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Abstract

The partition function of the 4D lattice Abelian Higgs theory is
represented as the sum over world sheets of Nielsen–Olesen strings.
The creation and annihilation operators of the strings are constructed.
The topological long–range interaction of the strings and charged par-
ticles is shown to exist; it is proportional to the linking number of the
string world sheet and particle world trajectory.
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1 Introduction

There are several examples in the lattice field theory showing that a change
of the variables in the functional integral allows for a formulation of the
theory in terms of the physical excitations, e.g. the partition function of
the 2D XY -model is equivalent to the partition function of the Coulomb
gas [1, 2], the partition function of the 4D compact electrodynamics can
be represented as a sum over the monopole–antimonopole world lines [3].
In the present publication we show that the partition function of the four–
dimensional Abelian Higgs theory can be represented as the sum over closed
surfaces which are the world sheets of the Abrikosov–Nielsen–Olesen strings
[4, 5]. We construct the string creation operators, which create the string
world sheets spanned on the given loops. If the field which is condensed has
the charge Ne, then there is a non–trivial long–range topological interaction
of Nielsen–Olesen strings with particles of charge Me, provided that M

N
is

non–integer. This long–range interaction is described by the term in the
action which is proportional to the linking number of the string world sheet
and the world line of charge Me. This is the four–dimensional analogue [6,
7, 8] of the Aharonov–Bohm effect: strings correspond to solenoids which
scatter charged particles.

2 World Sheets of the Nielsen–Olesen Strings

We consider the model describing interaction of the noncompact gauge field
Aµ with the scalar field Φ = |Φ|eiϕ, whose charge is Ne. The selfinteraction of
the scalar field is described by the potential V = λ(|Φ|2−η2)2. For simplicity,
we consider the limit as λ → ∞, so that the radial part of the scalar field
is frozen, and the dynamical variable is compact: ϕ ∈ (−π, π]. The partition
function for the Villain form of the action is given by:
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Z =

+∞
∫

−∞

DA

+π
∫

−π

Dϕ
∑

l(c1)∈ZZ

exp {−Sl(A, dϕ)} , (1)

where

Sl(A, dϕ) =
1

2e2
‖dA‖2 +

κ

2
‖dϕ + 2πl −NA‖2. (2)

We use the notations of the calculus of differential forms on the lattice [9],
which are briefly described in Appendix A. The symbol

∫

Dϕ (
∫

DA) denotes
the integral over all site (link) variables ϕ (A). Fixing the gauge dϕ = 0, we
get the following expression for the action (2): Sl = 1

2e2 [A, (δd +N2κe2)A] +
(terms linear in A); therefore, due to the Higgs mechanism, the gauge field

acquires the mass m = Nκ
1

2 e; there are also soliton sectors of the Hilbert
space which contain Abrikosov–Nielsen–Olesen strings, hidden in the sum-
mation variable l in (1).

The partition function of the compact electrodynamics can be represented
as a sum over closed world lines of monopoles [3]. In the same way the
partition function (1) can be rewritten as the sum over closed world sheets
of the Nielsen–Olesen strings1:

ZBKT = const. ·
∑

∗σ(∗c2)∈ZZ
δ∗σ=0

exp
{

−2π2κ(∗σ, (∆ +m2)−1∗σ)
}

. (3)

The derivation of this representation is given in Appendix B. The sum here
is over the integer variables ∗σ, which are attached to the plaquettes ∗c2 of
the dual lattice. The condition δ∗σ = 0 means that for each link of the dual
lattice the “conservation law” is satisfied: σ1 + σ2 + σ3 = σ4 + σ5 + σ6, where
σi are integers corresponding to plaquettes connected to the considered link.
The signs of σi’s in this “conservation law” are dictated by the definition of
δ (by the orientation of the plaquettes 1,...,6). If σ = 0, 1, then the condition
δ∗σ = 0 means that we consider closed surfaces made of plaquettes with
σ = 1. In (3) we have σ ∈ ZZ, which means that one plaquette may “decay”
into several ones, but still the surfaces, made of plaquettes with σ 6= 0, are

1We use the superscript BKT, since a similar transformation of the partition function
was first found by Berezinskii [1], Kostrlitz and Thouless [2], who showed that the XY
model is equivalent to the Coulomb gas in two dimensions
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closed. It follows from (3) that the strings interact with each other via the
Yukawa forces2 – (∆ +m2)−1.

3 String Creation Operators

The creation of a string (as a nonlocal object) involves nonlocal operators.
Strings are surrounded by a cloud of bosons, just as charged particles are
surrounded by their photon cloud. Creation operators for charged particles
were first constructed by Dirac [10], whose idea was to compensate the gauge
variation of a charged field Φ(x)′ = Φ(x) exp(iα(x)) by a contribution of the
gauge field representing the photon cloud:

Φc(x) = Φ(x) exp
{

i
∫

d3yBi(x− y)Ai(y)
}

, (4)

where ∂iBi(x) = δ(x), and Ai(x)
′ = Ai(x) + ∂iα(x) is the photon field. The

gauge invariant operator Φc(x) creates a scalar charged particle at point x,
together with the photon cloud surrounding it. Our construction of string cre-
ation operators [11] is based on the same idea, and is quite similar to the con-
struction of soliton creation operators suggested by Fröhlich and Marchetti
[12]. It is convenient to consider the model dual to the original one (1). As
shown in Appendix C, its partition function has the form:

Zd = const. ·
∑

∗p(∗c2)∈ZZ

+∞
∫

−∞

D∗C exp

{

−
1

2κ
‖d∗p‖2 −

N2e2

2
‖d∗C + ∗p‖2

}

. (5)

The dual model describes the interaction of the integer valued hypergauge
field ∗p(∗c2) (antisymmetric rank 2 tensor) with the real valued gauge field
∗C(∗c3); the action is invariant under the hypergauge transformations:

∗p′ = ∗p+ d∗r; ∗C ′ = ∗C − ∗r. (6)

Thus we have three equivalent representations of the partition function: the
original one (1), the BKT–representation (3), and the dual representation
(5).

2Due to the definition of the integration by parts (ϕ, δψ) = (dϕ, ψ), the operator
(∆ +m2)−1 (and not (−∆ +m2)−1) is positively defined on the Euclidean lattice
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Consider now the Wilson loopW (C) = exp {i(∗C, ∗jC)}, where the current
∗jC(∗c3) is equal to unity on the links of the dual lattice which belong to the
loop C, and vanishes on the other links. W (C) is gauge invariant, but not
hypergauge invariant. In order to make W (C) hypergauge invariant, we use
the analogue of the Dirac procedure, namely we surround the loop by the
cloud of the hypergauge bosons:

UC = W (C) · exp {i(∗DC,
∗p)} , (7)

where DC satisfies the equation: δ(3)∗DC = ∗jC. Since the operator of
the creation of the string should act at a definite time slice, we use
the three-dimensional operator of the codifferentiation δ(3), and the loop
C belongs to the considered time slice. It is easy to see that the op-
erator (7) is invariant under the hypergauge transformations (6): U ′

C =
UC exp {−i(∗r, ∗jC) + i(δ∗DC,

∗r)} = UC. The quantum average of this op-
erator in the BKT representation,

< UC >=
1

ZBKT

∑

∗σ(∗c2)∈ZZ
δ∗σ=∗jC

exp
{

−2π2κ
(

(∗σ − ∗DC), (∆ +m2)−1(∗σ − ∗DC)
)}

(8)
shows, that this is indeed string creation operator, since the above sum is
taken over all closed world sheets of the strings, and over all world sheets
spanned on the contour C.

Performing the inverse duality transformation of the average value of the
operator (7), we get the expectation value of the string creation operator in
terms of the original fields:

< UC >=
1

Z

∑

l(c1)∈ZZ

+∞
∫

−∞

DA

+π
∫

−π

Dϕ exp
{

Sl(A, dϕ− 2πδ∆−1(DC − ρC)
}

. (9)

Here the integer valued field ρC satisfies the equation δ(3)(∗DC − ∗ρC) = 0;
∗ρC is the analog of the (invisible) Dirac string. The Dirac string connected
to the monopole is a one-dimensional object, while ∗ρC , being defined on the
plaquettes, is a two-dimensional one. The invisibility of ρ follows from the
invariance of the < UC > given by (9) under the deformations of the “Dirac
sheet”: ρ′ = ρ+ dξ.
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4 Linking of Strings World Sheets and Parti-

cle World Trajectories

The approach considered here allows us to understand more clearly the four-
dimensional analogue of the Aharonov – Bohm effect, discussed in [6, 7, 8].
Let us calculate the quantum average of the Wilson loop for the charge Me,
WM(C) = exp {iM(A, jC)}, in the BKT representation. Repeating all steps
which transform (1) into (3) we get:

< WM(C) >=
1

ZBKT

∑

∗σ(∗c2)∈ZZ
δ∗σ=0

exp
{

−2π2κ(∗σ, (∆ +m2)−1∗σ) (10)

−
M2e2

2
(jC, (∆ +m2)−1jC) − 2πi

M

N
(jC, (∆ +m2)−1δσ) + 2πi

M

N
IL(σ, jC)

}

.

The first three terms in the exponent describe the short–range (Yukawa)
interactions: surface – surface, current – current and current – surface. In
spite of the gauge field acquiring the mass m = Nκ

1

2 e, there is long–range
interaction of geometrical nature, described by the last term in the exponent
IL(σ, jC), IL being the four–dimensional analogue of the Gauss linking number
for loops in three dimensions, i.e. the linking number of surfaces defined by
{σ} and loop defined by jC . The explicit expression for IL is:

IL = (∗jC,∆
−1d∗σ) = (∗jC,

∗n) (11)

where ∗n is an integer valued 3-form which is the solution of the equation:
δ∗n = ∗σ. It is clear now that IL is equal to the number of points at which the
loop jC intersects the three–dimensional volume ∗n bounded by the closed
surface defined by ∗σ(∗c2). The elements of the surface ∗σ may carry any
integer number, so that any intersection point may contribute an integer
into IL. Therefore IL is the linking number of the world sheet of the strings
and the current jC which define Wilson’s loop WM(C). The reason for the
long–range interaction is that the charges e, 2e, . . . (N − 1)e cannot be
completely screened by the condensate of the field of charge Ne; if M/N is
integer, then the screening is complete and there are no long–range forces.
The long–range particle–particle interaction may appear in that phase of the
theory where the condensate of strings exists, and IL(σ, jC) does not vanish
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for large Wilson loops. The dynamical properties of quantum Nielsen–Olesen
strings are discussed in [13].

Another interesting operator, which can be calculated exactly, was sug-
gested in [8]; this operator is the product of the Wilson loop WM(C) and the
operator suggested in [14], which creates the world sheet of the string on the
closed surface Σ:

FN (Σ) =
∑

l(c1)∈ZZ

exp

{

−Sl

(

A−
2πk

N
, dϕ

)

+ Sl(A, dϕ)

}

, (12)

where k defines the surface Σ on the dual lattice: δ∗k = δΣ; δΣ is the lattice δ–
function which is equal to unity on the plaquettes of the dual lattice belonging
to the surface Σ, and δΣ vanishes on all other plaquettes. We can change the
integration variable: A → A + 2πk

N
therefore < FN (Σ) >= 1. The operator

which has a nontrivial expectation value has the form [8]:

ANM (Σ, C) = FN (Σ) ·
WM(C)

< WM(C) >
. (13)

Performing the same steps which lead to (10) we get:

< ANM(Σ, C) >= e2πi M

N
IL(Σ,C). (14)

The meaning of this result is very simple. If the surface Σ lies in a given time
slice, then F (Σ) = exp

{

2πi
Ne
QΣ

}

(see [14, 8]), where QΣ is the total charge

inside the volume bounded by the surface Σ; if IL(Σ, C) = n then there is
charge Mne in the volume bounded by Σ.

5 Conclusions; Acknowledgments

We have shown that the partition function of Abelian Higgs theory can be
represented as the sum over world sheets of the Nielsen–Olesen strings; the
dynamics of these strings (e.g. scattering and decay properties) can be stud-
ied by means of string creation and annihilation operators. Similar analysis
can be carried out in the case of a compact gauge field [13]. In this case,
the monopoles are present in the theory, and strings can be open carrying
monopole and antimonopole on their ends. String–like excitations exist also
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in the scalar theory without gauge field (global strings). Our formulas (1)–
(9) are valid in this case (e = 0, m = 0). Now the topological interaction
is absent, but there exists the long–range interaction ∆−1 which is due to
the cloud of Goldstone bosons surrounding the string. Our formulas are also
valid for the three–dimensional case. For example for D = 3, e = 0, m = 0,
we have a theory of vortices in the two–dimensional superfluid. The dual for-
mulation of the continuum Abelian–Higgs theory has been recently discussed
in [15].

The work of MIP and MAZ has been partially supported by a grant of the
American Physical Society. The authors are grateful to M.Minchev and to
T.L.Ivanenko for interesting discussions. MIP expresses his thanks to HLRZ
in Jülich for hospitality.

Appendix A

Here we briefly summarize the main notions from the theory of differential
forms on the lattice [9]. The advantages of the calculus of differential forms
consists in the general character of the expressions obtained. Most of the
transformations depend neither on the space–time dimension, nor on the
rank of the fields. With minor modifications the transformations are valid
for lattices of any form (triangular, hypercubic, random, etc.). A differential
form of rank k on the lattice is a function φk defined on k-dimensional cells ck
of the lattice, e.g. the scalar (gauge) field is a 0–form (1–form). The exterior
differential operator d is defined as follows:

(dφ)(ck+1) =
∑

ck∈∂ck+1

φ(ck). (A.1)

Here ∂ck is the oriented boundary of the k-cell ck. Thus the operator d
increases the rank of the form by unity; dϕ is the link variable constructed,
as usual, in terms of the site angles ϕ, and dA is the plaquette variable
constructed from the link variables A. The scalar product is defined in the
standard way: if ϕ and ψ are k-forms, then (ϕ, ψ) =

∑

ck
ϕ(ck)ψ(ck), where

∑

ck
is the sum over all sells ck. To any k–form on the D–dimensional lattice

there corresponds a (D − k)–form ∗Φ(∗ck) on the dual lattice, ∗ck being the
(D − k)–dimensional cell on the dual lattice. The codifferential δ = ∗d∗

satisfies the partial integration rule: (ϕ, δψ) = (dϕ, ψ). Note that δΦ(ck) is a
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(k−1)–form and δΦ(c0) = 0. The norm is defined by: ‖a‖2 = (a, a); therefore,
‖dϕ+2πl‖2 in (2) implies summation over all links.

∑

l(c1)∈ZZ denotes the sum
over all configurations of the integers l attached to the links c1. The action
(2) is invariant under the gauge transformations A′ = A + dα, ϕ′ = ϕ + α
due to the well known property d2 = δ2 = 0. The lattice Laplacian is defined
by: ∆ = dδ + δd.

Appendix B

To derive eq.(3) we first change the summation variable in (1) (see [16],
Part 1, Chapter 4):

∑

l(c1)∈ZZ

=
∑

σ(c2)∈ZZ

dσ=0

∑

q(c0)∈ZZ

, here l = m[σ] + dq and m[σ]

is a particular solution of the equation dm[σ] = σ. Using the Hodge de-
composition m[σ] = δ∆−1σ+ d∆−1δm[σ] we introduce the noncompact field

Φ = ϕ+ 2π(∆−1δm[σ] + q),
∑

q(c0)∈ZZ

+π
∫

−π

Dϕ =

+∞
∫

−∞

DΦ, and we get:

Z =

+∞
∫

−∞

DADΦ
∑

σ(c2)∈ZZ

dσ=0

exp
{

−
1

2e2
‖dA‖2 −

κ

2
‖dΦ + 2π∆−1δσ −NA‖2

}

.

(B.1)
After fixing the gauge dΦ = 0, the Gaussian integral over A can be easily
calculated, and thus we get (3).

Appendix C

To perform the duality transformation of the original theory defined by
the partition function (1), we change the dynamical variables, introduc-

ing the unity: 1 =
+∞
∫

−∞

DFDB δ(B − dϕ − 2πl + NA) δ(F − dA) into

the integral in (1). On application of the Poisson summation formula
2π
∑

l δ(x−2πl) =
∑

l exp {ilx} and the standard representation δ(F−dA) =
const

∫

DG exp {i(G, (F − dA))}, the integrals over F and B become Gaus-
sian, the integrals over ϕ and A give the restrictions δl = 0 and δG = lN ,
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which are solved by the introduction of new variables p and C: l = ∗d∗p(∗c2),
G = N∗d∗C(∗c3) +Np. Integrating over F and B we finally get (5).
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