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Within the canonical Weyl gauge formulation, the axial gauge representation of QCD on
a torus is derived. The resolution of the Gauss law constraint is achieved by applying unitary
gauge fixing transformations. The result of this formal development is a Hamiltonian explicitly
formulated in terms of unconstrained degrees of freedom. Novel features of this Hamiltonian
are the non-perturbative dynamics of two-dimensional degrees of freedom appearing in the
gauge-fixing procedure, such as Jacobian and centrifugal barrier. These two-dimensional fields
appear to be essential for the infrared properties of the theory. The global residual gauge
symmetries of QCD are established in this representation. It is shown that SU(N) gauge
theories may exhibit at most N — 1 massless vector (gauge) bosons. The implications for the
phase structure of non-abelian gauge theories (QCD, Georgi—Glashow model) are discussed.
€ 1994 Academic Press, Inc.

1. INTRODUCTION

The canonical formalism of gauge theories is most appropriately developed in the
framework of the Weyl (temporal) gauge. In this gauge (cf. [1, 2]), the dynamical
variables are given by the vector potentials and the canonically conjugate
(chromo)electric fields. The quantization is standard; there are no ghosts and the
Hilbert space has a positive norm. The Hamiltonian for these degrees of freedom
is supplemented by the Gauss law as a constraint on the physical states. Important
formal investigations and dynamical studies of QCD have been performed within
this framework [1, 3-7], aimed at providing qualitative insight into the dynamics
of strong interaction physics and preparing the ground for more detailed and
quantitative studies [8, 9].

With the exception of Feynman’s investigation of (2 + 1) dimensional QCD [7],
these studies attempt to resolve explicitly the Gauss law constraint and derive a
description in terms of unconstrained variables. The Hamiltonian formulated via
unconstrained degrees of freedom only (two instead of three polarization states) has
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to be significantly more complex than the original Hamiltonian containig redun-
dant variables. Nevertheless, the construction of such a Hamiltonian seems to be
mandatory for any approximative treatment of the dynamics. Without the resolu-
tion of Gauss’s law, approximations in general will fail to respect local gauge
invariance, and therefore a charge is produced locally in the time evolution
governed by those approximate Hamiltonians (this point of view has been
particularly stressed in Ref. [107). Such a scheme is in general not suited for under-
standing the important phenomenon of confinement. Furthermore, as computations
of the running coupling constant of QCD [1, 11, 127 demonstrate, the other
important fact of strong interaction physics, asymptotic freedom, results in the
canonical formalism from the non-abelian modification of Gauss’s law. This reinforces
the strategy to incorporate in the first step of a dynamical calculation the Gauss law
constraint into the Hamiltonian.

Most of the efforts to date have attempted to implement the Gauss law by the
introduction of Coulomb-gauge variables into the canonical formalism of QCD
[1,3,5,6]. In QED the radiation gauge is singled out as the gauge in which static
charges do not radiate. Since, in QCD, radiation always couples to color spin, this
unique dynamical advantage is absent. Moreover, the choice of radiation gauge
variables does not conform with the angular momentum algebra of the Gauss law
operators, thereby causing significant technical disadvantages. Finally, problems in
the gauge-fixing procedure related to the presence of Gribov ambiguities [13]
could not be resolved satisfactorily due to the technical complexity of this particular
gauge choice.

One therefore might attempt to formulate QCD in terms of unconstrained
variables which are less familiar from canonical QED. Here we shall derive a
representation of QCD in terms of variables close to those of the axial gauge. The
advantages of the axial gauge [14], as well as its difficulties in yielding a proper
infrared behavior [15], have been realized early. In order to deal with these
formally, as well as physically, expected infrared difficulties in a well-defined
framework, we consider QCD on a torus. In the canonical formalism of Weyl-gauge
QCD, the reduction in the number of degrees of freedom from three to two
polarization states has to be achieved quantum-mechanically, i.e., by respecting the
canonical commutation relations between gauge and electric field operators. Thus
gauge field variables cannot be assumed to be zero, rather a gauge-fixed formula-
tion is a particular representation of the quantum theory in which the Hamiltonian,
if acting in the physical subspace, is independent of certain degrees of freedom.
Selection of those degrees of freedom is not completely arbitrary. The Gauss law
imposes important restrictions and in particular prevents complete elimination
(assumed to be possible in the naive axial gauge) of one of the cartesian
components of gauge and electric fields from the Hamiltonian. Gauge variables
corresponding to zero eigenvalues of certain (covariant) derivative operators,
describing gluons propagating in a prescribed plane and with specified polarization,
have to be kept as dynamical degrees of freedom. It is the presence of these degrees
of freedom which resolves the problems noted by Schwinger and which renders the
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theory well behaved in the infrared. In turn, the major analytical effort in deriving
this axial gauge representation will be required for determining the dynamics of the
zero modes. The final result of this investigation will be an explicit representation
of the Hamiltonian governing the dynamics of the unconstrained degrees of
freedom in the space of physical states. To arrive at this result, we shall employ the
technique of resolving Gauss’s law with the help of unitary gauge fixing transforma-
tions. Similar techniques have been investigated in general and applied to the case
of the radiation gauge in Refs. [5,6]. In Ref. [16] we have developed more
systematically these methods for QED; the derivation of the axial gauge representa-
tion of QED in Ref. [16] contains in a technically much simpler context many of
the important elements of the gauge fixing procedure relevant for the non-abelian
case. In comparison to the resolution of the Gauss law by the more standard
technique of changes of variables (cf, e.g., [3,6]), the gauge fixing by unitary
transformations provides the appropriate setting for the investigation of residual
gauge symmetries, i.€., gauge symmetries whose realization in the Wigner—Weyl
mode is not enforced by the Gauss law. As for QED (cf. [17-19]), residual
symmetries can be expected to be useful also in characterizing the different phases
of non-abelian gauge theories [20, 21]. For such a discussion, it is particularly
important to formulate the gauge fixing procedure in a way general enough to
admit for different coupling of matter and gauge fields. For instance, realization of
residual global gauge symmetries must encompass, depending on the nature of the
colored matter field, both the possibility of a confined phase as well as the expected
Goldstone phase of the Georgi—Glashow model.

Our investigation of the axial gauge representation of QCD is presented on three
levels of technical complexity. The main body of the paper describes the most
important steps in the formalism leading to the axial gauge representation, i.c., the
resolution of the Gauss law, the construction of the unitary gauge fixing transfor-
mations, the determination of the axial gauge Hamiltonian, and finally the study of
the residual, global gauge symmetry. The technically involved computations
necessary for determination of the “zero mode” dynamics have been relegated to a
series of appendices. Here we present the details of a new method to calculate
(functional) Jacobians from hermiticity defects in the definition of momentum
operators. Finally, in the more qualitative concluding Section 9, we summarize the
most important structural elements of the derivation, compare our approach to
other gauge fixing procedures of QCD, and indicate in a more speculative vein the
possible physics implications. In particular, we emphasize the new elements of
the formalism associated with the zero-mode dynamics. This rather extended
concluding section is intended to provide insight into the gauge fixed formulation
of QCD also for readers who are not interested in the formal derivations of
Sections 3-8. The introductory section 2 presents the standard Weyl-gauge formula-
tion of QCD as the basis for the whole following discussion.

595/233/2-12
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2. QCD N THE WEYL GAUGE

The dynamical variables of QCD (with N colors) in the Weyl gauge,
A8=0, a=1,.,N2—1, (2.1)

are the three components of the N?—1 vector potentials A their conjugate
momenta, the (up to the sign) chromoelectric fields,

a a

A:A“(x)%, n:na(x)%, (2.2)

and the quark fields ¢ which carry Dirac and color labels (¢, ,(x), a=1, .., 4,
i=1, .., N, flavor labels are suppressed). The configuration space is assumed to be
a torus, i.e., periodic boundary conditions for the gauge fields

A(x + Le;) = A(x), i=12,3, (2.3)
and quasi-periodic ones for the fermion fields are imposed
Y(x+Le)=eY(x), i=1,23; (24)

¢, are arbitrary phases. In this way, the infrared properties of the system are well
defined and transiational invariance is preserved at every level of the formulation.
The dynamical quark and gluon degrees of freedom are quantized by requiring
anti-commutation relations for the fermion fields

(o i (x), ¥} (Y)} = 8,4058,(x —y), (25)

and commutation relations for the gauge fields,
L1500, AHY)) = 348,68 o(x— ). 26)
The quasi-periodic § function,
6q,(z)=ll—/2e"""‘v’, V=L? (2.3)

is determined according to the boundary conditions (2.4) by the wave vectors with
components

1 3
p,w=z<27tn+ D qo,-e,-). (2.8)

i=1

In the Weyl gauge, the constrained quark—gluon dynamics is determined by the
Hamiltonian density,

H(x)= —ip"(x) (V- ig A(x)) Y (x) + my "(x) By (x) + tr(TT(x) + BX(x)),  (2.9)
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and the constraint on the physical states |@) to satisfy Gauss’s law,
G(x) |®)> =0, a=1,.,N*—1. (2.10)

We have introduced the N?—1 chromomagnetic fields B* related to the spatial
components of the field strength tensor,

a

Fu=08,A,—0,A,—ig{A, A]= (6,(Aj’—6,AZ+gf"’”A,’jA7)%, (2.11)
by
Bi(x) = §£, F§ (x). (2.12)
The Gauss law operator is given by
G(x) =div IT*(x) + gp®(x). (2.13)
Both gluons and quarks contribute to the color density p,
po(x) =A% (x) TIE(x) + py(x), (2.14)

where p,, is the color density associated with the quarks

bE
Pm(X) =¥ (x) 5§, (%) (2.15)

The operator G(x) defining the constraint commutes with the Hamiltonian,
[G(x), H]=0, (2.16)

and therefore time evolution leaves the system in the space of physical states. The
Gauss law operator is closely connected to the generator of the residual gauge
transformations. These are time independent but space dependent gauge transfor-
mations which preserve the gauge choice equation (2.1) and leave the Hamiltonian
invariant. In this quantum mechanical framework of QCD in the Weyl-gauge,
finite, residual local gauge transformations are given by the unitary operators,

Q[p]=e 6L (2.17)
Here, we have defined
G[B] =fd3-¥(—"“(x) V+g/ AP (x) TI(x) + gpal(x)) B*(x), (2.18)
where
AC
px)=p(x) 5 (2.19)
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is given by N2—1 (almost) arbitrary c-number functions (constraints on f(x)
arising from the boundary conditions will be discussed later).

It is important for the further development to distinguish between Hilbert space
operators such as £ describing quantum mechanical transformations and matrix
operations in the color indices as, e.g., described by B(x). The unitary operator
Q[ B] rotates the color components of the quark fields,

Q[B1Y(x) Q[ B]=e* ™ (x), (2.20)

and translates and rotates the gauge field operators via the c-number functions

B4(x)
Q[T Alx) Q[ B] = b (A(x) + éi, v) o 8P00) (2.21)

The electric field transforms as a vector in color space,
QIAI(x) QT[] =e®P™TI(x) e ~ &), (2.22)

Existence of this gauge symmetry reflects the presence of superfluous variables in
Weyl-gauge QCD. Indeed, similar to QED, implementation of the Gauss law will
(apart from N—1 zero-mode degrees of freedom) reduce at each space point the
3(N?—1) degrees of freedom described by the vector potential A(x) to the two
polarization states of the N?—1 gluons. We have been careful in distinguishing
between the Gauss law operator and the “generator” of finite gauge transforma-
tions. Only for periodic gauge functions f,(x) are these two quantities trivially
related,

G[B,]= j d*x G(x) BE(x). (2.23)

The noncommutativity of the Gauss law constraints makes the derivation of
formulations of QCD in terms of physical (i.e., unconstrained) variables more
difficult than in QED. The commutator of the different components of the Gauss
law operator is

[G(x), G*(y)] = igf**G*(x) 05 o(x —y) (2.24)

and permits simultaneous implementation of the N? —1 Gauss law constraints.

3. RESOLUTION OF THE GAUSS LaAw CONSTRAINT

The axial gauge representation is a formulation of QCD in terms of
unconstrained variables, in which both the gauge field component A4;(x) and its
conjugate momentum operator I7,(x) do not appear in the Hamiltonian. Elimina-
tion of A;(x) will be achieved by applying a “gauge fixing” unitary transformation
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to the Weyl-gauge Hamiltonian. We first consider the elimination of I7,(x) in the
space of physical states by implementing the Gauss law constraint. To this end we
decompose the Gauss law operator (2.13) into the perpendicular (ie, 1,2) and
quark contribution,

G5 (x) =div I (x) + g/ AL (x) TI(x) + gpo(X), (3.1)
and the contribution from the three-components of the gauge field variables,
Gi(x)= D¥IT5(x) with D% =96 + g f*"A5(x). (3.2)

It will turn out to be important that in this division of the degrees of freedom, the
resulting contributions to the Gauss law operator satisfy separately the commuta-
tion relations of Eq. (2.24). We now write the constraint, Eq. (2.10), as

Dy IT(x) |P) = =G (x) | D). (3.3)

Equation (3.3) expresses in the space of physical states the covariant three-
derivative of I7; and not I7, itself in terms of other degrees of freedom (it is this
fact which would cause the well-known infrared problems, if one would nevertheless
attempt to implement the naive axial gauge 4,=0). To proceed in the resolution
of Gauss’s law, we define a complete set of eigenfunctions and cigenvalues of the
covariant derivative D; by the differential equation

1
;D‘i"C?, n(X) = pe n(x ) L2 (), (3.4)

and the boundary condition,
C(‘,n(xl’ L):Cc,n(xJ_’O)' (35)

The indices ¢ and n specify the eigenvectors and eigenvalues u (details will be given
in Section 4). Periodic boundary conditions have been chosen in order to provide an
appropriate basis for expanding the periodic operators I7;(x) and G (x). We have

1
hx)=7 Y Lea(X) Pen(x1), (3.6)

c,n

with the expansion coefficients given by
L
Pen(X)=(cn M) (x )=21r J; dxs £} ,(x) IT5(x). (3.7)

The normalization has been chosen such that the following orthogonality and
completeness relations hold:

J dxazc X)C ) 5cc 5nn"

{ (3.8)
I Z (o n(xy1, x3) C::(xu X3) = 040 0(x3 — X3).

on



324 LENZ, NAUS, AND THIES

Projection of the Gauss law constraint of Eq. (3.3) onto the eigenvectors of D,
yields

e (X)) PenlX )P ==L, GL)(X,) D). (39)

Thus in the space of physical states and for non-vanishing eigenvalue u_ ,, the
Gauss law constraint can be used to eliminate the components p_ ,(x ) of the
chromoelectric field operator IT;(x), while for zero eigenvalues the residual Gauss
law constraints are left,

(Cco, ny? G.L)(X_L) i¢>=0 1f lut‘o, no(x_l_)z()' (310)
The action of the operator I7;(x) on physical states is therefore expressed as
IT(x) | =1[ T o) pomx)— ¥ et Ggm)] 1@;
L g, ny ' ' oon l:uc, n(xL) '
#ro.ng=0 Hen# 0
(3.11)

ie., the components p,, .(x ) of /T;(x) related to the zero modes of the covariant
derivative D, remain as independent degrees of freedom. This in turn implies the
presence of residual Gauss law constraints. These will be implemented at a later
stage of the formal development.

To appreciate the essential ingredients of our construction of the axial gauge
representation of QCD it is instructive to exhibit the different starting point if one
aims at the Coulomb-gauge representation. Here one decomposes the chromo-
electric field operator into longitudinal and transverse (including zero-mode)
components

TI(x) =TI'(x) + IT'(x), (3.12)
with

VxIT' =0, jd3xn’(x):0. (3.13)

This yields a corresponding separation of the Gauss law constraint
(Vo + gf“*AS)TT" ¢ |D) = —G* |D), (3.14)
with
G! = g(p,,(x) +f* AP(x) IT"<(x)). (3.15)

Representing IT as the gradient of a scalar field, it is seen that elimination of the
longitudinal chromoelectric field, with the help of the Gauss law constraint
according to Eq. (3.14), has to proceed by introducing eigenfunctions and eigen-
values of the operator familiar from standard (Coulomb-) gauge-fixing procedures,

di< = 45° + g f APV, (3.16)
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Here, as well as in the axial gauge choice, the occurrence of zero modes presents
in principle no barrier for further developments. However, unlike the ordinary dif-
ferential operator D, with the perpendicular coordinates entering as parameters, the
operator d, defines an eigenvalue problem associated with a partial differential
equation which cannot be solved explicitly. Furthermore, the separation of the
Gauss law operator in Eq. (3.14) does not preserve separately the commutation
relations (Eq. (2.24)); this limits further the possibilities in proceeding by analytical
calculations.

4. THE SPECTRUM OF D,

Resolution of Gauss’s law requires knowledge of spectrum and eigenfunctions
of the covariant derivative D, (cf. Eq. (3.4)). The fundamental quantity for the
following calculation is the integral

e ™ =Pexp (ig J.x} dz As(x Z)>’ (4.1)
0

which is ordered along the path of integration parallel to the x;-axis. It solves the
differential equation

(85— igA(x)) ¥ = 0. (4.2)

The path-ordered integral is not periodic in x; and we therefore introduce the »
operator

U(x) zeigi(x) e—ig@(xl)n/L eigd(xl)’ (43)

which, with the following definition,

e#8OL) — pignlxi, L) (4.4)

is indeed periodic. For later convenience, we have also introduced the unitary
matrix ¢4 which diagonalizes 6,

%€
AO

9(X1)= A
—_ 7

N—-1
igd(x)) —igd(xy) — 0
2 e® ™ as(x ) e H, a;= ), aj

cg=1

(4.5)

In the following, we use the convention that color indices with subscript “0” refer
to the generators of the Cartan subalgebra, i.e., to diagonal i-matrices in the usual
representation, and we refer to the associated fields as “neutral” fields. The matrix
e®4 in Eq. (4.5) is not uniquely determined by the requirement that it diagonalizes
a given matrix #; it can be multiplied by an arbitrary diagonal matrix from the
right. This leaves room for additional conditions [22]. In view of the applications
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below, the most natural choice is the one where ¢*“ depends on N2 — N variables
independent of the N — 1 variables 4, i.e., we assume
Se®AxL)
< o (4.6)
5‘130()'¢)

It is now straightforward to determine the spectrum and eigenfunctions of D;. We
first observe that the periodic U satisfies a differential equation different from that
of the path-ordered integral,

(0, —igd;) U= —igla,. (4.7)

This will imply that 4; can be eliminated from the Hamiltonian only up to the
zero-mode a;. After transforming to the basis

(on=0%.0, (4.8)

which will be seen to be independent of the dynamics, Eq. (3.4) reads in matrix
notation

1 o .
; [63_lga37Cc.n]zuc,ncc,n' (49)

The eigenvalue problem defined by the differential equation (4.9) and the require-
ment of periodic boundary conditions can easily be solved since a, is a diagonal
matrix; the eigenfunctions are

(o w=2E 2k n=0,+1, +2, .., (4.10)

with the vectors of the Weyl basis

. 1
(Z.)y=—F0,9,, (4.11)
NG
and the eigenvalues
2nn ;
en(X2) =54 glas, o (x,) = as,,(x,) (“.12)

Thus c=c(p, q) labels the different basis vectors, and to each basis vector
corresponds an infinite sequence of equidistant eigenvalues labelled by n#. Here we
also have used the notation

(a3)y=6ya3,i- (4.13)

So far, the basis vectors Z, still include the unit matrix. When expanding elements
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of the SU(N) Lie algebra, we must require tr 7. =0. This is clearly satisfied for
q#p. For g=p, it is advantageous to switch to the representation

aee, (4.14)

N~

Z,=
Such a change of basis is possible because all eigenvalues for a given n and p=gq
are degenerate. Our choice of the basis is summarized in the representation for the
eigenfunctions of D,,

~

{on=0: 0%, (4.15)

with U defined in Eq. (4.3) and 7, defined in Egs. (4.11) and (4.14). For some
purposes, it will be more convenient to write them in the equivalent form

(o n=e%z e B e, (4.16)
with

24X )= e®Ax) 5 o —igAlxL) (4.17)

Of particular importance are the zero-modes {_, , with a vanishing eigenvalue. They
play a special role in the resolution of Gauss’s law (cf. Egs. (3.10) and (3.11)). They
exhibit a non-trivial x,-dependence. The corresponding color matrices z, are
hermitian and commute with 8. Their number is given by the rank of the Lie
algebra, N— 1. This is in contradistinction to the properties of the zero-modes of
the ordinary derivative which are relevant for the g=0 limit of QCD. Here,
(N2—1) x;-independent zero-modes exist. Consequently, the transition to g=0
cannot be expected to be smooth in a non-abelian gauge theory with the Gauss law
implemented.

Note that with the definition (4.1) of the path-ordered integral we have
introduced explicitly a coordinate system on the torus. In the following, we assume
that the three-coordinates are restricted to

0<x,<L. (4.18)

Finally, we remark that our definition of the zero-mode fields 6 is not yet complete
since only the exponential of these fields has been defined (cf. Eq. (4.4)). Also the
diagonalization (4.5) involves, in general, additional ambiguities, even with the
condition (4.6) observed. The ambiguity in the definition of a;, which is also seen
explicitly in the definition of the eigenvalues ., of Eq. (4.12), reflects the gauge
freedom of the classical Yang-Milis theory of shifting a; , by multiples of 2n/gL
and permuting the color labels. Most of the following developments will not depend
on a complete specification. A discussion of various specific options can therefore
be postponed until the end of Section 7.
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5. FIRST UNITARY GAUGE FIXING TRANSFORMATION

With the resolution of the Gauss law constraint in Eq. (3.11) we have succeeded
in expressing the action of the three-component of the chromoelectric field operator
(up to the zero mode operator) on physical states by that of operators representing
other degrees of freedom of the system. However, at this stage, the Hamiltonian still
contains the conjugate variable, the three-component of the gauge field operator and
concomitantly still exhibits invariance under the local gauge transformations of
Eq. (2.17). The presence of this symmetry forms the basis for elimination of A4;(x) by
a succession of two unitary “gauge fixing” transformations. Transformation of the
Hamiltonian in two steps reflects the two-step procedure in implementing the Gauss
law for finite and zero mode projections, respectively (Eqs. (3.9), (3.10}). The general
principle in the construction of the gauge fixing transformations is to perform a
gauge transformation in the variables to be kept, with the gauge function being a
functional of the gauge field component to be eliminated. Basic to this construction
is the decomposition (3.1), (3.2) of the Gauss law operator into contributions which
satisfy separately the “angular momentum algebra” (2.24). Thus we define

U[é]=exp[—l’fd3X(—ﬂ‘i(X)Vl+gf""“A'1(X)U1(X)+gpfn(X))é"(X)], (5.1)

and assume the gauge function ¢ to depend only on the three-component of the
gauge field

£=¢[4:] (5.2)

In the definition of the exponential in Eq. (5.1), no operator ordering problem
occurs. By construction, U[£] acts as a gauge transformation on fermionic and
perpendicular gauge degrees of freedom determined by the gauge function &(x). The
transformed fermion field operators are therefore given by (cf. Eq. (2.20))

ULETY(x) UT[E] = ey (x). (5.3)

The action of U[é] on the perpendicular gauge degrees of freedom is (cf.
Egs. (2.21), (2.22))

ULET A, (x) UT[E] = e (Al(x) t é VL) ) (54)

ULETT (x) UT[E] =T (x) e ), (5.5)

As a consequence of these relations, the three-component of the chromomagnetic
field and the perpendicular contributions to the Gauss law operator (3.1) transform
as vectors in color space,

ULL] Frp(x) UT[E] = e Fp(x) e <), (5.6)
ULE1 G (x) UT[E] =G (x) e ~#¢X (5.7)
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The unitary transformation, Eq. (5.1), does not affect the three-component of the
gauge field,

ULE] 45(x) UT[E] = 45(x). (5.8)

To continue, we now specify our choice of the gauge function and identify ¢®* with
the periodic matrix U defined in Eq. (4.3),

e'#¢™ = {(x). (5.9)

This choice eliminates, according to Eq. (4.7), all but the two-dimensional neutral
components of 4, from the corresponding term in the fermion—-gauge field coupling,

Ul¢] l//*a3(83— igA,) '/’U*[é] = '/’faa(az —igas) y. (5.10)

The perpendicular components of the chromomagnetic fields can be transformed
easily with the help of Eqs. (4.7) and (54),

—igULEY Fy U'E] = 00, — igas, D] U, (5.11)

Technically involved is the calculation of the transformed three-component of the
chromoelectric field operator due to the dependence of the gauge function & on A,.
This calculation is significantly simplified if restricted to the physical space, cf.
Eq. (3.11). The only quantities to be transformed are then p, = ({,. 0, {I5) and
({.. .. G,) arising from the zero-mode and non-zero-mode projections of II;,
respectively. We find from Egs.(5.7) and (4.8)-(4.11) the non-zero-mode
components of I7, in the physical sector,

ULEIC.. s GUx ) UTET=(C,. G )(X))

L .
=V2[ da(Gp e T (e, #0) (512)

to be, after the transformation, independent of the gauge field A;. The most
laborious part is the unitary transformation of p,, ,, denoted hereafter as

N—1 /1(0

PYX ) =P olX1),  pi= Y Py 5 (5.13)

cp=1

One can show that p; is invariant under U[£] by verifying that
[p(y.) O(x)1=0. (5.14)

Since this calculation provides us at the same time with the commutation relation
between p; and a,, we shall exhibit it in some detail. The starting point is the
identity (recall the restriction (4.18) for the coordinates in three-direction)

1 getsrto
1 0A5(y)

. e A
=gO(x;—y3) 6P(x  —y ) e (e*”“"’ 5 e"“(”>, (5.15)
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which can be proven by taking the derivative with respect to x; and comparing the
result with the functional derivative of Eq. (4.2); @(z) is the Heaviside step function.
Projection of this equation onto the zero modes {, , yields (cf. Eq. (4.16))

[PY(yL), e® ] =gx;0P(x, —y, ) e ™z, (y,), (5.16)
and therefore for x;=1L
[P(yL) e®™ ) =gLé™(x, —y, ) e** ™z, (y ). (5.17)

Since the right-hand side of Eq. {5.17) commutes with 8(x , ), one can evaluate the
commutator between p3’ and any function of 6 by ordinary rules of differentiation.
In particular, one obtains

[PS(y.) e F 0 ] = —gxy3P(x, =y, ) e #0092 (y ), (518)
and, consequently, Eqs. (5.16) and (5.18) yield
[Py L), e De w0t ] =0, (5.19)

Similarly, for an arbitrary function of 6(x,) the following commutator can be
derived

. . a oF(0(x.))
[Py L), F(O(x1))] = —iL6P(x, —y,) 28(X 1) —mg—— (5.20)
06%(x 1)
For the choice given in Eq. (4.6) of ¢*4, we have
1 06° 1 igd Jc0 ,— i a a

zaa;_o:itr(e“/l“e 2409 =2z, (5.21)

where we have used Eqgs. (4.14) and (4.16). Thus
Jd 1 0
a (5.22)

zl'l) 660 =z 6(130
and Eq. (5.20) becomes

19F(8(x.))

[Py, ) F(B(x,)] =5(2)(Xl—h);m- (5.23)
3 1

In particular, this result implies that
[pXAy.), e®*4*]=0. (5.24)

This last commutator together with Eq. (5.19) yields Eq. (5.14). This derivation also
establishes the important fact that p; behaves like the momentum conjugate to a,
when acting on functions of 8. However, the operator p3’ is not hermitian; this will
be discussed further in Section 7.
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Therefore, in the physical sector, the components of 7, with respect to the
dynamical basis (., (cf. Eq. (3.7)) and, consequently, also the associated kinetic
energy are expressed in terms of variables which, apart from the zero-mode gauge
fields a,, are independent of A;. In the space of transformed physical states

1) =ULL] @), (5.25)

we have

(D jaﬂx tr 13(x) |

= @ [ [3E P30 i)+ [ [

< Z/ Lqp(x_l_ax:i)G.qu(xJ_, y3)

i2nn(x3— y3)/L
L oL+ glay (%) —an P ']@‘ (5:26)

In the last term, the sum does not include n=0 for p = g; this is indicated by the
prime and follows directly from the requirement that u, ,#0 in Eq. (3.11). To
derive the final form of the Hamiltonian, the residual Gauss law of Eq. (3.9) needs
to be implemented. In the sector of transformed physical states, it assumes the
particularly simple form

. L
Cor 618> = | e 62(x) 1) =0 (5.27)

Its actual implementation will be addressed in the next section.

6. SECOND UNITARY GAUGE-FIXING TRANSFORMATION AND HAMILTONIAN

In the representation of QCD obtained after applying the first gauge-fixing
transformation, the residual Gauss law constrains only neutral chromoelectric
(two-dimensional) fields (cf. Eq. (5.27)). Since these residual constraints commute
with each other, the procedure developed for QED [16] can be followed closely
and several options are available. The simplest one is the Coulomb-gauge represen-
tation. Here, one constructs a further gauge fixing transformation which eliminates
the longitudinal neutral gauge fields with vanishing three-momentum from the
Hamiltonian and in turn simplifies the residual constraints. In order to arrive at
such a two-dimensional Coulomb-gauge representation, we define the fields to be
eliminated by

—1 o

2 =7 [ drdx, -y V. T divATy S (6.1)

co=1
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Their conjugate momenta are

f‘O

pux)=] dydix,—y.)V, Y v "5 (62)
co=1
where
"Inll 27[
dz-L _Lz n;ﬂ Py s qn='Z(n1,n2), (6.3)

is the two-dimensional, periodic, scalar Greens function. In terms of these variables,
the residual Gauss law, Eq. (5.27), reads

[div® p'(x,)+gpP(x )] 8> =0, (6.4)

with the two-dimensional color neutral charge density

Py =[ dey 3 (AL I 00 + 300 S (65)

co=1

The unitary gauge fixing transformation which eliminates the superfluous degrees of
freedom in implementing the residual Gauss law constraints is

u(2>[a]—exp<—zgjd2 Z p @ a(x )a“’(xl)> (6.6)
with a[a’ ] given by
v, 1(xJ_)=a[J.(xJ_)- (6.7)

The gauge fixing transformation u'*’[«] acts as a gauge transformation on the
fermions and rotates the perpendicular field variables,

uPLa] g(x)u® [a] == *y(x), (6.8)
P[] A (x)u®T[a] =e®xD 4 | (x) ¢ ~'&2x1), (6.9)

As is familiar from the Coulomb-gauge representation of QED [16], this transfor-
mation shifts the chromoelectric field by a longitudinal static field n

UL T 00 (2] = (I 0 - ax,) e =0 (6.10)

This chromoelectric field n is generated by the neutral charge density of quarks and
gluons,

n(x,) =gV, [ dx, —y.) pP(y.), (6.11)
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and satisfies the Poisson equation,
aiv® ) =g (p 00~ 13 0°), (612)
with the neutral components of the total charge given by
Qfﬁ:fdzx pD(x ). (6.13)
In this representation, with the transformed physical states
(@) =u[a] 8> =ULL ] (D), (6.14)
generated by applying both transformations,

ULE, 2] =u®[«] U], (6.15)

the transformed residual Gauss law (6.4),
(div‘”pff(xmszm) 1@y =0, (6.16)

is easily implemented. Periodicity of the conjugate momenta p°’(x, ) in x, implies
the neutrality condition

gelo’> =0, (6.17)

i.e., the vanishing of the neutral components of the total color-charge. Furthermore,
in the sector of physical states, the longitudinal neutral conjugate momenta vanish,

pL(x,)|®'>=0. (6.18)

It is now straightforward to transform the Weyl-gauge Hamiltonian (Eq. (2.9),
cf. Eq. (5.26)) with U[¢, «]. We introduce primed (perpendicular) gauge fields by
subtracting the longitudinal neutral components

AL(x)=A (x)—al(x)). (6.19)

Thus the fields A’, describe only physical degrees of freedom, ie., degrees of
freedom which are unconstrained. Their conjugate momenta are

1
Hl(X)=HL(X)—ZP'l(xL)- (6.20)
Obviously the subtraction of the longitudinal neutral components in Egs. {6.19)

and (6.20) gives rise to a change in the canonical commutation relations. In terms
of these variables, the Hamiltonian in the space of transformed physical states reads

H'=U[E, a] HU'[¢, o] =fd3x H'(x), (6.21)
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where
H' = —ip [o;(0; —igas) + o (V, —igA' )] +m’ By

1\ 1 ,
ste[ @+ (n) + T FP g ) 50c)

L i<j [}

1 £ L ’ GiLqp(xL’ZS) G’qu(x_Ls }’3) .
+— | dz dy e/ Tz = WL
: J.O JJO - p,%n [2nn/L+g(03,q(xi)_a3,p(xL))]2
(6.22)

The primed chromomagnetic fields are defined as
Fi=0,45—0,41—ig[4), 43],

(6.23)
Fi3=0,a;—0;A4;—igl4;, a;] (i=1,2),
and the summation in Eq. (6.22) is again restricted to n#0 if p=gq.

The various contributions to this Hamiltonian density are easily related to the
corresponding ones in the original Weyl-gauge Hamiltonian density of Eq. (2.9).
As a result of the first gauge-fixing transformation, the gauge fields 4; have
disappeared from both coupling to the quarks (cf. Eq. (5.10)) and from the field
strength tensor (cf. Eq.(5.11)). Complete elimination of A; is not possible; the
neutral, two-dimensional fields a,, together with their conjugate momenta p;,
remain. Similarly, as a result of the second gauge-fixing transformation, the neutral,
longitudinal gauge field components a’, have been eliminated and their conjugate
momenta p’, have vanishing eigenvalues in the space of physical states (cf.
Eq. (6.18)). Consequently, both the gauge field coupling to the quarks as well as
the field strength tensor are given in terms of the primed perpendicular field
components (cf. Egs. (6.19), (6.20)). In both steps of the implementation of the
Gauss law “static” chromoelectric fields are generated. Their field energies are given
by the n? contribution and the last term in Eq. (6.22), respectively. The latter is
determined by the matrix elements of G’

Al 1
((x) =V T (x) +gf“ 5 A'P(x) (H’f(x) -7 n‘(&)) +8pm(x).  (6.24)

Due to the subtraction in Eq. (6.20) of the corresponding component, there are no
interference terms between the longitudinal, neutral field n(x ; ) and IT’, (x). We also
note that, for a similar reason, with p® (Eq. (6.5)) also n (Eq. (6.11)) depends
apart from the quark degrees of freedom only on the primed-field variables. The
chromoelectric field energy of the last term arises from the first step of implementa-
tion of Gauss’s law (cf. Eq.(5.26)) and becomes further modified by the second
unitary transformation. Also here, this transformation eliminates a‘ (x,) and
correspondingly shifts the perpendicular chromoelectric field by the static field
n(x,). The y,, z, integration in the last term of ' eliminates the neutral zero-
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mode contribution div!?’ n obtained in the second gauge-fixing transformation of
G, (Eq.(3.1)).

With this result, we have completed the procedure to formulate the dynamics
exclusively in terms of unconstrained variables. These variables are: The gauge
fields A’ (x) with the polarization in the (1, 2)-plane and accounting correctly by
the subtraction in Eq. (6.19) for the missing second polarization state, if the gluon
momentum is in the (1,2)-plane itself. In addition, the theory still contains
color-neutral gluons with polarization along the three-direction, however, only for
vanishing momentum in the direction of the polarization. These N —1 two-dimen-
sional gluons are described by the fields a;(x,). The corresponding conjugate
momenta are IT' (x) and pi(x ).

7. JACOBIAN AND BOUNDARY CONDITIONS

The final Hamiltonian (6.22) is, in the space of physical states, formulated
exclusively in terms of unconstrained variables. Most of these variables are simply
related to the original fields appearing in the Weyl-gauge Hamiltonian, Eq. (2.9),
before resolving Gauss’s law: The fermion fields ¥ are identical, the perpendicular
components A’, of the gauge fields differ only by a (kinematical) projection which
eliminates certain two-dimensional, longitudinal components. The only exception is
the field a,, the two-dimensional remnant of 4. Here, the resolution of Gauss’s law
has forced upon us a complicated non-linear functional of the original field as an
unconstrained variable. If one would derive the same Hamiltonian via a change of
variables in the Schrodinger representation, one would expect a Jacobian with a
non-trivial a;-dependence and, consequently, a non-standard form for the corre-
sponding kinetic energy. In our formulation via unitary transformations, the
question of the Jacobian did not yet arise in deriving the Hamiltonian. Nevertheless,
the kinetic energy associated with the a; degrees of freedom is non-standard and in
fact allows us to “reconstruct” the Jacobian.

The relevant term in the final Hamiltonian H' is

1 oty o
oH=o | dx T p3(x,) pR0) (7.1)

As we have shown in Eq. (5.23), p? acts “to the right” as momentum conjugate
to ay:
1 &

pgo(xl) ==

[_m. (7.2)

Since p3’(x,) is a component of I75(x) with respect to a dynamical basis, this
operator is not hermitian. Its hermitian conjugate pg‘” can be calculated in a
straightforward way. However, since the calculation is technically rather involved,

595/233/2-13
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we refer to Appendix A for the details and quote here only the final result, cf.
Eq. (A.17),

. ¢ 1 d . y‘.(x ) L)
ot 0 L
Pt (x )— X )= — In sin [ =~—X12). 73
? ( l) p3 ( l) i 5G§O(XJ_) t‘(u%éo) ( 2 ( )

This result has already been brought into a form which is suggestive of a non-trivial
Jacobian. Indeed, in quantum mechanics, one can establish quite generally the
connection between non-hermitian momentum operators and Jacobians. This is
explained in detail in Appendix B, where the generalization to field theory is also
briefly indicated. If the Jacobian “factorizes” as function of x, ie.,

F=]]J(x,)=exp <5‘2’(0)fd2x In J(xl)>, (7.4)
one expects the “hermiticity defect,”
ot ‘0 1 é
Py (x)—p3(x,)=-——InJ(x ) (7.5)

iday(x,)

(As our notation indicates, proper definition of the Jacobian requires a discretiza-
tion of the x, continuum; if / denotes the meshsize, *(0) in Eq. (7.4) is then
replaced by 1//2) A comparison of Eq. (7.3) with Eq. (7.5) allows us to simply read
off the Jacobian. In the present case, it is also possible to derive the Jacobian by
explicit evaluation of a functional determinant. This alternative calculation is
presented in Appendix C and yields a result which agrees with the above indirect
method. The final outcome of these various calculations has a very simple inter-
pretation: The Jacobian is the invariant group measure for SU(N) which, expressed
in terms of our variables, reads

Flay]=exp (5<2>(0)jd2x In J(a3(xL))), (7.6)
J(as(x,)) =[] sin’(zgL(as ,(x 1) — a3 «(x1))). (1.7)
k=1

In order to represent the kinetic energy via standard second-order functional
derivatives, we introduce a radial-like wave functional,

Play] = (£la,]) " Play], (18)
and obtain
1§l 5 8?2 -
HPa]= (L)) {5 [ (=) + V] #1022 09)
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with the “effective potential,” cf. Appendix B,

P 52
chr:ﬁjd x\/J—(x](éaZ"(xl)z’/J(xL))' (7.10)

The effective potential is evaluated in Appendix D and found to be simply a
constant for SU(N), cf. Eq. (D.17),

2
V= — L3O NN - 1), (7.11)

This constant term in the Hamiltonian can be dropped. Formally, the Hamiltonian
of the a,; degrees of freedom is not complicated by the Jacobian, and by use of
Eq. (7.8) one is able to work with the standard hermitian momentum operators.
Nevertheless the Jacobian affects the dynamics of these degrees of freedom, since
the “radial” wave functionals must vanish at the zeroes of the Jacobian,

Pla,]=0 if #[a]=0. (7.12)

In the last step of our description of the dynamics of QCD in the axial gauge
representation, the role of the boundary conditions to be imposed on the
unconstrained variables has to be investigated. This discussion will provide insight
into crucial elements of the quantum mechanical gauge-fixing procedure applied
here. Starting point of this discussion are the boundary conditions (2.3) and (2.4)
for gauge and matter field operators acting in the large Hilbert space of Weyl-gauge
QCD. Before proceeding we remark that in a lattice version of this theory, the
conditions (2.3), (2.4) simply express the identity of the degrees of freedom labelled
by x and x+ Le; and are obviously necessary for the (discrete) translational
invariance of the theory. Our formulation of the axial gauge representation of QCD
is not manifestly translationally invariant (discrete or continuous) since the gauge
fixing unitary transformations introduce coordinate dependences and restrictions of
these coordinates to a certain interval (cf. Eq. (4.18)). No particular attention to
this problem has to be paid in the lattice formulation, while the normal mode
expansion of a continuum formulation requires a careful treatment of the involved
changes in the boundary conditions. With the choice of Eq. (2.3), the operators
A(x ,x;=0%) and A(x,, xy=L") are associated with neighbouring degrees of
freedom, and a similar statement holds for operators differing correspondingly in
the perpendicular coordinates. We therefore require (even in the absence of transla-
tional invariance) matrix elements of these operators between physical states |@ ),
|¥ > to be identical,

(P AN |PY>=(D| A(x'"+ Le;) | ¥, (7.13)

where x'” denotes from now on a point on the surface of the box with vanishing
ith component. Similar periodicity requirements hold for matrix elements of matter
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field operators. Performing the gauge fixing transformations (6.15), the matrix
elements of A, between transformed states (6.14) satisfy

<¢,' e,-gé(xm) [eiga(x‘l”JAl(x(”) e—igat(x(l') + i Vl:l e*igf(x(:)) (¥
g
) ; ) i
= (P B + Le l:elg“(’u + L(e')L)Al(X“) + Le;)
o ) i i () '
¢ et +L(e.)1)+§VL:| e~ iR+ Led gy (7.14)

This identity suggests imposing the boundary conditions

A (x4 Le)=u® <Al(x“’) +é Vi> u, (7.15)
with
u = exp{ig(as(x' + L(e;) ) — a5(x ")) x5} for l:=1,2, (1.16)
1 for =3,

for the definition of the normal mode expansion of A, acting in the space of trans-
formed physical states. In this way, matrix elements of each term of such a normal
mode expansion satisfy the continuity requirement (7.13). In principle, expansion in
terms of standard periodic basis functions is still possible; in this case, however, we
expect non-uniform convergence for operators defined on the surface of the box.
Similarly it can be seen that the fermionic boundary condition (2.4) for (x) is
transformed into

Y(x O+ Le)=eu(x?). (7.17)

The change in boundary conditions (7.15)(7.17) induced here by the transfor-
mation of the physical states would be obtained in more standard (or classical)
treatments as a consequence of changing variables. The definition of ' implies that
gauge and matter field operators remain after transformation periodic in the three-
direction. This is a consequence of the periodicity in three-direction built into
the unitary gauge fixing transformation (6.15). The boundary conditions in the
perpendicular directions depend on the precise definition of a;(x ;). As emphasized
above, so far only the exponential of these fields is defined by Eqgs. (4.4), (4.5); like
the original gauge field A4, this exponential is periodic. A general property of the
variables a; is, therefore,

] . o2
aa(x&"+L(e.»)l)—agtxt’)=n;(x&")§§, i=1,2, (7.18)
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with n{ denoting traceless, diagonal matrices with integer entries, and consequently
) = exp { 21 =2 i (x ) =1,2 7.19
u =exp mfn3(xl) ,  i=12 (7.19)

To incorporate the boundary conditions into a dynamical calculation, two different
approaches are suggested by this particular form of #'”, treating the dynamical
variables a,(x , ) either as non-compact or as angular variables. In the first case, one
has to perform the dynamical calculation with prescribed values for ni(x'?) and
study the dependence of the results on these values. This method is expected to be
particularly appropriate for QED, where the continuum limit can be described by
non-compact variables a;(x,) [16] which are manifestly periodic in the one- and
two-directions (i.e., n5(x{’)=0 in our present notation). On the other hand, one
may choose a, as angular variables with (for simplicity x , and color independent)
intervals

posgla; ;(x,)<@o+2m, i=1,.,N—1 (7.20)

(Here and below, we consider the first N — 1 diagonal matrix elements of a; as inde-
pendent variables, whereas a; , will be determined by the condition tr a; =0.) This
yields '™ =1 and therefore periodic (or quasi-periodic) boundary conditions also in
the perpendicular directions. In this case, boundary conditions on the wave
functional of these angular variables have to be specified. To this end one proceeds
as for a quantum mechanical system of particles on a circle. Since the values of a,
corresponding to the endpoints of the interval in Eq. (7.20) describe identical states,
the wave functional at these values must be phase-invariant (fixed color label i and
position x9):

(glas (x8) = (po+6) | @) =e® D gLa, (X)) =(po+2n—e)| D), &0
(7.21)

(We use the Dirac bra—ket notation for wave functionals in the Schrodinger
representation; as indicated, here the scalar product is taken with respect to one
variable only.) Introducing the transformed states |@') (cf. Eq. (6.14)}), the gauge-
fixing transformations are evaluated at values of gLa, ;(x%) which differ by 2x.
Combining these two different gauge-fixing transformations and projecting the
result onto the other dynamical variables yields the following result for the wave

functional:

(ay, (AL, W | D> =e® D a,, A, | & (7.22)

Here, it is assumed that the ith matrix element of a;(x ), | <i< N —1, takes on the
value ¢, at the point x, =x", whereas the other matrix elements are arbitrary
(within the defining interval). The primed and unprimed variables appearing in the
wave functionals, Eq. (7.22), are then related by
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ay(x,) = o(x) (aatxu +§aa) b(x),

(A% (%))’ = 0(x) (A;(x)+ é vl) v(x), (7123)

P (x) =v(x) Y(x).
We have introduced the diagonal matrices

S expl2in(xs/L — 1/2)} + Spnexp] — 2in(xs/L— 1/2)} if x, =x°,

v(X )y =04 1 if x| #£x°
1 Lo
(1.24)

which differ from the unit matrix only for those values of coordinates and color
components for which the changes in a; occur. As our notation indicates, proper
definition of these quantities requires a discretized formulation of the theory. The
interpretation of this result is straightforward. Primed and unprimed dynamical
variables are related by (in the continuum limit discontinuous) discrete gauge trans-
formations; therefore, the wave functionals for these two sets of values can only
differ by a phase, the eigenvalue of the corresponding local, discrete gauge trans-
formation. The N — 1 independent phases @'(x, ) can be arbitrarily prescribed at
each x ;. The relevance of this freedom of choice is not clear to us, in particular,
in view of the discontinuities involved with the continuum limit. One therefore
might be tempted to assume physical states to be strictly invariant (up to the global
component to be discussed in Section 8) under the discontinuous gauge transforma-
tions (7.23), {7.24). On the other hand, such discontinuities may be used to
incorporate non-trivial topological properties into the formalism, as is suggested by
the example of compact QED (cf. [23, 24]).

A priori it is difficult to decide which of the two treatments of boundary condi-
tions is more efficient. As emphasized above, the non-compact version might be
most convenient for the continuum limit, provided »’ can be chosen as in QED to
be x -independent. In the context of (1 + 1)-dimensional QED (the Schwinger
model), the connection between compact and non-compact formulations has been
explicitly established [25]. It is remarkable that this possibility of an explicit
continuum formulation is much less obvious in the non-abelian case. Here the need
for a discretized lattice formulation in the perpendicular coordinates arises inde-
pendently, as a consequence of a proper definition of the Jacobian associated with
the two-dimensional degrees of freedom. It thus appears that even on a symbolic
formal level, the construction of a Hamiltonian for QCD with unconstrained
degrees of freedom is possible only after some discretization.

The above discussion suggests more general options for proceeding in the gauge
fixing by not accounting explicitly for the periodicity of certain variables, provided
dynamical boundary conditions are admitted. Such representations might be
particularly useful in cases where the dynamics of the boundary conditions can be
described by slow variables in the context of a Born—-Oppenheimer approximation.
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Within the class of axial gauge like representations, one might in particular
consider gauge fixing transformations which are not periodic in x;. For instance,
omitting the second of the three unitary transformations in the definition of U of
Eq. (4.3), one arrives at a representation in which the fields a; appear only in the
form e In this case, the Hamiltonian acquires its dependence on these variables
only through the resolved Gauss law; additional dependences on these two-dimen-
sional fields appear in the boundary conditions relating the other degrees of
freedom in the three-direction. Standard periodic boundary conditions for the
perpendicular directions are obtained. This alternative gauge fixing procedure is
outlined in Appendix E.

8. RESIDUAL GAUGE SYMMETRY

The process of elimination of redundant variables from the Hamiltonian in the
physical sector of the Hilbert space has been possible only due to the local gauge
invariance of the original Weyl-gauge Hamiltonian (Eq. (2.16)). The dynamics
formulated in terms of unconstrained variables in turn does not exhibit anymore
this local gauge invariance. However, global residual gauge symmetries might still
be present. The possibility for such global gauge symmetries arises since the Gauss
law operator defining the physical states and the operator generating the local
gauge symmetry transformations are not identical. As a consequence, the local
gauge transformations performed in the large Hilbert space do not all reduce
necessarily to the identity in the space of physical states. The residual global gauge
symmetries of QED have been explicitly constructed [16] and have been shown to
be useful in characterizing the different possible phases of matter coupled to radia-
tion. Similarly, discussion of the residual global gauge symmetries of QCD might
be expected to be helpful in characterizing the confined phase.

Ideally one would like to calculate the local gauge symmetry transformations £
in the representation defined by the gauge fixing transformation U[{, a] of
Eq. (6.15),

Q[p1=ULE a1 RQIPTUE 2] (8.1)

Here, Q[f] is the unitary gauge transformation before “gauge fixing” (cf.
Eq. (2.17)) and is determined by the classical (c-number) function f(x). In QED the
reduction of the local gauge symmetry in the large Hilbert space to the global
residual symmetries of the physical sector can be followed in detail. In QCD, in the
absence of a fully explicit representation of the unitary gauge fixing transformation
U[¢&, o] this is not possible. However, we are still able to calculate the effect of the
residual gauge transformations on the operators appearing in the Hamiltonian of
the physical sector. The procedure of our calculations indicated in the following
diagram makes use of the two different ways by which gauge transformed operators
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¢’ in the axial gauge representation can be computed starting with the original
operator (.

O —2 ¢

Ul l
—0

In the course of this investigation, the general structure of the transformations §2
will be determined; however, in contrast to QED, we shall not be able to relate
explicitly the parameters characterizing the action of £ in the space of physical
states with the gauge functions determining £2. Before proceeding in this calcula-
tion, we have to discuss the constraints imposed on the gauge function §(x) by the
boundary condition on gauge and fermion fields, respectively. These boundary con-
ditions restrict the freedom of locally choosing the gauge. The transformed gauge
fields must satisfy the same boundary condition as the original ones (¢f. Eq. (2.3)),

) i ) . i .
eBfix+Le) (A(x + Le,-) + - V> o "B+ Lep _ ,ighix) (A(X) + - v) e ~Ehx). (8.2)
g g

Introducing
Y(x) = #Pxt+Ledgighix) (8.3)
condition (8.2) reads
VY (x)—ig[ A(x), Y(x)]=0. (8.4)
Since Y(x) is not a functional of A(x) we find
[A(x), Y(x)]=0 forall A(x). (8.5)

Therefore, Y(x) must be an element of the center of the group which, furthermore,
must be x independent:

Y(x)=e®", Y(x)eZ,  e?=e*™N,  pn=0,1,.,N—1. (8.6)

Here, ®@" is an element of the Lie-algebra. The transformation of the fermionic
boundary condition (2.4) further restricts the choice of the gauge functions,

Y(x)=1. (8.7)

We will keep the more general option (8.6) for the gauge function f(x) which
permits discussion of purely gluonic systems. Thus, in summary, the choice of the
gauge function is restricted by the periodicity requirement:

BB+ Le) — o —i®" Ligh(x) (8.8)
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Fundamental to the following analysis is the well-known transformation property
of the path-ordered integral (defined in Eq. (4.1)) under gauge transformations.
Using the fact that the gauge fixing transformation U[¢, a] leaves the gauge field
As(x) unchanged, we have

Q8] eigr(x)QT[ﬁ] - Q[B] eigr(x)gjf[ﬂ] = eigﬁ(x)er‘gdx)e—igﬂ(n)’ (8.9)
with
B(x.):=B(x ., x;=0), (8.10)

as can be easily derived by using the differential equation (4.2). A special case of
this result is (cf. Egs. (4.4), (8.8))

Q[ﬁ] eige(n)_(}'r[ﬂ] = g~ 1" piEB(XL) pigb(x1) 5 —igBx1) (8.11)

The variable a,(x , } defined in Eq. (4.5) transforms as

QLAY =D G fl=e P u(x ) eV il (x ), (8.12)
with
u(x,)=e®PxV it gigh (8.13)
and
Q[ﬁ] e‘g"f)*[/}] — p8Blx1) pigd 5 —igB(x1) (8.14)
Defining
OLBY as(x ) QBT =ulx ) as(x ) u'(x)), (8.15)

the relation above is written as
eEBX L — o —iP" pigasix1) L (8.16)

This equation implies that with a;(x ) also aj(x ) is diagonal with the expansion
coefficients,

N-1 ) A".CO
a(x,)= Y af*(x1) 5, (8.17)
cg=1
being related by
ay(x )=ay(x, )+43 (8.18)
The symbol 67 denotes the three-component of the vector

1 N
5m=g_L Y AP2nk,—®7), (8.19)

i=1



344 LENZ, NAUS, AND THIES

and the integers of the vectors k; satisfy

Kal
]
e

(8.20)

I =

Similarly, the vector
@ = (D", ™, P7) (8.21)

denotes a set of three generators of center elements of the group (cf. Eq. (8.6)). We
furthermore can read off from Eq. (8.15), together with Eq. (8.17), the general
structure of the operator u(x , ). According to Eq. (8.15) u is a SU(N) matrix which
transforms the diagonal into diagonal SU(N) matrices. These transformations form
a group G, and it is seen easily that each element of this group can be written as
a product,

u(x )= Re'®*"x), (8.22)

Here w®(x ) is an element of the Cartan subalgebra,

N1 A('o

o¥(x)=Y w"°(xl)—2—, (8.23)

cg=1

and R is a discrete transformation which generates a permutation of the basis vec-
tors. In SU(2), R is either 1 or ig,. In SU(N), R is a matrix of the N-dimensional
representation of the symmetric group S,, with the matrix elements multiplied, if
necessary, by exp(in/N) to ensure the unit determinant. Thus in SU(3) the transfor-
mations can be visualized as the symmetry transformations of an equilateral
triangle with the three colors associated with the vertices. The transformations can
also be characterized by the matrix elements R““ defined by
A 24

R'SR=R' % (8.24)

With these results for the transformation of 7(x), a,(x,), and 4(x ), it is
straightforward to calculate the transformation of ¢(x) defined in Egs. (5.9) and
(4.3),

elgélx) _ Q[B] e QT[B] = P81y (x), (8.25)
with
N-—1 A“'Co
u(x)=u(x)exp {ig > 69 ~2—x3}. (8.26)
cp=1

Next we transform the basis states {, , given in Eqgs. (4.15), (4.16). Using
Egs. (4.14) and (4.17), we easily show that

Q[‘B] Z(QQ*[I}] = eigﬁ(xL)RCO,duzdoe-- gP(x1) (8.27)
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which yields
QLT Lop, n(x) Q[ B] = PO RO DL, (x) € 5N, (8.28)

Using this result and Eqgs. (5.14), (5.24), finally the transformed momentum
operator p3 defined in Eq. (5.13) can be computed with the result that

Q[B] pP(x,) QT[T =R %pP(x ). (8.29)

The transformation properties of the two-dimensional gauge fields a;(x,) (Egs.
(8.15), (8.18}) and of the conjugate chromoelectric fields p;(x , ) (Eq. (8.29)) are the
main results of this first step of construction of the residual gauge symmetry. With
regard to its effect on these degrees of freedom, an arbitrary local gauge transforma-
tion becomes converted in the process of gauge-fixing via unitary transformations
into a gauge transformation of specific structure, consisting of a space independent
transformation (R) and a spatially varying one generated by the Cartan subalgebra.

We now turn to the transformation of the other operators appearing in the
Hamiltonian relevant for the physical sector. These operators are also affected by
the two-dimensional Coulomb-gauge-fixing transformation (6.6). Using the trans-
formation properties of A (x), Egs. (2.21), (54), (6.9), and following the general
scheme outlined above, we find that

Q[,B] eigm(qul(x) eAiga(n)QT[ﬁ] = u(x) (eig“("*]Al(x) e~ fgxtxL) +£ V_L> u*(x),
(8.30)

Since the gauge function a(x ) is neutral {(cf. Eq. (6.7)), the transformation proper-
ties of the ¢, color components of A, are particularly simple; the effect of the
transformation arises exclusively from the x; independent parts of the gauge fields.
According to the definition equation (6.1) of the gauge fields a |, we obtain

QLI (x ) Q'[BT=Rla'(x )+ V. (0x )~ wl(x,))] R" (8.31)

We have separated »°(x ) into a linear part »9(x ) and the rest. The subtraction
of the linear part is necessary, since the longitudinal fields do not have a zero-mode
(cf. the definition of the Greens function 4 in Eq. (6.3)). Thus, with Eq. (6.7), the
transformation property of the gauge function « follows:

d(x )= QAL a(x ) Q' [f1 = R[a(x ) +°x )~ wfx )] R. (8.32)

We now can complete our calculation of the transformation of the transverse fields
A’ (x) defined in Eq. (6.19). As Eq. (8.30) shows, the effective gauge functions are

s . N . 0
eﬂg«(n)u(x) etga(xu=Rergw,<xl’ (8.33)
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with (cf. Egs. (8.26), (8.19))

o N—1 o l(-o R o A.CO
w)(x)= ) 85 3 x;+od(x,)=x-8 Ex (8.34)
cg=1

Incorporated into this parametrization of the linear function w?(x , ) are the restric-
tions imposed by the boundary conditions on gauge and possibly fermion fields.
In terms of this linear function with values in the Cartan subalgebra, the transfor-
mation of A’ reads

OIB1 A (x) B[ B] = Rzl (A;(x) + g’; Vi) e ~EOIORY, (8.35)

Following the same general scheme, the transformed fermion fields can be evaluated
with the result:

QAT Y(x) B[ B]= Re**i®y(x), (8.36)

Finally, the conjugate momenta transform covariantly under these transformations
generated by linear gauge functions,

Q[BTIT, (x) B'[B] = Re*™I™IT, (x) e #*I™IR, (8.37)

These results complete the construction of the gauge transformed operators. In
summary, the gauge transformations acting in Hilbert space on the unconstrained
degrees of freedom as appearing in the Hamiltonian (6.15)—(6.22), i.e., the gauge
fields a,(x,), A’ (x) and their conjugate momenta p,(x, ), IT’, (x) reduce in the
process of gauge-fixing on the one hand to discrete transformations R, describing
permutations of the basis vectors of SU(N) with associated unitary transformations
in Hilbert space, 2, and on the other hand to (for L — cv) continuous abelian
transformations generated by the displacement vectors (defined in analogy with
electrodynamics, cf. [197),

1
D‘“z'[dj’x{——z pg"(xl)e;,—l'[’f“(x)-{-gxp“’(x)}, c=1.,N—1 (8.38)

The Hamiltonian H’ of Eq. (6.15) is invariant under both discrete transformations
2 and quasi continuous displacements,
Q H'QY=H', e ~iIDOS [y oD _ py’, (8.39)

In general it might not be practical to implement in an actual calculation from the
very beginning the neutrality condition (Eq. (6.17)); in this case, the system, in
addition, exhibits global gauge symmetries associated with the charges of the
Cartan subalgebra

fo°, H']=0. (8.40)
While this abelian global gauge symmetry commutes with the displacements,

[0, D*]=0, (8.41)
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the discrete transformations do not commute with the continuous ones,
QRD“’QL = RvAD%, QRQ”"QL = Rvb %, (8.42)

In color space, the group G of residual transformations consists of neutral
displacements, neutral, global gauge transformations, and discrete transformations
related to the permutations of the basis vector. Therefore, every element of G can
be written as

u(x)= Rexp {ig?(ﬁ“’+x-6m)}. (8.43)

The neutral displacements and neutral global gauge transformations form an
invariant subgroup H of G; the factor group G/H is isomorphic to the symmetric
group Sy.

In the process of gauge-fixing the original continuous non-abelian local gauge
transformations are reduced to the simple transformations of the group G. For this
significant reduction in complexity to occur, the restriction of our computations to
operators which are relevant for the dynamics in the physical sector was essential.
In other words, the full complexity of the original local gauge transformations is
carried only by the field operators A;(x)—a;(x,) and their conjugate momenta
which, however, have no influence on the dynamics of physical states and which
therefore did not have to be considered. The relation between the original gauge
transformation (cf. the diagram above) Q[ ] and the residual gauge transforma-
tion appropriate for the physical sector [ 7] is not an explicit one. Although we
have been able to determine the general structure of £, our computation did not
yield the relation of the parameters characterizing the residual symmetry transfor-
mations (such as 8, cf. Eq. (8.19)) with properties of the original gauge functions
B(x).

The global residual gauge transformations derived in this section can be verified
explicitly to be symmetry transformations of the gauge-fixed Hamiltonian of
Eq. (6.22). In addition to such an explicit verification, our derivation shows that
there are no other residues of the infinity of symmetries of the original Weyl-gauge
Hamiltonian (2.9).

9. SUMMARY OF THE FORMALISM AND INTERPRETATION

In the first part of this concluding discussion, we shall summarize our derivation
of the axial gauge representation of QCD and emphasize the relevant structural
elements of the method. In the quantum mechanical framework of the Weyl-gauge
formulation of QCD (A4,=0), elimination of redundant variables is achieved by
implementation of the Gauss law constraint. The first step consists in selecting
among the degrees of freedom appearing in the Gauss law those which are
supposed to be eliminated from the dynamics in the physical sector. Success of this
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procedure is guaranteed by the local gauge invariance of the Hamiltonian. In
SU(N) gauge theory there are N>—1 such redundant variables per space point
which, by implementing Gauss’s law, can be eliminated from the Hamiltonian.
Thereby the degrees of freedom are reduced to two polarization states of the gluons
per space point or momentum. Although to a large extent arbitrary, this choice of
redundant variables may be restricted by certain topological constraints as, for
instance, embodied in the boundary conditions. In the axial gauge representation,
gauge fields of a fixed cartesian component, the N?—1 three-components, are
declared as redundant variables. This choice implies the decomposition of the
Gauss law constraint

DIl |D)= -G, |P) (9.1)

into the contribution of the three-component of the chromoelectric field and the
corresponding perpendicular components including the quark color charge density.
Consequently, the operator G |,

G,=D, 10, +p,, (9.2)

appears as one of the fundamental building blocks in the construction of the axial
gauge Hamiltonian. In the second step the action of /7, on the physical states has
to be expressed by that of the operator G, . To this end, the three-component of
the covariant derivative in the adjoint representation

Dy=0;—ig[A4,, (9.3)

has to be inverted. Despite the dependence of D, on the gauge field component A5,
this inversion is possible and is facilitated after performing a unitary gauge-fixing
transformation. As a result of this transformation, the N2 — 1 gauge field variables
A4 are eliminated from both the Hamiltonian and the covariant derivative in favor
of N — 1 two-dimensional gauge fields which can be represented as diagonal SU(N)
matrices,

N-1 ) Aco
A3—+ Z 0(30 '5" (94)

co=1
The unitary transformation acts as a gauge transformation on the perpendicular
and quark degrees of freedom, with gauge functions depending on the three-
components of the gauge fields. It rests upon the decomposition (9.1) in which both
terms G, and D, /1, satisfy the “angular momentum algebra” of the full Gauss law
operator. The significant simplification of the covariant derivative

D;—>d,=0,—igla;, (9.5)

does not come as a surprise. As is well known, transformation of the variables by
the standard path-ordered exponential P exp(ig I dzA,) effectively converts the
covariant derivative D, into the ordinary derivative é,. Here, this transformation is
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not legitimate since it does not preserve the boundary conditions. However, this
defect can be cured at the expense of keeping the two-dimensional, diagonal gauge
fields a;. Concomitantly, in the space of physical states, the three-component of the

chromoelectric field operator can be replaced by

Ao ]
H3—Pzp§0"2——z{—GL. (96)

cg 3
Here, the N—1 two-dimensional chromoelectric field operators p%° are the
components of /7, along the eigenvectors of D, or d, with vanishing eigenvalue
which, according to Eq.(9.1), are not constrained by Gauss law. As could be
expected on the basis of a similar effect in electrodynamics [16], the purely trans-
verse gluons propagating in the one-two plane with polarization in the three-direc-
tion cannot be eliminated; less obvious is the fact that after the choice of an
appropriate basis only neutral gluons can propagate in the chosen one-two plane
if they are polarized in the three-direction. Present together with these neutral two-
dimensional gluons are, at this stage, redundant variables among the perpendicular
field components. Physically, they correspond to neutral gluons propagating in the
one-two plane with polarization parallel to the direction of propagation. Indeed the
projection of Eq. (9.1) on the eigenvectors of D; with vanishing eigenvalue also
displays the presence of residual, two-dimensional Gauss law constraints which
remain to be implemented. Since these residual Gauss laws constrain only neutral
degrees of freedom, standard gauge choices applied in the electrodynamics can be
implemented. In particular, by a further unitary gauge fixing transformation, the
neutral, two-dimensional, longitudinal gauge fields a’ (x, ) can be eliminated from
the Hamiltonian; in the implementation of the residual Gauss law the conjugate
chromoelectric field operators p’ (x ) are replaced by chromoelectric static fields
n(x, ) which are generated by the two-dimensional neutral color charge density of
gluons and quarks. With this last step, the Gauss law is implemented—up to an
overall color neutrality constraint. The physical degrees of freedom A’, IT" of this
axial gauge representation are therefore obtained from the constrained variables

A, IT by the replacements,

As(x) = as(x 1), AL(x)— A (x)—al(x,)
1 1, (9.7)
Ix) -7 pa(x ) Dx) =T (0 =7 p(x,).

The Hamiltonian for these unconstrained variables is the original Weyl-gauge
Hamiltonian evaluated with the unconstrained variables and supplemented by the
field energies of the two chromostatic fields generated in the two-step elimination
of the redundant variables,

1
H' = —ifta(V—igA )y +myipy+tr (ﬂ’f+; pips+ B’z)

1 1
+tr (G,_L FG'_L +P1]2> (9.8)
3
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At this point, the formal structure and the physics content of the axial gauge
representation of QCD can be clarified further by comparison with other
approaches. Salient features of the formalism are exhibited by a first and most
obvious comparison with the standard continuum formulation of the axial gauge
representation. This representation is obtained if all the two-dimensional gauge and
chromoelectric fields are neglected. This much simpler formulation would have
occurred naturally had we not properly taken into account in the gauge fixing
procedure the boundary conditions on the gauge and fermion fields. We reiterate
that in this case, the covariant derivative D, would have been replaced by the
ordinary derivative d, which in turn would determine the chromostatic field energy
appearing in Eq. (9.8) (this naive procedure, however, leaves open the question of
a proper infrared definition of d; '). One could therefore suspect that the complexity
of the derivation is due to a large extent to subtleties which become irrelevant in
the continuum limit. The results, however, indicate that it might be just the role of
these two-dimensional fields to properly define the continuum limit. Simple replace-
ment of d, by 7, is not possible as is made explicit by the representation,

@l(3) =5y ¥ o ot
ds AL Y o DL g, (v - a1
(9.9)

Here i, j are color matrix labels and the n =0 term has to be omitted for i=j. For
i#j the n =0 term contributes and therefore the sum is infrared finite only due to
the presence of the two-dimensional gauge fields. It was Schwinger [15] who, soon
after the discussion of the advantages of the axial gauge in Ref. [14], pointed out
the infrared difficulties associated with the ambiguities in the definition of the
Greens function d;' and recognized the need for additional gauge fixing, as is
realized in our formalism by the implementation of the residual Gauss law
constraints.

Understanding the role of these two-dimensional degrees of freedom is sharpened
by comparison of the axial gauge with the Coulomb-gauge representation. Starting
from the Weyl-gauge Hamiltonian, the Coulomb-gauge representation for continuum
QCD has been derived in Ref. [3]; this work has formed the basis for formulations
of QCD on a torus [8, 9]. The crucial step in the derivation is the decomposition
of the Gauss law operator into a piece containing the longitudinal chromoelectric
field TI' and the remainder. To express the action of II’ in terms of the other
variables, the operator

d,=D-V (9.10)

has to be inverted. Since the full vector potential is still present in this operator as
well as in the Hamiltonian, a change of basis is necessary which eliminates the
longitudinal gauge field A’ from the Hamiltonian. This is achieved in Ref. [3] by
a change of coordinates which resembles the change from cartesian to polar coor-
dinates in one particle quantum mechanics. The effect of this coordinate change is
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to replace in the Hamiltonian and Gauss law the full vector potential by the trans-
verse one, including the zero mode operators on the torus. Although formally very
similar, the net result of these manipulations is quite different for Coulomb- and
axial gauges, respectively. The axial gauge Fadeev-Popov operator d; can be
explicitly inverted; note that the expression in Eq. (9.9) involves an algebraic
inverse. The same is not possible for the differential operator d,. As a consequence,
the expression for the field energy of the chromostatic field contains the symbolic
operator inverse d; ' in the Coulomb-gauge representation. In actual calculations
one has to resort to perturbative evaluations of this operator inverse (cf. [8,9]). In
this procedure the well-known “Gribov ambiguities” arise; i.e., field configurations
with zero eigenvalue of d, are present [13] which invalidate a perturbative expan-
sion. In the axial gauge representation, such field configurations are also present;
indeed the variables a, ; and a, ; may have identical values, in which case d;'
becomes singular (cf. Eq. (9.9)). However, this singularity is as little disturbing as
is a centrifugal barrier in quantum mechanics.

Thus, unlike QED, QCD surprisingly appears to be described in simpler terms
in the axial gauge rather than in the Coulomb-gauge representation. Manifest rota-
tional invariance of the Coulomb gauge seems to be less of an advantage than the
explicit inversion of the Fadeev-Popov operator in the axial gauge. Formally, the
axial gauge is favoured since it is based on a decomposition of the Gauss law which
preserves the algebraic structures typical for gauge symmetries. Physically, radiation
of static charges, which is conveniently eliminated in the Coulomb-gauge represen-
tation of QED, occurs in QCD and has to be described by the complicated
coupling of the longitudinal chromostatic field with the transverse gluons.

A completely different class of representations of gauge theories is constructed if
the longitudinal chromoelectric field is fully retained as a degree of freedom, and the
redundant variables are chosen among the degrees of freedom which determine the
(color) charge density. In scalar QED this procedure yields the unitary gauge
representation with the (local) phases of the Higgs field eliminated from the
Hamiltonian as redundant variables [19]. In QCD such representations have first
been derived in Ref. [26] and later in Refs. [27, 28]. In Ref. [26], the Gauss law
is used to solve (within SU(2)) for three particular, local, non-linear functions
of the nine gauge field components A¢. Since no differential operator has to be
inverted, this representation—unlike the Coulomb- and axial gauge representa-
tions—preserves the locality of the original Weyl-gauge Hamiltonian. In scalar
QED, the locality of the Hamiltonian in the unitary gauge representation is
intimately related to the generation of massive photons in the Higgs phase. One
therefore might expect that a study of the relation between local and non-local
representations of the QCD Hamiltonian will help to understand the nature of the
confining phase of QCD.

We now return to the discussion of the axial gauge representation of QCD. The
comparison with other approaches points to the particular dynamical role of the
two-dimensional gauge fields. Resolution of the Gauss law introduces non-pertur-
bative features into the Hamiltonian, and we emphasize that these non-perturbative

595/233/2-14
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infrared properties are exclusively carried by the two-dimensional degrees of
freedom. It is the presence of these degrees of freedom which prevents expansion of
the Hamiltonian in powers of the coupling constant as well as a simple transition
to the continuum limit. The singular dependence of the Hamiltonian, Eq. (9.8), on
the color neutral gauge fields a; is that of a centrifugal barrier (cf. Eq. (9.9)) which
yields infinite repulsion for field configurations which approach the “Gribov
horizon.” In full analogy with quantum mechanics of a particle formulated in polar
coordinates, at this point of infinite repulsion, the Jacobian which is associated
with the “radial momentum,” vanishes. This Jacobian appears when defining
components of the chromoelectric field operator I7; with respect to the dynamical
basis such as is generated by the eigenvectors of the covariant derivative D,, or
equivalently d,. The appearence of such Jacobians when using the curvilinear
coordinates of the Coulomb-gauge representation has been emphasized in Ref. [3].
In the axial gauge representation, this Jacobian appears only in the definition of the
kinetic energy of a; and does not, as happens in the Coulomb-gauge, affect the
other degrees of freedom. In SU(2), where only one independent, neutral two-
dimensional gauge and conjugate chromoelectric field exists (a; , = —a; ), the
Jacobian associated with this degree of freedom at fixed discretized x|, ; is

Ji=Sin2(gL03,l(xl.i))s (9.11)
and the kinetic energy appears as

0 0

1
tr( t(x Jpix, ) —— J; . 9.12
PalXa i) Pat¥s J; aaa, 1(x..7) 6‘13, l(xi, i) ( )

As for polar coordinates, this Jacobian can be removed totally from the
Hamiltonian by a redefinition of the wave functionals of physical states. In general
this yields an effective potential. For the radial wave function (in three dimensions)
it is zero; here it is constant and, consequently, irrelevant. Furthermore, the
analogy with polar coordinates suggests vanishing of the reduced wave functionals
P[a,] at the zeroes of the Jacobian,

Pla;]1=0 if gla,,(x, )=nn  foronei (9.13)

In comparison, the axial gauge representation of electrodynamics does not
exhibit any of these non-perturbative features [16]. Zero-mode gauge and electric
fields also appear in this case; they are, however, defined as components of 17, with
respect to the eigenfuctions of the ordinary derivative d; and consequently neither
a centrifugal barrier nor a non-trivial Jacobian emerges from this projection. In
contradistinction to QCD, the axial gauge representation of the QED Hamiltonian
exhibits also after implementation of the Gauss law the trivial perturbative limit of
free photons and, furthermore, the continuum limit can be straightforwardly
approached. Therefore, the particular infrared properties of the Hamiltonian,
Eq. (9.8), are exclusively due to the gluonic self-interactions. One thus may
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speculate that confinement is related to the appearance of the Jacobian (9.11)
which effectively makes, together with the boundary condition (cf. Section 7), the
variables a; ,(x,) compact (the physics of such Jacobians has been emphasized,
e.g.,, in Ref. [29]). Such a speculation is supported by numerical results from lattice
simulations which indicate the absence of confinement in non-compact QCD,
cf. [30-32].

[ntuition about possible mechanisms for dynamical infrared regularization
through degrees of freedom of lower dimension can be gained by a study of (1 + 1)-
dimensional QCD. In this case, the zero momentum neutral gluons play the role of
the two-dimensional fields a;, p; and these quantum mechanical degrees of freedom
have been suggested to be necessary for a proper infrared behavior of QCD,
[33]. Indeed, investigation of SU(2) QCD, ., in the presence of static charges
shows [34] the disappearance of colored hadrons to be a result of the dynamics of
the neutral zero-momentum gluons. After projection onto the subspace of singlet
quark states, the zero-momentum gluons can be neglected in the continuum limit.
Thus these zero-momentum gluons play a crucial role in eliminating certain states;
however, being of lower dimension, they never manifest themselves as physical
degrees of freedom.

The structure of the Hamiltonian, Eq. (9.8), similarly suggests associating with
the two-dimensional gauge field degrees of freedom infrared properties such as
confinement; in this case one again might expect the perturbative regime of QCD
not to be affected by degrees of freedom of lower dimension. Such an analysis could
be carried through, for instance, in the effective Hamiltonian approach developed
in Ref. [8] (see also [9]) in the context of the Coulomb-gauge representation.
Unlike the effective Hamiltonian for the zero-momentum gluons in the Coulomb-
gauge representation with its perturbative expansion of the inverse of the differential
operator d, (cf. Eq.(9.10)), an effective Hamiltonian for the two-dimensional
gauge fields in principle has the chance for describing confinement in the continuum
limit.

Independently of such a more detailed and approximative dynamical study, an
investigation of the symmetries of the axial gauge Hamiltonian, Eq. (9.8), might
reveal the possible phases of the quark gluon system. The axial gauge Hamiltonian
with its unconstrained degrees of freedom no longer exhibits the local gauge
symmetry of the Weyl-gauge Hamiltonian. However, as in electrodynamics, the
gauge symmetry does not disappear completely: residual gauge symmetries are left.
Not all of the gauge transformations acting in the large Hilbert space of the Weyl-
gauge Hamiltonian reduce to the identity in the physical sector. Determination of
the residual symmetries in the space of physical states is an important issue and can
either be carried out by an analysis of the Hamiltonian, Eq. (9.8), or by following
the change in the local gauge transformations when applying the gauge fixing trans-
formations. The result of this investigation is in close analogy to the corresponding
one in electrodynamics.

The residual global gauge transformations leaving the Hamiltonian (9.8)
invariant read in component notation:
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27! Ny ;
a3»i(xl)—’alv,i(x_l_)'i'g‘_l:(k;,i-}-—;}—),
P (X)) = p3i(xy),

(A'l(x)),-j—»e"[z"“"*kﬁ(“"_“f’/N’"/L“ﬁf‘ﬁf”(Al(x))-»

i
2n n,
’ .,gL( =t N)’

(H'_L(x))ij_,ei[Zn(kﬁkﬁ(n,~an/N)x/L+(ﬂ,—ﬂ,)](nl(x))

Pi(x) — e/ PHL By, (x),

(9.14)

ifs

The integer vectors k; specify the N —1 vector symmetries, the “displacements”
(XX, k,=0). The continuous parameters f8; specify residual global phase rotations.
In order for the Gauss law constraint to be satisfied on the torus the physical states
must be invariant under these global rotations. Furthermore, in the absence of
quarks, the QCD Hamiltonian is invariant under symmetry transformations given
by the elements of the center of SU(N) [35]. These “central conjugations” [8] are
characterized by the integer vector

n, = (ny;, ny, N3;),s
Ry = Vi for i=1,..,N—1, my=—(N—1)v,, (9.15)
vee {01, ., N—1}, k=1,273.
In the presence of quarks this symmetry is absent and only n,=0 generates
symmetry transformations (9.14) of the system.
In addition to the displacements and central conjugations, the “gauge fixed”

Hamiltonian (9.8) is invariant under discrete symmetry transformations given by
permutations of the basis vectors,

as ;= a3 pu)s
D3 i ™ P3 py»
(A")y = (A'L) poy, pij)s (9.16)
(H/L)xj - (H,_L)P(i), P(j)»
Vi ¥,

with (P(1), P(2), .., P(N)) denoting a permutation of the N matrix indices of
SU(N). In general, discrete and quasi-continuous symmetries do not commute.
The following discussion focuses on the symmetry transformations involving the
two-dimensional degrees of freedom a, ,(x,). The effect of the symmetry transfor-
mations on these gauge variables is illustrated in Fig. | for SU(2) and SU(3), where
also the points and lines of singularities of the Hamiltonian or, equivalently, the
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Fi1G. 1. Points (SU(2)) and lines (SU(3)) of singularities of the Hamiltonian (9.8) (or, equivalently,
zeroes of the Jacobian (9.11), (9.12)). The arrows indicate the symmetry transformations discussed in
the text. Also shown is the fundamental interval (SU(2)) and square (SU(3)) for the variables a; ,,
corresponding to the choice ¢, = —n (cf. Eq. (7.20)).

zeroes of the Jacobian are shown. It is the interplay between symmetry transforma-
tions and these restrictions from the dynamics which are typical for the non-abelian
gauge theories and may be crucial for determination of the phases of QCD.
Displacements shift the fields a5 ; by multiples of the fundamental value 2n/gL
and are accompanied by rotations of quarks and off-diagonal gauge fields. Central
conjugations are correlated shifts in the values of a; ; which are accompanied by
corresponding rotations of the off-diagonal gauge fields. The central conjugations
are in SU(2) a shift in a; |, by the value n/gL, ie., half of the displacement, and
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in SU(3) a_shift of the fields a; , and a. , along the diagonal by the value
(2n/3gL)\/§. The discrete transformations (9.16) describe reflections of a; | at
a, =0 for SU(2) and can be generated in SU(3) by the two symmetry transforma-
tions,

Pyra; | —as,, a3 2—>4d; y, (9.17)

Pyiay = —(as +as ;). A3 2> a3 ;.

The effect of these transformations is to interchange the set of dotted and dashed,
and the set of dashed and dash-dotted lines of singularities, respectively. Also
indicated in Fig. 1 are the elementary interval (for SU(2)) and the square (for
SU(3)) to which the gauge variables may be restricted. The discrete symmetry P,
does not leave invariant the square.

The origin of the displacement symmetries is most easily seen, in close analogy
to electrodynamics, by rewriting the equations of motion for the electric field with
the help of the continuity equation for the color current as a set of 3x (N2 —1)
continuity equations

0
5 2%, 1)+ 0(Fi(x, 1) +gx, ji(x,1))=0. (9.18)

Here, in analogy with Maxwell’s displacement vector, the color displacement field
operator has been introduced,

2= —II“+ gxp“ (9.19)

The total color current is given by
] t ,{ﬂ abc b <
Ji=yla, sy +fTF A (9.20)
Consequently, the space integral of the displacement field operator
D= [ d*x 2°(x) (9.21)

generates N2 —1 vector symmetries of the quark gluon system. In the process of
gauge fixing, it is the set of color neutral displacements which do not become
reduced to the identity in the space of physical states. In electrodynamics, both
possible realizations of the displacement symmetry are known. Scalar and spinor
QED are realized in the Goldstone mode with the photons as Goldstone particles,
while the Wigner-Weyl mode is realized in systems with macroscopic charge
densities (or equivalently condensates) like the plasma or the abelian Higgs
model [19].
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The appearance of the N—1 global abelian symmetries is reminiscent of the
appearance of the U(1)¥~! residual local gauge group in the abelian projection
[36, 37]. Indeed, these N —1 local U(1) gauge symmetries can be reduced exactly
to the N—1 displacement symmetries by completely fixing these local gauges by
unitary transformations, as has been shown for QED [16]. Equivalently, these
N — 1 local abelian degrees of freedom would have appeared in our formalism, had
we reinstated, in complying with the boundary conditions, a complete diagonal
gauge field 4,(x) instead of the zero-modes a,(x ;). This amounts to replacing

€0

X3
a3(xl)x3—>fo dz AD(x,.2) 5 (9.22)

in U, cf. Eqgs. (4.3)-(4.5). Thus, following ’t Hooft notation, one may consider the
N — 1 neutral components of A as N — | photons; they are simply shifted globally
under displacements (cf. Eq.(9.14)). On the other hand, the phases of the off-
diagonal components of A—the fields (A’, },—and of the quarks are rotated by the
residual gauge transformations (Eq. (9.14)). Consequently, both quarks and off-
diagonal gauge fields may be considered as electrically charged with respect to the
N — 1 photons. As in the abelian projection, QCD in the axial gauge representation
can thus be interpreted as N — 1 photons (A, a3) coupled to a system of N>— N
interacting charged gluons (A’f, ¢ #¢,) and N charged quarks. The advantage of
this formulation is the common basis for describing the dynamics of quarks and
gluons and its potential for understanding confinement of both types of degrees of
freedom via their electric charge.

Pursuing this analogy with the abelian projection, we also recognize the
similarity in origin of the singularities in the Hamiltonian of the axial gauge
representation when a; ;=a; ; (cf. Egs. (6.22), (9.8), (9.9)) and of the magnetic
monopoles in the abelian projection. In both cases these singularities arise when the
diagonalized gauge condition contains identical matrix elements. Keeping in mind
the obvious differences in the choice of gauge, this comparison suggests a relation
between the singularities of the Hamiltonian (9.8) and monopole configurations in
the abelian projection. It is also remarkable, although not completely unexpected,
that the kinetic energy via the zeroes of the Jacobian prevents the system from
reaching these singular configurations even for vanishing centrifugal barrier.

Such a description of QCD emphasizes the similarities to QED, and we shall use
this analogy further to gain understanding of the symmetries and dynamics of
QCD. First, and as a mere consequence of symmetry considerations, we note that
the presence of the N —1 global, quasi-continuous symmetries implies that SU(N)
QCD will exhibit at most N-—1 massless vector particles arising from the
spontaneous breakdown of the N —1 displacement symmetries. There is no residual
gauge symmetry which by its spontaneous breakdown would leave the “charged”
gluons massless after switching on the coupling constant. This is in contradistinc-
tion to QED, where it is exactly the displacement symmetry which guarantees the
existence of massless photons even after turning on the coupling to the electron-
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positron field. In the non-abelian case, the symmetry of the free theory (g =0) does
not continuously carry over into the interacting theory. This fact should be relevant
when characterizing the phase changes in the confinement-deconfinement
transition.

The issue of emergence of massless, neutral gluons via spontaneous breakdown
of the displacement symmetries is ultimately decided dynamically. Indeed one
expects, in close analogy to electrodynamics, also in the non-abelian case, different
realizations of the displacement symmetry. In the confined phase with its absence
of massless Goldstone particles the displacement symmetry is expected to be
realized in the Wigner—Weyl mode. At this point the dynamical origin of the
Wigner-Weyl realization is not understood. In analogy with the abelian Higgs
model, one might expect the presence of the gluon condensate to dynamically
favour the Wigner-Weyl realization. In order to display this possible connection
between the gluon condensate and confinement, we consider the magnetic field
energy associated with the two-dimensional fields (for SU(2) color),

2
[@x (B2 +BY) =2 [d’x T [(3xar )+ (0544 11)]
k=1

2
+2Jd3x Z ((0;+ 2igas ) ¢ 103 + 2igas ) #, 1" (9.23)
k=1

In order to emphasize the analogy with the abelian Higgs model, we have
introduced the complex scalar fields describing the charged gluons
Pe(x)=(4 (X)), k=12 (9.24)

Significant changes in the dynamics occur if the “Higgs-field” develops a non-
vanishing expectation value,

2 Z (i) = Z (A Ak ;0 #0. (9.25)
k=1,2 k-l

Since the operator ) .., A, ;A ; is invariant under the residual transformations
(9.14), formation of the condensate is not ruled out by gauge invariance and a
dynamical issue. Furthermore, this operator is part of the B? operator and the
presence of the gluon condensate therefore suggests also the non-vanishing of the
vacuum expectation value (9.25). Thus the presence of the gluon condensate and
the absence of the massless excitations are properties which are likely to be both
related to the Wigner—Weyl realization of the displacement symmetry. By these
symmetry considerations we could not distinguish the Wigner—Weyl realization in
the Higgs-phase with massive gluons from that of the confined phase. This is in
agreement with general results on the phase structure of non-abelian gauge theories
with bosons in the fundamental representation obtained in the context of the lattice
formulation [38, 397]. On the other hand, the presence of a gap in pure Yang—Mills
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theories as, according to the above arguments, is suggested by the presence of the
QCD gluon condensate, might be sufficient for causing confinement (cf. [40]).

Our discussion of the displacement symmetry indicates the possibility of
Goldstone phases in non-abelian theories with N — 1 rather than N2 — 1 massless
gauge particles. This possibility seems to be realized in the Georgi—-Glashow model
[41]. Our formalism straightforwardly applies to this case if the color density of
bosons in the adjoint representation,

pr=1"¢%¢", (9.26)

is substituted for the quark color density and if the minimally coupled fermionic
Hamiltonian is replaced by the bosonic one. This model is supposed to contain (in
color SU(2)) one massless particle, the “photon,” which within our formalism is
naturally interpreted as the one Goldstone boson associated with the spontaneous
breakdown of the displacement symmetry. Thus, following this line of arguments,
in the ground state of a pure Yang-Mills theory, the displacement symmetry is
realized in the Wigner-Weyl mode and exhibits confinement. Coupling of matter in
the adjoint representation may lead to a spontaneous breakdown of the displace-
ment symmetry with the emergence of a “photon” as a Goldstone boson; in
agreement with these symmetry considerations, the N2 — N charged vector particles
do not become massless. In contradistinction to QED, the Goldstone phase in
non-abelian theories is realized only as a result of the interaction with matter.

Beyond these symmetry considerations, the axial gauge representation of QCD
presented here opens new perspectives for dynamical investigations. In this context
a study of the dynamics of the two-dimensional degrees of freedom a; ,(x )} appears
to be particularly promising. In the axial gauge, these degrees of freedom are
singled out and the description of their dynamics is most radically affected by the
unitary gauge-fixing transformations. Also in the axial gauge representation of
QED, these degrees of freedom play a special role. They describe, for vanishing
coupling (e=0), free photons propagating in the one-two plane with the electric
field pointing along the three-axis. It is remarkable that such a simple limit of freely
propagating gluons does not exist in QCD. The presence of boundary conditions,
Jacobians, and centrifugal barriers reflect the non-linearities of the original Weyl-
gauge Hamiltonian and Gauss law constraint. Moreover, they prevent simple
appearence of non-interacting gluons in the weak coupling limit. Therefore, study
of these novel aspects in the axial gauge representation of QCD could be useful for
the issue of confinement. The axial gauge representation of QCD also opens new
possibilities for studying other non-perturbative issues like the f-vacua and the
U(1)-anomaly. In general, these phenomena are investigated before gauge fixing
[2]; there one studies topologically non-trivial field configurations or gauge trans-
formations which act in the large Hilbert space of Weyl-gauge QCD. The projection
of such transformations onto the physical subspace is not fully understood. Conse-
quently, the physics implications of such constructions are not straightforwardly
derived (cf. [20]). New tools for performing such investigations are provided by the
technique of gauge-fixing via unitary transformations developed here.
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Finally, the potential of quantum mechanical gauge-fixing by unitary transfor-
mations can be used to extend these investigations towards other choices of the
redundant variables to be eliminated with the help of Gauss’s law. In this context,
the established relation to QCD in the abelian projection suggests a choice of the
gauge where the neutral gluons are kept completely as degrees of freedom, whereas
part of the charged gluons are eliminated. Furthermore, insight into the relation
between non-abelian theories with a confining or Goldstone phase, respectively, can
be expected from the construction of the unitary gauge representation of the
Georgi—Glashow model.

APPENDIX A: EVALUATION OF p$' — p¥

As a result of the dynamical basis used in Eqgs. (3.6)-(3.7), the projection p3(x )
of IT, onto {, , is not hermitian. In this appendix, we evaluate the hermiticity
defect,

léCﬁo,o(X)
i o8AN(x)

cpt )

L
Ds (xl)_p3(xj.)=£] dx (A.1)

Our starting point is Eq. (5.15) which, together with the general operator identity

L
eB[A,e‘”]=J dre'®[B, A] e~ "2, (A.2)
0
can be used to derive
518(x)
=60(x,— o¥(x, — See T 1(x)). (A3
3A%(Y) (x3—y3) 6" 7(x, —y ) S“(yN (x)) )

Here, we have introduced the matrices

S(z) = Lir(e ~i#70) opisrazb), (A.4)
NS B IR
Tah — —igr(z) igt(z)
@ =(e " )
1o . .
=St [ di(emermgogisrgs), (A.5)
24

Specializing Eq. (A.3) to x; =L allows us to convert Eq. (A.1) into

1022 (x,
P (x ) —p(x,) = L5®(0) 75%% (T '(x,, L)) (A.6)
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In order to evaluate the derivative of z2 with respect to 6%, it is useful to differen-
tiate the eigenvalue equation (4.9), written in terms of z, (cf. Egs. (4.5), (4.17))

L
[Zc, 9]=§/’Lt‘zc (#c=#c.n=0)’ (A7)
with respect to 6°:
oz Al L /ou oz
—,0 Zo === = ° . .
EXEes = (Grsztu 55) (A8)
Expanding
0z 0z 0z
< _ , ey ) 1" c .
5 ;zc (zf,aga) §2C2tr(zc BB") (A9)

and using again the “unperturbed” equation (A.7), we obtain

L 0z Al Laou
Zpe—p)zo|ze, o 4]z, S| =2 e, A.l
2 g (M= pe) 2. (zC 69“) [Z 2} g 20" - (A10)

Projecting this equation onto z! (with the same subscript ¢) yields the useful
relation
Loy,
g 06°

=[z],z.]° (A.11)

On the other hand, choosing c¢=c¢, in Eq. (A.10) and projecting it onto z! with
arbitrary ¢, we obtain

L ( 0z,

— U, zc"aF

>= —[zl, 2,1 (A.12)
g

Equations (A.9) and (A.12) can be combined into
oz, oz,

gz, .
== 2 [zer 2017+ Y 24 (zd,—,,>, (A.13)
o6 L L > 50

c{pc#0) ¢

where the last term (i.e., the zero-mode contribution) can easily be shown to vanish.
For x; =L, the matrix T**(x) defined in Eq. (A.5) has the spectral representation

Tx,, L)=Y z2(x,) t(x,) 22*(x ), (A.14)

with the eigenvalues
1 —e ek

f,=———— . 1, =1 A.15
3 or p#q, I, ( )
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Equations (A.13)-(A.15) yield

az° ]
Z(O(T—l)ba= Z g <-—l—#—”é-l—>2tr([zi,z(.] ZCO)

a i L
a0 w0y Lic\e

L L\ | ou,
=) cot(”‘—)zgoégg. (A.16)

clp#0) 2

In the last step, we have made use of Eq. (A.11) and the fact that the eigenvalues
{4, appear in pairs (+u), so that 3", = 0. Since z{ can be replaced by a derivative,
cf. Eq. (5.21), the hermiticity defect (A.6) can be written in the following compact
form:

(4] (€1} L u(L a#(‘
3 )r—p3 :5(2)(0)—-_ Z cot (T) 6a§°

{uc#0)

1 0 . (u.L
=380y - — 1 —— . A17
( )i 2ay Méo) “Sm( 2 > ( )
Inserting the eigenvalues u,, Eq. (4.12), we alternatively obtain the more explicit

form

PP =50 < S, (A18)
where
fomE ¥ ot (G eLatiitt =) (- 7) (A19)
<k
and
I9=(A%),  (no sum). (A.20)

APPENDIX B: HErMITICITY DEFECTS, MEASURE, JACOBIAN,
AND EFFECTIVE POTENTIAL

In this appendix we describe a method to construct Jacobians and, if possible,
effective potentials from hermiticity defects of momentum operators. Application to
our work yields an indirect evaluation of the functional determinant.

Hermiticity Defect and Weight Function

Consider a quantum mechanical system of N degrees of freedom described by a
Hamiltonian which is expressed in the canonical coordinates and momenta g, p,
(k=1, .., N), which satisfy standard commutation relations
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Lgx.a1=L[pc, P 1=0,

_ (B.1)
(qk> P 1= iy
This means that one has in the Schrodinger representation,
.0
D= —1=—. (B.2)
oq,

We study the case where the momenta may be non-hermitian,

Pe—PL=1(a), (B.3)
where we assume the real functions f, to be independent of the momenta. One

easily constructs hermitian momentum operators,

Pr=Pe—5Jl@) + 1l (B4)

with r,(q) real functions of the coordinates; we take them to be identically zero. Of
course, then these hermitian momenta satisfy, together with the coordinates, the
standard commutation relations given above. In the Schrodinger representation the
identity is in general given by

[[1acaw> pta)dg, - -dan <q0 - an1 =1, (B:5)

where p is the measure or weight function. It immediately follows from Egs. (B.4)
and (B.2) that

d1n p(q)
LD s o) (B.6)
9k
For one variable one explicitly finds
q ’ ’
plq)=exp (j /(q') dg ) (B.7)
For more variables, Eq. (B.6) can only be integrated if the conditions
of; _
Lk {B.8)
09, 09,

are satisfied.

Effective Potentail
If the kinetic energy has the form

T=13piPu, (B.9)
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then it is convenient to absorb the corresponding weight factor in the wave function
by redefining it as

u(q) =/ p(q) ¥lq). (B.10)

The price which in general then has to be paid is the occurrence of an effective
potential; it is given by
1 Yy

Vg = ————= ~——5—. (B.11)
2./plg) i
In terms of the functions f, we obtain
10f 1, .,
=——=4- . B.
=73 g (B.12)

Justification via Coordinate Transformations (See also [4])

Let us start with (cartesian) coordinates and conjugate momenta x,, 7,
k=1, .. N, satisfying canonical commutation relations of the unconstrained
variables. In this case the momenta are hermitian,

)= (B.13)
A general coordinate transformation,
Xe = qr=q,(xc), (B.14)
defines a matrix M (the metric),
Oxy 0x,
== B.15
! 0q; 0q, (B13)

The determinant of this matrix yields the Jacobian of this coordinate transfor-
mation, i.e., the measure in the new coordinates

p=J=det(M). (B.16)

The kinetic energy in Schrédinger representation transforms as

18* 1 1 b5 ——

Zax,.z 2\/det(M) og; " \/ aq/‘
Identifying —i(é/0q,) = p, yields the quantum kinetic energy operator in the new
canonical variables ¢,, p.. They satisfy standard commutation relations; however,
the momenta are non-hermitian. This follows from the relation between the old and

new momenta,

aq
n_,=(ﬁ—;) Pes (B.18)
S _’
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and Eq. (B.13). We obtain

pt =2k, 0%

/7 éx, 7" oq,

_ i adet(M)

2T 2 det(M) 4,

_ ClIn(p)

=p= i, (B.19)

This relation indeed confirms the result obtained earlier, Eq. (B.6) (use Eq. (B.3)).
Moreover, the kinetic energy operator can be written as

T=3piMg'(q) pi- (B.20)

Constraints (Gauss Laws)

We are interested in applying the method described above for a constrained
system, in particular, gauge theories where the constraints are the Gauss laws. In
this section the following labelling will be used: k,/,m=1, ., ng; r,s=no+1,.., N
{n> N,). Assume that the Hamiltonian has the form

H=3pIM; " (q,)p,+5pI M, (@) p,+ V(g (B.21)

Furthermore, the Gauss laws allow us to replace, in the sector of physical states,
the second term by some operator (or c-number) #(g,). The hermiticity defects of
the momenta p, are given by Eq. (B.3); if one has

of/0g,=0, (B.22)
then (cf. Eq. (B.6))

0 1n p/0g, = fi(q,). (B.23)

As a consequence, the measure (and volume-element) factorize and we obtain an
effective Hamiltonian and measure only depending on the variables g, p;.
Absorbing the weight function into the wave function, which implies an effective
trivial (flat) measure is possible for

M ' (g0) = (B.24)
As shown above it still can give rise to an effective potential.

Generalization to Field Theory

All of the above can be generalized to quantum field theory by considering a
continuum of variables, {g,} — g(x) (x€ R"). For our purpose, it is sufficient to
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consider the case where the Jacobian factorizes for different values of x. If we first
think of discretizing the n-dimensional space, we have

#La1=T1 Jatx")) =exp (S In Ja(x)) ). (B25)
The continuum limit is performed as

. 1 ,
Yy = H A" )
,_/;an(q(x )= lim A,,xz xIn J(g(x))

=3"(0) f d"x In J(q(x)). (B.26)

The momenta conjugate to g(x) are given in the Schrédinger representation by the
functional derivatives

1 9

p(x)=?6q(x)'

Using Eqgs. (B.25)-(B.27), we can generalize the relation between hermiticity defect
and Jacobian of Egs. (B.3) and (B.6) to field theory as

(B.27)

p(x)—pi(x)=i6"(0) f(q(x)), (B.28)
81
flg(x))y= ——————nj(q(x)). (B.29)
og(x)

Similarly, an effective potential can be derived by introducing new wave functionals

Ulql=+/F#Lq] ¥[q]. (B.30)

The result corresponding to Eqgs. (B.11) and (B.12) is
Veslg]=[6(0)1° f d"x Veu(g(x)), (B.31)

with (suppressing the argument of g(x))

elf(q zmaq \/

3 2D 2 (st (B32)

The further generalization to the case of several fields is trivial.



AXIAL GAUGE QCD 367

APPENDIX C: DIReECT CALCULATION OF THE JACOBIAN

In this appendix, we evaluate the Jacobian directly via a functional determinant.
For this purpose, we interpret the result of our unitary transformation as a change
of variables from A5{(x) to 7°(x), defined (locally) in Eq.(4.1), followed by a
diagonalization of 0(x,)=1(x,, L). Only the eigenvalues of 6(x )} (denoted by
La; ; in the main text) appear in the final Hamiltonian restricted to the physical
sector; therefore we can disregard all factors in the Jacobian which are independent

of a;.
The Jacobian of the first transformation is
dtb(x)
_ det( { )’ (A
7 ‘ 54%(y)

where the (continuous) “matrix” has been given in Eq.(A.3). This matrix is
diagonal in x, and “triangular” in x5, so that the spatial part of the determinant
reduces to a product of diagonal matrix elements,

or’(x)\ _ _
et (W) = I:[ det(S(x) T~ '(x)). (C.2)

Only the factors with x;=L on the right-hand side contain the 6 degrees
of freedom and need to be retained. Since S(x) is orthogonal, cf. Eq. (A.4), the
relevant part of the integration measure is, therefore,

1 d@6°(x.) [det T(x, L)|. (C.3)

x),a

Recalling that the matrix 7°%(x ,, L) in Eq. (A.5) can be represented as

) 1 0 . b
Tab L)= ~igBlxy) igh(x 1) , C.4
(x., L) <e ig 00°(x ) ¢ ) ( )

one recognizes that the measure appearing in Eq. (C.3) is the invariant group
measure (Haar measure) of the gauge group (see, e.g., [42]).
In the second step, we reparametrize ¢*? as in Eq. (4.5), ie.,

eigﬂ — eigdeiga]Le —igd. (CS)

¢4 can be assumed to depend on N?— N variables ¢ and we denote the full
set of N2—1 variables {a?L, ¢°} by {x“}. We then have to evaluate the new

integration measure
00°
dy®|det T| |det | —
r,,l K ldet T |de (5)(‘)

=[] dx* |det T}, (C.6)

595/233/2-15
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with

b
Tab — (e —igh _1_ __a__ eigﬂ)
ig dx°

b
— eigde/igagLe—igA i _a_ (eigdeigagLe—igA)
ig 0x°
= wuc?, (C.7)

where the matrices w and u introduced in the last line are given by

wac — (eigugLAaeigagL_Aa+ eriga3L _1___8_ eiga;L)C (CS)
ig 0x° ’
18
A% = 80 — — ¢4, (C9)
ig Ox
u® = Jtr(e®41%e " #1"); (C.10)

u is again orthogonal and can be dropped. The matrix w has the following
structure: If x“ refers to a3’ L, only the last term in Eq. (C.8) survives and it yields

e EnL .1___2__ e&il b= 5% (C.11)
ig 6aSL ' '

If x* refers to ¢ only the first two terms in Eq. (C.8) contribute. Owing to the
resulting block structure of the matrix w, the determinant is given by

det T=det 4 det(w —1), (C.12)
where
A% = (A9)¢ (C.13)
(cf. Eq. (C9)) and
W = Lr(e~Enk Jagal 10), (C.14)

Note that a and b run over the non-diagonal A-matrices only. The factor det A in
Eq. (C.12) is independent of a,. The second factor can be evaluated by diagonaliza-
tion of the matrix w,

Wsh = g il ga, (C.15)
of. Eq.(4.11). Here, the restriction to non-diagonal A-matrices removes zero

eigenvalues. Up to factors which do not depend on a,;, we obtain the final result
for the integration measure,

[T day(x,)J(as(x,)), (C.16)

XL.c0
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with

J= JI (e *t=1)= ] le~™L—1) (C.17)

clpc+#0) c(pc>0)

Using the explicit form of u., Eq. (4.12), this can equivalently be written as

J= ] sin? (M)’ (C.18)

k>1 2

in the notation of Eq. (4.13). This yields the well-known Haar measure of the group
SU(N) for the case that the integrand depends only on the invariants [22].

APPENDIX D: EFFECTIVE POTENTIAL FOR SU(N)

We evaluate the effective potential

1 ¥ f[N] ]
yiv_2 Vg N _
with
=ty 'y cot( sLad(i =22 ) (= 27), (D2)
k=2 =1

in a recursive way. The superscript [N ] refers to SU(N), and we have dropped a

divergent, constant term. For SU(2), ¥,; can be easily calculated with the result

g2L2
g

2= (D.3)

Using the standard form of the diagonal A-matrices with, in particular,

AN=U=_/2/N(N —1)diag(1, 1, .., —(N—1)), (D4)

we first relate £V to f{¥ =11 as

FI_fIN -1 (Sfm:%— Y (20— 29 cot . (D.5)
k=1
Here, @, is defined as
@, = gLlaP(h - AP), (D.6)
and we note that
AD for co<N-—1
A0 q0= 7k 0 D.7
N {JZN/(N—I) for co=N~—1. (D.7)
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Eq. (D.5), into Eq. (D.1), we find that

1 N-1 aac
4,/£N] q‘/-[N 1] 8 Z (2 6fo

cog=1
=R1+R2+R3. (D.g)

Inserting the definition of df,

0°*

Lo ergs g (5fm)2> (D8)

We proceed to evaluate the separate contributions R,. Using
A Ay =26 —1/N), (D.10)

which follows from the usual completeness-relation for A-matrices and the fact that
the non-diagonal matrices have no diagonal entries, it is straightforward to
determine R,,
2r2 N—-1
g°L 1
R = — : . D.11
' 8 T, sin?®, ( )

Similarly, R, can be evaluated easily with the result

g2 2 N-1
Ry= Y cot? ¢k+— Y cot P, cot P, (D.12)
8 T 16 7,

The only non-trivial part is the interference term R,. Performing the ¢y-sum and
writing

cot( gLa®(AP — A%®)y = cot(®,— ®,), (D.13)
4 3 ! k
we obtain
gZLZ
Ry=>3 Y cot(®, — P,)(cot &, — cot P)) (D.14)
k<1l
2L2 2L2
=22 ¥ cotd, cot &, — L (N—1)(N-2), (D.15)
16 =, 16

where we have made use of the addition theorem for the cotangent in the last step.
Collecting the results, Eqs. (D.11), (D.12), and (D.15), we arrive at the simple
formula

272

2 N(N—1). (D.16)

(~] N-11_ _&
VelT _VEIT I=—

Together with the initial condition for SU(2), Eq. (D.3), this recursion relation
determines ¥ ¥ to be
2r2

L
¥ M= —g—48-« N(N?—1). (D.17)
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APPENDIX E: ALTERNATIVE FORMULATION

In the first unitary gauge-fixing transformation (Section 5), the matrix e#*™ has
been constructed such as to preserve manifest translational invariance in the three-
direction, cf. Eqgs. (4.3), (5.9). This requires specification of the two-dimensional
field variables a, beyond the “periodic” form e%%* in which they appear originally
in the formalism. Here, we reformulate the problem entirely in terms of e®®%,
thereby keeping manifest translational invariance in the one-, two-directions.

In this alternative formulation, we do not insist on the periodicity of ¢ in the
three-direction. We repeat the succession of two unitary transformations leading to
the axial gauge representation of QCD, but omitting the factor e ~%#%*1)% jp
Eq. (4.3), i.e.,, using

Bt (X) — pigt(x) pigd(xL) (E.1 )

As a result, the Hamiltonian density of Eq. (6.22) is replaced by
H'= — i [2;05+ @, (Y, —igA )Ty +my’ By

+tr[<n;>2+(% n) +(F;2>2+(63A;)2]

l < L ey < L O
+3553 Z(Paﬂ(xl)‘*’J‘ dz3z3G"(x ), z3) Pao(le'J d}’3J’3GL°(xl,J’3))
2L o 0 Y
1 L L ’ G,J_ (xLaZS) G,J. (xLayB)
+—= dz d S £
L? J.o } j0 73 p_§,, [#r,n(xi)]z

As compared to our former result (6.22), we note the following modifications: 4,(x)
has been eliminated completely from the minimal coupling to the fermions and the
color magnetic energy. The momenta p3'(x ) are no longer invariant under the
unitary transformation, but become shifted by a first moment of the operator G
defined as

eiﬂc,n(XL)(ZB —.vs). (E.Z)

G'(x) =V IV(x) + gp"“(x), (E3)
where p’ is the color density without zero-mode in the three-direction,

1
P = de (e =x) =) (4T IS DRk ) (B

L
In this way, a coupling of perpendicular gluons and fermions to the residual a, field
appears which does not explicitly involve the variables a,. Finaily, the non-zero-
mode part of the original /73 term is modified; here, a, enters only through the
expression

Z 1 e, (XL )(23 — y3)

= T (x)T1¢



372 LENZ, NAUS, AND THIES

which is manifestly periodic in a; ,, cf. Eq.(4.12). Thus on the level of the
Hamiltonian, we do not have to specify how to take the logarithm of ¢*#% The
same is true for the relevant commutation relation which can be formulated as (cf.
Eq. (5.17))

A i A%
[PS(x.), 00 ] = gL (x  —y, ) e¥0i) k= (ES)
Following the same line of reasoning which has led us to the modified boundary
conditions (7.15) in Section 7, we would now impose the dynamical boundary
conditions

Y(x,, L)y=e®e ®ntily(x ,0),
; i . (E.6)
AL(XJ_, L): e lgmx)L <AL(XL, 0) +§V¢> elga;(x_L)L’

when constructing the appropriate normal mode expansion of the field operators.
Here again, only the exponential of a, appears.

Finally, we display the unitary transformation which relates the present formula-
tion to the one used in the main text,

UL, & =exp {i [ @61 x3a§°(xl)} ULE, @] e (E7)

It can be used to rederive the boundary conditions (7.22), (7.23) for the wave
functionals, if one chooses the compact definition of the variables a; ;(x ).
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