind of classical particle — a
soliton — whose mass is given by the energy of the classical solution. Integration
of the energy density |

mt

(=) = 5 sech® [%(m - a,)] (6)

obtained from the Lagrangian (1) gives

(7)

The dependence on the coupling should be noted. The kink mass is of order
m?/) times greater than that of the elementary excitation of the theory; as the
coupling approaches zero, the kink mass becomes infinite. Similarly, the magnitude
of the field in the kink solution (measured relative to either one of the two vacua)
grows inversely with the strength of the coupling. Thus, the kink is an essentially
nonperturbative phenomenon — it cannot be seen be studying small fluctuations

about the vacuum in the weak coupling limit.



The discussion up to this point has been purely classical. The transition to
the quantum theory can be investigated by a variety of techniques (18,20-26). The
essential result that one obtains is that, at least for the case of weak coupling,
these classical objects survive the quantization process relatively unscathed. Thus,
not only does the quantum theory possess particle states corresponding to these
solitons, but the classical solution gives a good first approximation to the properties
of these particles. The underlying reason for this is that the Compton wavelength
1/M of the kink is much smaller than its classical size 1/m. This means that,
without having to give it a very high energy, the kink can be sufficiently localized

that the quantum fluctuations in its position do not smear out the classical solution.

Furthermore, the quantum fluctuations of ¢(z) are small enough that they
do not obscure the classical field profile. This statement needs some explanation.
In any quantum field theory, the fluctuations in the field at a given point are
infinite. However, it is only averages of the field over finite volumes which are
actually measurable. It turns out that the quantities ¢y (z) obtained by averaging
the field over a region of width L centered about the point = have fluctuations of
the order of (InmZL)~!/2. (In d > 2 space-time dimensions, with L € m~!, the
fluctuations would be of order L~(4-2)/2 ) It is therefore possible to choose L to
be much smaller than the width of the kink and yet still have the magnitude of the

fluctuations much less than the overall variation 2m/v/A of the classical solution.

In the weak coupling limit the quantum corrections to the kink mass can be
calculated perturbatively. To a first approximation this can be done by treating
the kink as a fixed stationary object which provides a classical background for the

quantum field theory. This is done by writing the operator field ¢(z) as

(x) = Prink(z) + ¥(z) (8)

where ¢jini(z) is a c-number field given by Eq. (5) (with some fixed value of a) and

¥(z) is an operator field. Substitution of this decomposition into the Hamiltonian
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The first term, independent of 1, is just the classical kink mass. The terms cubic
and quartic in 1 are suppressed by factors of VA and A, respectively, and may
be treated as perturbations. This leaves a quadratic Hamiltonian which can be
rewritten as a sum of harmonic oscillator Hamiltonians by expanding () in terms

of normal modes; i.e., the solutions of

{"gd:—z + m? [3 tanh? (—%(m — a)) - 1] } ¥j = witj(e) (10)

These modes can all be found explicitly. There are two normalizable modes, with

frequencies 0 and 1/3/2m, and a continuum of non-normalizable modes beginning

atu:\/im.

The ground state of this Hamiltonian, in which each of the normal modes is in
its lowest state, corresponds to the kink. In addition to the classical kink energy,
there is a contribution of the form § 3 w; from the zero point energies of the
oscillators. This sum {or more properly, integral, because of the continuous part of
the spectrum) turns out to be divergent. However, two additional effects need to be
included. First, since the kink mass should be measured relative to the vacuum, we
must subtract a similar sum containing the frequencies w}* of the normal modes
about the classical vacuum. Second, there is a contribution from the counterterms
needed to cancel the divergences of the quantum theory. The mass counterterm
§m? arises at order A in ordinary perturbation theory. However, because the kink

field is itself of order 1/+/A, this term also contributes to the lowest order quantum

correction. Adding (with appropriate regularization) these three divergent terms



gives

1 1
Myink = Mo + 5 Zj:w:' ~3 Z‘“}mc + jdm dm? ¢ iu(z) + O(X)
7

2v2m?
-5 o0

(11)

where ¢g is finite, of order unity, and calculable (18). The term of order A has
also been calculated (27) and the calculation can, at least in principle (28,29), be

continued to arbitrary order in A.

The excited states of the Hamiltonian are obtained by giving nonzero occupa-
tion numbers to some of the normal modes. Physically, they correspond to a kink
plus a number of elementary bosons, with the states of the latter determined by
which of the normal modes are occupied. The continuum modes approach plane
waves far from the kink, and correspond to unbound bosons scattering off the kink.
The discrete mode with w = \/3/—2m corresponds to a state with an elementary
boson bound to the kink.

The zero frequency mode, however, is quite different. This mode arises from
the fact that the kink breaks the translational symmetry of the Lagrangian. It is

given explicitly by

Yo(z) = N\/ﬁ sech [E(m — a)] 12)
_ y Wrink(2)
dz

where N is a normalization constant. An infinitesimal deformation of the kink of
the form @rink — Dkink + €0 15 equivalent to a displacement of the kink to the
right by an amount ¢N. The existence of the zero mode corresponds to the fact

that such a displacement leaves the energy unchanged.

This mode must be treated on a different basis from the modes with nonzero
frequencies since, after all, a zero frequency harmonic oscillator i1s not really an os-

cillator. This is done (23,28,30) by introducing a “collective coordinate” associated



with translation of the kink. Essentially, this amounts to promoting the integration
constant a to a time-dependent dynamical vanable. The corresponding conjugate

momentum P is determined by the way in which a enters the Lagrangian. Eq. (1)

2
L= la2]dw (d¢ktnk) 4.

1 .
25 c1a2+"'

gives

Here the dots represent terms which do not contain a, as well as higher order effects
arising from the possible deviation of ¢(z) from ¢pink(z) due to the excitation of
the nonzero-frequency modes. The integral on the first line is precisely equal to the
classical kink mass (an explanation for this apparent coincidence will be given in
the next section), so to lowest order P = M, 4, and the corresponding contribution
to the Hamiltonian is P2/(2M,). At higher orders in perturbation theory the M
in the denominator is replaced by the expansion (11) for the exact mass My, and

the relativistic corrections to the kinetic energy begin to appear.

10



3. SOLITONS IN MORE THAN ONE SPATIAL DIMENSION

Solitons in more spatial dimensions present no i1ssues of interpretation beyond
those encountered in the study of the kink. The dificulty 1s in actually finding solu-
tions. Even for static solutions the field equations are partial differential equations,
and hence much harder to solve. Further, there is a result (31), known as Derrick’s
theorem, which forbids static solitons in scalar field theories with Lagrangians of
the standard form. This result follows from the fact that a static solution of the

field equations must be a stationary point of the energy functional

Eld(=)} = / "z [(8:8)" + V()]
= T{g(c)] + U[#(=)

(14)

(Here V(¢) is understood to vanish at its minimum.) In particular, let us assume
that ¢(=z) is such a solution, and consider the family of field configurations &g(:ﬂ) =
@¢(Bz) obtained by rescaling its length scale. If the original configuration is indeed

a solution, then the energy

E[gs(2)] = 8" *T[¢(2)] + B"U[¢(=)] (15)

must be stationary at § = 1. This implies that

Tig(z) = U] (16)

For n = 1 this gives T = U = E/2, thus explaining the apparently fortuitous
equality, found in Eq. {13), between P/a and the kink mass. However, if n > 2
this relation cannot be satisfied with T and V both finite and positive, and hence
the assumed solution cannot exist. The argument is easily extended to the case of

many scalar fields.

To find solutions then, we must either introduce time-dependence or else go

to theories with a more complicated structure. In either case the task of solving

11



the field equations becomes more difficult. Rather than a brute force approach,
one needs an understanding of the mechanisms which can give rise to particle-like
solutions. Two broad classes of solutions, topological solitons and nontopological
solitons, have been found. In both cases the existence and stability of the soliton

can be traced to a conserved charge which it carries.
3.1 Topological Solitons

One class of solitons is based on the possibility of topologically nontrivial field
configurations. An example of this is the kink solution studied in the previous
section. The theory described by Eq. (1) has two degenerate vacua, ¢ = tm/ V=
v. In any configuration of finite energy, ¢(z) must approach one or the other of
these vacua as ¢ -+ +oo. One can therefore divide all such configurations into
four classes, with (z(—o00), 2(00)) equal to (v,v), (—v,—v), (—v,v), and (v, —v).
While any two configurations within the same class can be smoothly deformed
one into the other, it is not possible to continuously go from one class to another
without passing through configurations of infinite energy. Now recall that any local
minimum of the energy functional gives a solution of the static field equations. It
should therefore be possible to obtain static solutions by minimizing the energy
within each of the four classes of configurations. The minima within the first two
classes are just the two vacua. For the last two classes the minima clearly cannot
be vacuum solutions, and so must be solitons; they are the kink and the antikink,
respectively. Note the power of this argument: even if we had not been able to
obtain an analytic expression for the kink solution, we would still be assured that

a soliton did in fact exist.

In this theory there can be multisoliton configurations containing a number of
kinks and antikinks, although these will not be static solutions. By annihilation
of kink-antikink pairs, such a configuration can evolve into one containing either a
single kink, a single antikink, or no solitons at all, according to whether the number
of kinks less the number of antikinks is 1, -1, or 0. (Because kinks and antikinks

necessarily alternate in position, these are the only possible values.) This can be

12



stated more formally by defining a topological charge @ = (¢(o0) ~ ¢{~00))/(2v),
so that kinks and antikinks have @ = 1 and @ = —1, respectively. From the above
remarks it is evident that ¢ 1s conserved, and that the topological charge of a

multisoliton configuration is the sum of the charges of the individual solitons.

These ideas are readily extended to more spatial dimensions. To illustrate
this, I first discuss below a two-dimensional example, the vortex solution, and
then describe the three-dimensional magnetic monopole solutions. A somewhat
different type of topological soliton, the skyrmion, is discussed elsewhere in this

volume (32).

3.1.1 THE VORTEX — A SOLITON IN TWO DIMENSIONS A two-dimensional topo-
logical soliton (33) occurs in the Abelian Higgs model, in which a U(1) gauge sym-
metry is broken by a complex Higgs field ¢. Instead of the two degenerate minima
of the theory of Eq. (1), the Higgs potential now has a continuous family of min-
ima, given by ¢ = ve*®. This is just what we need, since in two dimensions spatial
infinity is not just the two points z = £oo, but rather an infinite set of points
which may be viewed as a circle at » = 0o. A configuration can be classified topo-
logically by the behavior of ¢ around this circle. Thus, let ¢(r = oc, 8} = ver(®),
In order that the field be continuous, the net change in the phase o as 8 varies
from 0 to 2r must be equal to 27 times some integer n, which may be defined to
be the topological charge of the configuration. This charge acquires further signifi-
cance from the observation that for the energy to be finite the covariant derivative
D¢ = (8; — 1eA;)¢ must fall sufficiently rapidly at large distance. Because the
§-dependence of ¢ implies that J;¢ falls only as 1/r, there must be a nonzero vec-
tor potential A; = —(i/e)Fi(In ¢) at large r. Although this potential, being a pure
gradient, gives a vanishing magnetic field Fy at large distance, the application of
Stokes’ theorem shows that the total magnetic flux ¢ = fdzm Fyi3 must be equal

to 2mn/e.

To obtain a soliton, we look for the configuration of ninimum energy among

those with unit topological charge; by appropriate choice of gauge, this configura-

13



tion can be taken to have ¢(r = 00,8) = ve®. In contrast with the case of the kink,
this solution cannot be obtained analytically. Instead, the field equations must be
solved numerically. One finds that the solution is centered about a point where
#(z) vanishes. (The existence of such a point is a consequence of the boundary
conditions at spatial infinity.) In a region of radius ~ 1/(ev) about this point A; is
not simply a gradient, and gives the required nonzero magnetic flux. This solution

is known as the vortex.

By adding one more spatial dimension, z, and taking the fields to be z-
independent, this two-dimensional particle-like solution can be turned into a three-
dimensional string-like solution with magnetic flux flowing along the string. Re-
calling that the Abelian Higgs model in three space dimensions is essentially the
same as the Landau-Ginzburg model for superconductivity, with the symmetric
and asymmetric vacua corresponding to the normal and superconducting phases,
respectively, we see that the vortex solution gives a model for magnetic flux tubes in
a superconductor, with the quantization of the topological charge being equivalent

to the quantization of the magnetic flux.

An anti-vortex solution, with topological charge —1, can be obtained from the
vortex by the substitutions ¢(z) — ¢*(z) and A;(z) — —Ai(z). One can also
seek solutions with n > 1. Topological arguments alone cannot determine whether
these exist, since the configuration which minimizes the energy could well be n
widely separated unit vortices. It turns out that rotationally invariant solutions
with topological charge n > 1 do exist, but their stability depends on the details
of the Higgs potential. In terms of the superconductivity analogy, stable higher
charged vortices exist if the theory is Type I, but not if it is Type II.

In order to extend these arguments to other two-dimensional theories, and to

motivate the generalization to the three-dimensional case, it is helpful to formu-
. 2 . .

late them in more general terms. Let us define two loops in a manifold Af to be

equivalent if one loop can be continuously deformed into the other. On a simply

9 For a fuller treatment of the topological methods used in this section, see Refs. (1,4,13,16).
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connected manifold, where any loop can be continuously shrunk to a point, all
loops are equivalent. If the manifold is not simply connected, there are a number
of equivalence classes, which are the elements of the first homotopy group, II; { M).
Multiplication in this group corresponds to tracing out one loop after the other,

while the identity element corresponds to the trivial loop containing a single point.

In a theory where a symmetry group G is spontaneously broken to a subgroup
H the values of the scalar field which minimize the potential form a manifold M,
which may be identified with the quotient group G/H. As one goes around a loop
at spatial infinity, the fields ¢(r = oo,8) trace out a loop in M. The topological
charge of the configuration can be identified with the corresponding element of

IT;(M). Topologically stable solitons exist whenever IT;(M) is nontrivial.

Thus, in the Abelian Higgs model the manifold M is topologically equivalent
to a circle, S'. The fundamental group H;(M) = II;(5') = Z, the additive group
of the integers. This reflects both the quantization of the topological charge and
the fact that the topological charge of a multivortex configuration is the sum of
the charges of i1ts component vortices. Other possibilities arise in other gauge
groups. For example, one can find theories where II; (M) = Z3, the group formed
by addition modulo two. In these theories topological charge is added modulo two,
so that a two-vortex configuration has the same topological charge as the vacuum.

Thus, two unit vortices can annihilate one another.

3.1.2 THE SU(2) MAGNETIC MONOPOLE These ideas are readily generalized
to three dimensions, where spatial infinity can be viewed as a two-sphere, S2.
Instead of tracing out a loop in M, the scalar fields at infinity map out a closed
two-dimensional surface in M. Instead of II;( M), the relevant quantity is now the
second homotopy group, [I3( M), which is the group of equivalence classes of maps

from 52 to M. Topological solitons exist in theories in which [I3{A{) is nontrivial.

The simplest example (19,34) of this occurs in an SU(2) gauge theory with the
symmetry spontaneously broken to U{1) by a triplet Higgs field; I will describe

15



this /(1) with the language of electromagnetism. The Lagrangian is

1 1 A
L=3(Dug) ~ S Fp — (8" —v*) (17)
2 4 4
The elementary particles of the theory include a massless photon, two vectors with

mass my = ev and charges te, and a neutral scalar with mass mgs = v2Av.

For this theory the manifold M consists of the set of all isovectors with length
v and is topologically equivalent to a two-sphere. Because Il2($?) = Z, the theory
should have solitons carrying an additive topological charge which, with a suitable

normalization, can take on any integer value.

The solution with unit topological charge can be obtained by requiring that
at large distances the Higgs field approach the “hedgehog” configuration ¢%(r) =
vr®/r = v#® in which the direction of ¢ in the internal symmetry space is corre-
lated with the angle in physical space. (Superscripts on fields are SU(2) indices,
while subscripts denote spatial components.) Because of the changing direction
of the Higgs field, §;¢ falls only as 1/r at large distances. To have finite energy,
the covariant derivative D;¢ must fall faster than this. As with the vortex, this
is achieved by having a suitable long range vector potential. In this case, the
appropriate choice 1s

77

A? NEa,‘je—T (18)

which gives a field strength
1
~ask

FS"— ~ Eijk T’a?“ ;2' (19)
This is parallel to ¢ in internal space, and thus should be interpreted as purely
electromagnetic. It is in fact the Coulomb magnetic field corresponding to a mag-
netic monopole with magnetic charge @y = 1/e. Similarly, one can show that
any configuration with topological charge n carries magnetic charge Qp = n/e.
(However, there are no static solutions with multiple magnetic charge, except in

the mathematically interesting, but unphysical, limit (35,36) of vanishing scalar

meson mass.)

16



The full monopole solution can be obtained by multiplying the asymptotic

forms of the fields by functions of r:
% = #uh(r) (20)

A% = egi 7 1__1_‘_(7._)

(21)

er

Substituting this ansatz into the field equations yield two coupled differential equa-
tions. The boundary conditions are that h{oo) = 1 and u(c0) = 0 (to agree with
the presumed asymptotic behavior) and that h(0) = 0 and u(0) = 1 (so that the

fields are nonsingular at the origin).

Although these equations can only be solved numerically, 2 rough qualitative
picture yields some of the essential features of the solution. In this picture the
monopole is viewed as having a core of radius Reore in which b # 1 and u # 0,
with the fields having their asymptotic form for r > Rcore. The mass of the
monopole can then be divided into a contribution from the core and one from the
Coulomb magnetic field outside the core. If the energy density inside the core is

approximated by a constant pg, this gives

2
62 RCOT‘B

4
Mmon = ?pﬂRgore + (22)
Minimizing with respect t0 Rcore leads to Mmon = 87/(3€* Reore). Now the only
distance scales in the problem are the Compton wavelengths of the massive elemen-
tary particles. If these are roughly equal, we would expect Reore ~ 1/my = 1/(ev),
and hence Mmon = 87v/(3€). By comparison, numerical solution of the differential

equations gives Mo, = 4mvC/e, where C ranges from 1 to 1.787 as A/€? varies

{rom 0 to co.

Further understanding of the structure of the monopole can be gained by ap-

plying a singular gauge transformation to make the orientation of ¢ uniform. The

17



fields can then be written in the form

¢° = §vh(r) (23)
. U
W; = A} +1i4% = £;(6,6) % (24)
1—cosf
3
Aj A er?sin? @ (25)

In this gauge the unbroken U(1) defined by ¢ corresponds to the 3-direction in
internal space. The fields A} and A? correspond to the massive charged vector
bosons of the theory; to emphasize this, they have been combined into a single
complex vector field. The electromagnetic vector potential 1s A_::-, which is singular
along the negative z-axis; this singularity is precisely the Dirac string singularity of
a U(1) magnetic monopole (38). Within the U(1) theory this string is unavoidable,
but it is unobservable as long as 2¢ Qs is an integer for any possible electric charge
g; the remarkable effect of embedding the U(1) in a larger gauge group is that the

string can be eliminated (:ompletely.3

In this gauge it is easy to show that a new solution can be obtained by a phase
rotation of the form W;(z) — e®W;(z). This leads to a zero frequency mode when
the quantum corrections to the monopole are caicurated. As with the translational
zero modes, this must be treated by introducing a collective coordinate, which in
this case is a periodic variable specifying the overall phase of the solution (39-41).
The momentum conjugate to this variable is proportional to the electric charge
(). Because the overall phase is a periodic vaniable, this conjugate momentum is
quantized; a detailed calculation shows the unit of charge to be e. Just as the

linear momentum gives a contribution P2/{2M) to the energy, the charge gives

3 Since all the charged elementary particles of the theory have unit electric charge, one
might have expected a monopole with Qu = 1/(2e). However, we could have included in
the model an isospinor field, whose particles would have charges +e/2; this would require
that the minimum magnetic charge be i/e, which is indeed what we find.
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an additional energy of the form Q2?/(21). Here I, which can be thought of as a
moment of inertia in internal space, is obtained from a spatial integral of |W;/|?; it is
of the order of 1/(ev). Thus, built upon the monopole is a series of dyons carrying
both electric and magnetic charge. Their masses, like that of the monopole, are of

order v/e, while the mass splitting between successive dyons is of order e’v.

Although the dyons appear here as time-dependent solutions, they can be made
time-independent by an appropriate gauge transformation; it is in this form that

they were first found.

3.1.3 MONOPOLES IN LARGER GAUGE GROUPS Monopole solutions can also
occur in gauge theories with larger gauge groups and with a variety of scalar
field representations. The only requirement is that the full gauge group G and the
unbroken subgroup H be such that II(M) = II(G/H) is nontrivial. In particular,
it can be shown that if G is simple or semisimple then I2(G/H) = II;(H), and
hence that monopoles exist if H 1s not simply connected” This applies in particular
to any grand unified theory. By its very definition, such a theory has a simple
gauge group G. To agree with experiment, the unbroken gauge group must be
the SU(3) x U(1) of the strong and electromagnetic interactions; because of the
U(1) factor, this is not simply connected, and IIo(G/H) = II; (SU(3) x U(1)) = Z.

Thus, any grand unified theory must contain magnetic monopoles.

The mass of these monopoles is determined ry the symmetry-breaking scale at
which a nontrivial II, first appears. In the simple SU(5) model an adjoint Higgs
field ¢ with {¢) = vgyr ~ 10*® — 10’ GeV breaks the symmetry to SU(3) x
SU(2) x U(1). This is further broken to SU(3) x U(1) by a second scalar field x,
in the fundamental representation, with (¢) = vgw ~ 250 GeV. The first level of
symmetry breaking gives rise to monopoles (43) with unit magnetic charge 1/e and
mass ~ vgyr/e. Spherically symmetric solutions with two and three times the unit

charge also exist, but are unstable (44) against dissociation into unit monopoles;

4 A technical point: this result assumes that & is simply-connected. This requirement can
always be satisfied by taking G to be the covering group of the Lie algebra.
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stable but less symmetric solutions with up to six units of magnetic charge (45)

occur for certain ranges of parameters.

Other possibilities arise in more complicated models. For example (46,47) ,
there are SO(10) models where the symmetry is first broken to SO(6) x SO(4)
by a scalar field ¢; at a scale vgyr. An explicit U(1) factor appears only at a
subsequent stage of symmetry breaking, when a second field ¢; acquires a vacuum
expectation value v € vgyr. The first symmetry breaking gives rise to monopoles
of mass ~ vgyr/e. Because II(SO(10)/50(8) x SO(4)) = Z;, these would have
a Zy topological charge, with monopoles and anti-monopoles equivalent, if the
S0(6)x SO(4) symmetry remained unbroken. When the U(1) factor appears at the
scale vz, the homotopy group I, is enlarged to Z, and the previous Z; monopoles
acquire an ordinary magnetic charge of magnitude 1/e; for these monopoles both
$1 and ¢, twist in a topologically nontrivial manner. However, a second type of
monopole, in which only ¢, twists, also occurs. These carry magnetic charge 2/e

and have a much smaller mass ~ vy/e.

Since magnetic monopoles are one of the definite predictions of grand unifica-
tion, it is of considerable interest to know if any actually exist. Because of their
great mass, they cannot be produced in any conceivable accelerator. However, the
energies required were available in the very early universe. Indeed, fairly straight-
forward arguments (48,49) based on standard cosmology suggest that not only
would monopoles have been produced at early times, but that enough would have
survived to the present to far exceed the rather stringent upper bounds on the
present-day monopole abundance. One of the motivations of the inflationary uni-
verse scenario (50) was to provide a solution to this primordial monopole problem.
For a discussion of other approaches to the problem, and of the astrophysical and

observational bounds on the monopole abundance, see Refs. 4 and 5.

3.1.4 ADDING FERMIONS — THE CALLAN-RUBAKOV EFFECT  The coupling of
fermions to a magnetic monopole leads to a number of unusual phenomena, in-

cluding, e.g., the existence of objects with fractional fermion number (51). Perhaps
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the most important of these effects is the Callan-Rubakov effect (52-56) by which
baryon number conservation is violated in the scattering of fermions by certain

types of magnetic monopoles.

Angular momentum considerations give the first hint that scattering by a
monopole might have unusual properties. A system containing both a particle with
electric charge e and one with magnetic charge g has, in addition to any contribu-
tions from orbital motion or spin, an angular momentum of magnitude eg directed
along the line from the electrically charged particle to the magnetically charged
one. A classical electric charge moving directly toward the center of a magnetic
monopole could not pass through to the other side, since this would require a sud-
den reversal of this angular momentum. The quantum mechanical analogue of such
a radial trajectory is s-wave scattering off a monopole, and indeed, examination
of the s-wave scattering states (57,58) reveals a mismatch between incoming and
outgoing modes. This i1s seen, for example, in the solutions of the Dirac equation
for a massless isodoublet fermion in the background of the SU(2). The incoming
solutions with vanishing total angular momentum and fermion number 1 are either
left-handed with positive charge or right-handed with negative charge, while the
outgoing states are either left-handed with negative charge or right-handed with
positive charge; the charges are reversed for the modes with fermion number -1. It
is evident, then, that one of the conserved quantum numbers of the fermion must
change. A first guess might be that the fermion would change its electric charge,
with the monopole compensating for this by becoming a dyon. However, the mass
splitting between the dyon and monopole is too great to allow such charge transfer
in low energy scattering. Instead, the issue is resolved by the effects (59,60) of
the triangle anomaly (61,62) . Recall that the chiral current, whose conservation
would appear to be guaranteed by the symmetry of the Lagrangian, acquires a
nonzero divergence through one-loop quantum effects. For the case at hand this
divergence is proportional to E - B, the scalar product of the electric and magnetic
fields. In the presence of the classical magnetic field of a monopole, the quantum

fluctuations in the electric field can generate such a term and lead to a change in
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the total chiral charge. The net effect 1s that in the scattering of a massless fermion

by the monopole there is a large amplitude for chirality nonconservation.

In more complicated theories analogous processes lead to nonconservation of
other anomalous charges. In particular, violation of baryon number conservation
can occur in grand unified theories. Of course, these theories have baryon number
violation mediated by superheavy gauge bosons, even in the absence of monopoles.
However, in ordinary low energy scattering of nucleons this violation is suppressed
by a factor of (E/Mgyr)* and is thus essentially unobservable. No such factor
enters in the scattering of a nucleon by a monopole, and so the amplitude for
baryon number violation in such scattering can be large (52-56). Although a precise
calculation has not been performed, it is estimated that the cross-section for baryon
number changing nucle--monopole scattering is essentially geometrical in size,

with oap ~ 1/E?, where E is the energy of the nucleon. For a review of the
subject, see Ref. 63.

3.2 Nontopological Solitons

A second type of soliton arises in theories where an unbroken symmetry gives
rise to a conserved charge 7. These nontopological solitons are localized solutions
with nonzero charge. Because this charge is of the same type as that carried by
the elementary excitations of the theory, there is the possibility that it might be
lost through emission of charged elementary particles. The stability of the soliton
depends on whether or not such emission is energetically allowed and is therefore
sensitive to the values of the parameters of the theory. In contrast with topological
solitons, which in most cases occur only for a few low values of the topological
charge, nontopological solitons (in three or more space dimensions) typically exist
only if Q is greater than some minimum charge and often have no upper limit on
their charge or mass. (The last property raises the possibility of solitons of truly

astronomical size — soliton stars (64-68) .)

A wide variety of nontopological solitons have been found. (Some early exam-

ples are in Refs. 69-73.) Perhaps the simplest example (69,74) occurs in a theory
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involving a single complex scalar field ¢ in three space dimensions. The T.agrangian

is of the form
1
£ = 518wl V(4 (26)

where V reaches its minimum at ¢ = 0, so that the symmetry is unbroken; it is
convenient to set V(0) = 0. This Lagrangian is invariant under the transformation

#(z) — e @(x), with the corresponding conserved charge

Q= [da1m(s'd) (27)

where the dot signifies a time derivative. At the classical level, this charge can take
on any value. However, in the quantum theory @) is quantized (see the discussion

of dyons above) and only takes on integer values.

If the solitons are to possess this charge, they clearly cannot be static. However,
it is not hard to show that for fixed charge @ the solution which minimizes the

energy has the quasistatic form

$(x,t) = f(x)e™* (28)

with f = |¢| real. For such solutions

Q= w/d3;.: gk (29)
and so the energy can be written as

Q2

B= [ [J0va? + vioh| + st

For these quasistatic configurations the field equation reduces to

d¢ 2d¢ _d (1,
(e (30)

where the last term arises from ¢ = ~w?¢. This is just the equation for a static
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soliton in a theory with scalar field potential

=V - (12024 (32)
At large 7 the soliton must approach the vacuum solution ¢ = 0. If it is to
be stable, this value must be a minimum of V, which implies that w? < m? =

(d?V/d$?) g0, where m is the mass of the elementary charged particles of the
theory. Furthermore, Derrick’s theorem shows that such a soliton is possible only
if Vis negative for some values of ¢, implying that V must have a second, deeper,
minimum at some nonzero value of @¢. In the region where V is negative we have
(2V/|$2) < w? < m? = (2V/|$|*)4=0. Thus, the function (2V/|¢|?) must achieve
its minimum value v? at some nonzero value of ¢. It turns out (74,75) that the
existence of such a minimum is essentially all that is needed for the existence of
nontopological solitons in this model, and that solutions exist for all values of w in

the range v < |w| < m.

Matters become particularly simple in the limit of large @. In this case the
soliton turns out to be a sphere of radius R, inside of which |¢| has some constant
value ¢g, surrounded by a surface region of thickness § ~ m~! « R in which ¢
goes to its vacuum value ¢ = 0. There is a uniform charge density w3 in the

mterior of the soliton, giving a total charge
4w
Q= ?Wﬁ%RS (33)

which I will assume to be positive. R and ¢p are determined by minimizing the
energy (30) with Q held fixed. For sufficiently large R (and @) the contribution
to the energy from the surface region can be neglected relative to that from the

interior and we can write

47 3 Q2
E=—V(¢ )R+ —
3 V(SR + 5 $2 R

T (34)

where the dots represent terms which can be ignored in the limit of large K. Min-
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imizing with respect to R, with ¢o held fixed, gives

1/3
Rz(%) 2v(#0)ed] Q1 (35)
and hence

$o

To minimize this ¢o must be the value of the field at which 2V/|¢?| achieves its

minimum value »2, and hence
E=viQ| +--- (37)

(The stability condition ¥ < m noted above can now be seen as the require-
ment that the mass to charge ratio of the soliton be less than that of the el-
ementary particles of the theory.) From Eqgs. (33) and (35) we now find that
w = \/m = v. Thus, in the large ¢ limit the fields in the bubble interior
are independent of @; solitons of this sort have been termed (74) Q-balls.

We can now go back and include the effects of the surface energy, which gives a
contribution of the form £R? to Eq. (34). To leading order, this gives a correction
of order Q*/3 to the energy, and increases w? above 2. A more detailed analysis
reveals that w increases as () is decreased. Since w is bounded from above by
m, this leads to the existence of a minimum charge Qmin below which the soliton
solution ceases to exist. Further, the soliton is stable only if its charge is greater

than a value Q,p > @min.

Nontopological solitons need not be Q-balls. It is possible to construct solutions
whose energy, in contrast to that of a Q-ball, grows less than linearly with charge;
e.g., in the theory of a charged scalar coupled to a neutral scalar with a broken
discrete symmetry (76). A similar phenomenon occurs for bosonic field configu-

rations which are stabilized by coupling to a fermionic field carrying a conserved
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charge; such objects (77-79) , which because of the presence of the fermionic field
are not truly classical solutions, are related to the bag models (80,81) for hadrons.
Finally, there are (82) Q-balls with a massless gauge field coupled to the soliton

charge; in this case the Coulomb energy places an upper limit on .
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4. EUCLIDEAN SOLUTIONS AND BARRIER PENETRATION

One can also find localized classical solutions in Euclidean space-time. These do
not correspond to particles, as do their Minkowskian counterparts, but are instead
related to quantum mechanical tunneling. The starting point for this connection is

the WKB formula for the tunneling amplitude through a one-dimensional barrier:

T2

Awgp ~ exp |— /d:r: V2m(V(z) — E) (38)

T

where the integral ranges over the entire classically forbidden region. To generalize
this result to a system with more than one degree of freedom (83,84) , one considers
all possible paths through the multidimensional barrier, calculates a tunneling
probability for each path using the one-dimensional formula, and then maximizes
this amplitude to find the most probable path. The leading approximation to the
tunneling amplitude is given by the one-dimensional result for this path. Thus,
for a system of N particles, all with mass m, with coordinates ¢1,¢2,: -+, qan, one

must find the path ¢;(s) through configuration space which minimizes the integral

. dg;\’ Y
I = /ds (—;-)
; ds

If the signs in front of V(g) and E were reversed, this would be the principle

2
V2m(V(q) - E) (39)

of least action, which determines the trajectory of a classical mechanical system
with fixed energy. But we know that this variational principle is equivalent to
Hamilton’s principle, which tells us to minimize the action § = fd¢(T — V) and
which leads to the Lagrangian equations of motion. The appropriate sign changes
can be obtained by working with an imaginary time { = 1x4. Doing so, and then
retracing the steps relating the two variational principles, one finds that a path

which minimizes [ 15 also a stationary point of the Euclidean action
Sp= [dn | =0 () 4 v (10)
E tlom ; dxg ’ '
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and is given by a solution of the Euler-Lagrange equations in imaginary time. Fur-
thermore, for this path I = Sg. The end points of this path are on the surfaces, on
either side of the barrier, where E = V. Hence, at these end points the “velocities”

dg;/dz4 vanish.

This method can be carried over to field theory (85-89) . The coordinates
g; are replaced by the values of the field at each point in space, ¢(x), and the
path g;(z4) becomes a sequence of three-dimensional field configurations, ¢(x, z4),
which may itself be viewed as a field configuration in a four-dimensional Euclidean
space. It should be stressed that 4 is not a time in any physical sense, but rather

simply a variable parameterizing a path through configuration space.
4.1 Vacuum Decay by Tunneling

One application of this method is to the decay of an unstable vacuum (85).
An example of this arises in a theory with a scalar field governed by a potential
V{(¢} with two unequal minima, one a “false vacuum” at ¢ = ¢y and the other a
deeper “true vacuum” at ¢ = ¢;. The false vacuum state is stable classically, but
quantum mechanically can decay via tunneling through the barrier in the potential

energy
v= [ [é(vm? + V(qb)] | (41)

This tunneling cannot go directly from the homogeneous false vacuum to a homo-
geneous state with ¢ =~ ¢ because the volume integral makes the barrier between
these infinite. Instead, the tunneling is to a state in which a bubble of true vacuum
is embedded in a false vacuum background. A field configuration corresponding
to such a bubble is shown in Fig. 1. Varying R while keeping the field profile in
the wall region fixed gives a one-parameter family of configurations whose energy
is plotted in Fig. 2. It is the sum of negative contribution (47/3)(AV)R?, arising
from the replacement of false vacuum by true in the interior, and a wall energy of
the form 4mo R?, due to both the gradient terms in the energy and the barrier in

V(#), which is traversed by the field as it passes through the bubble wall. These
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precisely cancel when R = 30 /(AV), which would be the end point of the tunnel-
ing path if the system were constrained to this one-parameter set of configurations;
at this point 8E/JR < 0, indicating that the bubble would expand once it was
nucleated. (In actuality, the bubble profile changes somewhat as one goes along

the optimal path through the potential energy barrier.)

The rate for this process, as well as the optimal sequence of bubble profiles,

can be obtained by solving the Euclidean field equations

: dv
‘;(3@)2 = (42)

The boundary conditions are that ¢(x) = ¢y at the initial value of x}, while the
configuration at the final value of :cjlr is a bubble embedded in false vacuum. The
interval between these is in fact semi-infinite; i.e., we must take xi = —o0, while
:n{ has a finite value which, by z4-translation invariance, can be chosen to be
0. Because J4¢ vanishes at the end points of the tunneling path, the reflection
x4 — —x4 ylelds another solution, running from x4 = 0 to 4 = oo, with the same
action. Patching these two solutions together gives what is known as the bounce
solution, whose Euclidean action Sg = B is twice that of the original solution.
This factor of two i1s the same as that arising when the tunneling amplitude is

squared to obtain the tunneling probability, which is thus proportional to e~ 5.

There are actually an infirite number of Euclhdean solutions and tunneling
paths, since the final bubble could equally well be located at any point in space.
It is therefore more natural to speak of the probability per unit volume. This
bubble nucleation rate per unit volume is of the form A = Ae™. The prefactor
A may be viewed as probing the energy barrier in directions orthogonal to the
optimal tunneling path; if small deviations from this path have little effect on the
one-dimensional tunneling amplitude, A is large, and conversely. An expression for
A in terms of a functional determinant can be derived (90) by using path integral

methods. However, in realistic applications it is seldom possible to evaluate this
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determinant, and one simply argues on dimensional grounds that 4 ~ AM* where

M is a typical mass scale of the theory.
4.2 Yang-Mills Instantons

Quantum mechanical tunneling can also arise within the context of a stable
vacuum. The most important example of this is the Yang-Mills instanton (91),
which describes a tunneling process in which both the initial and final field config-

urations are classical ground states.

For a Yang-Mills theory the classical energy is clearly minimized when the
field strength F),, vanishes. (Here, and throughout this section, the field strength
Fy, and gauge potential A, should be understood to be matrices which are linear
combinations of the generators of the gauge group.) This does not imply that the
gauge potential also vanishes, but only that it must be gauge equivalent to zero,
ie., of the form A, = U™18,U, where U(z) is an element of the gauge g'roup. This
degeneracy is greatly reduced when a gauge condition is imposed. In some gauges
(e.g., axial gauge, A3 = 0) one can impose conditions such that 4, = 0 is the
unique classical ground state (13). However, in non-Abelian theories this can be
done only at the (aesthetic) cost of allowing finite energy configurations for which
the potentials do not vanish at spatial infinity. In other gauges (e.g., temporal
gauge, Ag = 0) these configurations are avoided, but an infinite set of degenerate
classical ground states (92,93) remain. These correspond to gauge functions U,

which can be characterized by the integer winding number

1

n= s /d% e Tr U 0Un U 85U, U 18,U, (43)

It 1s impossible classically to go from one of these degenerate ground states
to the next (i.e., to change the winding number by one unit). However, quantum
tunneling between these states is possible. This mixes the vacuum states of definite
winding number, so that the true vacuum is a linear combination of these. The
amplitude for this tunneling can be calculated by finding a solution of the Eu-

clidean field equations such that the configurations at the initial and final values
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of z4 (which turn out to be £oo) are the two classical vacua; this solution is the

instanton.

Tunneling also occurs in gauges with unique classical vacua (94). In these
gauges the instanton describes a process in which the field starts at the vacuum
and then tunnels through a potential energy barrier simply to get back to where it
started. This is somewhat analogous to the case of a particle constrained to move
on a vertically oriented ring, with the energy of the particle being too small to
overcome the gravitational potential energy barrier at the top of the ring. Classi-
cally the particle will stay at the bottom of the ring, but quantum mechanically it
can go around the ring by tunneling. Although its description is rather different in
these two classes of gauges, the observable consequences of this instanton-induced

tunneling are of course the same in all gauges (95,96) .

The instanton is in fact a four-dimensional topological soliton. As noted above,
the configurations at £; — +o0o must be the desired initial and final configurations,
which are of the form UU718,U. Since the tunneling proceeds via finite energy
configurations, the fields must also be of this form at spatial infinity. The instanton
thus assigns an element U(z) of the gauge group G to every point on the three-
sphere at Euclidean infinity, x2 + 2 = oc. Any such assignment gives an element
of the group II3(G), which for any simple non-Abelian gauge group turns out to
be the group of the integers.

Thus any such Euclidean configuration can be assigned an integer, called the

Pontryagin index, given by

1 -
k = fd% [16W2TTF”'”FW} (44)

where the dual field strength F,, = (1/2)¢u08 F*Y. Although written here as a
volume integral, the expression on the right hand side depends only on the fields
at infinity, because the integrand can be written as the divergence of a current

Ju. Moreover, for vacuum solutions the spatial integral of jo reduces to Eq. (43)
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for the winding number. Rewriting Eq. (44) as a surface integral and working
in temporal gauge, it is easy to show that the contributions from the surfaces at
spatial infinity vanish, so that k is equal to the difference of the winding numbers
of the imitial and final configurations. Tunneling between adjacent classical vacua
is therefore described by a solution with unit Pontryagin number. By analogy with
the arguments which ensure the existence of the vortex and monopole solutions, we
know that minimizing the Euclidean action among the set of configurations with

unit Pontryagin number will give such a solution.

In fact, an analytic expression for this solution can be found. The SU(2)
instanton (which is easily extended to larger gauge groups) may be written as
-1 (z—a)?

SRR Ry

U™z - a)d,U(z — a) (43)
where U(y) = (yo—1y - a)/\/ﬁ. Its Euclidean action is Sinstanton = 87%/g”, where
g is the gauge coupling. This solution depends on five real parameters. Four of
these, the components of the vector a,, are a consequence of the translation invan-
ance of the theory. The fifth parameter A determines the size of the instanton. The
freedom to choose A arbitrarily reflects the scale invariance of the classical Yang-
Mills theory and means that there are an infinite number of physically inequivalent
tunneling paths. Aninstanton of size A specifies a path through configuration space
involving field configurations whose spatial extent is of the order of A. Along this
path the maximum potential energy (i.e., the maximum height of the barrier) is
of the order of 1/(Ag?). While this barrier height decreases as one goes to larger
instantons, the length of the path through the barrier grows with A in just such a

manner that the tunneling action is unchanged.

When calculating the effects of tunneling, one must take into account the pos-
sibility of several succesive tunnelings, or of several roughly simultaneous tunneling
processes taking place at widely separated points in space. This can be done by con-

sidering Euclidean configurations containing a “gas” of separated instantons and
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anti-instantons (97) * The higher action of these configurations can be outweighed
by the increase in “entropy” arising from the freedom to choose the positions of
the instantons and anti-instantons independently. Stated differently, the amplitude
for tunneling via the path described by a configuration with two instantons and
one anti-instanton is far smaller than that for tunneling by the path corresponding

to a single instanton (a factor of 3%

instanton compared to e~ Siemanten) - However,
because there are far more paths of the former type than of the latter (in a space
of finite volume (2, one is proportional to 92° and the other to §2), the former can
dominate. If A were fixed, the dominant contribution would be from configurations
with a density of instantons in Euclidean space-time of the order of A~4e™Sinstanton,
For weak coupling Sinstanton 15 large and we have a dilute gas in which the sepa-
ration between instantons is large compared to their size. The problem is that A
is not fixed, and that we must therefore integrate over the sizes of the individual
instantons. This leads to an integral which appears naively to diverge at both
large and small A. When one-loop quantum corrections (98-101) are taken into
account, the g in the action becomes the running gauge coupling evaluated at a
momentum of order 1/A. This insures the convergence of the integral as A — 0,
but only makes the problem of calculating the effects of large instantons worse.
This greatly complicates the task of obtaining reliable quantitative calculations of

instanton effects in QCD.

On the other hand, the addition of a Higgs field, as in the electroweak theory,
breaks the scale invariance at the classical level (98). This insures the convergence
of the integral over A, which is now dominated by the contributions from instantons

of a single size.
4.8 Physical Consequences of Vacuum Tunneling

4.3.1 THETA PARAMETER AND CP VIOLATION The interference between instantion

and non-instanton paths in the path integral can lead to CP violating eflects.

5 The anti-instanton, which has Pontryagin index -1, is obtained by making the substitution
(z —a)g — ~(z ~ a)4 in Eq. (45).
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This is most easily seen by working in gauge with a unique classical vacuum, and
recalling the analogy with the particle on a ring. In this analogue problem, suppose
that a term of the form (a/27r)é is added to the Lagrangian. Being a total time
derivative, this term will not affect the classical equation of motion. However, in the
quantum theory it introduces a relative phase factor of e’ between the amplitudes
for paths which tunnel through the gravitational potential energy barrier at the top
of the ring and those which do not. Unless a is 0 or , this gives parity violating
effects even though the classical equations of motion are parity-invariant. In a
similar fashion, the addition of the total divergence

AL = —9-TrFu,,}:"u,, (46)

1672

to the Yang-Mills Lagrangian density has no effect classically, but gives an extra

; . . : : . .8
phase factor e to trajectories which proceed by instanton-induced tunneling.

If 8 is neither 0 nor m, the interference effects from this additional term are
both parity-violating and CP-violating. This might suggest that the inclusion of
such a term in the QCD Lagrangian could provide an alternative explanation of
the observed CP violation. However, it turns out that a 6 large enough to account
for the parity violation in the K meson system implies a neutron electric dipole
moment well above the experimental upper limits. The essence of the difficulty
is that the latter is now a purely strong interaction effect, while the former still
involves weak interactions. By contrast, when CP-violation is attributed to phases
in the Kobayashi-Maskawa matrix, both effects suffer the same weak interaction

SUPPIESSiol.

To give an acceptably small neutron dipole moment, & must be less than about
10~°%. It would seem that the simplest way to meet this constraint would be to

set § = 0 and omit the entire term from the Lagrangian. However, when fermions

6 In gauges with multiple vacua, where the true vacuum is a linear combination of states
with definite winding number, the effects of AL can be mimicked by assigning appropriate
phases to the expansion coefficients. The resulting states are called #-vacua.
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are included in the theory one finds that a chiral rotation of the fermion fields
is equivalent to a shift in # (92-93). A consequence is that the effective value of
6 receives a contribution from the phases in the fermion mass matrix. These in
turn depend on the phase of the scalar vacuum expectation value responsible for
the mass generation. The result is that zero is not a particularly natural value
for this final #.5;. If there were at least one exactly massless quark, 6.5¢ could
always be set to zero by a chiral rotation. Since this appears not to be the case,
one must seek an explanation for the otherwise fortuitous fact that .5y is so small.
One possible solution (102,103) to this “strong CP problem” is to add fields to the
Lagrangian in such a way that a vanishing 6,y is chosen dynamically. This gives
an approximate new symmetry, whose breaking by instanton effects gives rise to

the hypothetical axion (104,105) .

4.3.2 VIOLATION OF ANOMALOUS CONSERVATION LAWS  Additional effects come
into play if massless (or very light) fermions are present in the theory. In a fixed
gauge field background the fermions can be described by finding the eigenfunc-
tions of the Dirac equation and specifying which modes were occupied. If this
background is varied, these eigenfunctions and their eigenvalues will change. If we
regard the instanton-mediated tunneling process as the passage through a sequence
of such gauge field configurations and follow the changes in the fermion eigenmodes
over the course of the process, we find that the net effect is to shift the spectrum in
such a manner that one left-handed mode is shifted from positive energy to negative
energy, while one right-handed mode goes from negative to positive energy (97).
If this process were sufficiently slow that the occupation numbers of the various
eigenmodes did not change, the result would be the creation and annihilation of
various particles. For example, if initially all the negative energy modes were filled
and all the positive energy modes empty, then the final state would contain one un-
filled left-handed negative energy state and one filled right-handed positive energy
state. This would correspond to the creation of a right-handed antifermion and a
right-handed fermion, thus changing the chiral charge by two units (92,93). The

same change in chirality is found for other initial states; furthermore, this result
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can be shown to be exact (106) and not depend on the adiabatic approximation.
(The underlying reason for this is that the integrand in Eq. (44) for the Pontryagin

index 15 essentially the same as the anomalous divergence of the chiral current.)

Applying this result to QCD resolves the so-called U(1) problem. It is well-
known that the eight light pseudoscalar mesons can be interpreted as the Goldstone
bosons of an approximate chiral SU(3) symmetry which is spontaneously broken.
However, the Lagrangian describing the coupling of three light quarks to the color
gauge field has an approximate chiral U(3) symmetry. This larger symmetry would
lead one to expect a ninth light pseudoscalar meson; the absence of such a particle
15 the U(1) problem. The issue is resolved once it is recognized that the instanton

effects just described violate the extra symmetry, but not the chiral SU(3).

A second application is to the electroweak theory. Because the baryon number
current has an anomalous divergence, the shifts in the fermion energy levels due to
SU(2) x U(1) instantons will lead to nonconservation of baryon number. However,
the amplitude for tunneling is proportional to e~ Sinrtenton ~ e~ 2™ /@uear Since the
exponent is of the order of 200, the probability of this ever actually happening
would appear to be negligible. (There is no enhancement from the integration over

the instanton size, because this is fixed by the Higgs field.)

Recently, Ringwald (107) and Espinosa (108) have argued that in high energy
scattering it may be possible to overcome this exponential suppression. The essen-
tial idea is that the tunneling induces an effective Lagrangian for baryon number
violation which has interaction terms involving the product of the light fermion
fields and arbitrary powers of the Higgs and gauge boson fields. These interactions
are pointlike and thus lead to amplitudes for processes with many bosons in the
final state which grow like powers of the energy. Moreover, if one calculates an
inclusive quark-quark scattering cross-section, the sum over the number of final
states bosons brings this energy-dependence into the exponent (109). This calcu-
lation suggests that baryon number violation becomes large at energies of the order

of mw [apeak, and thus could be observable at the SSC. However, corrections to
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this result must be significant, since otherwise extrapolation to still higher energy
would lead to violation of unitarity. At present the magnitude of these corrections

remains unclear. For a recent review of the situation, see Ref. 110.
4.4 Thermal Fluctuations and Sphalerons

At finite temperature quantum tunneling through a potential energy barrier
must compete with barrier crossing by means of thermal fluctuations. When the
temperature is small compared to the height of the barrier, this proceeds primarily
via paths which traverse the barrier near its lowest point. Associated with these
paths is a Boltzmann factor e Eor/T where E, p. is the energy of the saddle point
configuration which lies at the high point on the lowest path across the barrer.
Although other paths become important as the temperature approaches and then
exceeds E, , , knowledge of the saddle point is still the first step in the analysis of

the problem.

For the decay of a metastable false vacuum, the saddle point configuration 1s
one with a true vacuum bubble of critical size embedded within a false vacuum
background. The radius of this critical bubble is such that the outward pressure
from the true vacuum interior is just balanced by the inward push of the surface
tension. It corresponds to the maximum of the curve of E(R) in Fig. 2. (Actually,
at high temperature one should use the free energy, rather than the energy, for

determining the critical radius; qualitatively the picture is unchanged.)

Thermal fluctuations can also cross the barriers separating the degenerate clas-
sical vacua of Yang-Mills theory. For the case of an unbroken gauge symmetry the
analysis of the problem is complicated by the fact that the scale invariance of
the classical theory implies that there is no saddle point. Instead, the barrier
height decreases monotonically as one goes along a direction in configuration space
corresponding to field configurations of increasing spatial extent. (Roughly speak-
ing, these correspond to cross-sections through instantons of increasing scale size. )
While this would tend to favor fluctuations with larger spatial extent, the temper-

ature provides an infrared cutoff and thus suppresses the largest configurations.
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Matters are simpler for the case of a spontanously broken symmetry, where the
Higgs field breaks the scale invariance. A saddle point now exists, and is known
as the sphaleron. It is a solution of the static field equations but, because it is a
saddle point, is unstable. In an SU(2) theory with the symmetry broken by an
isodoublet Higgs field ¢ with vacuum expectation value v, the sphaleron solution
has the form (111,112)

a h-f'f'
Ai:'eﬂt'er E")

(47)

¢ = —% h(r)# o7 o (48)
where the functions f and A vary from 0 to 1 as r ranges from 0 to oo and Yo
is a constant isospinor. (This solution was studied previously (113-115) in a
different context.) The extension to the full SU(2) x U(1) electroweak theory
can be obtained (116) by expanding about sin? fy = 0. The sphaleron energy
is then found to be a few times mw /ayeqr; i.e., of the order of 10 TeV. (To
actually use the sphaleron to calculate high temperature barrier crossing, one must
take into account the existence of a symmetry restoring phase transition and the

thermal variation of the gauge boson mass. These and other effects are discussed

in Ref. 117.)

Now recall from the previous section that in the electroweak model the vacuum
tunneling described by the instanton leads to baryon number nonconservation. A
similar violation of baryon number conservation occurs when thermal fluctuations
carry the system over the potential energy barrier (118) and may have important
consequences for the generation of the baryon asymmetry in the early universe.

For a further discussion of these, see Ref. 119.
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FIGURE CAPTIONS

1) A field profile describing a true vacuum bubble of radius R in a false vacuum

background.

2) The energy, as a function of the bubble radius, of the bubble depicted in
Fig. 1.
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