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We report on the nonlocal gauge invariant operator of diieensvo, FW(DZ)*le. We are able to localize

this operator by introducing a suitable set of (anti)comnmtantisymmetric tensor fields.

Starting from

this, we succeed in constructing a local gauge invarianbmgatontaining a mass parameter, and we prove
the renormalizability to all orders of perturbation theafythis action in the linear covariant gauges using
the algebraic renormalization technique. We point out ttistence of a nilpotent BRST symmetry. Despite

the additional (anti)commuting tensor fields and couplingstants, we prove that our model in the limit of

vanishing mass is equivalent with ordinary massless Yaiitg-Meories by making use of an extra symmetry in

the massless case. We also present explicit renormatizgtaup functions at two loop order in theS scheme.
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I.  INTRODUCTION

We shall consider pure Euclide&(N) Yang-Mills theo-
ries with action

1 3
Su=7 [ dXFAFS. o

whereAj, a=1,.., N2 — 1 is the gauge boson field, with as-

sociated field strength

2 = 0uAS — 0uAL + g FPARAT . )

with
Dﬁb _ 0u5ab —g fabcAﬁ , (4)

denoting the adjoint covariant derivative.

As it is well known, the theory[{1) is asymptotically free
[, 2], i.e. the coupling becomes smaller at higher energies
and vice versa. At very high energies, the interaction iskwea
and the gluons can be considered as almost free particles.
However, in spite of the progress in the last decades, we stil
lack a satisfactory understanding of the behaviour of Yang-
Mills theories in the low energy regime. Here the coupling
constant of the theory is large and nonperturbative effemts

The theory [(IL) is invariant with respect to the local gaugeto be taken into account.

transformations

8A% = D3Pw’ ©)
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The introduction of condensates, i.e. the (integrated) vac
uum expectation value of certain operators, allows one to
parametrize certain nonperturbative effects arising ftom
infrared sector of e.g. the theory described By (1). Via the
Operator Product Expansion (OPE) (viz. short distance ex-
pansion), which is applicable to local operators, one can re
late these condensates to power corrections which give non-
perturbative information in addition to the perturbativeél-
culable results. If one wants to consider the possible &ffec
of condensates on physical quantities in a gauge theorg qui
clearly only gauge invariant operators should be consitlere
The most famous example is the dimension 4 gluon conden-
sate(asF@>, giving rise toé power corrections. Via the
SVZ (Shifman-Vainshtein-Zakharov) sum rulés [3], one can
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extract phenomenological estimates {ugF@). which is gauge invariant due to the minimization along the
In recent years, a great deal of interest arose in dimension@auge orbits, could be physically relevant. In fact, as show

condensates in gauge theories. Most attention was pai@to thn [4, [5] in the case of compact QED, the quant{te(ﬁlin>

gluon condensat(aAﬁ) in the Landau gauge, due to the work seems to be useful in order to detect the presence of naitrivi

of [4, 5], as the quantity field configurations like monopoles. One can show nﬁh
1 can be written as an infinite series of nonlocal terms,|sed [6,
2 0\ _ L 4 U\2 and references therein, namely
(o) = in g7 [ (@) @
|
2 _ .d4 als auav a fabc Oy AR 1 aAb ( 0] A4 6
Amin— XA]J U 92 Av_g ﬁ ﬁ Av + ( ) ()

Since the operato{i\ﬁ]in is nonlocal, it falls beyond the ap- ability out of the Landau gauge. In fact, at the classicatlev
plicability of the OPE annex sum rules, which refer to local adding [b) to the Yang-Mills action is equivalent to add the
operators. so-called Stueckelberg action, which is known to be notireno

However, in the Landau gaugA, = 0, all nonlocal terms malizable [35| 36]. We refer tol[7] for details and referesice
of expression[{6) drop out, so thaf, reduces to the lo- As already mentioned, also the OPE becomes useless outside

cal operatorZ, hence the interest in the Landau gauge and€ Landau gauge for this particular operator. _

its dimension two aluon condensa( 2> A complication is In other gauges, there can be found other renormalizable
. g o R p i local operators, which condense and give rise to a dynamical

that the explicit determination of the absolute minimunAgf gluon mass. Next to the Landau gauge [14/15[ 17, 18, 19, 37

along its gauge orbit, and moreover of its vacuum expectatiog] the maximal Abeliar [39, 40], linear covariant|[41] 22] 4

value, is a very delicate issue intimately related to th@[@® 4 Curci-Ferrari gauges |44.145] have been investigated in

of Gribov copiesi|[8,19, 10, 11, 12,113]. the past.

Nevertheless, some nontrivial results were proven concern The relevant operators in these other gauges are however
ing the operatorA7. In particular, we mention its multi- gauge variant, and as a consequence also the effective gluon
plicative renormalizability to all orders of perturbatitime-  mass. From this perspective, it is worthwhile to find out
ory, in addition to an interesting and numerically verified r \whether a gauge invariant framework might be found for a
lation concerning its anomalous dimension [14, 15]. An ef-dynamical mass, and related to it fg power corrections.

fective potential approach consistent with renormaliligbi In order to have a starting point, we need a dimension 2

and renormalization group requirements for local Composbperator that is gauge invariant. This necessarily impdies

ite operators (LCO) has also been worked out for this OPeryonlocal operator, since gauge invariant local operatbei-o

ator, giving further evidence of a nonvanishing condensate,osion 2 do not exist. We would also need a consistent cal-
(Al) # 0, which lowers the nonperturbative vacuum energy.aional framework, which requires an action only comtai

[1€]. The LCO method yields an effective gluon mass squareg, |oca| terms. Therefore, we should find an operator that

mg ~ (A7) of afew hundred MeVI[16, 17, 18,119]. can be localized by means of a finite set of auxiliary fields, in

In[20], it was already argued that gauge (in)variant cordensych a way that the local gauge invariance is respected. As
sates could also influence gauge variant quantities sudteas ta2. |ooks a bit hopeless from this viewpoint as it is a infinite
gluon propagator. An OPE argument based on lattice simulaseries of nonlocal term§l(6), we moved our attention instead
tions in the Landau gauge has indeed provided evidence thgd the nonlocal gauge invariant operator

a condensatéAﬁ) could account for quadratic power correc-

' ~ L i i - _ 1 [ 2112 b
tions of the form ok reported in the running of the cou = \F/ d XFS\‘, [(D ) } FS. @)

pling constant as well as in the gluon propagator, see e.g.

[21, 122,128, 24| 25, 26]. This OPE approach allows one torhjs operator caught already some attention in 3 dimenkiona
obtain an estimate for the soft pa) . originating from  gauge theories in relation to a dynamical mass generation
the infrared sector. The OPE can also%e employed to relafgg).
this condensate to an effective gluon mass [21]. In the following sections, we shall show that the operator
The presence of mass parameters in the gluon propagat) can be localized, giving rise to a local, classically gau
have also been advocated from the lattice perspectiveaevelinvariant action. Afterwards, we discuss how to investgat
times [27, 28] 29, 30, 31, B2], whilst effective gluon masseshe renormalizability of the action once quantized. Evatig
also found phenomenological usel[33, 34]. we need to introduce a slightly more general classical atio
A somewhat weak point about the opera&ﬁ{n isthatitis  order to obtain a quantum action that is renormalizablelto al
unclear how to deal with it in gauges other than the Landawrders of perturbation theory. In the case of vanishing mass
gauge. Till now, it seems hopeless to prove its renormalizthe equivalence of our action with usual Yang-Mills thesrie



can be shown. We shall point out the existence of a naturally

B. The action at the quantum level

extended version of the usual BRST symmetry. Before turn-

ing to conclusions, we explicitly give various renormatiaa
group functions, verifying the renormalizability at theapti-
cal level.

I. CONSTRUCTION OF THE ACTION AND ITS
RENORMALIZABILITY AT THE QUANTUM LEVEL

A. The action at the classical level

In order to discuss the renormalizability 6f111), we relied
on a method introduced by Zwanziger inl[47| 48]. Instead of
using [I1) withm coupled to the composite operat@% F3,
EndBﬁ\, F3, we introduce 2 suitable external sourdgs,y and
Vpov and replacém by

17 _ _
: / d'x (VopwBooRy — VB3R ) - (14)

At the end, the sourcp (X), Vopw (X) are required to at-

We can add the operatdd (7) to the Yang-Mills action as ggjn their physical value, namely

mass term via

S{M+SO ) (8)

with

S = _g / d'xrg [ (D) ] Peb ©)

As we have discussed in [7], the actifh (8) can be localized by
introducing a pair of complex bosonic antisymmetric tensor
fields, (Bﬁv,Eﬁv), and a pair of complex anticommuting anti-

symmetric tensor fields(,@ﬁv,Gﬁv), belonging to the adjoint
representation, according to which

eSS — /DEDBDGDGexp[— (i—t / d4x§ﬁngng°Bﬁv

1 [ 4.=a ~abnb im [ 4 =a
- 5 [ aveiproicy, + 7 [ d'x(B-B)), R
(10)

Therefore, we obtain a classical local action which reads

Srm+S8e+ Sn. (11)
where
1 4., (B2 mabpbcpe =2 nabpbc~c
Sec = 5 [ d*(B},D3"DiB;, — G, DIDYGH, ) .
im r 4 —a
S = Z/d x(B-B)%F3. (12)
which is left invariant by the gauge transformations
b, b
dAT = —Diw’,
383, = gf**wPBf,, 8B, = gf*W B, ,
3G3, = gf**WPGS, , Gy, =gf**w’G,, . (13)

1
4

' 1 im =
S = /d“x[ZFlf\‘,Fli,JrZ(B—B)ﬁvFj\‘,Jr

3 _
- émz>\1 (BwB3,

= Vopw’ S (BouBpv — dovBpy)

15
phys 2 (15)

Vopw

phys

so that[Ih) reduces @&, in the physical limit.
From now on, we assume the linear covariant gauge fixing,
implemented through

Sy = / d*x (%baba+ b0+ D) . (16)
In [[2], we wrote down a list of symmetries enjoyed by the
action
Srm+Ssc+ Syt 17)
i.e. in absence of the sources. Let us only mention here the
BRST symmetry, generated by the nilpotent transformation
given by

s — —Dﬁbe, s — %fabccacb7

5a =C
=g fabCCbBﬁv + G2 SBW _ gfabchBw ’

W s
sG, = gfP%’G,, G, = gf*%Gy, + B, .

s<? = b2, st =0, £=0. (18)
It turns out that one can introduce all the necessary exter-
nal sources in a way consistent with the starting symmetries
This allows to write down several Ward identities by which
the most general counterterm is restricted using the adgebr
renormalization formalism [ 7, 49]. After a very cumbersome
analysis, it turns out that the actidn11) must be modified to

Sohys = S+ St (29)

with

= —a
(BIDIPDIBE, — Gy DIDYG, )

)\abcd
16

— A3 —_ — — —
GG P (B —Bh) o (BBl GGl ) (BoBl - egc,ego)] @)



in order to have renormalizability to all orders of pertuiba  physical operators shall not depend on the choice of theggaug
theory. We notice that we had to introduce a new invarianparameter [49].

quartic tensor coupliny®°d, subject to the generalized Jacobi B. Existence of a “supersymmetry” whenm= 0

identity

gmammbed,_ gmbryamed | fmom abmd | gmdmabem_ o (21 We define a nilpotent (anti-commuting) transformatdn

as
and the symmetry constraints 5B% = G . 3G =0,
pabed _ ) cdab 5Gh, = B 5B =0
) w — Ppvo b — Yo

)\abcd:)\bacd7 (22) ds(resh = 0. (25)

as well as two new mass couplingsandAis. Withoutthe new  Then one easily verifies thdf{25) generates a “supersymme-
couplings, i.e. whei; =0, A3 = 0, A3 =0, the previous  try” of the actionS"™=0 since

action would not be renormalizable. We refer itb|[7, 5aO] for payS

all the de_tguls. We also notice that. the novel fieBfg, B“‘." 55%% -0, (26)

G{y andG,, are no longer appearing at most quadratically.

As it should be expected, the classical act®nis still gauge  with

invariant w.r.t. [IB).
3 = 0. (27)

Ill. FURTHER PROPERTIES OF THE ACTION Taking another look at the transformatiogasinds, respec-
tively given by [I8) and{d4), one recognizes that

A. Existence of a BRST symmetry with a nilpotent charge N
S = S+,

0. (28)

The BRST transformatiofiL{lL8) no longer generates a sym- {3s.5}
metry of the actiorSynys However, we are able to define a
natural generalization of the usual BRST symmetry that doe
constitute an invariance of the gauge fixed actiah (19). édde
after inspection, one shall find that

Sinceds is a nilpotent operator, it possesses its own cohomol-
ogy, which is easily identified with polynomials in the origi
Yang-Mills fields {A}, b% ¢#,c®}. The auxiliary tensor fields,

{Bﬁv,Eﬁv,Gﬁv,Gﬁv}, do not belong to the cohomology &,
SShys = 0, because they form pairs of doubletsi[49]. This fact can be

2 — o, (23) brought to use in the following subsection.

with
C. Equivalence with Yang-Mills gauge theory wherm= 0

SA, = —Dc, 8¢ = gfabccacb,

If the massm = 0, we would expect that the acti 19
SH, = gf%°B; p ofL119)

87, = gfP%CPB;,
=

(L] (L] would be equivalent with the usual Yang-Mills gauge the-
5G, = gfabccbeﬁv , ’sﬁﬁv - gfabccbéﬁv , ory, since in the nonlocal formulatiofl(9), we would have in-
T — b®. SHF=0. (24) troduced “nothing”. In the local renormalizable formutati

(I3), this would also be trivially true whexf?®d = 0 as then
Hence, the actiorBynys is invariant with respect to a nilpo- We would only have added a -although quite complicated-
tent BRST transformatiod We obtained thus a gauge field Unity to the Yang-Mills action. Unfortunately, since renor
theory, described by the acti@ys [J), containing a mass malization forbids setting2°¢d= 0, we mus_t find another ar-
term, and which has the property of being renormalizablegument to relatei0 to the usual Yang-Mills gauge theory.
while nevertheless a nilpotent BRST transformation expres As provenin|[50], the “supersymmetrys of (Z5) can be used
ing the gauge invariance after gauge fixing exists simuitaneto show that
ously. It is clear tha$ stands for the usual BRST transforma-
tion, well known from literature, on the original Yang-Mill (Gn(Xw;- - X)) s 5y = (Gn(xl,...,xn)>%% . (29)
fields, whereas the gauge fixing p&j; given in [Z0) can
be written as &variation, ensuring that the gauge invariant where

Gn(X1,---s%n) = AX1)...AX)T(Xi11)...TXj)C(Xj+1) - - - C(Xi)D(Xicr1) - . . B(Xn) , (30)



is a generic Yang-Mills functional. The expectation valdie o [52,53], is devised to extract the divergences from massles
any Yang-Mills Green function, constructed from the fields2-point functions. The propagators of the massless fieldain
{Ag,c?,c b?} and calculated with the original (gauge fixed) arbitrary linear covariant gauge are

Yang-Mills actionSym + S+, is thus identical to the one cal-

culated with the massless acti§f}=2, where it is of course a/ - nb & 5 1 Pu
assumed that the gauge freedom of both actions has been fixed APA(-P) = - ,? (1-0) 2 |’
by an identical gauge fixing. &b "

The foregoing result also reflects on the renormalization (R(p)P(—p)) = — , WPU(-p) = 5,
group functions. As usual, we employ a massless renormal- p . P
ization scheme known as théS scheme. As a consequence, a /5b - o
we can sem= 0 in order to extract the ultraviolet behaviour. (B (P)Bgp(—P)) = — 2p2 [BuoBp — Bupdua]
Using [29), we conclude that all the renormalization group . 52b
functions of the original Yang-Mills quantities are notedted (G (P)Ggp(—p)) = — 2% [Buodvp — Sypdus| , (31)

by the presence of the extra fields or couplings. This fadt sha

be explicitly verified in the next section. wherep is the momentum. The necessary Feynman diagrams

were generated automatically withGRAF [54].

IV. EXPLICIT RENORMALIZATION AT TWO LOOP We first checked that the same two |OOp anomalous dimen-
ORDER sions emerge for the gluon, Faddeev-Popov ghost and quarks
in an arbitrary linear covariant gauge as when the extrdHoca
izing fields are absent. It was also explicitly verified thae t
correct coupling constant renormalization constant isiébu
These results are in agreement with the general argument of
the previous subsection.
We have implemented the properti€sl(21) dnd (22) of the
bed coupling in @ RM module, while it was assumed that

Having proven the renormalizability of the actidnl(19), we
shall now compute explicitly the two loop anomalous dimen-
sion of the fields and the one logkfunction of the tensor
couplingh@cd. The corresponding details can be foundln [7]
for one loop results, while two loop results are discussed i'}\a
[5d].

We have regarded the mass operator as an insertion and split 1
the Lagrangian into a free piece involving massless fields wi pacdg\bede - _— zaby parsy pars
the remainder being transported to the interaction Lagasng Na
To renormalize the operator, we insert it into a masslessiGre jacde) bdce
function, after the fields and couplings have been renormal-
ized in the massless Lagrangian. An attractive featureef th
massless field approach is that we can use thedd¥r al- which follows from the fact that there is only one rank 2 in-
gorithm to perform the actual computations. This algorithm variant tensor in a classical Lie group.

_ &5&)\ parsy pras ’ (32)

[51], written in the symbolic manipulation language®, At two loops in theMS scheme, we find that
|
a? 61 10 1
ys(@A) = ys(@\) = (@a—3)a+ [<Z+2a—€>c,§ + 3TFNf] a+ TsNA)\abcd)\acbd, (33)

whereN, is the dimension of the adjoint representation of thethat to deduce its renormalization constant, we need to con-

61 . . . .

. . . . MINCER algorithm is not applicable since two external mo-
4 into A% here and in later anomalous dimensions. These 9 ot app o> _ :

T menta have to be nullified and this will lead to spurious in-

anomalous dimensions are consistent with the generalobsefr P : .
X ; . Trared infinities which could potentially corrupt the rental-
vation that these fields must have the same renormalization

constants, in agreement with the output of the Ward idestiti L]Z:\?g?ecs%rrlg gr;g Jsf}ﬁregotreer,nfogrtg;s rﬂ?ggg?:“iggggxfm ir
[7]. A check on[3B) is that after the renormalization of the 9 porary g

. a . duced into the computation using the algorithm|of [55] and
3-point gluonBg, vertex, the correct gauge parameter inde-. ; .
W e implemented in BRM. Consequently, we find the gauge pa-
pendent coupling constant renormalization constant eeserg rameter independent anomalous dimension
We also determined the one lo@gfunction for thex2bcd P
couplings. As this is present in a quartic interaction it mea



Bf\led(aa)\) _ H ()\abpq)\cpdq+ )\apbq)\cd pq+ )\apcq)\bpdq+ )\apdq)\bpcOI)

— 12CaA%G 4 8CATPIOIPaR 4 16CATIPFPR2 - 9BUR%?] (34)
|
from both the  A3cdgl BPWE BIoP and  A®°dindependent terms. If we had not included &%
Aabedg? BOVGE GdoP vertices whered2>d is the totally interaction term in the original action, then such a term lsfou
Symmg\’tric rank four tensor defined by inevitably be generated at one loop through quantum correc-
tions, meaning that in this case there would have been a-break
dabed — Ty (TAaT,ibT/fT/i”) (35) down of renormalizability.

Finally, we turn to the two loop renormalization of the mass

with T2 denoting the group generator in the adjoint represen.[n' The corresponding operator ¢an be read off frimh (19) and

tation, [56]. Producing the same expression for both thes& 9'VEN by

4-point functions, aside from the gauge independence, is a

strong check on their correctness as well as the correct im-

plementation of the group theory. Moreover, as it should be,

Babed enjoys the same symmetry properties as the texi&6f, ~ We inserta into a A3-BY, 2-point function and deduce

summarized in[{22). the appropriate renormalization constant, leading toMi%e
We notice thah°d = 0 is not a fixed point due to the extra anomalous dimension

o = (B3 —By)FS - (36)

2 11 4 77 1 1
A)= — 2( ZTeNf — —=Ca)a— 2 TeNsCa+4TeNiCr — -5CR ) a? + _—— fabefedeadbeg _ _—_\abedyabeqzy
Yo (&) <3 FNf =5 A>a <3 FNfCa +4TeNtCr 12 A>a +8NA 128N, (t )

as the two loogMS anomalous dimension. The gauge paramwould imply unitarity. The nilpotent BRST symmetr§{24)
eter independence is again a good check, as the operater might be useful for this.

gauge invariant. The model[IB) is also asymptotically free, implying that

at low energies nonperturbative effects, such as confinemen
could set in. Proving and understanding the possible confine
ment mechanism in this model is probably as difficult as for
usual Yang-Mills gauge theories.

~ We added a nonlocal mass terfih (9) to the Yang-Mills ac- ¢ yould also be interesting to find out whether a dynami-

tion ), and starting from this, we succeeded in constructe|ly generated terrm(B — B)F might emerge, which in turn

ing a renormalizable massive gauge model, which is gauggqyid influence the gluon Green functions. This might also
invariant at the classical level and when quantized it e9joy e relevant in the context of gauge invarightpower correc-

a nilpotent BRST symmeiry. This BRST symmetry ensure%ions, an issue that recently has also attracted attentomn f

that the expectation value of gauge invariant operatorugga : ST i
parameter independent. We have also proven the equivalentcr?s:e gauge/string duality side, the so-called AdS/QCDI&T. 5

of the massless version of our model with Yang-Mills gauge
theories making use of a “supersymmetry” existing between
the extra fields in that case. We presented explicit two loop

V. CONCLUSIONS
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