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Theoretical foundation of density functional theory in terms of field theoretical Legendre trans-
formation is presented. The ground state energy is first written as a functional of local probe
coupled to the density operator. The density functional is then defined by the functional Legendre
transformation, which leads to a systematic formulation of density functional theory. Excitation
spectrum is also determined within the same formalism in a unified way. The diagrammatic
evaluation is most conveniently done by using auxiliary field method. Several generalizations of the
formalism and extension to the case other than the density operator are also discussed.

§1. Introduction

The density functional theory is now one of the most commonly used methods in
discussing various many particle systems.” In this formalism the energy of the
system is written as a functional of the density which is a function of single variable
x instead of N coordinates x1~xyx of N particles. In spite of the usefulness, its
theoretical formulation is rather involved and sometimes difficult to achieve a system-
atic approximation scheme.

The purpose of this paper is to present a clear formulation of the density func-
tional theory in terms of full use of the Legendre transformation applied to the
quantum system, especially to the system described by the second quantized field
theory.? It presents a theoretical basis of the density functional formalism which is
both exact and systematic. These can be achieved by a straightforward application
of our technique called on-shell expansion.

The discussion is organized as follows:

1. Ground state

2. Excited states

3. Generalization to the case other than the density operator

4. Finite temperature case (equilibrium and non-equilibrium), etc.

They are all formulated in terms of the field theoretical Legendre transformation in
a unified way. We have in mind, in the following, atomic system with N electrons but
the arguments can be applied to any many particle system with minor modifications.
The essential feature of the formulation of the density functional theory in terms of
Legendre transformation is the following. In the usual approach the ground state
wave function ¥ is used to connect the potential v and the density 7;

v=>T->n.
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The problem is then to find the inverse #—v of the product of the above two
mappings. Legendre transformation is, however, the process of the inversion of the
direct mapping

v n

without recourse to ¥. This is done by a diagrammatic consideration and the
mapping #— v is given by the graphical rule. The information contained in ¥ can be
extracted by introducing the probe into the theory and after Legendre transformation
from v to # we can simply differentiate by the probe to get the ground state expecta-
tion value of the desired operater as a functional of #.

In this paper the general formalism is presented and we do not attempt at any
numerical evaluation which is postponed to the forthcoming paper but we believe that
the present scheme helps us to perform a systematic approximation to get actual
numerical values.

In §2, after defining Legendre transformation in quantum mechanical system,
functional Legendre transformation between local probe and density is introduced for’
atomic system described by the second quantized field theory. Section 3 is devoted to
the discussion on the relation of our approach to the Hohenberg-Kohn theorem.?
One of the advantages of the present formalism is that the excitation spectrum can be
handled in a transparent way by the method of Legendre transformation, which is the
subject of §4. The crucial point is how to calculate the density functional in our
approach. It is performed in the form of expansion in the electron repulsion, using
the diagrammatic solution of the Legendre transformation. The density functional is
then evaluated in two ways; auxiliary field method or Stratonovich-Hubbard transfor-
mation” §5 and inversion method® §7. For the diagrammatic evaluation, the use of
auxiliary field is most convenient. In §5 we introduce the auxiliary field operator
(x) for the density ¢ '(x)¢(z) and explain how to use &(x) in the actual calculation.
Section 6 deals with the generalization of our method, which is achieved by coupling
local probe not only to the density operator but to any other operators. We thus get
an equation determining the ionization (or affinity) energy, or get the Schridinger
equation itself. In §7 we present a generalization of Legendre transformation called
inversion method® which is also powerful in diagrammatic study of the density
functional. It is formulated by extracting the most essential part of the Legendre
transformation; the inversion of the relation which expresses the density as a func-
tional of probe. We thus get a probe as a functional of the density. After extending
in §8 our formalism to the case of finite temperature, both equilibrium and non-
equilibrium, we discuss in the final section the local density approximation scheme in
our terminology.

§2. Density functional by functional Legendre trapsformation

2.1. Legendre transformation in quantum wmechanics

Let us first explain the definition of the Legendre transformation® which is used
throughout our discussion below. The Hamiltonian of the system is denoted by H,
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with hat indicating that it is an operator. Suppose that we are interested in the
expectation value of some operator O, the density in the present case. As a probe we
insert the external c-number source J coupled to O and change the Hamiltonian Hto-
H;,=H—JO. Now calculate the ground state energy — W(J) as a function of J and
make a Legendre transformation from W(J) to E($),

—E@=w() -5, (2-1)
_ow

The key point of the Legendre transformation is the inversion process in (2-2)
where it is solved in favor of J to get J=7(¢) which is inserted into (2+1). Itis known
that E(¢) is the minimum energy of the system under the constraint that the expecta-
tion value of O is fixed to be ¢. Note here that ¢ defined in (2-2) is the expectation
value <OY; of O in the ground state |0>; of H;. In the following we take the case
where the ground state is non-degenerate. If |[0>; is degenerate, it is assumed that a
weak external field, the magnetic field for example, is present to lift the degeneracy.
In the end of calculation such a field is reduced to zero. Such an external field has to
be chosen depending on the difference of the symmetry of the degenerate states.. Now
the solution to the whole minimization problem without any constraint is given by
looking for the minimum of E(¢) as a function of ¢. But we have an identity of the
Legendre transformation :

OE($) _ _

Therefore to extrematize E(¢) is equivalent to make the external probe J vanish, thus
getting back to the original theory. If we assume that E(¢) is minimized by ¢=¢®
then E($©) is the true ground state energy.

(2:3)

2.2. Atomic system with N electrons

Let us take an atomic system whose Hamiltonian is given by using the second
quantized electron field ¢(x) as follows:

=[5,/ @) —Lm (@) 1) 5uo)

2m
+ o [ [ 35 @) 80 g P ) o) @)
ﬁ1=ﬁ—fdfxf(x, ) ¢a" () §ul), (2-5)
o) =F4r @

Here p is the chemical potential and v(x) the potential by the nucleus with atomic
‘number Z and the sum over the repeated spin indexes a, 8 is implied. We have added
the time dependent source term J(x, ¢) coupled to density operator in order to discuss
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later the excitation levels. Note that the probe is inserted locally at every point x
therefore the Legendre transformation becomes a functional one. '

It is only for convenience that we have introduced both x« and J(x, ). The total
number is either obtained by differentiating by ¢ or by functionally differentiating
through J(x, ) which is then integrated over whole space, see (2+11) below.

More detailed Hamiltonian with relativistic corrections such as L-S coupling can
be treated in a similar way therefore we restrict ourselves to the form (2-4) in the
following. v

For the field theoretical case W[/J] is most conveniently evaluated through the
time evolution kernel K. Consider the case where J is time independent then the
kernel defined in the time interval #r—#= 7T is given by

K=<0lexp(—iH; T)|0>,=<exp(—iH;T)>;=exp(GW[J]]) . (2-7)

We assume in the following that the ground state |0>; is not degenerate.

Taking the limit #,— —o0, #+— -+, we get the path integral formula which is
particularly suited for the diagrammatical expansion. As stated in §2.1, non-
degeneracy of ground state is assumed here. Below we give the general expression
which holds even when the source J is time dependent. In case the source J is time
dependent, K is defined by the time ordered form;

K=]<T¢Xp<—i i :dtH,>>]
- /[d¢*d¢]exp<z' f :dz‘LJ)Eexp(z'W[]]), ‘ (2-8)

where L; is the Lagrangian derived from H; and [[d¢'d¢] implies of course the
Grassmannian functional path integral. As is well-known we have to sum over
paths in functional space with the weight expi(action). Explicit form of L; is shown
below for ease of reference;

Lt 01 [ - o
— S @ [ @5 IR b hel) (2-9)

L=L+ [da] ()¢ (@)alz), (2-10)

where ¢ =d¢/dt and the notation x=(x,t) is also introduced; J(z)=J(x, t) for
example. Note that in (2-9), y stands for y=(y, #). Strictly speaking, the ground
state |0>; in the presence of time dependent source J is not definable but we always set
J to be zero after taking the (functional) derivative with respect to J. Therefore the
notation |0>; does not cause any ambiguities. Or we can alternatively assume that J
vanishes sufficiently fast and smoothly as #— *oo, '

W1J] as defined above is a functional of J(xz). Let us make functional Legendre
transformation by introducing the expectation value of the density #(x) and introduce
the action functional I'[#],
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n(x)= %I}V(%] =<{¢a"(2)Pelx)>s . » (2-11)

Here the functional derivative is defined through

(x) _ caf.. : ]
Wﬁ) oMx—v), (2-12)

where the right-hand side represents the four dimensional Dirac é-function. Now the
functional I'[#] called effective action is defined as

Ilnl=wii- fa*z 2y (2-13)
Here as in (2:2) J has to be written as a functional of # by solving (2-11). The
question whether E[#x] exists as the density functional is the question about the
possibility of inverting (2-11), which is discussed later in connection with the
Hohenberg-Kohn theorem.”

The density #n(x) is determined by the stationarity requirement

Al j@y=0. (2-14)

Since the ground state is stationary, we look for the time independent solution #7(x)
=n®(x) of (2-14) which represents the density of the ground state in the absence of
the source J,

7 x)=<0|go"(x) olx)|0> , . (2-15)

where |0>=0> 0.

The energy E[#] as a density functional is obtained by assuming that 7(x) is a
function of the space variables  only. In this case I'[#] acquires a factor corre-
sponding to the whole time interval {r—#=/Z-dt with the coefficient El#=];

,F[n]=—E[n]x/_:dt . (2-16)

The above static solution #®(x) can also be found by solving

| 2% =0 | ; (2:17)

If a time dependent external field is actually present, the solution #(x) to (2-14) is also
time dependent which describes time dependence of the density in such a situation. In
this case our I'[#] is the time dependent density functional defined in a different way
from Ref. 6), see also Ref. 1).

2 3. Kinetic energy as a functional of »n

It is an important subject to have a rigorous expression for the kinetic energy
T[#] written in terms of #». This can be done quite easily in the present formalism.
As stated in the Introduction, we first insert a c-number field j(x) to probe (locally)
the kinetic energy operator;
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Hp=Fy— [2i(2) 5" @) —L) (=),

Here H; is given by (2:5). Now we make Legendre transform from J to # as in (2-13)
regarding j as a fixed parameter and get I'[z, /]. Then T[#] is given by

Tlnla)=<§" (@) 5, ) Fap=28lndl

The diagrammatical rule for 7'[#] is also obtainable in a straightforward manner.

2.4. Spin density functional

All the above discussion is applicable to the spin density functional I'[#] or
E[Je] (@a=1, 1). We have only to introduce two independent sources ] (x) and

J.(x) in Hy of (2+5);
H=A- [&z 3 Jda)d."(2) §ula).
Then W[J.] is defined as in (2-8) and I'[#.] by

" SW[J.]
I'ne=W[J.]— /d.r 2 ]ﬂ(x) Ta(z)

_ oW/l
n(2)="5702) -

The spin density is determined by solving

6F[%a]
Sns(x)

=0. (B=1,1) (2-18)

§3. Hohenberg-Kohn theorem

The relation of our approach to the Hohenberg-Kohn theorem® is pointed out
here. We discuss two theorems below which are the fundamental starting points of
their approach.

3.1. Existence theovem

The theorem states that the density functional E[#] exists. As has been pointed
out the validity of this theorem is converted, in our case, to the invertibility of the
defining equation of #(x) as a functional of J(x). If this is possible the Legendre
transformation from WI[J] to I'[#] can be done and hence E[#] exists. In the
quantized field theory the above inversion process has been extensively studied in
diagrammatical terms. For the case of density variable the introduction of the
auxiliary field corresponding to the density operator by Stratonovich-Hubbard trans-
formation® is particularly convenient. Then as a result of the Legendre transforma-
tion the concept of one particle irreducible (1PI) vacuum diagrams naturally appears.
Note here that the diagrammatical expansion in our case is the expansion in powers
of the electron repulsion. These are explained in §5 below. The density functional
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E[#] therefore exists in diagrammatical sense and the diagrams are characterized by
1P1.

3.2. Universality theorem

The second theorem states that E[#] can be written as a sum of two terms, E[#]
= E%[#]+ E'[#] where E°[#] is a universal functional independent of the nuclear
- potential v and E'[#] is given explicitly by '

E'n]= f B av(x)n(x) . | | (3+1)

The proof of this theorem is rather trivial in our formalism since it is a well-known
consequence of the Legendre transformation. We discuss the problem using the
Hamiltonian (2+4) and the definition (2-7). Recall here that W[/J] is a functional of
v+J therefore, writing [Zedi="T,

SWlv+J]

—E[n]TzW[v—F]]-/d%](.r) (&)

oJ (x) 87 (x)
(3-2)
However if we invert the relation
_ oWlp+]] .

v+J is given as a functional of # which is independent of v. Since the first and
second terms on the right-hand side of (3-2) is written by % only, the theorem is
proved;

E[n]=E[#]vmo— f Baxv(x)n(x) .

Recall here that the mapping between v(x) and n(x) itself is fixed after solving the
stationary equation,

8E[ ]v=0 .
——81;(/!.1-) =p(x).

Now the question of whether a given # corresponds to some v, v-representability, is
in the afirmative if E[#] exists at all; v is given by the expression on the left-hand side
of the above equation.

§4. Excitation Spectrum

One of the great advantages of the present formalism is that it provides a unified
way of studying the excitation spectrum as opposed to the usual density functional
theory. This is achieved by on-shell expansion scheme which is reproduced below
restricting ourselves to the density variable.



840 R. Fukuda, T. Kotani, Y. Suzuki and S. Yokojima

Let #”(x) be a solution to the stationarity equation (2+14) and assume that #®(x)
is independent of time since it corresponds to the ground state. In order to discuss the
excitation levels above the ground state thus determined, we look for another solution
of (2-14) in the vicinity of %#®(x) by writing

w(x)=n"x)+ dn(x) .

Then, up to the first order in dn(x), we get

0=

6%(.17) n=

() ool e e

Here (---)o implies the value of (---) evaluated at #=#®(x). Since the first term on the
right-hand side of (4+1) vanishes by the definition of #®, we arrive at the following
result which we call the mode determining equation or the on-shell condition in the
terminology of relativistic field theory;”

n®44n

f d*y(I'(z, y))odn(y)=0, (4-2)
ep . 8Tn)
T2, )= 5560057 -

Regarding x and v as indices specifying rows and columns, Eq. (4-2) has the form of
zero eigenvalue equation of the matrix of the second derivative of I'. As an equation
of the excitation energy w, it is a non-linear eigenvalue equation which is seen as
follows. The second derivative of I', if it is evaluated at the static solution #®, is a-
function of difference ¢ — ¢’ of the time coordinate of x and y, therefore Eq. (4-2) takes
the form

/ Bydt’ Tz, y, t— ) dnly, t')=0. (4-3)
In Fourlier space it becomes
[@ro(z, y, —0)dn(y, 0)=0. (4-4)

In this form it is easy to see that a non-trivial solution to 4» exists only for such
values of w for which the matrix I'®(x, y, ®) has the zero eigenvalue. Let one of
such w be w;, assuming that it lies in the discrete spectrum, then Eq. (4-4) determines
both eigenvalue @ and the wave function 4#(y, w) corresponding to that mode. It is
easy to see” that w; is the excitation energy *|E:— Eo| of the i-th excited state |7>
where E; or Ey is the energy eigenvalue of the state |7> or |0) respectively and 4# is
given by

Gl da'(x) da(X)|0> if wi=E:i—E,,

An(x’ wi)z{(OIgZaT(x) gza(x)lb if a)i:_(Ei“EO)- (4.5)
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Another way of deriving (4-2) is glven as follows. We first note the following
identity of the Legendre transformation,

8*I'[n] Wi/l . )
f d'y 6%(96)82(3)) NIODION —64z—2). ' o 6)

We see that, by looking for the zero of the second derivative of I', we are at the same
time searching for the pole of the second derivative of W, which is the connected part
of the causal correlation function of the densities;

S*WlJl _ N .
m—@lwa () §olx) " (v) Ps(0)I0> . (4-7)

Let us rewrite (4-6) in Fourier representation in the time difference 7. — ¢, after setti_ng

J=0;
/a’3yF‘2)(x, y, —0) Wy, z, 0)=—0(x—2z). (4-8)

. Now, by inserting the complete set |/> as usual, W® has the representation

2 _ o 2 @)ni2) | n*(2)ny) .
Wy, ZJU)_Z?( w+w;tie + w—w;+ie )’ (4-9)

1) =<l da" (3, 0) dulw, 00> .

Here * denotes the complex conjugation and e is the positive infinitesimal quantity.
Selecting particular w; we multiply @— w; on both side of (4:8) and take the limit @
- w;. Then using (4:9) we get

/d’*‘yf‘lz’(x, y, —w)n{y)=0. (4-10)

Here we have assumed that the level w: is not degenerate or if it is degenerate each
state can be characterized by different symmetry. If we multiply @+ w: and take the
limit @~ — w;, the results (4-4), (4-5) together with the identification 4#n(y, w:)=n:(y)
or n:*(y) are obtained. (Here Heisenberg and Schridinger representations are
assumed to coincide at #=0.)

Note that in order to study the excitation levels the time dependent probe is
required. In this sense the energy functional E[#], which is obtained by a static
probe, does not contain any information of the excitation; we have to use the effective
action I'[#]. Since our formalism enables us to determine both the ground state, by
(2-14), and the excited state, by (4-2), in a systematic way, both of them can be studied
by the same approximation scheme because once the starting I'[#] is fixed every
calculation goes through according to the above guideline. '

It is straightforward to generalize above arguments to the spin density functional.
After solving (2-18), the excitation spectrum with the spin content specified is given
by solving the following 2X2 (in spin space) coupled zero eigenvalue equation;

3 faty <§nixy§18;4f(}])>dm(y) 0. 1)
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We have discussed in (4-1) up to the term which is linear in 4». Higher order
terms are known to correspond to the scattering matrix elements among the modes
determined by (4-2).¥ We are not going into details of these higher terms here.

§5. The method of the auxiliary field

The most important ingredient in Legendre transformation is the inversion
process to get v as a functional of #. Usually this is done in a graphical terminology
but the operator # is a local composite operator and the diagrammatical rule for such
an operator is hard to obtain. It is only recently that the corresponding rule is
established starting from the inversion method.”? We will briefly discuss inversion
method in §7 but here another way of performing Legendre transformation is ex-
plained. v

Legendre transformation for the density variable can most conveniently be done
by introducing the auxiliary operator field 6(x) for the density #(x). The auxiliary
field method, known as the Stratonovich-Hubbard transformation® enables us to treat
the density operator as if it is an elementary (not composite) field variable. This is
done as follows. Consider the Lagrangian (2+9) and multiply the following identity
to (2-8):

f[da]expz— Jat [24516(@) = 4" @) U = D) o()— 45" (1) 4(5)]
f[da]expz— f d'x f d*yo(x) Us(x —v)o()

’

(5-1)

.where

d*x= [d’xdt
Ja=]

and
Uz —9)=7rd(t— 1)
lx—
Then Eq. (2-8) becomes, apAart from irrelevant constant factor,

expiW[J]= f[d¢d¢f]exp( if :”dsz,) x1
- /[d¢d¢*do]expz‘{ faiL,
+%2 f d'zd*ylo(x) — o' (x) po(2)] Uo(z — ) 0(v) — ¢ﬂ*(y)¢,e(y)]}

X [Det{ f% Uo(x —y)}]w

fiaay* dolexpi, - (62
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where Det F(x—v) with some function F implies the functional determinant which is
taken by regarding x and y as the indices of rows and columns. The functional / has
the expression

1= Jaefo @] e, Tty (@) [9ul2) — 0" (@) @y U= 3)0(3)dul2)

£ 0(2) [d*yUda—3)o()+] @)’ (2)ul2) |+ Tr In{ — 200} (5-3)

Here Tr implies the functional trace operation. The Euler-Lagrange equation in the
operator form can be obtained by requiring that I is stationary as an operator in
functional sense;

0=5oL 5= [aty Uz =) ()~ 8" o).
Therefore .
G(x)=da"(x)dolx).

The system described by the action I in (5:3) is physically equivalent to the one
described by the original action fL,dt.

Now we set /=0 in (5-3) and the term Jo is newly introduced later in order to
probe the density. Recall that the expression (5:3) is bilinear in ¢ and ¢ and it has
the form that the nuclear potential v(x) is modified to

o) [dyUn(z—)o(5), (5-4)

which is the shielded nuclear potential due to Coulomb repulsion in the presence
electron charge density o(y). Integrating by ¢, ¢', we get

expiW= f[a’d]exp i {%Tr ln[Do(x —y)— / d*ze?Ul(x—2)0(2)0%(x— y)}
" /d“xd“yd(x)%zUo(x—y)d(y)+%Triln[—’i%2Uo(x*y)]}

Eﬂdd]expi/d4xl[d], ' ~ (5°5)

where

Df(x—y)= [zat

}54@ y). (5-6)

Recall here that we have not explicitly introduced the magnetic field so that the factor
2 comes into (5-5) from the functional integration over ¢:,. and ¢1... Such a
restriction can easily be removed however. Now the functional I[¢] is the action
functional of ¢ variable. As stated above, we introduce here the source J(x) coupled
to o(x) and make Legendre transformation from W[/J] to I'[oc];
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exp(iWLIN)= [[dolexpilllo] +] -0},

Jo= [d*z](@)o(z), (5-7)
Mod=W1-J o,
oc(x)= %%%] =<5 . (5-8)

‘Here o, represents the expectation value of & in the presence of the source J and it
plays the role of #n(x) given in (2:11). Once W/[J] is written in the form of (5°5), the
rule of the diagrammatical expansion of I'[oc] is obtained by applying the well-known
rule of the Legendre transformation of the elementary field. It is the expansion in
powers of the size of fluctuation of the density. For this purpose, we first write ¢ as
0.+ o', where o’ represents the fluctuating part of the density operator, and expand
I[o] functionally in powers of ¢

Ilol=1[6.+ "]
Zl[o‘c]-l-f'[dc]'G'+?1Y—I”[O‘c]'G"G'+%I'”[Gc]'O‘"O"'O"-*—"' , (5-9)

where we have used the notation, for example,

I"[oc]- 0"+ 0 —ff( 60(69380(31) )d 0 (@)o()dzd’y

In (5-9), we have to throw away the second term, because it is known to be cancelled
in the process of Legendre transformation. The propagator of ¢’ field is symbolically
given by I”[oc]”". It is the functional inverse of the matrix I”[0dcley
=(6%I[0]/86(x)00(y))s=s.. The remaining terms are the interaction vertices of field
¢’. They are given by E

I[dc-l-a’]—I[oc]—I’[dc]-o’—% MPAR AT | : (5-10)

Upshot of these manipulations is?*'”

I'locJ=1 [Gc]'*‘“zZ:“TI' InI"[ 6]+ (1PI vacuum graphs) . : (5-11)

The first term represents tree diagrams. The second one is the sum of the contribu-
‘tions of one-loop diagrams and it is given by the functional trace of InI”[d.]. In
(5-11), 1PI vacuum graphs imply the one particle irreducible connected vacuum
diagrams of the ¢’ field. They are defined as the sum of vacuum graphs which are not
separated into disconnected two pieces if one of ¢’-propagators is cut. The construc-
tion rule of 1PI vacuum graphs is now obvious; sum up all the 1PI vacuum diagrams
of ¢’ field with the propagator I”[o.]™! and vertex given by (5:10). They are neces-
sarily diagrams with more than two loops. If the source J is time independent (J(x)
=J(x)), o:{x) is also time independent. Then I'[o.] has the form,
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F[oc]z—/th[dc] ,

and E[oc] is the energy as a density functional by the method of auxiliary field. In
order to see the diagrammatic structure of I'[oc], we write down explicitly the
expansion (5-9) by writing 6=0.+0" in (5:5),

I[o] Z%[Tr InD(x—y)

°°( l)e

71=1

f A4 X, d* X d* X, Tr{De Do Do Dy
X De ™ Dyt 0" (X1) 0'(Xz)- - G,(Xn):l
+ f d‘*xd“y%z Us(z—v)(0:(x)oc(y)+20:(x)o’(3)+ o (x)o’ () .

- 2 N
+%Tr ln{—%Uo(x—y)}, |
Where Tr in the second term on the right-hand side is taken with the matrix elements,
(Dx)zy=Dx(z, y)=—08"(x—3y) U(y—X),
(Dio)es=Diclzy)=— [d*2¢' Uz —2)ou(2)8(z =)

Dc=D0+ch .

In what follows we write D.™* and e?U, graphically as shown in Fig. 1. With this
I[o), I'[oc] is represented as '

2 * 2
I'oc] Z%Tr InD. +%fd4xa’4ydc(x) Uz —v)o(y) +%Tr ln{ —% Uz — y)} ‘
—%Trln{ +2@4/d4xd4yDc'l(x, Uy~ X1)De ™y, ) U(x — Xz)

. 2
- UO(XI—XZ)}

+18 L ([- 520 [y d Xud ey d' 2

=

X Dc—l(l'm, xl) Uo(l‘l _)G)"'Dc_l(xm—l, .Z'm) Uo(xm *Xm)

X G,(Xi). h G,(Xm)] >conn 1P ’ (5 ) 12)
where the Tr operation in the third line on the right-hand side is taken in X-space, i.e.,
in Xi and Xz. The notation < **>conn.1p1 implies the connected 1PI diagrams of the
o’-field. The first three terms of (5-12) correspond to tree diagrams in the auxiliary
field method and they include the Thomas-Fermi term and Hartree term as explained
later. The fourth term is the sum of the contributions of one-loop diagrams and the
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=D [___Q‘__;____]*E _———-

Fig. 2. Diagrammatic representation of the propa-
_____________ =e?Uo gator of ¢’ field. It is denoted by thick broken
line.

Fig. 1. Definitions in the diagram. The electron
propagator D' is denoted by a solid line. =~ = 0@ ——~g -—______
The Coulomb potential e®Us between electrons
is represented by a dashed line.

1
o' 6

Fig. 3. Some examples of the vertex of ¢’. The
left figure represents three point vertex which

is created by third derivative of 7. The right Fig. 4. Some examples of 1PI vacuum graphs
figure is four point vertex, created by fourth contributing to ' gc].
derivative.

other terms, after a straightforward application of the contraction theorem to ¢’ field,
produce 1PI vacuum diagrams which have more than two-loops. The propagator
A(Xi, Xz) of these diagrams is

[2e4fd4xd4yDc‘l(x, y) Uo(y - Xx)Dc_l(y, l‘) Uo(l' —Xz) —ie? Uo(X1 - Xz):]_l .
' (5-13)

This again has the physical meaning that the Coulomb interaction U, between
electrons is shielded by the other electrons. Therefore, remembering (5-4), both the
shielding of the nuclear potential and that of Coulomb repulsion of electrons are
automatically taken into account in our expansion scheme. The propagator
A(X, Xz) is represented diagrammatically in Fig. 2. The lowest two interaction
vertices among ¢’ are shown in Fig. 3 and some examples of 1PI vacuum diagrams are
also given in Fig. 4. ,

Let us illustrate some lower order contributions to I'loc] regarding I' as a
function(al) of ¢. and e®.. For instance, up to the order &% we get from (5-12)

2
I'[oc] ’E—ZZ.—[Tr InDo+Tr(Do ' D1c)] +% f d*zd*yox) Uz —v)oe(y)
. 3 ;)2
+2Lz'Tr ln{ —% Uo(X1— Xz)} —Tzl—z.—Tr 1n{ —% Us(X1— Xz)

26 [d2d*yDi(z, y) Uy — XD, ) Ue — X))
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If we solve the stationary equation

ol ,_ .
0= 50‘c(x) (—_f(x)) ) (5 14)

the solution is given by, for small &
oc{x)=—2iDy Hzx, x)+ O(?).

So we get, at the solution,

’ 2
Io=—2iTr lnDo——e-Z—/d4xd4yac(x) Ulx—v)oy)
+ 11y 1n{——i-eiU (X —X)}—iTr 1n{—ﬁz—U (Xi— )
T 5 UlXi—Xe) ;=5 5 UlXi— X

+ Ze4fd4xd4yDo‘l(x, V) Uo(y— X)) Doy, ) Us(x —Xz)]’ .

If we make local approximation, it can be shown by an explicit calculation that the
first term reduces to Thomas-Fermi energy, and the second term is the Hartree term.
The remaining Tr In term can be expanded in power series of ¢” starting from the
term of €% The lowest term is the Fock term. _

In case of the electron gas in a uniform positive charge background, Us(g=0) is
cancelled by the background, therefore the relation Us(g=0)=0 can be used. In the
local density approximation (LDA), we set o.(x) to be a constant (o.(x)=0c) but if
this is done Dic=0 so that I'[o.] is independent of oc: we cannot make LDA in the
presence of uniform background. The reason why the auxiliary field method does
not work for LDA in this case is that the total number variable f¢'(x)¢(x)d*x has
no interaction in (2-4) because of the condition Us(g=0)=0. By the same reason the
auxiliary field can be introduced only for the sum of the spin density 2la—1,:
¢ (x)da(x) not for each spin density variable ¢1(x)¢+(x) or ¢1(x)¢.(x). Insucha
case, however, we can utilize the dependence of I' on the chemical potential x to get
the energy as a function of the average electron number #. Explicitly I" is written
as, assuming v=0, I'=—/d*xe(ux) where e(u) is the energy density which has the
property that

T AL OV (5:15)

where V is the volume of the system. If the energy density is required to be
expressed by #, we solve (5:15), writing ¢ as a function of # and we make Legendre
transformation once more to get &(7#)=&(x)+u7. However in most cases it is
convenient to keep ¢ as an independent variable and, without performing explicit
Legendre transformation, to consider the defining relation N/V=—(9¢/dx) as a func-
tion of x. It is clear that the diagram expansion for e(z) in the presence of uniform
positive charge background is obtained by setting o.=0in (5-12). For example, if we
assume oc.=constant, then Di.=0 because Us(g=0)=0 which is equivalent to set o.=
0. By the replacement D— D,, the tree diagram brings us the usual Thomas-Fermi
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term and 1-loop diagram, i.e., Tt In term, equals the sum of the exchange term and ring
diagrams. They all agree with the known results, see for example Ref. 11). The
higher diagrams represent the term what is called the correlation energy. For
uniform density, details of calculations are found in many literatures.”

Relation between I'ln] and I'|o.]

Now we discuss the difference between I'[#] of (2:13) and I'[o.] of (5-8). The
conclusion is that, although both are different quantities, all the physical observable
informations derived from them are the same. Let us use the notation I[#]|=I[#],
I oc]=TI"[oc] in order to clarify that two functionals are different quantities. Their
relationship is easily seen if we start from Wi[J], where Wi[J]is W[J] of (2-8) and
Wi[J]is that of (5:7). The starting observation is that Wi[J] has another representa-
tion which is obtained by using

o)~ " (2)9(2)+ [d*2](2) Uv ™z~ ) (5-16)

instead of o(x)—¢7(x)¢(x) in the numerator of (5-1). With this replacement the
right-hand side of (5-1) is still unity. Then WA[J] becomes W[J] of (5-7) with the
extra term which is proportional to the square of the third term of (5-16). Thus we
arrive at the relation;

W= W1+ [/ U a=9)T ). (5-17)
Therefore n(x)=0Wi/8J(x) and o.(x)=06W:/8](x) are related through

n(x)=6c(x)+ezfd“yUo‘l(x—y)](y), (5-18)
and the relation between Ii[#] and I3[oc] is

nln=wl- faz 1)
— 1~ [a x5 @)~ [[atzatyr @) Ui a—)1()

Tod—< [[d*2d*y (@) U (z— )] (). (5:19)

In (5-19) J(x) has to be expressed by # or ¢.. As long as J=90, there is no difference
between two formalisms as is seen from (5:17), (5-18) and (5-19), namely WAi[0]
=Wel0], n=0c, IN[#n]=TI30:]. Recall here that we have always kept J=0; the station-
ary equation (2-14) or (2-17) is nothing but the requirement /=0 and also the
excitation is determined by the condition /=0, see (4+2). Therefore all the results
coming from our equations are the same for both schemes. This is because, stated in
more general terms, removing the artificial probe by setting /=0, the original theory
is recovered and we are just determining the eigenstates of the true Hamiltonian of
the system—the ground state by (2-17) and the excited states by (4:2). These are the -
concepts which are independent how one probes the system.
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The universality in terms of I'loc]

The universality theorem of Hohenberg-Kohn in the language of I'[o.] goes as
follows. Let us change the numerator of (5-1) from o(x)— ¢ (x)¢(x) to

o(z)~ ¢ (D) )(2)+35 [d* v () U (y—2) (5-20)
which states that the operator &(xz) is not given by ¢ '(z)¢(x) but by
51(2) @)~ [d ) U (y—2)

Then, after adding /-¢ and making Legendre transformation it is easy to see the
relation '

Ilod=nlol+ [d'a(2)oz)+L [[@ad'w@ U@ =)o), (-2

where I3[ oc] is I'[oc] evaluated by setting v=0— a universal functional of ¢, indepen-
dent of v. We have only to solve

%%= —v(x) (5-22)

and, from (5:20), the density is known to be given by
n(@) =<4 (2)p(@P= o) +-1r [d*w() Uiy —2),
where 0.%(x) is a solution to (5-22).
§ 6. Generalization

In our formalism, the operator O which is probed by introducing the source term
JO into the Hamiltonian is completely arbitrary. Therefore we can take not only
JdPx](x) §."(x) §o(x) as a probe of the density but also any other operator JO as long
as O does not change the electron number. Even if the operator O changes the
electron number, all the procedures presented above go through. For instance we
arrive at the equation of the type (4-4) with dx replaced by <:|0|0>. This is the
equation of the excitation spectrum determining the energy difference of the excited
states |7> and |0> which differ in electron number. Furthermore the operator O can
be non-local in the sense that it refers to two different space-time points. These
examples are given below. The following discussion is based on the general formal-
ism developed in Ref. 7).

6.1. Ionization (affinity) energy

As an example, let us consider an atom with N electrons and add two source
terms —fd*xn." (2, t) §o(x) and —fd®x o' (x)7.(x, 1) to the Hamiltonian with 74, 7'
being c-number Grassmann variables. These operators change the electron number
by unity. Let us consider
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Hypy=H— [@] (2,0 §. (x) Folx)
— [ ane (@, D Fu2) = [B2d (2)nal, 1) (6°1)
Then W[/,7,77] is defined as

exo(WIT,7,7"D= flag* ddlexo(i [diLsan), (6-2)
where L; 3,4+ is the Lagrangian derived from Hj,y,5;

Lymar=L+ [82](2)¢a (2)galz)+ fd3x7/a*(x)¢a(x)+ JEETNCTXE)

| (6:3)

Now we introduce the expectation values
n<x>=%=< 3o (@) Fol s, (6-4)
wa(x) 377 T(x) <¢a(x)>f,77,71' s WaT(,r) 577 (x) <¢’a (17)>1 7,91 . (6'5)

Since the probes 7., 7." (and also ¥,, ¥.") are the Grassmann variables, we have to
distinguish the left and right derivatives. The definitions of them are given for any
Grassmann variable & by

_ . 0F[£]_ 5 FlE]
Fle+og)-Flel=os LAt =0100 e (6-6)

Then the effective action defined in (2-13) is extended to the case of three variables;

Tln, @', W)= WIJ,7" 01~ [d*a]@na)= [dan’ @) 0dz)
— [a*2w. (@)naa) . (6+7)

Because the chemical potential # is kept fixed in the above Legendre transformation,
we have the relation, which relates y to the total electron number N,

_af_aW

== | F @D @D~ fdN . (as ] 0", 2-0) (6-8)

This condition determines z as a function of N and the vacuum state |0> becomes the
ground state of the system with N electrons; = u(N), |0>=|N>. There are now three
" stationary requirements

o)~/ ®)=0, | | (6-9)

(6-10)
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and we write the solutions as

()= n(z) =N G () Fol)IN, | (6-11)
Tz)=T(2)=<N| §o(2)IN>=0, T (x)=T,"O(x)=<N|d"(x)IN>=0.
(6-12)

As in §4, we look for other solutions to (6-9) and (6-10) in the vicinity of »(x),
T, 9z) and @.'O(z) by writing #(x)=#(x)+dn(x), Tulx)= TO(x)+A4T(2),
PN )= (x)+ 4T, ()" Taking into account the electron number conserva-
tion law, which states for instance that

(527 (a0,

we get three mode determining equations; one of them is identical to (4-2) and the
other two take the form,

/d4y< awﬁ(y) ( ai@)))f’wﬂ(ﬁ:o ’ - (6-13)
S sy (s aBw=0, (610

where (-++)o implies the value of (---) evaluated at the stationary solutions (6+11) and
(6-12).

Now let us investigate the meaning of these wave equations. Using simple
extension of the identity of the Legendre transformation (4:6), Eqs (4:2), (6+13), and
(6-14) can be seen to be the equations determining the poles of the Green’s functions
KNIT 7(x) ZIN o, ok NIT alx) 2 ()INDo and oK NIT §o' () §a(¥)|No respectively.
Inserting the complete set between 7(x) and 7(v) of oK N|T 72 (x) ()| N o, we see that
only the states with NV electrons contribute. So the eigenvalues of (4-2) are given as
the difference of the energy between arbitrary excited levels and the ground state both
with the same number N of the electrons. On the other hand, if we insert the
complete set between ¢o(x) and ¢s'(y) of oK N|T dul) §s1 (¥)|NDo, only the states with
N=1 (for t.2t) electrons contribute. So the eigenvalues of (6-13) are equal to the
differences between the energy of the excited levels |N £1> of the system with N1
electrons and the ground state energy of the system with N electrons. This is the
ionization or. the affinity energy. Equation (6:13) or (6-14) separately yields two
different sets of mode each of which belongs to the channel defined by different
electron number. However we can easily distinguish between the affinity energy and
the jonization energy, if we keep track of the sign of the time difference - — ¢y in (6-13)
in the course of calculation. Equation (6+14), of course, gives the same eigenvalues
as in (6-13), but there is a difference between 4%."(y) and 4¥.(v). By the arguments
leading to (4-10), the wave function 4%,"(y) can be written as™?®

AT ()=<N+1|¢."(»)IN> or o«N|g'(WIN-1>, (6-15)
while 4% (y) has the form
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AV(¥)=<N—1|d(»)|IN> or olN|g(»)|N+1>. (6-16)

In the following the explicit form of the mode determining equation is examined.
We have already discussed the case of density variable in §5 by auxiliary field method.
Here we take up Eq. (6-14). Let us consider, for simplicity, the case where we do not
perform Legendre transformation with regard to J or disregard the J dependence
altogether. The effective action in such a case is well-known;?"'?

rLw, w'= [dtew. (x)( +L+v(x)+ﬂ)wa(x)

Yor
e 4 4 - o
—7fd x/a’ YN (x) U (y) Ul — 3) Ta(v) Tl ) — 3™, (6-17)

~ where ¥ represents all the one-particle irreducible vacuum graphs. In the above
formula, we have included in #* the one-loop vacuum diagrams represented by Tr In.
So Eq. (6+14) becomes

Jas|(i+m Jota—s2tes=i{ gy st amo
—0. (6:19)

- This is the wave equation which determines the ionization or the affinity energy. In
Fig. 5, we write down the last term in (6-18) up to the second order in €. The first
or second term in Fig. 5 corresponds to Fock or Hartree term respectively.

" Loosely speaking, 4¥.(y) or 4%, (y) is the wave function of the electron which
is deleted or added. However such a picture does not hold in a strict sense, of course,
since all the electrons are identical quantum mechanically. Combining (4-2), (6-13)
and (6-14) and surveying all the atomic number Z, we can obtain in principle any of

5 E’K) i
S¥O\8¥E) ),

Fig. 5. Diagrams contributing to the last term of (6-18) up to ‘. Solid line here represents the
electron propagator; i(i(8/0t)+(?/2m)+ v{x)+ p(N))6*(x—¥)d. The potential between elec-
trons is denoted by broken line. The slashes indicate the amputation of the corresponding
propagator lines. ‘ '
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the levels of atomic system. Detailed study of (6+18) is an interesting subject which
will be given in a forthcoming paper.

6.2. Multiple ionization (affinity) energy and Schrodinger equation

The above arguments can be generalized by adding the following source term to
the Hamiltonian H (for notational clarity, the spin indices will be suppressed),

—/d3x1---fd3xk7f(x1, 22, -, 21) @ (201) P (202)- P (x2) +coC. s

where c.c. implies the complex conjugation and the notation z;=(x;, t)isused. The
c-number function 7 or 77 is completely antisymmetric in its arguments and it is a
Grassmann number if %k is odd. This term corresponds to the source term,

fd“xr--/d“xw*(xl, X2, ", xk)¢(x1)¢($z)"'¢(xk)+C.C. ,

which is to be added to L of (2+9). In this form, we are probing the operator
¢ (1) ¢ (22) - ¢ (xr) where ¢(x;) is the electron field operator in Heisenberg represen-
tation. Now W[z, 7] is defined as usual and I'[ ¥, ¥] is introduced as follows:

ret, ri=wis, n]—/d‘ixl---/d“xk{?f(.rl, v 20) Uy, -+, )

+ Tz, -, )72, o, 20}

oy S WIn'a]
w(xly ’ xk)_ 8771'(‘%.1, -, xk) ’
o\ O Wln' n]
gf (xl, 3 xk)» 377(.121, - xk) .

The ground state is characterized of course by ¥”= ¥"®»=0 and the excitation levels
are determined by

Jetn faol gy (G g ¥ On - 90=0 619

and its conjugate equation. The total energy w=>% w:;, where w; is the energy
Fourier component in the channel specified by x;, is determined as an eigenvalue of
(6-19). It is the ionization (affinity) energy where % electrons are removed from
(added to) the N-electrons atom (N comes in through the chemical potential ).
The Schrodinger equation itself for N-electrons system is derived in our formal-
ism as follows. Take 2=N in (6-19) and ¢=0. Then it can be shown'® that
Eq. (6-19) is nothing but the Schrédinger equation if we identify 4% (x1, 22, -+, Zn)
=AU (a1, t, X2, , -+, X, t) with the Schrodinger wave function ¥(x, -+, Zw, 1);

AW (2, t, 22, L, Xn, 1)=T (a1, X2, -+, X, 1)
=0/ ¢ (a1, £) § (2, 1)~ § (2w, )N .

In this sense the energy eigenvalue of N-electron system is viewed in our formalism
as the ionization energy required in the process of removing N-electrons from
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N-electron system.

6.3. Nowm-local density

As an electron number conserving operator, we can generalize the local density
operator 7(x)=¢'(x)¢(x) to “non-local density” operator 7#(x, »)=¢ (x)d ().
This operator can equally be used in place of 7(x) since 7(x, ¥) has the same
quantum number, i.e., zero-electron number as 7(x). Or we can generalize still
further to consider the operator 7(z,y)= ¢ '(x)¢(y) which is non-local in time also.
Here ¢(x)=¢(x, ¢) is the Heisenberg field operator of the electron at time #. In
order to get the effective action of #(x,y), we add the term Sd*zSfd*v](x, y)
¢ (2)¢(v) to (2-9) and WI[J] is defined as in (2-8). Then as an argument of the
effective action I'[#], we define

w(z, y)z%[fy])zw*(xw(y»f

and I'[#n] is given by
I'n]= W[]]—fd“xfd“y](x, wnzx, y).

The stationary solution #‘®(x, ¥) to the equation 8I/6%n(x, v)=0 is the propagator
function in this case; '

1Oz, y)=oNIT§ 1 (2)d()| N0

and the mode determining equation has the form,

faw [ d4y'( 5n<x,6y2§§[,f&g 3 >Odn(x’, ¥)=0, (6-20)

which determines the exnergy w=2>%,w: corresponding to the sum of energy of the
channel specified by x and y (or 2" and ¥"). The energy w thus determined is the Same
as is given by using the local density operator 7(x).

Although n(x, y) formalism looks more complicated than #(x) it has an advan-
tage that the Feynman rule of I" using #(x, v) is more transparent than #z(x). It is
known that I'[#] is given by the formula'®

I'ln]=TrDyx—y)n(xz, v)—Tr Inn(z, )+ £®[#n],

where Do(x—y) is given in (5+6), Tr implies the functional trace and £®[#] is the sum
of all 2PI (two particle irreducible) vacuum diagrams where the propagator is #(x,y)
and the vertices are dictated from the Lagrangian (2-9). Here 2PI means that the
diagram is not separated into two disconnected parts if two propagator lines (each
represented by #(zx, ¥)) are cut at the same time. Examples are shown in Fig. 6.
Equation (6:20) is the BS-type equation in relativistic field theory and various
techniques developed there will be useful in solving (6-20). Another advantage of
using #(x,y) is that, since the probe J(x, ¥) depends on z and y independently, we get
more information about the ground state and excited levels. For example, the i-th
level |7> corresponds to d#(zx, )= AN|T ¢ (x)#(y)|N>o therefore it contains the infor-
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© @ 1O
Fig. 6. Diagrams for I'[#] of non-local density. (a)~(d) are the examples of ZPI diagram. The solid
line represents the propagator #(x,y). (e) is one of the examples of the two particle reducible
graphs which is excluded.
mation about the dependence of the wave function on the relative co-ordinate of the
particle-hole pair. '

§ 7. Inversion method—Generalization of Legendre transformation

The central problem is of course how to calculate I'[#]. In case the auxiliary
field ¢ can be introduced, the diagrammatic rule of I'[#] has been discussed in $5.
Here we investigate the general situation without using 0. It includes the case where
the auxiliary field method does not work. Even for the case ¢ can be used, we can
make Legendre transformation without using 6. The merit of such a procedure is
that the variable introduced in this way has a direct relation to the observed physical
quantity. It turns out that the newly introduced method is a generalization of
Legendre transformation. This method has alredy been applied to many examples”
and the diagrammatic full order rule is now available for the local composite opera-
tors such as the density operator.”

As has been stressed, the essential ingredient of the Legendre transformation is
the inversion® of the relation between the artificially introduced probe J (we assume
here single J for simplicity) and the expectation value of the quantity we are inter-
ested in, which is usually the force variable X conjugate to J. It is straightforward
to calculate X as a function of J in a diagrammatic expansion and, solving (i.e.,
inverting) this relation X[J] in terms of J, we are led in some cases to a compact
diagrammatical rule for I'[X], i.e., 1PI or 9PI vacuum diagrams, for example.
However a simple diagrammatical rule is not always possible for all X.

The inversion method is applicable for any X including the case where X is not
the conjugate force of J or even the case where X 1is not necessarily the expectation
value of any operator. Suppose we have an expansion parameter g. In case of
diagrammatic expansion, for example, ¢ is the strength of Coulomb repulsion e’
Then the rule of the inversion method is summarized in three steps.

1. Calculate X as a power series of g, up to some finite order N;
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X=2 g1, | | | 7-1)

where f; is a calculable function of J in a diagrammatic series.

2. Invert (7-1) to get
M
fzngog”hn[X] . ‘ ©(7-2)

Recall here that %2;(0<j<N) is calculable as a functional of X by using f:(0<;<N)
appearing in (7-1). Therefore in (7-2) we take M=N.

3. Solve the equation /=0 which ensures that the artificial source is absent;
N
0= 9" X], 4 (7-3)

which is the equation determining X. The solution has been denoted by X in the
previous sections.

The important difference between (7-1) and (7-2) is that in (7-1) J is regarded as the
quantity of order ¢° i.e., unity, while X is order unity in (7-2). If X is to be used as
a variable of the theory, as in the case of density functional theory, the second choice
has to be adopted. Choosing X as a variable has the effect of summing up an infinite
number of terms of the original series (7-1) even if we cut off the inverted series (7-2)
at finite M. Because of this situation, the solution to (7:3) with M=N usually
produces better results than (7-1). '

In practical use of the inversion method the following inversion formulas are
used, which are obtained by the identity X =35_0g"fal Damog™hn[ X1;

hol X]=£7[X],
m[X]= Sl Rl X1]

filhal X1

ARl XTI+ AUkl X[ X+ U X TV’ X
folhl X1] ’

hz[X]: -

Here fo7'[X] is the inverse function of A[X]. Note that the inverse function is
required only for the lowest function A[X]. The generalization of the above for-
mulas to the case where we have several sources /. or the function J(z) as in the
density functional theory is straightforward. The following important observations
have to be noted here.

1) If we set /=0 in the original series, we are calculating X just perturbatively.
Therefore, in the case where X is the order parameter which breaks the symmetry of
the Hamiltonian in the limit /=0, we get only a trivial solution X =0 for all order of
g; filJ=0]=0 for any 7. On the other hand the non-trivial symmetry breaking
solution is found, if it is a solution at all, in (7-3) besides a trivial one. The reason
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why such a solution can be found in a perturbative series of (7-3) is that, as has been
pointed out already, by changing the variable from J to X through inversion an
infinite number of subdiagrams are summed up in (7-3). Indeed for any model the
lowest non-trivial equation of (7+3) agrees with the self-consistent mean-field approxima-
tion.

2)  Excitation spectrum is obtained by inversion method following the same proce-
dure as in §5. Let one of the solution to (7-3) be X@(x) recovering the space-time
argument x. We have to replace J— J(x), 2« X]> kalx, X] in (7-3). Then another
solution X9(z)+4X(x) is substituted into (7-3) which becomes for small 4X,
0| & n< Bhn[x,X]>} _
Ja y{ngog SX(y)  JofAX)=0.

This is the generalization of (4-2) determining the excitation energy w in the channel
xz or y.

3) As has been pointed out, X can be any quantity in the inversion method.
However if X is written as a derivative of certain functional W[J] as

SWiJ]
8/ (x) °

then the inverted relation J(x)=/Jlx, X] can also be represented by using a functional
I'[ X] through

X(x)= (7-4)

_orx]

where I'[X] is the Legendre transformation of W[J];

a7y L]
rx1=WiJl- [a‘ar@) 575

In this sense the inversion method is a generalization of Legendre transformation. If
(7-4) does not hold, I'[ X] cannot be obtained by our method but this does not cause
any trouble. We can determine the ground state solution X@ and excitation modes
and scattering among modes® thus determined. The only quantity that cannot be
calculated is the numerical value I'X®] which is related to the energy of ground
state. Note that the absolute value of the ground state energy is not a physical
quantity except for the case where we want to compare the energy of two ground
states (if they exist) in the case of field theoretical systems.

§ 8. TFinite temperature—Equilibrium and non-equilibrium

The system of finite temperature is studied in a similar way. We first discuss the
equilibrium case and then proceed to the non-equilibrium process where the initial
density matrix o is arbitrarily given. The form of p can be an equilibrium one but
we assume a time dependent Hamiltonian which brings the system into a non-
equilibrium state. The discussions are given in a brief manner since they are quite
straightforward. )
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Equilibrvium case

Let us define W[J] for the system of temperature T
exp(—BW[JD=Tr exp(—BH;),

where 8=1/kT and H, is given in (2-5) with J{x, ¢) replaced by J(x). Then the
expectation value of the density at temperature 7 is written as

_ 0WI[J] _ Tr{exp(—BH,)i(x)}
n(x)= oJ(x) ~  Trexp(—gH,)

The Legendre transforrnation of W[J] is usually called the free energy F[#];

Flnl=WIJ1- [aay @y 5HoL
The density #(x) is determined by the equation,

o _8F[n] _ .
All the previous discussion about auxiliary field method, inversion method, etc., can
be applied of course to the finite temperature case.

Nomn-equilibvium process

The time dependent phenomenon is discussed by introducing a time dependent
source J(x)=J(x,t). We assume here that the system is described at initial time #
={; by an arbitrary density matrix o including the case o=exp(—SH). The probe is
introduced starting from # assuming that J(x, t/)=0. The expectation value n(x)
=u(x, ¢) of the density at any time ¢#># is given by

Terj (f tI)n(.l‘)Uj(f tl)
Tro

n(x)=<a(x)>.= (8-2)

where Uj(#, #), is the time evolution operator in time ordered form,
iz o~
U](fz, t1)=TeXp(—z'/; dt'H;(t'))

with H;(¢') given in (2+5) and U;* is the Hermite conjugate of U;. Now we define the
generating functional corresponding to W[J]. In order to do this we need two kinds
of probe Ji(x) and Jx(x) and define W[/i, /2] as ‘

expiWJ, J1=Tr{oUfi(co, t) Uy,(o0, £)} .
Then n(x) can be obtained in two ways,

_OWI], Il __OWI, [
n(z)= i(x) n=r=r Ox)  ln=re=s’

Let us introduce I'[#%1, 2] by
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T, ml= W1 7= fata( 1yt ) S

where

nm) =~ S Ll iy, )

Then we have the identity

Th)=(—1y2Em el ()

from which two sets of equation of motion determining #.(x) is obtained;

BF[nl, na] _

However through the symmetry property of I' under #zi1<>#,, the solution always
satisfies 7:(x)=#n2(x)(corresponding to Ji{x)=/J:(x)) therefore (8-3) is equivalent to

8]—'[%1, nz]

Snix) m=nz=n:0 ’ . (8'4)

which is the equation of motion determining the physically observed #(x). In the
equilibrium limit, Eq. (8-4) is known'® to reduce to (8-1). However, for general
situation, Eq. (8:4) is not of variational form in a strict sense; in contrast to the zero
temperature case it does not take the form 8I'/6#(x)=0 with some functional I'[#] of
n(x). This is because of the non-conservative phenomenon such as dissipation which
is present in a general non-equilibrium processes.

The excitation spectrum is studied by inserting #(x)=#"(z)+dn(x) to (8-4)
where #n®(x) is one of the solutions to (8-4). We get in this case

/a"‘y( Bhy+ IP2s)edn(y)=0, : (8+5)
where

e = I’ my, ns)

== Snx)ony)

It turns out that'® 121, + 1%,y is the inverse of the retarded thermal Green’s function
de(x, v),

Ae(z, ) =Tr{p8(t— t)[2(z), #()]},

therefore solving (8+5) amounts to the fact that we are looking for the pole of r(x, ).
It is also known that Fourier transform of 4z(x, y) is analytic in frequency o and that
the discrete eigenvalue w determined by (8-5) is the same as that determined by (4-2)
since w is the eigenvalue of the Hamiltonian of the system.

I'[ 1, n2] is the most general density functional in the sense that Eq. (8 4) reduces
to (8:1) in the equilibrium limit and to (2-14) in the zero temperature limit which in
turn reduces to (2:17) in the static limit.-
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Detailed discussion of I" of general non-equilibrium processes has been given in
Refs. 13) and 14).

§9. Discussion

We have discussed density functional theory which is formulated by the field
theoretical functional Legendre transformation. Recall here that in any physical
system we have to use the energy function which is written by the most convenient
variable according to the situation we are considering. Such a variable is sometimes
called the natural variable as we know many examples in equilibrium statistical
physics. The natural variable can be introduced through Legendre transformation.
The density #(x) has been taken as a natural variable in this paper. :

The density functional theory presented here is a most systematic formulation of
the problem in the following sense. Consider the zero temperature case. We start
from the effective action I'[#] and;

1)  Determine the ground state by solving the first derivative equation;

o[ %]

Snlzx) =0

and find the solution #%®(x)=<0|7(x)|0>.

2)  Solve the second derivative equation

JaA G han)=0.

where (--+)o is evaluated by the solution #®(x) determined in 1). This is the
eigenvalue equation which determines the excitation energy w:.

3)  The third derivative or higher gives the scattering matrix (S-matrix) element
among the excitation modes obtained in 2).

The point 3) has not been discussed in this paper. See Ref. 8) for details. The
important point that should be stressed here is that once I'[ #] is calculated with some
approximation scheme, then the ground state, excited states and even the scattering
among the excited levels are determined by the same approximation. This is an
important property required for any approximation scheme.

In the body of the text we have not discussed the local density approximation
(LDA) but it can straightforwardly be discussed in our formalism. Let us take I'[#]
of (2-13) (E[#] of (2-16) can similarly be discussed), and expand it around some
constant #(x)=#, which is taken to be zero for simplicity below. Then I'[#] is
expanded in functional Taylor series,

I'x] fdm _/a"‘xnf‘”)(xl, 2 n(z) () nlz) . (9-1)

on'

If we use auxiliary field method, #(x) is replaced by o.(x) and above I'™(xy, *++, ») is
related to the sum of 1PI #-point Green’s functions. In the homogeneous case, "™ (1,
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--, Z») is a function of the difference of the co-ordinates x;—x;(1<7, j<#%). The local
dehsity approximation is obtained in a systematic way by expanding each x; around
some fixed point x, say the center co-ordinate x=(31%.x:)/n. But since x is arbi-
trary, we take for convenience x=x1 and expand z(x;)(j=2) as

n(xj)Zn(x1)+(xj—x1)ﬂ3"n(x1)+2%(xj—xl)ﬂ(xj—xl)ua"a“n(xl)+'-- , (9-2)

where 0“=(7, 0/ot), xu=(x, t). Inserting (9-2) into (9-1) and collecting the terms
with the same number of derivatives we get the local expansion of I'[#] which in
general takes the form,

- fd4x<F‘°’(n(x))+Fﬂ(1’(n(x))8"n(x)+ T2(n(2))3"0"n(x) +-- )

Each co-efficient I38.(k=0,1, 2, ---} is now a function of n(x). We have checked that
in the case of electron gas with uniform positive background our expansion formula
reproduces the known results of LDA (/=0 in this case).

Here we want to stress once more that our formalism is again systematic and
straightforward in obtaining LDA since a diagrammatic evaluation of I'[#] is
straightforward.

~ As has been stated in the introduction, the arguments presented in this paper
constitute a basis of our numerical study which is expected to provide a systematic
scheme of approximation. We believe that a firm theoretical foundation is highly
required before any approximation can be done.

We have not discussed the equation based on the single particle picture like
Kohn-Sham equation.”® Such an equation can be written down in our scheme but its
physical interpretation is not so clear; it is not possible, for example, to derive a
single particle equation for which the sum of single particle energy e; equals to the
total energy E and at the same time the sum of the single particle density ¢:"(x)¢:(x)
gives the correct density »n(x). It has to be regarded as the equation which is helpful
when we try to get actual numerical values by solving the stationary equation of the
density functional. The situation is the same as in the case of Kohn-Sham equation.
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