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Abstract

We study the correlation between confinement and dynamical chiral-symmetry break-
ing (DχSB) in the dual Ginzburg-Landau (DGL) theory using the effective potential
formalism. The DGL theory is an infrared effective theory based on the dual Higgs
mechanism, and provides the nonperturbative gluon propagator, which leads to the lin-
ear quark potential. The screening effect for the confining potential can be obtained by
introducing the infrared cutoff corresponding to the hadron size. We formulate the ef-
fective potential for DχSB in the DGL theory, and find the vacuum instability against
quark condensation. To extract confinement effect, we separate the effective potential
into the confinement part and others by dividing the confinement term from other terms
in the gluon propagator in the DGL theory. The confinement part provides the dominant
contribution to DχSB, which is regarded as monopole dominance for DχSB. The relevant
energy for DχSB is found to be the infrared region below 1GeV. Monopole dominance
for the DGL propagator is also found in the intermediate region, 0.2fm <

∼ r <
∼ 1fm.

1 Introduction

Quark confinement and dynamical chiral-symmetry breaking(DχSB) are the most important
nonperturbative phenomena in quantum chromodynamics(QCD) [1]. Color confinement is
characterized by the formation of the squeezed color-electric flux tube [2] and the linear
potential between quark and anti-quark [3, 4], which confines the quarks inside hadrons.
On the other hand, DχSB is characterized by quark condensate, large effective quark mass
and the appearance of the Nambu–Goldstone(NG) bosons as pions [5]. Although the QCD
Lagrangian is chirally symmetric in the massless quark limit, it is spontaneously broken
in the nonperturbative vacuum due to the quark condensate 〈q̄q〉 6= 0. Such phenomena
concerning with DχSB has been demonstrated and studied by using the effective models of
QCD [5, 6, 7, 8], for instance Nambu–Jona-Lasinio model [9]. These studies suggest that
light quarks get a large effective mass [10], M ≃350MeV, in the infrared energy region as a
result of DχSB. The absence of the parity doubling in the hadronic spectrum is understood
in terms of DχSB, and the pion properties are understood by its identification to the the
NG boson. As for confinement, it is getting clear that quark confinement can be understood
in terms of the dual superconductor picture in the ’t Hooft abelian gauge [11] from recent
studies of the lattice gauge theory [12, 13, 14]. In this picture, the QCD-monopole appearing
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by the abelian gauge fixing condenses in the QCD vacuum, and therefore quarks are confined
through the dual Meissner effect [15, 16, 17].

The close relation between these two nonperturbative phenomena [18] have been suggested
by the coincidence between the deconfinement phase transition and the chiral restoration in
the lattice QCD [19]. Within the effective theory approach, we have shown that QCD-
monopole condensation plays an essential role on DχSB[20, 21, 22, 23, 24]. Independently,
Miyamura [25] and Woloshyn [26] found the similar result of monopole dominance for DχSB

in the lattice gauge theory. The DGL theory is an infrared effective theory of the nonper-
turbative QCD, where the QCD vacuum is described in terms of the abelian gauge theory
with QCD-monopoles [27]. In this theory, it was shown that monopole condensation induces
large dynamical quark mass using the Schwinger-Dyson(SD) equation, a non-linear integral
equation for the quark mass function [20, 21, 22]. The chiral phase transition at finite temper-
ature was also studied by solving the SD equation. A strong correlation was found between
the string tension and the critical temperature of the chiral symmetry restoration in terms of
QCD-monopole condensation [23]. Thus, the above results suggest strong correlation between
confinement and DχSB.

To get deeper insight on this correlation, it is desirable to examine the contribution of
confinement to DχSB more directly. In the DGL theory, the nonperturbative gluon propaga-
tor is composed of two parts, confinement term and others. As for the inter quark potential,
the former leads to the linear potential and latter to the Yukawa potential. To examine the
contribution of each part, we calculate the effective potential in the ladder level approxima-
tion, where we can simply extract the contribution of confinement to DχSB. In Sec.2, we
review the description of confinement in the DGL theory. We derive the nonperturbative
gluon propagator from the DGL Lagrangian, and see how it reproduces the q–q̄ confining
potential. In Sec.3, we formulate the effective potential in terms of the quark propagator.
The effective potential is formulated in the ladder level approximation with the QCD renor-
malization improvement for the gauge coupling. An analysis of the nonperturbative gluon
propagator is done also. In Sec.4, numerical results are discussed. We also compare our
results with the QCD-like theory, where the perturbative gluon propagator is used in the
ladder approximation. Sec.5 is devoted to summary and concluding remarks.

2 Dual Higgs Mechanism and Quark Confinement

It was pointed out that the quantum chromodynamics(QCD), a non-abelian gauge theory,
reduces to an abelian gauge theory containing monopoles in the ’t Hooft abelian gauge [11],
which is defined by diagonalizing an appropriate gauge-dependent variable X[Aµ(x)]. Since
this gauge fixing condition leaves abelian gauge degrees of freedom unfixed, the theory holds
the local symmetry on the abelian gauge transformation. In this gauge, only the diagonal
components of the gluon behave as abelian gauge fields and the remaining off diagonal com-
ponents behave as charged matter fields under the residual abelian gauge transformation.
One of the most important features of the ’t Hooft abelian gauge is that monopoles appear
at the singular points in gauge fixing condition [11].

From the recent analyses based on the lattice QCD, the remaining off-diagonal gluon is
largely reduced in the maximally abelian (MA) gauge [28] and nonperturbative features are
almost reproduced only by the abelian gluon including QCD-monopoles [13, 25, 26]. For
instance, in the SU(2) lattice gauge theory, MA gauge is defined by maximizing

R =
∑

s,µ̂

Tr[σ3Uµ(s)σ3U
†
µ(s)] (1)
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by the gauge transformation. Here, Uµ(s) ≡ eiagAµ(s) denotes the lattice link variable. In
this gauge, X[Aµ(x)] to be diagonalized is given by the Lorentz scalar,

X(s) =
∑

µ

[Uµ(s)σ3U
†
µ(s) + U †

µ(s − µ)σ3Uµ(s − µ)]. (2)

In the continuum limit, the MA gauge fixing is equivalent to (∂µ ± iaAµ
3 )A±

µ = 0, where Aµ
3

and Aµ
± denote the diagonal gluon and the off-diagonal gluons, respectively. In the lattice

formalism, the SU(2) link-variable in MA gauge is factorized as Uµ = ei(θ+
µ T−+θ−µ T+)eiθ3

µT 3

,

where the abelian link-variable uµ ≡ eiθ3
µT 3

corresponds to the abelian part of Uµ. Similarly

to the Wilson loop, the abelian Wilson loop, defined by the loop integral w = ei
∮

dsµθ3
µT 3

,
obeys the area law and reproduces the string tension well in MA gauge [13]. Therefore, the
only abelian gluon seems relevant in MA gauge for confinement in the lattice QCD, which
is called as abelian dominance for confinement. Thus, for the description of the confinement
physics, QCD in MA gauge would be well approximated by the abelian gauge theory including
monopoles.

The abelian gauge field coupled to electric current jµ and magnetic current kµ is described
by introducing the dual gauge field Bµ as [29]

LZwanziger = Kgauge(A,B) − jµAµ − kµBµ. (3)

The kinetic term of gauge fields Kgauge(Aµ, Bµ) is expressed in the Zwanziger form [21, 27],

Kgauge(Aµ, Bµ) ≡ − 2

n2
[n · (∂ ∧ A)]ν [n ·∗ (∂ ∧ B)]ν − 1

n2
[n · (∂ ∧ A)]2 − 1

n2
[n · (∂ ∧ B)]2, (4)

which manifests the duality of the gauge theory. Here, nµ is an arbitrary constant space-like
4-vector corresponding to the Dirac string direction. The diagonal gauge field Aµ and the

dual gauge field Bµ are defined on the Cartan sub-algebra ~H = (T3, T8): Aµ ≡ Aµ
3T3 + Aµ

8T8,
Bµ ≡ Bµ

3 T3 + Bµ
8 T8.

The dual Ginzburg-Landau (DGL) theory is an infrared effective theory of QCD based
on the dual Higgs mechanism in the abelian gauge [20, 21, 22, 27, 30, 31, 32]. Its Lagrangian
is described by quarks q, monopoles χ, and diagonal part of gauge fields as [32]

LDGL = trKgauge(Aµ, Bµ) + q̄(i 6∂ − e 6A − m)q + tr[Dµ, χ]†[Dµ, χ] − λtr(χ†χ − v2)2, (5)

where Dµ ≡ ∂µ+igBµ is the dual covariant derivative with the dual gauge coupling g obeying
the Dirac condition, eg = 4π [21]. The QCD-monopole field χ is defined on the nontrivial root
vectors Eα: χ ≡

√
2
∑3

α=1 χαEα, with
√

2E1 ≡ T1 + iT2,
√

2E2 ≡ T4 − iT5,
√

2E3 ≡ T6 + iT7.
The QCD-monopoles condense in the vacuum, due to its self interaction. Its condensation
squeezes out the color electric flux and leads to linear inter-quark potential [21, 22, 27].

Let us derive the nonperturbative gluon propagator in the QCD-monopole condensed
vacuum [21]. At the mean field level for the monopole condensate |χα| = v, one obtains the
Lagrangian density as

LMF = trKgauge(Aµ, Bµ) + q̄(i 6∂ − e 6A − m)q +
1

2
m2

B
~B2, (6)

where Bµ acquires a mass of mB =
√

3gv. By integrating out the dual gauge field Bµ, one
obtains the nonperturbative gluon propagator for Aµ

Dµν(k) = − 1

k2
{gµν + (αe − 1)

kµkν

k2
} − 1

k2

m2
B

k2 − m2
B

1

(n · k)2
ǫλ

µαβǫλνγδn
αnγkβkδ, (7)
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with the gauge parameter αe. The double pole 1/(n·k)2 in the second term causes the infrared
linear part in the static quark-antiquark potential. Hence, the second term is regarded as
the nonperturbative part of the gluon propagator. The above expression, however, is derived
without taking into account the dynamics of light quarks. With the dynamical quarks in the
vacuum, the flux tube between static charges when the distance exceeds some typical length
as hadron size, will be cut into two tubes with pair-produced quarks on its end. As a result,
the static potential will be screened in the QCD vacuum. For the study of chiral symmetry,
which is a symmetry of light quarks, we have to take into account the screening effect by
the light quark polarization [21]. In this case, the nonperturbative part is modified with the
infrared cutoff parameter a corresponding to the inverse of hadron size as [22]

Dµν(k) = − 1

k2
{gµν + (αe − 1)

kµkν

k2
} − 1

k2

m2
B

k2 − m2
B

1

(n · k)2 + a2
ǫλ

µαβǫλνγδn
αnγkβkδ. (8)

Now we derive the static inter-quark potential. Introducing external color-electric source
~j, the current action can be obtained as

Zj =

∫

DAei
∫

d4xLMF(A,j) =

∫

DA exp

{

i

∫

d4x[
1

2
~Aµ(x)D−1

µν (x) ~Aν(x) −~jµ(x) ~Aµ(x)]

}

= exp

{

i

∫

d4x

∫

d4y[−1

2
~jµ(x)Dµν(x − y)~jν(y)]

}

≡ e−iV [j]
∫

dt. (9)

For the static quark and anti-quark current

~jµ(x) = ~Qgµ0[δ3(x − b) − δ3(x − a)], (10)

whose Fourier component is given as

~jµ(k) = ~Qgµ02πδ(k0)(e−ik·b − e−ik·a), (11)

the current action Sj is expressed as

Sj = −1

2

∫

d4xd4y~jµ(x)·Dµν(x − y)~jν(y)

=
1

2

∫

d4k

(2π)4
~jµ(−k)·

[

1

k2 − m2
B

gµν +

{

m2
B − a2

k2 − m2
B

+
a2

k2

}

1

(n · k)2 + a2
gµν

]

~jν(k)

= − ~Q2
∫

dt

∫

d3
k

(2π)3
(1 − cos k · r)

[

1

k
2 + m2

B

+
m2

B(k2 + a2)

k
2(k2 + m2

B)

1

(n · k)2 + a2

]

. (12)

Here, we have used nµ = (0,n) for the Dirac string direction with unit vector n and the
relative coordinate r = b − a. The first term produces the short-range Yukawa potential
while the second term gives rise to the infrared linear potential.

We set n//r from the symmetry of the system and the energy minimum condition. Simi-
larly in the argument for the Abrikosov vortex, there appears the physical ultraviolet cutoff
corresponding to the coherent length in the integration of the transverse momentum kT [21],
due to the reduction of the monopole condensate in the core region of the flux tube. Quanti-
tatively, the inverse of the coherent length is given by the monopole mass mχ = 2

√
λv, and

the dual gluon mass mB vanishes in the core region rT
<
∼ m−1

χ , which leads to the cutoff on

the ultraviolet region kT
>
∼ mχ in the above integral. Thus, the static potential is obtained

as

V (r) = −
~Q2

4π

e−mBr

r
+ σ

1 − e−ar

a
, (13)
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with string tension given as

σ =
~Q2

8π

{

(m2
B − a2) ln

(

m2
χ + m2

B − a2

m2
B − a2

)

+ a2 ln

(

m2
χ − a2

a2

)}

. (14)

The second term of Eq.(13) reduces to the linear potential σr in the limit of a → 0, which
corresponds to the absence of the screening effects. In the region r >

∼ a−1, screening effect
suppress the potential and it approaches to a constant value in the limit r → ∞. In Fig.1, we
show the static potential in the DGL theory for various infrared screening cutoff a together
with the phenomenological Cornell potential [33],

VCornell(r) = −e2
C

3π
· 1

r
+ kCr, (15)

with eC ≃ 2 and kC ≃ 1GeV/fm. The DGL parameter set is to be chosen so as to reproduce
the string tension σ = 1GeV/fm, and the flux-tube radius of hadrons as m−1

B = 0.3 ∼ 0.4
fm. Here, we set mB = 0.5GeV, e = 5.5, and choose mχ =1.26, 1.17 and 1.06 GeV for a = 0,
85, 150 MeV respectively. In the recent lattice QCD simulation [34], the screening effect by
dynamical quarks is observed at the infrared region as r >

∼2fm, which corresponds to a <
∼ 100

MeV.
There are two possibilities of modification on the short range part [31]. One is the

vanishing of the dual gauge mass mB and the other is the running of the gauge coupling.
Though the Yukawa type part is obtained by integrating the first term of the Eq.(12) without
cutoff, mB should vanish in the ultraviolet region as noted above. This may cause the shift
of the Yukawa type potential to a Coulomb type one in the short range. Also, in this region,
the gauge coupling constant is expected to be modified. In the DGL theory, the off diagonal
gluons are omitted on the basis of abelian dominance. However, this feature is expected
only for the long range physics and in the perturbative region all components of the gluon
become relevant. Hence, with the increase of the number of coupling gluons, the description
only with abelian components becomes insufficient. To compensate the contribution of off
diagonal components, the coupling constant should be modified in this region. Considering
these modifications one may find better coincidence between the static potential presented
by DGL theory and the phenomenological one in the short rage.

In any case, the dual Ginzburg–Landau theory describes the global feature of the confine-
ment dynamics well. In addition, as stated in the introduction, this model exhibits DχSB for
quarks as well. Therefore one can inquire much about these nonperturbative physics through
this model, instead of dealing with the highly complex full QCD in the infrared region.

3 Correlation between DχSB and Confinement

Recently, the essential role of QCD-monopole condensation on DχSB has been pointed out
by solving the Schwinger-Dyson (SD) equation [20, 21, 22]. In this chapter, we study the
correlation between DχSB and confinement from the view point of energy density, i.e. in
the effective potential formalism. Approximating the full quark propagator as iS−1 = 6 p −
M(p2)+ iǫ, one obtains the SD equation for the quark mass function M(p2) in the Euclidean
space,

M(p2) =

∫

d4q

(2π)4
~Q2 M(q2)

q2 + M2(q2)
Dµµ(q − p) (16)
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in the chiral limit. Here, ~Q2 = Nc−1
2Nc

e2 denotes the abelian electric charge of the quark. In
this equation, Dµµ(k) is composed of three parts,

Dµµ(k) =
2m2

B

k2(k2 + m2
B)

· n2k2 + a2

(n · k)2 + a2
+

2

k2 + m2
B

+
1 + αe

k2
= Dconf

µµ (k) + DY
µµ(k) + DC

µµ(k).

(17)
The first term Dconf

µµ (k) is responsible for the linear confinement potential [20, 21] in the

absence of the screening effect, a = 0. The second term DY
µµ(k) is related to the short-range

Yukawa potential, and the Coulomb part DC
µµ(k) does not contribute to the quark static

potential. In spite of this decomposition, it is difficult to separate and compare each contri-
bution to DχSB in the nonlinear SD equation. To examine these contributions separately, it
is useful to study the effective potential which corresponds to the vacuum energy density. In
this paper, we study the effective potential [35] variationally in the chiral limit.

Within the ladder level approximation, the effective potential Veff [S] leads to the ladder
SD equation when imposed the extremum condition in terms of the full quark propagator
S(p) [7]. Using the nonperturbative gluon propagator Dµν(k) in the DGL theory, the effective
potential as a functional of the dynamical quark mass M(p2) is expressed as

Veff [S] = iTr ln[S0S
−1] + iTr[SS−1

0 ] +

∫

d4p

(2π)4
d4q

(2π)4

~Q2

2
tr[γµS(p)γνS(q)Dµν(p − q)], (18)

where S0(p) is the bare quark propagator, iS−1
0 (p) = 6p − m + iǫ .

Here, we would like to comment on the wavefunction renormalization. Considering the
effect of the wavefunction renormalization, the ladder SD equation for the quark propagator,
iS−1(p) = z−1(p2)(6p − M(p2)), is given by coupled equations

M(p2) = z(p2)

∫

d4q

(2π)4i
~Q2z(q2)

M(q2)gµν

q2 − M2(q2)
Dµν , (19)

z−1(p2) = 1 − 1

p2

∫

d4q

(2π)4i
~Q2z(q2)

pµqν + pνqµ − p·q gµν

q2 − M2(q2)
Dµν . (20)

Suppose one uses the perturbative gluon propagator and the Higashijima–Miransky approx-
imation [7, 8] for the running coupling constant

e2(k2) ≃ e2(k̄2), (21)

where k = p − q, k̄2 ≡ max(p2, q2). Then, Eq.(20) reduces to the form

z−1(p2) = 1 + αe
2

p2

∫

d4q

(2π)4i
~Q2(k̄2)

z(q2)

q2 − M2(q2)

p · q
(p − q)2

, (22)

which leads z(p2) ≡ 1 in the Landau gauge (αe = 0). In this case, Eq.(19) reduces to Eq.(16).
On the other hand, with the use of the nonperturbative gluon propagator in Eq.(8), this is
not necessarily the case. In the Landau gauge, however, we found z(p2) ≃ 1 even in the DGL
theory by solving the coupled SD equations including z(p2) [36].

Hence, working in the Landau gauge, we approximate the wavefunction renormalization
as z(p2) ≃ 1, which corresponds to the neglect of the second term in the right hand side of
Eq.(20).

6



In the effective potential formalism, its 2-loop term is given as

V (2) = 2NfNc

∫

d4q

(2π)4i

∫

d4p

(2π)4i
~Q2z(q2)z(p2)

M(q2)M(p2)gµν + pµqν + pνqµ − p·q gµν

[M2(q2) − q2][M2(p2) − p2]
Dµν

= 2NfNc

∫

d4q

(2π)4i

∫

d4p

(2π)4i
~Q2z(q2)z(p2)

M(q2)M(p2)

[M2(q2) − q2][M2(p2) − p2]
Dµ

µ

+ 2NfNc

∫

d4p

(2π)4i

p2

M2(p2) − p2
{1 − z(p2)}, (23)

where Eq.(20) is used. Here, to set the effect of the wavefunction renormalization as z(p2) ≡ 1
is equivalent to drop off the second term of Eq.(23). This approximation would hold good in
the Landau gauge because the coupled SD equations shows z(p2) ≡ 1 [36].

Hence, the effective potential consistent with the approximation z(p2) ≡ 1 is given by

Veff [M(p2)] ≡ Vquark[M(p2)] + Vq-g[M(p2)]

= −2NfNc

∫

d4p

(2π)4
{ln(

p2 + M2(p2)

p2
) − 2

M2(p2)

p2 + M2(p2)
}

− Nf(Nc − 1)

∫

d4p

(2π)4
d4q

(2π)4
e2 M(p2)

p2 + M2(p2)

M(q2)

q2 + M2(q2)
Dµµ(p − q) (24)

in the Euclidean space. It is easy to check that the extremum condition on Eq.(24) with
respect to M(p2) leads to the SD equation (16) [21, 22] exactly.

In Eq.(24), the first term Vquark is the one-loop contribution as in Fig.2a. The second term
Vq-g with Dµµ is the two-loop contribution with the quark-gluon interaction as expressed in
Fig.2b. The important point is that this second term Vq-g is divided into three parts as

Vq-g = Vconf + VY + VC, (25)

corresponding to the decomposition of Dµµ in Eq.(17). Hence, by estimating Vconf , VY, VC

respectively, it is possible to examine each contribution to DχSB.
Before going further, remember that the nonperturbative gluon propagator depends on

the Dirac string direction nµ. However, due to the q-q̄ pair polarization effect around the
quark, the Dirac-string direction nµ becomes indefinite [22]. Therefore we take the average
value on nµ,

〈 nµnν

(n · k)2 + a2
〉av =

1

2π2

∫

dΩn
nµnν

(n · k)2 + a2
=

kµkν

k2
f//(k

2) +

{

δµν − kµkν

k2

}

f⊥(k2), (26)

with

f//(k
2) =

1

(a +
√

a2 + k2)2
, (27)

f⊥(k2) =
a + 2

√
a2 + k2

3a(a +
√

a2 + k2)2
=

1

3

{

2(a2 + k2)

ak2(a +
√

a2 + k2)
− 1

k2

}

, (28)

where the angle integration is performed in the Euclidean 4-dimensional space. We then
obtain the averaged gluon propagator D̄µν as

D̄µν =
1

3

{

δµν − kµkν

k2

}

{

1

k2
+

2

k2 + m2
B

+
4m2

B

k2(k2 + m2
B)

a2 + k2

a(a +
√

a2 + k2)

}

+ αe
kµkν

(k2)2
(29)

7



which requires the modification to Eq.(17) only on confinement part as

Dconf
µµ → 4m2

B

k2(k2 + m2
B)

k2 + a2

a(a +
√

k2 + a2)
. (30)

Therefore the effective potential we ought to compute is given as the sum of following
four terms

Vquark =
2NfNc

(4π)2

∫ ∞

0
dp2

{

−p2 ln

(

1 +
M2(p2)

p2

)

+
2 p2M2(p2)

M2(p2) + p2

}

(31)

VC = −2NfNc

(4π)4

∫ ∞

0
dp2 p2M(p2)

M2(p2) + p2

∫ ∞

0
dq2 q2M(q2)

M2(q2) + q2
~Q2 1

max(p2, q2)
(32)

VY = −2NfNc

(4π)4

∫ ∞

0
dp2 p2M(p2)

M2(p2) + p2

∫ ∞

0
dq2 q2M(q2)

M2(q2) + q2
~Q2

× 4

π

∫ π

0
dθ sin2 θ

1

(p − q)2 + m2
B

(33)

Vconf = −2NfNc

(4π)4

∫ ∞

0
dp2 p2M(p2)

M2(p2) + p2

∫ ∞

0
dq2 q2M(q2)

M2(q2) + q2
~Q2

× 8

πa

∫ π

0
dθ sin2 θ

1

a +
√

(p − q)2 + a2

m2
B((p − q)2 + a2)

(p − q)2((p − q)2 + m2
B)

. (34)

As for the running coupling, we adopt hybrid type one [21, 22] in the Higashijima–Miransky
approximation [7, 8],

e2((p − q)2) =
48π2(Nc + 1)

11Nc − 2Nf

[

ln
p2
c + max(p2, q2)

Λ2
QCD

]−1

. (35)

Choosing pc as

p2
c = Λ2

QCD exp[
48π2

e2

Nc + 1

11Nc − 2Nf
], (36)

the above expression connects smoothly the perturbative running coupling of QCD in the
ultraviolet region and the infrared effective coupling e of the DGL theory [21, 22]. From the
renormalization group analysis of QCD [7], the approximate form of the quark-mass function
M(p2) is expected as

M(p2) = M(0)
p2
c

(p2
c + p2)

[

ln
p2
c

Λ2
QCD

/

ln
p2
c + p2

Λ2
QCD

]1−
N2

c −1

2Nc
· 9

11Nc−2Nf

. (37)

Since the exact solution MSD(p2) of the SD equation (16) [22] is well reproduced by this ansatz
(37) with M(0) ≃ 0.4GeV and p2

c ≃ 10Λ2
QCD, we use this form as a variational function of

the effective potential.
At the end of this section, let us examine the nonperturbative gluon propagator in the

DGL theory. By performing the Fourier transformation on Eq.(29), we show in Fig.3 the
Coulomb, Yukawa and confinement parts of the DGL gluon propagator in the coordinate
space,

DC
µµ(x − y) ≡

∫

d4k

(2π)4
1

k2
eik(x−y) =

1

4π2

1

(x − y)2
(38)
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DY
µµ(x − y) ≡

∫

d4k

(2π)4
2

k2 + m2
B

eik(x−y) (39)

Dconf
µµ (x − y) ≡

∫

d4k

(2π)4
4m2

B

k2(k2 + m2
B)

a2 + k2

a(a +
√

a2 + k2)
eik(x−y) (40)

as the function of r ≡ |x−y|. The confinement part gives a dominant contribution to the DGL
propagator in the whole region, especially 0.2fm <

∼ r <
∼ 1fm. This means that a strong correla-

tion is brought by the confinement part of the nonperturbative gluon propagator. Since this
confinement part is a direct consequence of the monopole condensation, this significant con-
tribution suggests monopole dominance for the DGL propagator, at least in the intermediate
region.

4 Numerical Results and Discussions

We show in Fig.4 the effective potential Veff as a function of the infrared effective quark mass
M(0), using the mass function (37) with p2

c = 10Λ2
QCD. We have used the same parameters

as in Ref. [21, 22], λ = 25, v = 0.126GeV, e = 5.5 and a = 85MeV so as to reproduce the
inter-quark potential and the flux-tube radius R ≃ 0.4fm [21]. It takes a minimum at finite
M(0) ≃0.4GeV, which means that the nontrivial solution is more stable than the trivial one
in terms of the energetical argument. Hence, chiral symmetry is spontaneously broken.

We show in Fig.5 Vquark, Vconf , VY and VC as the function of M(0). The lowering of the
effective potential contributes to DχSB. Although both the Yukawa and the Coulomb terms
contribute slightly to lower the effective potential, it is mainly lowered by the confinement part
Vconf and there is a large cancellation between Vquark and Vconf . Thus, DχSB is brought by
Vconf arising from monopole condensation in the DGL theory which is regarded as monopole
dominance for DχSB. Such a dominant role of the confinement effect on DχSB is found for
any value of M(0).

In Fig.6, we show also the integrands of each term

Veff =

∫ ∞

0
dp2veff(p2) =

∫ ∞

0
dp2{vquark(p

2) + vconf(p
2) + vY(p2) + vC(p2)} (41)

to examine which energy region is important to DχSB. Here we have used the exact solution
MSD(p2) of the SD equation (16) [21, 22] as the mass function to get rid of the ambiguity
arising from the choice of the trial mass function. Among vconf , vY and vC the confinement
part vconf is always dominant for all momentum region. All the three terms, vconf , vY, and
vC, contribute to the effective potential mainly in the low momentum region less than 1GeV
although there are also long tails running into high momentum region over 1GeV. These
behaviors directly reflect the profile of the quark mass function MSD(p2). It is notable that
such contributions from high momentum region are strongly canceled in veff as shown in Fig.6.
Consequently, the remaining contribution only from low momentum region (p2 < 0.4GeV2)
plays an important role to DχSB. This seems consistent with the above result that infrared
confinement effect is dominant for DχSB.

Now, we compare our results with those in the QCD-like theory [7, 8, 37, 38], which
is a more familiar framework for DχSB. In the QCD-like theory, the perturbative gluon
propagator without the confinement force is used and the effective potential Veff can be
divided into two parts, Vquark and Vq-g within the improved ladder approximation [7, 8].
Here, Vquark is given by Eq.(31), and Vq-g takes a simple form [7],

Vq-g =

∫ ∞

0
dp2vq-g(p

2) = −2NfNcC

(4π)4

∫ ∞

0
dp2 p2M(p2)

M2(p2) + p2

∫ ∞

0
dq2 q2M(q2)

M2(q2) + q2

3e2(max(p2, q2))

max(p2, q2)
(42)
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with C = N2
c −1

2Nc
and the running coupling constant

e2(p2) =
48π2

11Nc − 2Nf
{ln p2

c + p2

Λ2
QCD

}−1. (43)

The effective potential as a function of the infrared quark mass in the QCD-like theory also
takes the double-well structure when the gauge coupling constant is enough large [7]. Similarly
in the DGL theory, the driving force of DχSB is brought by the quark-gluon interaction part
Vq-g, and a large cancellation between Vquark and Vq-g is found there.

As for the relevant energy scale for DχSB, we show in Fig.7 the integrands vquark(p
2)

and vq-g(p
2) using the solution of the SD equation in the QCD-like theory with parameters,

e(0) = 11 and ΛQCD = 746MeV, which reproduce fπ = 93MeV and 〈q̄q〉RGI = −(239MeV)3

[38]. Again the relevant energy scale is found to be less than 0.5 GeV for DχSB, which
suggests the importance of the treatment on the infrared strong-coupling region, where large
confinement effects would appear. In the DGL theory, the confining force has been included
as a result of monopole condensation, which has been supported in the lattice gauge theory
[12, 13, 14], and therefore the DGL approach seems to provide a more consistent picture for
the infrared region in QCD.

In the QCD-like theory, large values for e(0) and ΛQCD are often used to reproduce fπ or
the constituent quark mass [37, 38]. As an interesting possibility, such an “enhancement” of
the strong coupling region may be regarded as a compensation for the neglected confinement
effect in the QCD-like theory [21]. In any case, it would be meaningful to include some
confinement effect in the QCD-like theory to argue whether the confinement effect is relevant
to DχSB in QCD [39].

5 Summary and Concluding Remarks

We have studied confinement and dynamical chiral-symmetry breaking (DχSB) in the dual
Ginzburg–Landau (DGL) theory using the effective potential formalism. The DGL theory
describes confinement by squeezing of the color-electric flux through dual Higgs mechanism.
The resulting gluon propagator is composed of two parts, one is the usual perturbative
part and the other nonperturbative term leading to the linear potential between static q–q̄
system. To investigate the correlation between DχSB and confinement we have formulated
the effective potential for the quark propagator. Making use of the nonperturbative gluon
propagator in the DGL theory we have included the effect of confinement into the effective
potential. Within the ladder approximation with the renormalization group improvement for
the coupling, the effective potential is formulated as a function of the dynamical quark mass
M(p2).

The effective potential has been calculated as a function of the infrared quark mass M(0)
with the variational function suggested by renormalization group analysis of QCD. We have
found the double-well structure of the effective potential, so that the nontrivial solution is
more stable than the trivial one and leads to DχSB. To examine the role of confinement, the
interaction term Vq-g has been divided into the confinement part Vconf and others (VY,VC).
We have found that the confinement part Vconf stemming from monopole condensation gives
the dominant contribution to Vq-g (Vq-g ≃ Vconf), which means the monopole dominance for
DχSB. It has been also found that the low momentum contribution from less than 1 GeV
plays an important role for DχSB.

Finally, we would like to consider the critical scale between the nonperturbative QCD
(NP-QCD) and the perturbative QCD (P-QCD) in terms of the dual Higgs mechanism [40].
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In this framework, these regions are divided by the typical energy scale of QCD-monopole
condensation, mB(mχ) ∼ 1GeV. Above the energy scale, the system can be characterized
by the asymptotic freedom in P-QCD with the Coulomb interaction. On the other hand,
the infrared strong-coupling region would be characterized by monopole condensation in the
dual Higgs theory, because QCD-monopoles seem to play relevant role to the nonperturbative
phenomena such as confinement and DχSB. It is interesting to compare this critical scale with
a normalization point µ of the operator product expansion (OPE) in the QCD sum rule [41],
where the quantum fluctuations with the momentum scale above µ are included in the Wilson
coefficient, while those with the momentum scale below µ are included in the local operator.
Since the short-scale physics are approximately described by the P-QCD while the long-
scale physics are connected to nonperturbative phenomena, µ physically corresponds to the
border of NP-QCD and P-QCD. Hence, the scale of QCD-monopole condensation, mB(mχ) ∼
1GeV, may provide the physical image of µ in OPE. In any case, we conjecture that QCD
in the ’t Hooft abelian gauge exhibits the two different theoretical aspects: one is the short-
distance physics subject to P-QCD formulated in the it trivial vacuum, and the other is the
infrared nonperturbative physics described by the dual Higgs theory with it QCD-monopole
condensation.
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Figure Captions

Fig.1: Static q–q̄ potential in the DGL theory. Phenomenological potential (dashed curve) is
also shown for comparison. With the increase of the screening cutoff a, the screening effect
becomes strong. The saturation of the potential is observed at the long distance, r >

∼ 1/a.
The phenomenological potential is also shown for comparison.

Fig.2: The diagrams which contribute to the effective potential in the ladder level ap-
proximation. (a) The quark loop contribution Vquark without the explicit interaction. (b)
The two-loop diagram Vq-g including the quark-gluon interaction. Here, the curly line with
a black dot denotes the nonperturbative gluon propagator in the DGL theory.

Fig.3: The DGL gluon propagator in the coordinate space, Dµµ(r) ≡ F.T.Dµµ(k), with
mB = 0.5GeV and a = 85MeV. The linear part is significantly large compared to the other
parts especially in the intermediate region 0.2fm <

∼ r <
∼ 1fm. Thus, the long-range strong

interaction is mainly brought by the confinement part in the DGL theory.
Fig.4: The total effective potential Veff as a function of the infrared quark mass M(0).

The nontrivial minimum appears at M(0) ∼ 0.4GeV, which indicates dynamical breaking of
chiral symmetry.

Fig.5: Vquark, Vconf , VY and VC are is shown as a function of M(0). The confinement part
Vconf , plays the dominant role through the lowering the effective potential.

Fig.6: Integrands vquark, vconf , vY and vC of effective potential are shown as functions of
the Euclidean momentum p2. The confinement part vconf is more significant than vY and vC

for all momentum region.
Fig.7: The integrands veff , vquark and vq-g in the QCD-like theory. These quantities are

plotted as functions of the Euclidean momentum squared p2.
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