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Abstract

It is shown that most of the available data on the pp → ppη reaction, including the invariant

mass distributions in the pp → ppη reaction recently measured at COSY, can be understood in

terms of the partial-wave amplitudes involving final pp S and P states and the η meson s-wave.

This finding, together with the fact that results within a meson–exchange model are especially

sensitive to the details of the excitation mechanism of the S11(1535) resonance, demonstrates the

possibility of investigating the properties of this resonance in NN collisions. The spin correlation

function Cxx is shown to disentangle the S- and P -wave contributions. It is also argued that spin

correlations may be used to help constrain the contributions of the amplitudes corresponding to

the final pp 3P0 and 3P2 states.

PACS numbers: PACS: 25.10.+s, 13.75.-n, 25.40.-h
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The primary motivations for studying the production of mesons off nucleons and nuclei

are to investigate the structure and properties of the nucleon resonances and to learn about

hadron dynamics at short range. As far as hadron-induced reactions are concerned, and

specifically nucleon-nucleon (NN) collisions, there is already a wealth of information on

the production of the lightest meson, the pion. In particular, there now exists a fairly

accurate and complete set of data, especially for πo production in the near-threshold energy

region [1], which should allow for a partial wave analysis. The η meson, which is the

next lightest non-strange meson in the meson mass spectrum, has also been the subject

of considerable interest. A peculiar feature of this meson is that it couples strongly to

the S11(1535) nucleon resonance, which offers a unique opportunity for investigating the

properties of this resonance. Unfortunately, the experimental information on η production

in NN collisions [2, 3, 4, 5, 6, 7] is much less complete than for pion production and is not

yet sufficient for a model-independent partial-wave analysis. However, the available data

base has greatly expanded recently thanks to measurements by the TOF and COSY-11

collaborations at COSY [6, 7] that provided, not only η and proton angular distributions,

but also pp and pη invariant mass distributions for the reaction pp→ ppη. These new data,

together with the earlier measurements [2, 3, 4], open the possibility for investigating this

reaction in much more detail than could be done previously.

A general feature of meson production in NN collisions is that the energy dependence

of the total cross section in the near-threshold region is basically dictated by the available

phase space plus the NN final state interaction (FSI) in S states. The effect of the strong

NN FSI also shows up in the corresponding NN invariant mass spectrum as a peak close

to the threshold value of the invariant mass, mNN = 2mN , where mN denotes the nucleon

mass. Surprisingly, the recently measured pp invariant mass distribution in the reaction

pp→ ppη [6, 7] at excess energies of Q = 15 and 41 MeV shows, in addition to a peak very

close to the threshold, a broad bump at higher values of mpp (see Fig. 1). While the peak

can easily be understood as arising from the strong pp FSI in the 1S0 state as mentioned

above, it is not trivial to explain the origin of the bump at higher mpp.

The purpose of the present work is to analyze this seemingly peculiar feature exhibited

by the pp invariant mass distribution. Thereby we will show that the available data on

pp→ ppη, including the invariant mass distribution, can essentially be understood in terms

of S- and P -wave amplitudes. This result suggests that the properties of the S11(1535)
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nucleon resonance can be studied here in terms of only a few partial-wave amplitudes. We

start by considering the possible partial-wave states in pp → ppη near the threshold [8].

First, in this reaction, the η meson is dominantly produced through the excitation and de-

excitation of the S11(1535) resonance. Therefore we expect that the η meson should be

produced mainly in the s-wave. Of course, this is strictly true only in the rest frame of

the resonance and not necessarily in the overall c.m. frame of the system. However, near

threshold, this should not make a significant difference. In fact, the observed η angular

distribution in the overall c.m. frame [6] is practically isotropic. In addition, the very first

analyzing power measurement in pp → ppη by the COSY-11 group [5] yielded rather small

values. Indeed this observable is basically consistent with zero, given the relatively large

uncertainties involved, and therefore consistent with pure s-wave contributions. As long

as we restrict ourselves to an η meson in the s-wave and final NN state to the S and P

waves, we have only three partial-wave amplitudes that can contribute to this reaction [8]:

3P0 → 1S0s,
1S0 → 3P0s and 1D2 → 3P2s. Among these, we would naively expect that

the 3P0 → 1S0s is the only relevant contribution near threshold. However, as mentioned

above, the contribution of the S–wave alone is unable to explain the observed bump in the

pp invariant mass distribution.

One plausible explanation may be attributed to effects from the ηN FSI. Indeed there

are already strong indications from the total production cross sections that the ηN FSI may

play an important role in the reaction NN → NNη near threshold. For both pp and pn

induced η productions one has observed that there is an enhancement of the production

cross sections for very small excess energies that cannot be explained by the NN FSI effects

alone [4, 9]. However, those effects seem to be confined to an excess energy range of up to

at most 20 MeV from the threshold. Thus, one would expect that the ηN FSI effects should

have an influence on the invariant mass spectrum measured at the lower energy of Q = 15

MeV. It is, however, unlikely that such effects should still be so important at Q = 41 MeV.

A proper inclusion of the ηN FSI calls for solving the Faddeev equation in the three-particle

continuum which is technically very involved. A rough estimate suggests that a rather strong

ηN interaction would be needed to reproduce the data at the higher energy [10], which is

difficult to be reconciled with other information about the ηN interaction. Therefore, we

seek an alternative explanation based largely on the observation that the shape of the bump

can be reproduced by folding p′2 with the available phase space. Here, p′ denotes the relative
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momentum in the final pp system. This suggests to us, that the bump seen in the experiment

could be simply caused by the pp P -wave in the final state. Admittedly, the measured final

proton angular distribution in the overall c.m. frame is nearly isotropic [6], which could be

seen as an evidence against large P -wave and higher partial wave contributions. However,

as we shall show below, there is no principal contradiction between a nearly isotropic proton

distribution and a significant P -wave fraction in the invariant mass spectrum.

Let us now make some general remarks about the structure of the reaction amplitude

for pp → ppη. In what follows, we shall assume that the η is in an s wave relative to the

(final) pp system and that the final protons are in a relative S and/or P state. Since the η

meson is an isoscalar pseudoscalar particle, it follows immediately that the orbital angular

momentum of the pp system has to change in the transition from the initial to the final

state and consequently, due to the Pauli principle, the total spin also has to change. Thus,

the most general form of the reaction matrix (involving even angular momenta of η) can be

written as

M =
(

~APS′=0 − ~BPS′=1

)

·
1

2
(~σ1 − ~σ2) , (1)

where PS′=0,1 stands for the total spin singlet and triplet projection operator as the total spin

of the two protons in the final state, S ′, takes the value S ′ = 0 and S ′ = 1, respectively. ~σi

denotes the Pauli spin matrix acting on each of the two interacting protons, i = 1 and 2. In

terms of the Pauli spin matrices, we have PS′=0 = (1−~σ1 ·~σ2)/4 and PS′=1 = (3+~σ1 ·~σ2)/4.

We, then, may write, PS′(~σ1 − ~σ2)/2 =
[

(~σ1 − ~σ2) − (−)S′

i(~σ1 × ~σ2)
]

/4, which, up to an

irrelevant phase, is identical to the structure given in Ref. [11]. The vectors ~A and ~B in

Eq. (1) may be constructed from the momentum vectors available in the system, e.g., the

relative momenta of the two protons in the initial state ~p and in the final state ~p ′. Since we

restrict ourselves to S and P waves for the outgoing pp system we may write

~A = αp̂ , ~B = β~p ′ + γ(~p ′ − 3p̂(p̂ · ~p ′)) . (2)

Here the amplitudes α, β, and γ correspond to the transitions 3P0 → 1S0s,
1S0 → 3P0s,

and 1D2 → 3P2s, respectively. Note that we pulled out the linear momentum dependence,

characteristic of P–waves, from the corresponding partial-wave amplitudes. The amplitude

α has a strong dependence on the relative energy of the pp system in the final state reflecting

the strong pp FSI in the 1S0 state. The amplitudes β and γ also depend on the relative

energy of the pp system in the final state; however, their energy dependence is much weaker
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than that of α due to the much weaker pp FSI in the 3P0 and 3P2 states as compared to the

1S0 state.

From Eq. (1) explicit expressions for any observable follow directly. E.g., we find

dσ

dΩ
= | ~A|2 + | ~B|2 ,

dσ

dΩ
Aj = i( ~A ∗ × ~A)j ,

dσ

dΩ
Cij = δij

(

| ~A|2 − | ~B|2
)

− 2Re (A∗

iAj) , (3)

where Aj denotes the analyzing power and Cij the spin correlation function. Inserting the

expressions of Eq. (2) into Eq. (3) we get

dσ

dΩ
= |α|2 + p′ 2

[

|β + γ|2 + 3x2(|γ|2 − 2Re(βγ∗))
]

,

dσ

dΩ
Aj = 0 ,

dσ

dΩ
Cxx = |α|2 − p′ 2

[

|β + γ|2 + 3x2(|γ|2 − 2Re(βγ∗))
]

, (4)

where we introduced p′x = ~p ′ · p̂. We note that partial-wave amplitudes with even and odd

final pp relative orbital angular momenta cannot interfere with each other due to the Pauli

principle.

Let us recall at this stage that the proton angular distribution seen in the experiment is

isotropic [6]. From the above equations we can see immediately that there are two possible

scenarios for achieving such an isotropic distribution in the presence of significant pp P–wave

contributions, namely

1) Dominant contributions from the transitions 3P0 → 1S0s and 1S0 → 3P0s, but

negligible contributions from 1D2 →
3P2s (γ ≈ 0).

2) Contributions from all three transitions, 3P0 → 1S0s,
1S0 →

3P0s and 1D2 → 3P2s,

where the latter two interfere destructively (|γ|2 ≈ 2Re(βγ∗)).

Obviously, the observables given in Eq. (4) do not allow one to distinguish between the

two scenarios and, consequently, there is no model independent way to extract the two pp P -

wave amplitude contributions (β and γ) from these observables. To do that, one would need

observables depending also on the spin of the final pp state, such as spin transfer coefficients.

Note, however, that the combination dσ/dΩ (Cxx + 1) depends only on the amplitude α.
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Hence, a measurement of this observable would determine, in a model independent way, the

pp S–wave contribution (α) in the final state. Similarly, a measurement of dσ/dΩ (Cxx − 1)

would confirm the presence of pp P–waves in the final state. It should also be stressed that

Cxx by itself is already very interesting. Here the two angular independent terms (first two

terms in the last equation of (4)) have opposite signs and thus tend to cancel each other.

Consequently, this observable should be rather sensitive to the angular dependent term.

We now turn our attention to the results of a model for pp → ppη. In Ref. [12] we have

presented a relativistic meson-exchange model for η production in NN collisions. It treats

η production in the Distorted Wave Born Approximation and includes both the NN FSI

and initial state interaction (ISI), the latter through the approximate procedure proposed

in Ref. [13]. While this model yields a satisfactory description of the near-threshold cross

section data (for pp → ppη and for pn → pnη) it fails to reproduce the recently measured

invariant mass distributions. It should be stressed that the main objective of the present

model calculation is not to achieve an accurate description of the existing data but rather

to verify whether the model of Ref. [12] can be modified so as to comply with the major

features exhibited by the new data [6, 7] as discussed above.

In the development of a variant of the model [12] we have restricted ourselves to modifi-

cations of the vNN∗ vertex and the mixing parameter λ in the πNN∗ and ηNN∗ vertices.

Here, v stands for either the ρ- or ω-meson and N∗ is the S11(1535) resonance. We also use

the Paris NN T-matrix [14] as the pp FSI; the Coulomb interaction is fully accounted for as

described in Ref. [15]. Everything else was kept unchanged. In contrast to Ref. [12], in the

present work we have chosen a more general gauge invariant Lagrangian [16] for the vNN∗

coupling

L
(±)
ωNN∗(x) =

(

gωNN∗

mN∗ +mN

)

ψ̄N∗(x)γ5

{[

γµ

∂2

mN∗ +mN

− i∂µ + κωσµν∂
ν

]

ωµ(x)

}

ψN (x)

+ h.c. , (5a)

L
(±)
ρNN∗(x) =

(

gρNN∗

mN∗ +mN

)

ψ̄N∗(x)γ5

{[

γµ

∂2

mN∗ +mN

− i∂µ + κρσµν∂
ν

]

~τ · ~ρµ(x)

}

ψN(x)

+ h.c. , (5b)

where ωµ(x), ~ρµ(x), ψN (x) and ψN∗(x) denote the ω, ρ, nucleon and spin-1/2 N∗

(=S11(1535)) resonance fields, respectively. mN∗ denotes the mass of the nucleon reso-

nance. The coupling constants gvNN∗ and κv were considered to be free parameters in the

calculation and have been adjusted to reproduce (globally) the available data, including the
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ppη and pnη total cross sections. The γ5γµ coupling at the vNN∗ vertex was necessary to

achieve a reasonable fit to the data. The values obtained are: gρNN∗/(m∗

N + mN ) = 9.5

[fm], κρ = -5.3 and gωNN∗/(m∗

N + mN) = 6.0 [fm], κω = 3.8. In addition to the vNN∗

vertex given above, we have also chosen the pseudoscalar-pseudovector mixing parameter to

be λ = 0.7 at the πNN∗ and ηNN∗ vertices [12]. All other parameter values are the same

as given in Ref. [12] corresponding to the case of pseudoscalar meson dominance. We refer

to Ref. [12] for further details of the model.

Results for the pp invariant mass distribution based on different partial wave contributions

are shown in Fig. 1 together with the recent data at the excess energies of Q = 15 [6, 7] and

41 MeV [6]. The full results are denoted by solid curves. Hereafter, these correspond to the

calculations performed using the plane-wave basis without a partial wave decomposition and,

as such, they include all partial waves. As is evident from the dashed curves, the observed

peak in the region m2
pp ∼ (2mN)2 is due to the strong pp FSI in the 1S0 state. The observed

bump in the higher mpp region is largely due to the 3P0s final state (dash-dotted curves).

The contribution from the 3P2s state (dotted curves) is very small. Contributions from

other partial-wave states (mainly 3P2,
3 F2 →

1 S0d) are relatively small at Q = 41 MeV and

practically negligible at Q = 15 MeV. Thus, the present model is in line with the scenario

(1) discussed above. Overall, the shape of the pp invariant mass distribution exhibited by

the data is nicely reproduced. However, the model tends to overestimate the data close to

the maximum value of m2
pp at Q = 41 MeV. In principle, this discrepancy might be due to

the pη FSI which is not explicitly accounted for in our model [12]. However, in order to

reduce the predicted value, one needs a repulsive pη FSI which seems to be in contradiction

with all other evidence of pη FSI effects in meson production [9, 17]. Moreover, no such

discrepancy is seen at Q = 15 MeV where the effect of the pη FSI should be even larger.

Further investigation is required to resolve this issue.

It is important to note that the relative strength of the different partial-wave states

depends crucially on the details of the model, and that means, specifically, on the excitation

mechanism of the S11(1535) resonance in the present case. In fact, the measured pp invariant

mass distributions can be described with the same quality as shown in Fig. 1 with the 3P2s

state contribution dominating over the 3P0s state contribution. Such a scenario can easily

be achieved in our model by a proper adjustment of the coupling constants at the vNN∗

vertex appearing in the underlying Lagrangians (Eq. (5)). However, the resulting proton

7



angular distributions are then much more pronounced and, consequently, in disagreement

with the experimental evidence [6].

Although significant pp P -waves in the final state seem to be necessary for reproducing

the pp invariant mass distribution, it is important to note that the energy dependence of

the total cross section near the threshold energy region is basically reproduced by the pp

FSI in the 1S0 state folded with the phase space. E.g., the model developed by V. Baru et

al. [18] reproduces nicely the energy dependence of the total cross section from threshold

up to Q ∼ 50 MeV with S–wave contributions alone. Results of the present model for the

total cross section are shown in Fig. 2. Comparing the curves for the 1S0s (long-dashed)

and 1S0s +3 P0s (dash-dotted) partial waves, one realizes that the onset of the 3P0s final

state occurs at a fairly low excess energy and that its contribution becomes increasingly

important with increasing energy. This feature is a direct consequence of the requirement

of reproducing the pp invariant mass distribution. However, as a result, the model now

underpredicts significantly the data for energies close to threshold. The thin dashed curve

corresponds to the 1S0s contribution multiplied by an arbitrary factor of 3. This clearly

shows that the total cross section data in the low energy region favor a larger contribution

of the 1S0s final state than is predicted by our model. Whether one is able to reconcile these

seemingly contradictory properties within a consistent theoretical model remains to be seen.

In any case, one should keep in mind that the ηN FSI, which is not included in the present

model calculation, should enhance the η s-wave contribution near threshold to some degree

[19].

Fig. 3 shows the differential cross sections as a function of the η emission angle in the

overall c.m. frame for two excess energies. The data from Ref. [6] are basically isotropic,

indicating a dominant η s-wave contribution. The theoretical results are normalized to the

total cross section (obtained by integrating the differential cross section data) in order to

facilitate a proper comparison of their angular dependence with the experiment. At Q = 15

MeV the normalization factor is about 2.7, while at Q = 41 MeV, it is about 0.9. The

dashed curves correspond to the s-wave contribution, the dash-dotted curves to the s + p

waves, and the dotted curves to the s+p+d waves. The last are practically indistinguishable

from the corresponding full results which are denoted by the solid lines. As expected after

the discussion above, the angular distribution is given primarily by the s-wave contribution,

with a small contribution from higher partial waves provided mainly by the d-wave.
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In Fig. 4, the proton angular distributions in the overall c.m. frame are shown together

with the data from Ref. [6]. Here again the model predictions are normalized to the data

using the same factor mentioned above. Evidently, at Q = 15 MeV the result is isotropic; it

is dominated by the 1S0s (dashed curve) state followed by the 3P0s (dash-dotted curve) state.

Contributions from other partial waves are practically negligible. At Q = 41 MeV there is

a small contribution from the 3P2s (dotted curve). Obviously, the destructive interference

with the 3P0s state canceling the angular dependence (see Eqs.(4)) is incomplete resulting

in a noticeable angular dependence which, however, is still compatible with the experiment.

The difference between the dotted and solid curves is due to a small contribution from the

3P2 →
1 D2s plus 3P2,

3 F2 →
1 S0d amplitudes.

Fig. 5 shows the prediction for the analyzing power as a function of the η emission angle

in the overall c.m. frame. The data are from Ref. [5]. The dashed curves correspond to

the η s + p wave contributions while the dash-dotted curves to the s + p + d waves. The

solid lines are the full results. We note that the s-wave contribution alone yields Ay ≡ 0

(see Eqs.(4)), so that any non-vanishing result must necessarily involve higher partial waves.

Furthermore, judging from the shape exhibited by the analyzing power, the present model

yields a vector meson dominance over the pseudoscalar meson in the excitation mechanism

of the S11(1535) resonance as discussed in Ref. [12]. Although the data indicate some

contribution from partial waves higher than the s-wave, they are not sufficiently accurate

to make a definitive statement as to the size of their contribution.

In Fig. 6 we present predictions for the spin correlation function Cxx at Q = 41 MeV

as a function of the proton angle in the overall c.m. frame. As can be seen from Eq. (4),

the 3P0 → 1S0s partial wave alone leads to a constant value of Cxx = 1. Adding the

1S0 → 3P0s contribution (dashed curve) yields a small value of Cxx ∼ −0.3. Including

also the 1D2 → 3P2s contribution one obtains the result represented by the dotted line.

(In this context note that the 1S0 → 3P0s as well as the 1D2 → 3P2s contributions alone

would give rise to Cxx = −1, cf. Eq. (4)). Other partial-wave contributions do not change

Cxx qualitatively as is evident from the full result (solid curve). Thus, in our model, the

cancellation of the |α|2 term and the |β + γ|2 in Eqs. (4) is almost complete! This strongly

enhances the relative importance of the angular dependent term in Cxx. Note that Cxx = Cyy

for all of the three partial-wave contributions discussed explicitly above (c.f. Eqs. (3)).

In Fig. 7 predictions for the pη invariant mass distribution are shown together with the
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data [6]. Again, the dominant contributions are from the 1S0s (dashed curves) and 3P0s

(dot-dashed curves) final states; the contribution from the 3P2s state (dotted curves) is

negligible. At Q = 41 MeV one sees also some effects from other partial-wave states arising

mainly from the 3P2,
3 F2 →1 S0d amplitude. The overall shape of the measured invariant

mass distribution is reproduced. The observed discrepancies in the details, especially at

Q = 41 MeV, are not easy to understand in view of the nice agreement between calculated

and measured pp invariant mass distributions.

Summarizing our results, we have shown that the currently available data on η production

in pp collisions near the threshold energy can be largely understood in terms of a few S-

and P -wave amplitudes. For a completely model-independent extraction of the relevant

amplitudes, however, observables independent of those presently available are required. In

this connection, the spin correlation function, either Cyy or Cxx, is suited to further constrain

the 3P0s and 3P2s final state contributions. In any case, the final pp P -wave contribution

is crucial for explaining the measured invariant pp mass distribution, especially, at Q =

41MeV . Our model calculations show that, the dominant amplitudes are 3P0 → 1S0s and

1S0 → 3P0s. It should be stressed that in order to quantify the role of the ηN interaction

in pp→ ppη it is important to first understand the role of higher NN partial waves.

Finally, we note that the present work illustrates the possibility of using meson production

processes in NN collisions to study the properties of nucleon resonances in terms of a few

partial-wave amplitudes. In particular, the present model prediction for the relevant partial-

wave amplitudes depends very sensitively on the details of the model and especially to the

excitation mechanism of the S11(1535) resonance. This offers an excellent opportunity to

study some of the properties of the S11(1535) resonance using the η meson production

reaction in NN collisions which would not be possible to investigate in more basic reactions

such as γ +N → η +N and M +N → η +N .
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FIG. 1: Final pp invariant mass distribution in pp → ppη as a function of invariant mass squared,

m2
pp, at an excess energy of Q = 15 MeV (upper panel) and Q = 41 MeV (lower panel). The

dashed (dash-dotted) curves correspond to the 1S0s (1S0s +3 P0s) final state contribution. The

dotted curves correspond to 1S0s +3 P0s +3 P2s; its is indistinguishable from the solid curve in the

upper panel. The solid curves are the full results. The data are from Ref. [6] (filled circle) and

Ref. [7] (open circle). The latter have been normalized by an arbitrary factor of 0.66 in order to

facilitate the comparison of the shape with the former data and the present model prediction.
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FIG. 2: Total cross section for the reaction pp → ppη as a function of the excess energy Q. The

solid curves represent the full results. The dashed (dash-dotted) curve corresponds to the 1S0s

(1S0s +3 P0s) final-state contribution and the dotted curve to the 1S0s +3 P0s +3 P2s contribution.

The thin dashed curve is the 1S0s contribution multiplied by an arbitrary factor of 3. The data

are from Ref. [2].
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FIG. 3: Angular distribution of the emitted η meson in the c.m. frame of the total system at

an excess energy of Q = 15 MeV (upper panel) and Q = 41 MeV (lower panel). The dashed

(dash-dotted) curves correspond to the η meson s-wave (s + p-wave) contribution. The dotted

curves correspond to the s + p + d-wave contributions which are practically indistinguishable from

the corresponding full results represented by solid curves. The data are from Refs. [3, 6].
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FIG. 4: Angular distribution of the proton in the final state in the c.m. frame of the total system

at an excess energy of Q = 15 MeV (upper panel) and Q = 41 MeV (lower panel). The dashed

(dash-dotted) curves correspond to the 1S0s (1S0s +3 P0s) final-state contribution. The dotted

curve corresponds to the 1S0s +3 P0s +3 P2s contribution and the solid curve represents the full

result. The data are from Ref. [6].
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FIG. 5: Analyzing power for the reaction pp → ppη as a function of η emission angle in the c.m.

frame of the total system at an excess energy of Q = 15 MeV (upper panel) and Q = 41 MeV

(lower panel). The dashed (dash-dotted) curves correspond to the partial waves contributions with

l′ ≤ 1 (l′ ≤ 2). The solid curves represent the full results. The data are from Ref. [5].
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FIG. 6: Predicted spin correlation function Cxx for the reaction pp → ppη as a function of final

proton angle in the overall c.m. frame at an excess energy of Q = 41 MeV. The dash (dash-dotted)

curve corresponds to the 1S0s (1S0s+3 P0s) final state contribution. The dotted curve corresponds

to the 1S0s +3 P0s +3 P2s contribution and the solid curve represents the full result.
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FIG. 7: Same as Fig. 1 but for the pη invariant mass distribution. The data from Ref. [7] (open

circle) have been normalized by an arbitrary factor of 0.66 in order to facilitate the comparison of

the shape with the data from Ref. [6] and the present model prediction.
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