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Abstra
tWe study the Hamiltonian approa
h to 1 + 1 dimensional Yang�Mills theory inCoulomb gauge, 
onsidering both the pure Coulomb gauge and the gauge wherein addition the remaining 
onstant gauge �eld is restri
ted to the Cartan algebra.We evaluate the 
orresponding Faddeev�Popov determinants, resolve Gauss' lawand derive the Hamiltonians, whi
h di�er in both gauges due to additional zeromodes of the Faddeev�Popov kernel in the pure Coulomb gauge. By Gauss' law thezero modes of the Faddeev�Popov kernel 
onstrain the physi
al wave fun
tionals tozero 
olour 
harge states. We solve the S
hrödinger equation in the pure Coulombgauge and determine the va
uum wave fun
tional. The gluon and ghost propagatorsand the stati
 
olour Coulomb potential are 
al
ulated in the �rst Gribov regionas well as in the fundamental modular region, and Gribov 
opy e�e
ts are studied.We expli
itly demonstrate that the Dyson�S
hwinger equations do not spe
ify theGribov region while the propagators and verti
es do depend on the Gribov region
hosen. In this sense, the Dyson�S
hwinger equations alone do not provide the fullnon-abelian quantum gauge theory, but subsidiary 
onditions must be required.Impli
ations of Gribov 
opy e�e
ts for latti
e 
al
ulations of the infrared behaviourof gauge-�xed propagators are dis
ussed. We 
ompute the ghost-gluon vertex andprovide a sensible trun
ation of Dyson�S
hwinger equations. Approximations of thevariational approa
h to the 3 + 1 dimensional theory are 
he
ked by 
omparison tothe 1 + 1 dimensional 
ase.Key words:
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1 Introdu
tionIn re
ent years there has been a renewed interest in Yang�Mills theory in the Coulombgauge, both in the 
ontinuum approa
h [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16℄ and on thelatti
e [17,18,19,20,21,22,23℄. Being non-
ovariant, Coulomb gauge is more 
umbersome forperturbative 
al
ulations and, in fa
t, it has not yet been proved that Yang�Mills theory inthe Coulomb gauge is perturbatively renormalisable. However, Coulomb gauge is superiorto 
ovariant gauges su
h as Landau gauge when it 
omes to nonperturbative investigationsof the infrared se
tor of the theory. The reason is that in Coulomb gauge, Gauss' law 
anbe expli
itly resolved (and thus the separation of gauge dependent and gauge invariantdegrees of freedom a

omplished) [1℄. This is a parti
ular advantage in the Hamiltonianapproa
h where the resolution of Gauss' law leads to a 
on�ning stati
 potential between
olour 
harges. A perturbative 
al
ulation of this potential allows the extra
tion of therunning 
oupling 
onstant [24,25℄. Furthermore, in the so-
alled �rst order formalism ofthe fun
tional integral approa
h, the resolution of Gauss' law in the Coulomb gauge leadsto a 
an
ellation of the Faddeev�Popov determinant and thus avoids in prin
iple the in-trodu
tion of ghost �elds [13,14℄. The Yang�Mills Hamiltonian in the Coulomb gauge isthe starting point of a variational solution of the Yang�Mills S
hrödinger equation in Refs.[6,7,8,10℄. Using Gaussian types of ansätze for the wave fun
tional, minimisation of theva
uum energy density gives rise to a set of equations (similar to the Dyson�S
hwingerequations) for various propagators and verti
es. Imposing 
ertain approximations, theseequations have been solved analyti
ally in the infrared [26℄ and numeri
ally in the wholemomentum regime [8,27,12℄. If the 
urvature of the spa
e of gauge orbits expressed by theFaddeev�Popov determinant is properly in
luded one indeed �nds a linearly rising stati
potential and an infrared diverging gluon energy, both phenomena signalising 
on�nement.In the derivation of the Dyson�S
hwinger equations from the variational prin
iple [6,8℄,a 
ouple of assumptions and approximations are involved whi
h are di�
ult to 
ontrolin D = 3 + 1 dimensions. For this reason, we apply in the present paper the variationalapproa
h of Ref. [8℄ to Yang�Mills theory in D = 1+1, whi
h 
an be solved exa
tly in theCoulomb gauge. With the exa
t solution at hand we then test various assumptions andapproximations involved in the D = 3 + 1 dimensional 
ase.Yang�Mills theory in 1 + 1 dimensions is trivial in �at Minkowski spa
e but be
omes non-trivial on a 
ompa
t manifold. We shall 
onsider Yang�Mills theory on the spa
e-timemanifold S1 × R whi
h is 
onvenient for the Hamiltonian approa
h. On this manifoldthe Yang�Mills S
hrödinger equation has been solved exa
tly with a (almost) 
ompletegauge �xing [28℄. This gauge �xing 
onsists of the pure Coulomb gauge, whi
h leaves in
D = 1+1 a 
onstant spatial gauge �eld, and an additional gauge 
ondition, whi
h exploitsthe residual global gauge invarian
e left in the pure Coulomb gauge to diagonalise thealgebra-valued gauge �eld. We will refer to this (almost 
omplete) gauge as the diagonalCoulomb gauge. The additional global gauge �xing is not implemented in the variational2



approa
h in D = 3 + 1 dimensions. In D = 1 + 1, the pure and diagonal Coulomb gaugesare here dire
tly 
ompared by identifying their Gribov regions and (previously unknown)boundary 
onditions on the wave fun
tionals. The latter boundary 
onditions arise bypaying proper attention to those zero modes of the respe
tive Faddeev�Popov kernels thatare not related to the �eld 
on�gurations on the Gribov horizon but to the in
ompletegauge �xing. Thus, the exa
t va
uum wave fun
tionals are derived in both gauges, and thepropagators and verti
es are 
al
ulated within the 
orresponding Gribov regions. Theseresults for the Green fun
tions are shown to be a parti
ular solution of the exa
t Dyson�S
hwinger equations de�ned on the �rst Gribov region. Other solutions to the Dyson�S
hwinger equations are shown to exist and to be de�ned on a union of several Gribovregions, in
luding many Gribov 
opies. We investigate whi
h kind of approximation of theDyson�S
hwinger equations leads to whi
h one of these solutions, for the sake of 
omparisonto D = 3 + 1 where a trun
ation of the Dyson�S
hwinger equations in mandatory.The 
al
ulation of the stati
 
olour Coulomb potential within a variational approa
h to
D = 3 + 1 yields linear quark 
on�nement [27℄ but in
ludes 
ertain approximations. Wehere 
al
ulate the stati
 
olour Coulomb potential in both the pure Coulomb gauge andthe diagonal Coulomb gauge and 
ompare the results for the Coulomb string tension tothe gauge invariant string tension extra
ted from the Wilson loop. Along these lines, thequality of approximations in the D = 3 + 1 
al
ulations 
an be estimated by 
omparisonto the D = 1 + 1 
ase.The organisation of this paper is as follows: In se
tion 2, we brie�y review the Hamiltonianformulation of Yang�Mills theory in 1 + 1 dimensions on the spa
e-time manifold S1 ×R, extra
t the physi
al 
on�guration spa
e from the Wilson loop and identify the gaugeinvariant and gauge degrees of freedom. In se
tion 3, we dis
uss in
omplete gauge �xingin the Hamiltonian approa
h by the Faddeev�Popov method and 
al
ulate expli
itly theFaddeev�Popov determinant of the pure Coulomb gauge, whi
h di�ers from the one inthe diagonal Coulomb gauge. In se
tion 4, we dis
uss the gauge �xing on S1 in detail anddetermine the Gribov regions and the so-
alled fundamental modular region. The restri
tionof the 
on�guration spa
e to the fundamental modular region imposes boundary 
onditionson the wave fun
tionals, whi
h are also extra
ted in this se
tion. In se
tion 5, Gauss' law isexpli
itly resolved for both the pure and diagonal Coulomb gauges. The exa
t solution of theYang�Mills S
hrödinger equation in the pure Coulomb gauge is given in se
tion 6. With theexa
t va
uum wave fun
tional at hand, the exa
t propagators and verti
es are 
al
ulatedin se
tion 7. In se
tion 8, the potential between stati
 
olour 
harges is determined andthe Coulomb string tension is extra
ted. In se
tion 9, the Dyson�S
hwinger equations arederived. Gribov 
opy e�e
ts on the Green fun
tions are dis
ussed in se
tion 10. The qualityof a 
ommon trun
ation of Dyson�S
hwinger equations is assessed in se
tion 11. In se
tion12, we apply the variational approa
h of Ref. [8℄ to Yang�Mills theory in D = 1 + 1 on
S1 × R using the same variational wave fun
tional in order to 
he
k the approximationsmade in D = 3 + 1. A short summary and some 
on
luding remarks are given in se
tion13. Some mathemati
al derivations are presented in appendi
es.3



2 Hamiltonian formulation of 1+1 dimensional Yang�Mills theory on S1 × RWe 
onsider SU(Nc) Yang�Mills theory in 1 + 1 dimensions. In D = 1 + 1, the gauge �eld
Aµ(x) is dimensionless while the gauge 
oupling 
onstant g has dimension of inverse length.It is, however, 
onvenient to absorb the gauge 
oupling g into the gauge �eld gAµ → Aµ,so that Aµ ≡ Aa

µT
a has dimension of inverse length. We will use antihermitian generators

Ta, a = 1, . . . , N2
c − 1 of the gauge group, satisfying

[Ta, Tb] = fabcTc , (2.1)where fabc is the stru
ture 
onstant. For SU(2), the generators are related to the Paulimatri
es τa=1,2,3 by Ta = − i
2
τa.In 1+1 dimensional (�at) Minkowski spa
e Yang�Mills theory is trivial but be
omes non-trivial on a 
ompa
t manifold. The only 
ompa
t spa
e-time manifold with a 
anoni
altime is the 
ylinder

S1 (spa
e) × R (time) . (2.2)On S1 × R, the gauge invariant degrees of freedom are the spatial Wilson loops windingaround S1,
W [A] =

1

Nc
trP exp


−

∮

S1

dx1A1(x
0, x1)


 , (2.3)whi
h represent 
losed ele
tri
 �ux lines. The spatial S1 
an be realized by 
onsidering a�nite interval on the x1-axis of length L and imposing the periodi
 boundary 
ondition 1

Aµ(x
0, x1 = L) = Aµ(x

0, x1 = 0) . (2.4)In the absen
e of fermions in the fundamental representation this boundary 
onditionremains inta
t under gauge transformations
AU

µ = UAµU
† + U∂µU

† (2.5)satisfying the boundary 
ondition
U(x0, x1 = L) = Zn(x0)U(x0, x1 = 0) , (2.6)where Zn, n = 0, 1, . . . , Nc − 1 is an element of the 
entre Z(Nc) of the gauge group.Throughout the paper we will work in the 
anoni
al Hamiltonian approa
h [30℄ and imposethe Weyl gauge

A0 = 0 . (2.7)
1 The periodi
 boundary 
ondition 
an be taken without loss of generality sin
e the SU(Nc)bundle over S1 is trivial as noti
ed in Ref. [29℄.4



The gauge transformation required to bring a periodi
 gauge �eld A0(x
0, x1 = L) =

A0(x
0, x1 = 0) into the Weyl gauge,

U †(x0, x1) = P exp


−

x0∫

0

dtA0(t, x
1)


 , (2.8)is also periodi
 and thus within the 
lass (2.6). On the �at spa
e R, an analogous gaugetransformation

V †(x0, x1) = P exp


−

x1∫

0

dsA1(x
0, s)


 (2.9)
ould also gauge away the �eld A1, i.e. AV

1 = 0. However, the gauge transformation V (2.9)is not within the 
lass (2.6) and therefore not allowed on S1. It is the 
ompa
ti�
ation ofspa
e R→ S1 whi
h makes the theory non-trivial.The 
anoni
al quantisation is 
arried out at a �xed time x0, so that A1(x
0−�xed, x1) is theonly �eld �
oordinate� left. To simplify the notation, we will omit hen
eforth the spatialindex i = 1 and write x1 → x , ∂1 → ∂ , Aa

1(x
1) → Aa(x) et
. The Hamiltonian of 1 + 1dimensional Yang�Mills theory then reads

H =
g2

2

∫
dxΠa(x)Πa(x) , (2.10)where

Πa(x) =
1

i

δ

δAa(x)
(2.11)is the momentum operator, whi
h represents the ele
tri
 �eld. Note in 1+1 dimensions,there is no magneti
 �eld and hen
e no potential term in the Hamiltonian.Having quantised the theory in the Weyl gauge, the 
lassi
al Gauss law D̂Π = ρ is lost fromthe quantum equations of motion. Enfor
ing Gauss' law as an operator identity 
ontradi
tsthe 
anoni
al 
ommutation relations. 2 One therefore imposes Gauss' law as a 
onstrainton the wave fun
tional Ψ(A)

D̂(x)Π(x)Ψ(A) = ρ(x)Ψ(A) . (2.12)Here,
D̂(x) = ∂ + Â(x), Â(x) = Aa(x)T̂a, (2.13)

2 Alternatively, the Dira
 bra
ket formalism 
an be used to quantise the theory after �xing thegauge transformations generated by Gauss' law. The Gauss law 
an then be imposed as an operatoridentity. This was shown in 3+1 dimensional Minkowski spa
e to lead to the same energy spe
trum[31℄. 5



denotes the 
ovariant derivative in the adjoint representation with
(T̂a)bc = fbac (2.14)being the generators in the adjoint representation. Furthermore, ρ(x) denotes the 
olourdensity of matter �elds (or external sour
es). The operator on the l.h.s. of Eq. (2.12), D̂Π, isthe generator of so-
alled �small� gauge transformations (see se
tion 4) and in the absen
eof matter �elds, ρ(x) = 0, Gauss' law for
es the wave fun
tionals Ψ(A) to be invariantunder the small gauge transformations U ,

Ψ(AU) = Ψ(A) . (2.15)Instead of working with gauge invariant wave fun
tionals, it is more 
onvenient to expli
itlyresolve Gauss law by �xing the gauge [1℄ and for this purpose the Coulomb gauge
∂ A(x) = 0 (2.16)is parti
ularly 
onvenient. In one spatial dimension, the Coulomb gauge 
onstrains thegauge �eld to spatially 
onstant modes and the �eld theory redu
es to quantum me
hani
sin these 
onstant modes. The gauge transformation Ω whi
h brings a given gauge �eld Ainto the Coulomb gauge ∂AΩ = 0 
an be 
hosen

Ω†(x) = V †(x)(V (L))
x
L , (2.17)where V (x) is de�ned by Eq. (2.9) with the x0-dependen
e suppressed. Contrary to V (x),

Ω(x) is periodi
 for periodi
 A(x), and thus within the 
lass of allowed gauge transforma-tions (2.6). The gauge-transformed �eld
AΩ =

1

L
lnV (L) (2.18)is spa
e-independent and thus obviously satis�es the Coulomb gauge 
ondition.The Coulomb gauge (2.16) (together with Weyl gauge (2.7)) still leaves invarian
e withrespe
t to global (spa
e and time independent) gauge transformations, whi
h 
an be ex-ploited to diagonalise the 
onstant gauge �eld

A = AaTa → Aa0Ta0
= Adiag . (2.19)Here Ta0

, a0 = 1, . . . , Nc − 1 denotes the generators of the Cartan sub-algebra whi
h
an be 
hosen to be diagonal. Equation (2.19) �xes the global transformation U up to a
onstant element of the Cartan sub-group, i.e. even after implementing the gauge 
ondition
A = diagonal in addition to the pure Coulomb gauge, there still is a residual global abelian
U(1)Nc−1 gauge symmetry. Moreover, there still is a dis
rete symmetry left: The abovegauge 
onditions (2.16) and (2.19) do not �x the so-
alled Weyl symmetry 
onsisting of6



the Nc! permutations of the Nc eigenvalues of AaTa. In the 
ase of SU(2), where the twoeigenvalues have the same modulus but opposite signs, the Weyl symmetry swit
hes thesigns of the eigenvalues.Note that we 
an re-express the two gauge 
onditions (2.16) and (2.19) as
f ā[A] = Aā(x) = 0 , (2.20a)
fa0 [A] = ∂Aa0(x) = 0 , (2.20b)i.e. the Coulomb gauge 
ondition is imposed only on the abelian part Aa0 while the non-abelian 
omponents of the gauge �eld denoted by the index ā 6= a0 vanish. In the followingwe will refer to this gauge as diagonal Coulomb gauge, while Eq. (2.16) will be 
alled pureCoulomb gauge.To simplify the expli
it 
al
ulations, we will 
on�ne ourselves hen
eforth to the gaugegroup SU(2) where the stru
ture 
onstants 
oin
ide with the totally anti-symmetri
 tensor

fabc = εabc, a = 1, 2, 3, and we will 
hoose the generator of the Cartan sub-group to begiven by a0 = 3. For SU(2), the Aa 
an be interpreted as the Cartesian 
omponents of ave
tor A = Aaea in a 3-dimensional Eu
lidean spa
e with Cartesian unit ve
tors ea=1,2,3.In the diagonal Coulomb gauge spe
i�ed by Eq. (2.20) the 
olour ve
tor A is rotated intothe dire
tion of the positive or negative 3-axis
A = A3

e3 , A
3 = ±|A| . (2.21)The two signs di�er by a Weyl re�e
tion A → −A. Thus the gauge transformation fromthe pure Coulomb gauge into the diagonal Coulomb gauge is given by rotating the 
olourve
tor A into the positive 3-dire
tion e3, possibly followed by a Weyl re�e
tion A3 → −A3.The modulus |A| of the 
onstant Coulomb gauge �eld represents the only gauge invariantdegree of freedom. In fa
t, the only physi
al observable of the theory, the spatial Wilsonloop W winding (non-trivially) around the whole spa
e manifold S1, Eq. (2.3), is easily
al
ulated in (both pure and diagonal) SU(2) Coulomb gauge to be given by

W =
1

2
tr exp(−AL) = cosϑ , (2.22)where we have introdu
ed the dimensionless variable
ϑ =

|A|L
2

, (2.23)for later 
onvenien
e. W attains all possible values in [−1, 1] when ϑ traverses the interval
0 ≤ ϑ ≤ π . (2.24)Equation (2.24) de�nes the physi
al 
on�guration spa
e of the theory. We will later re
overthe interval (2.24) as the so-
alled fundamental modular region.7



To separate the 
onstant Coulomb gauge �eld A into (global) gauge invariant and gaugedependent parts, it is 
onvenient to use the spheri
al 
oordinates |A|, θ, φ to write 3

A = |A| Â(θ, φ) ≡ 2

L
ϑ Â(θ, φ) , (2.25)where

Â(θ, φ) = sin θ (cosφ e1 + sinφ e2) + cos θ e3 (2.26)is the radial unit ve
tor.The primary aim of the present paper is to use 1+1 dimensional Yang�Mills theory astesting ground for the variational approa
h developed in 3+1 dimensions [8℄, assessing theapproximations introdu
ed there. In studies of Coulomb gauge Yang�Mills theory in higherdimensions, merely the pure Coulomb gauge is �xed. Therefore, we will here mainly fo
uson the pure Coulomb gauge as well. Moreover, the diagonal Coulomb gauge will be used toinvestigate the e�e
t of a 
omplete gauge �xing on the Green fun
tions of the theory.3 Gauge �xing in the Hamiltonian approa
h by the Faddeev�Popov methodIn the Hamiltonian approa
h in Weyl gauge, there is no need to �x the residual time-independent gauge symmetry. In prin
ipal, one 
an work (in the absen
e of external 
olour
harges) with gauge invariant wave fun
tionals, whi
h trivially satisfy Gauss law. It is onlya matter of 
onvenien
e that one prefers to �x the gauge. Furthermore, as will be expli
itlyshown in the 
ontext of the resolution of Gauss' law (see se
tion 5), the gauge �xing needsnot to be 
omplete, i.e. any partial gauge �xing is allowed in the Hamiltonian approa
h. Inany 
ase, the wave fun
tionals have to be invariant under the residual gauge symmetriesun�xed by the gauge 
ondition. In the pure Coulomb gauge, the wave fun
tionals have tobe invariant under global 
olour rotations U = const, whi
h are not �xed by that gauge.Gauge �xing is a

omplished in the Hamiltonian approa
h by applying the Faddeev�Popovmethod to the fun
tional integral over the spatial gauge �elds de�ning the s
alar produ
tin the Hilbert spa
e of wave fun
tionals. Consider the matrix element of a gauge invariantobservable O[AU ] = O[A]

〈Ψ1|O[A]|Ψ2〉 =
∫
DAΨ∗

1[A]O[A] Ψ2[A] . (3.1)The Faddeev�Popov method amounts to inserting into the fun
tional integral the identity
1 = DetM[A]

∫
Dµ(Ω) δ(fa[AΩ]) (3.2)

3 For a 3-ve
tor A, the 
aret � �̂ denotes as usual the unit ve
tor Â = A/|A|, while for algebra-and group-valued quantities the 
aret means the adjoint representation.8



where Ω = eΘ,Θ = ΘaTa, denotes a gauge transformation and
Mab(x, y) =

δfa[AΩ](x)

δΘb(y)
(3.3)is the Faddeev�Popov kernel. Furthermore, for a 
omplete gauge �xing, Dµ(Ω) denotes theHaar measure of the gauge group. Inserting the identity (3.2) into Eq. (3.1) and exploitingthe gauge invarian
e of both the wave fun
tional and the observable, one �nds after a
hange of the integration variable

〈Ψ1|O[A]|Ψ2〉 =
∫
DADetM[A] δ(fa[A])Ψ1

∗[A]O[A] Ψ2[A]
∫
Dµ(Ω) (3.4)where the integration of the gauge group is now expli
itly separated, yielding a (in�nite)
onstant whi
h 
an be absorbed into the normalisation of the wave fun
tional.If the gauge 
ondition fa[AΩ] = 0 does not �x the gauge 
ompletely, there are dire
tionsin the spa
e of gauge transformations, along whi
h the gauge-�xing fun
tional fa[AΩ] doesnot 
hange, i.e. δfa[AΩ]/δΘb = 0, and the tangent ve
tors 
orresponding to these dire
tionsrepresent zero modes of the Faddeev�Popov kernel (3.3). In order that the identity (3.2)holds and thus the Faddeev�Popov method works one has to ex
lude these zero modes andintegrate only over the subspa
e of gauge transformations whi
h are �xed by the gauge
ondition fa[AΩ] = 0. Furthermore, the gauge �xing is de�ned only in the region of gauge�eld 
on�gurations A where the Faddeev�Popov determinant DetM[A] is non-zero. Thiswill be important for the appli
ation of the Faddeev�Popov method given below.The expli
it 
al
ulation of the Faddeev�Popov kernel is most easily a

omplished by noti
-ing that the Gauss law operator D̂Π is the generator of (so-
alled small 4 ) gauge transfor-mations

fa[AΩ] = G(Θ)fa[A]G−1(Θ) , (3.5)
G(Θ) = exp

(
−i
∫
dx
(
D̂ab(x)Θb(x)

)
Πa(x)

)
.For in�nitesimal gauge transformations G(δΘ) = 1 + i

∫
dx δΘa(x)(D̂Π)a(x), we have a
-
ordingly

fa[AΩ](x) = fa[A](x) +
∫
dy δΘb(y)

[
i(D̂Π)b(y), fa[A](x)

] (3.6)and 
omparison with the Taylor expansion of fa[AΩ] in powers of δΘa(x) reveals that theFaddeev�Popov kernel (3.3) 
an be expressed as
Mab(x, y) = i D̂bc(y)

[
Πc(y), fa[A](x)

]
. (3.7)

4 See se
tion 4. 9



Below, we use this relation to determine the Faddeev�Popov kernels for the two gauges
onsidered above and 
al
ulate the 
orresponding Faddeev�Popov determinants.3.1 Diagonal Coulomb gaugeApplying the relation (3.7) to the diagonal Coulomb gauge 
ondition (2.20), we obtain theFaddeev�Popov kernel (b̄ = 1, 2)
Mab̄(x, y) = −D̂ab̄(x)δ(x, y) (3.8a)
Ma3(x, y) = −D̂a3(x)∂xδ(x, y) (3.8b)On the gauge shell (where the gauge 
ondition is ful�lled), the Faddeev�Popov kernelbe
omes blo
k diagonal and reads in the Cartesian basis

M(x, y) =




−∂x A3 0

−A3 −∂x 0

0 0 −∂2



δ(x, y) =




i 0 0

0 i 0

0 0 i ∂x



iD̂(x) δ(x, y) . (3.9)The Faddeev�Popov determinant be
omesDetM = Det(1) (−i∂)33 Det (iD̂) . (3.10)The �rst fa
tor is a (divergent) irrelevant 
onstant, whi
h drops out from the expe
tationvalues and 
an be absorbed into the fun
tional integral measure, see below. Note, thisdeterminant is de�ned in the (one-dimensional) abelian 
olour sub-spa
e a = a0 = 3 only,indi
ated by the sub-s
ript (1). To evaluate the se
ond fa
tor Det (iD̂), we 
onsider theeigenvalue equation

iD̂ab[A](x)ϕb(x) = λϕa(x) (3.11)From the representation (3.3), it is 
lear that the eigenfun
tions of the Faddeev�Popovkernel have to satisfy the same boundary 
ondition as the gauge angles Θa(x). Sin
e thegauge transformations on the spatial S1 have to satisfy periodi
 boundary 
onditions Θ(x+
L) = Θ(x), the eigenfun
tions of the Faddeev�Popov kernel have to be periodi
 as well.Sin
e ∂ and D̂ 
ommute on the gauge-�xed manifold, the operators ∂, D̂ and M have
ommon eigenfun
tions and we 
an impose the periodi
 boundary 
ondition also on theeigenfun
tions of iD̂,

ϕa(x+ L) = ϕa(x) . (3.12)With this boundary 
ondition, whi
h does not mix the di�erent 
olour 
omponents, andwith the fa
t that the gauge �eld is spatially 
onstant, the eigenfun
tions of iD̂ fa
torisein spa
e and 
olour dependent parts. Using the results of appendix A and Eq. (2.21), the10



eigenfun
tions are given by
ϕa

n,σ(x) ≡ 〈x, a|n, σ〉 = 〈x|n〉〈a|σ〉 (3.13)where 〈a|σ〉 = ea
σ are (the Cartesian 
omponents of) the polar unit ve
tors eσ (A.15) and

〈x|n〉 =
1√
L
e−iknx , kn =

2πn

L
, n ∈ Z (3.14)are plane waves (periodi
 in L). The 
orresponding eigenvalues read

λn,σ = kn + σA3 . (3.15)The two eigenvalues λn,σ=±1 
orrespond to the non-abelian blo
k (ā = 1, 2) in the upper left
orner in the Faddeev�Popov matrix (3.9) while the eigenvalue λn,σ=0 = kn 
orresponds tothe abelian 
olour dire
tion a0 = 3 (see Eq. (A.15)). Furthermore, the zero mode ϕn=0,σ=0 =
eσ=0/

√
L ≡ e3/

√
L (λn=0,σ=0 = 0) represents the tangent ve
tor (to the gauge orbit)
orresponding to the in�nitesimal global U(1) 
olour rotation (Θ3 = const) whi
h is not�xed by the gauge 
ondition (2.20). As dis
ussed above, this mode has to be ex
luded fromthe spe
trum of the Faddeev�Popov kernel (3.9), whose eigenvalues are given by

Λn,σ =





iλn,σ , σ = ±1

knλn,σ = k2
n , σ = 0

. (3.16)Note also that the eigenmodes ϕn=0,σ=±1 
orresponding to the global SU(2)/U(1) gaugetransformations whi
h are �xed by the gauge 
ondition (2.20) do not give rise to zeroeigenvalues, λn=0,σ=±1 = ±A3 6= 0.Ex
luding the zero mode n = σ = 0 (indi
ated in the following by a prime), we obtainwith A3 = ±|A| (see Eq. (2.21))Det′ (iD̂[A]) =
∞∏

n=−∞

′ ∏

σ=0,±1

λn,σ =
( ∏

m6=0

km

) ∞∏

n=−∞
λn,1λn,−1

=
( ∏

m6=0

km

)
|A|2

( ∞∏

n=1

(k2
n − |A|2)

)2

=
( ∏

m6=0

k3
m

) (
|A|

∞∏

n=1

(
1 − |A|2

k2
n

))2 (3.17)The �rst fa
tor represents Det(i∂) with the zero mode n = 0 ex
luded. Using
sin x = x

∞∏

n=1

(
1 −

( x
πn

)2) (3.18)11



we obtain Det′ (iD̂[A]) = Det (i∂)
( 2

L

)2
sin2

(
|A|L

2

)
≡ Det (i∂)

( 2

L

)2
sin2 ϑ . (3.19)All �eld-independent fa
tors in the Faddeev�Popov determinant (3.10) 
an be absorbed inthe fun
tional integral measure. We thus arrive at the Faddeev�Popov determinant JD ofthe diagonal Coulomb gauge (2.20)

JD :=
DetMDet(1) (−i∂)33 Det(i∂) ( 2

L
)2

= sin2 ϑ . (3.20)Let us stress that it was absolutely 
ru
ial to ex
lude the gauge modes whi
h are not �xedby the gauge 
ondition. Otherwise the Faddeev�Popov determinant would have vanishedidenti
ally.The Faddeev�Popov determinant JD has zeros at (note that by de�nition ϑ ≥ 0)
ϑ ≡ |A|L

2
= nπ , n = 0, 1, 2, . . . (3.21)and thus divides up the gauge-�xed 
on�guration spa
e into regions where the Faddeev�Popov method of gauge �xing is de�ned. These so-
alled Gribov regions are given by

nπ ≤ ϑ< (n + 1)π . (3.22)Re
all that in the diagonal Coulomb gauge A3 = ±|A|, so that in this variable the Gribovregions are given by
{
A3

∣∣∣∣
2nπ

L
≤ |A3|<

2(n+ 1)π

L

}
, n = 0, 1, 2, . . . . (3.23)The boundaries of the Gribov regions, the Gribov horizons, are given by the dis
rete mo-menta kn (3.14). We will return to the dis
ussion of the Gribov regions in se
tion 4.Note that the Faddeev�Popov determinant JD (3.20) vanishes also at the (
lassi
al) per-turbative va
uum A = 0. This is not surprising sin
e the diagonalisation of the gauge �eld,and thus the diagonal Coulomb gauge, is ill-de�ned for A = 0. Therefore, this gauge is notsuitable for perturbation theory. 12



3.2 Pure Coulomb gaugeLet us now 
onsider the pure Coulomb gauge (2.16) whi
h leaves the global gauge trans-formations un�xed. The Faddeev�Popov kernel (3.7) is then given by
Mab(x, y) = (−D̂ab[A](x)∂x) δ(x, y) . (3.24)Sin
e the gauge �eld in the pure Coulomb gauge is related to the one in the diagonalCoulomb gauge by a global gauge transformation, we 
an express the 
ovariant derivative

D̂ab[A] in the pure Coulomb gauge by the one in the diagonal Coulomb gauge. Let U †denote the global gauge transformation whi
h rotates the 
olour ve
tor A into the positive
3-dire
tion, i.e.

AaT̂a = |A|Û T̂3Û
T . (3.25)Then we have (see appendix A)

iD̂[A] = Û iD̂[|A|T3] Û
T (3.26)where Û is the adjoint representation of U . Here, iD̂[|A|T3] is the 
ovariant derivative inthe diagonal Coulomb gauge (with A3 = ±|A|) whose eigenvalues and eigenfun
tions weredetermined in the previous subse
tion. From Eq. (3.26), it follows that iD̂[AaTa] has thesame eigenvalues λn,σ (3.15) as iD̂[|A|T3], i.e.

λn,σ = kn + σ|A| , (3.27)and that the eigenfun
tions |ϕ̃〉 of iD̂[A] are related to the eigenfun
tions |ϕ〉 (3.13) of
iD̂[|A|T3] by

ϕ̃a
n,σ(x) = Ûabϕ

b
n,σ(x) = 〈x|n〉ua

σ , (3.28)where 〈x|n〉 are the periodi
 plane waves (3.14) and we have de�ned (see appendix A)
ua

σ := 〈a|Û |σ〉 = 〈a|Û |b〉〈b|σ〉 = Ûabeb
σ

= 〈a|τ〉〈τ |Û |σ〉 = ea
τD

1
τσ(φ, θ, 0) . (3.29)Sin
e iD̂[A] (3.26) has the same eigenvalues as iD̂[|A|T3], and sin
e det Û = 1, one wouldexpe
t that the Faddeev�Popov determinant in the pure Coulomb gauge gauge is, up toan irrelevant 
onstant fa
tor Det (i∂)/Det(1) (−i∂)33, the same as in the diagonal Coulombgauge (2.20) 
onsidered above. However, sin
e the pure Coulomb gauge does not �x theglobal gauge transformation U , we have to ex
lude the 
onstant eigenmodes from theFaddeev�Popov kernel. These are given by the eigenfun
tions with n = 0 and all σ. Inaddition to the zero mode n = 0, σ = 0 ex
luded already from the Faddeev�Popov kernelof the diagonal Coulomb gauge, one has to ex
lude here also the gauge modes n = 0, σ =

±1, 
orresponding to the non-zero eigenvalues λn=0,σ=±1 = ±|A|. Although these modes13
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Fig. 1. The �rst Gribov region for (a) the diagonal Coulomb gauge and (b) the pure Coulombgauge.
orrespond to non-zero eigenvalues of iD̂[A] they give rise to zero modes of the full Faddeev�Popov kernel of the pure Coulomb gauge,
(−D̂[A]∂)ϕ̃n,σ = Λn,σϕ̃n,σ , Λn,σ = λn,σkn (3.30)sin
e Λn=0,σ = 0. Note that these zero modes form pre
isely the global gauge transformation

Û whi
h diagonalises the 
onstant Coulomb gauge �eld Â = ÂaTa (
f. Eqs. (3.26), (A.1)),
ϕ̃a

n=0,σ(x) =
1√
L
〈a|Û |σ〉 . (3.31)Omitting these modes in 
al
ulating Det (−D̂∂), equivalently to Eq. (3.17), we �nd for theFaddeev�Popov determinant JP in the pure Coulomb gauge

JP =
Det (−D̂∂)Det (−∂2)

=
sin2

(
|A|L

2

)

( |A|L
2

)2 ≡ sin2 ϑ

ϑ2
. (3.32)This determinant di�ers from the one of the diagonal Coulomb gauge (2.20) by the denom-inator (
f. Eq. (3.20)) and does not vanish at the perturbative va
uum A = 0. Furthermore,sin
e lim|A|→0 dJP/d|A| = 0 the spa
e of gauge orbits is �at near the perturbative va
uumin this gauge. The �rst zero of the Faddeev�Popov determinant o

urs at ϑ = |A|L/2 = πwhi
h de�nes the �rst Gribov horizon to 
oin
ide (in the variable ϑ) with the one in thediagonal Coulomb gauge (3.22). However, in the pure Coulomb gauge the dire
tion of thegauge �eld A is not �xed, so the Gribov regions Ωn are given here by the spheri
al shells

Ωn :=
{
A

∣∣∣ (n− 1)
2π

L
≤ |A|<n 2π

L

}
, n = 1, 2, 3, . . . . (3.33)In parti
ular, the �rst Gribov region Ω1 is given by the sphere |A| < 2π

L
. The �rst Gribovregions of both the diagonal and the pure Coulomb gauge are illustrated in Fig. 1. TheGribov regions will be dis
ussed in more detail in the up
oming se
tion.14



4 Gribov regions and boundary 
onditions on the wave fun
tionalsIn this se
tion, the 
on�guration spa
es of both the pure and diagonal Coulomb gauges areexamined. (For valuable dis
ussions on this topi
, also see, e.g., Ref. [32℄ and referen
estherein.) The topology of gauge transformations relating the various Gribov regions of thepure Coulomb gauge and the diagonal Coulomb gauge is dis
ussed here, the fundamentalmodular region is spe
i�ed, and boundary 
onditions on the wave fun
tionals are given.4.1 Topology of gauge transformations on S1Sin
e the �rst homotopy group Π1(SU(Nc)) is trivial, there are no �large� gauge trans-formations in one (
ompa
t) spatial dimension, i.e. on S1. However, in the absen
e ofmatter �elds in the fundamental representation, the gauge group is in fa
t SU(Nc)/Z(Nc).This is be
ause the gauge �eld, living in the adjoint representation, is invariant under
entre gauge transformations 5 Z(x) ∈ Z(Nc). Sin
e Π1(SU(Nc)/Z(Nc)) = Z(Nc), thereare topologi
al non-trivial gauge transformations falling in Nc di�erent topologi
al 
lassesand 
onsequently there are Nc distin
t 
lassi
al va
uum 
on�gurations A(n) = U(n)∂U
†
(n)between whi
h quantum tunnelling o

urs. In the fundamental representation, the U(n) sat-isfy the boundary 
ondition (2.6), with x0 �xed, and are spe
i�ed by the Nc 
entre elements

Zn ∈ Z(Nc). The U(n=0), belonging to the trivial 
entre element Z0 = 1 are periodi
 andform the �small� gauge transformations. The remaining ones are �large� transformations.Sin
e (Zn)Nc = 1, Nc su

essive large gauge transformations U(n) belonging to the same
Zn yield a small gauge transformation. The fundamental representation of SU(Nc)/Z(Nc)is the adjoint representation of SU(Nc), whi
h we will denote in the following by a 
aret.The adjoint representation Û = exp(ΘaT̂a) is related to the fundamental representation
U = exp(ΘaTa) (with the same Θa !) by

U †TaU = ÛabTb , Ûab = −2 tr (U †TaUTb

)
. (4.1)From this representation it is expli
itly seen that the adjoint representation Û is 
en-tre blind. A

ordingly, the allowed gauge transformations satisfying (in the fundamental

5 Sin
e the 
entre Z(Nc) is a dis
rete set, 
entre gauge transformations Z(x) have to be pie
e-wise 
onstant. At the jumps of Z(x) (from one 
entre element to another) the inhomogeneousterm of the gauge transformation, Z(x)∂Z†(x), represents so-
alled ideal 
entre vorti
es [33,34℄.The 
entre vorti
es of the fundamental representation, Z(x)∂Z†(x) = Ca(x)Ta, be
ome invis-ible Dira
 sheets (strings) in the adjoint representation Ẑ(x)∂Ẑ†(x). In fa
t, a 
entre element
Z(x) = exp(−µa(x)Ta) ∈ Z(Nc) (in the fundamental representation, with µa(x) being a 
o-weightve
tor) be
omes the unit matrix in the adjoint representation, Ẑ(x) = exp(−µa(x)T̂a) = 1, sothat the inhomogeneous term Ẑ(x)∂Ẑ†(x) disappears in the adjoint representation.15



representation of SU(Nc)) the boundary 
ondition (2.6) are periodi
 in the adjoint repre-sentation
Û(x+ L) = Û(x) . (4.2)To be more spe
i�
 
onsider the gauge group SU(2) whose 
entre is Z(2) = {1,−1}. Theallowed gauge transformations satisfying Eq. (2.6) are either periodi
 (belonging to Z0 = 1)or anti-periodi
 (belonging to Z1 = −1). In the absen
e of matter �elds in the fundamentalrepresentation, the true gauge group is SU(2)/Z(2) = SO(3). Sin
e Π1(SO(3)) = Z(2),there are two inequivalent sets of gauge transformations allowed by Eq. (2.6). The periodi
ones U(0)(L) = U0(0) belonging to the trivial 
entre element Z0 = 1, form the smallgauge transformations, whi
h 
an be smoothly deformed to unity. The anti-periodi
 gaugetransformations, 
orresponding to the non-trivial 
entre element Z1 = −1, 
annot besmoothly deformed to unity and are 
alled large. To provide some expli
it examples 
onsiderthe gauge transformation

U(x) = exp (ω(x)n̂ · T) ≡ exp
(
−i ω

2
n̂ · τ

)
= cos

ω

2
− i n̂ · τ sin

ω

2
(4.3)with some 
onstant unit ve
tor n̂. A small (periodi
) gauge transformation is obtainedwhen ω(x) satis�es the boundary 
ondition

ω(x+ L) = ω(x) + 4nπ , (4.4)while a large (anti-periodi
) gauge transformation follows for
ω(x+ L) = ω(x) + (2n+ 1)2π . (4.5)The 
orresponding adjoint representations ((T̂a)bc = ǫbac

)

(Û(x))ab =
(eωn̂·T

)

ab
= δab cosω + n̂an̂b(1 − cosω) + ǫacbn̂c sinω (4.6)are periodi
 in both 
ases.4.2 Gribov and fundamental modular regionsIn se
tion 3, we found that in the pure Coulomb gauge the Faddeev�Popov determinanthas zeros at ϑ = |A|L

2
= nπ. Hen
e, in the 3-dimensional spa
e of 
onstant gauge orbitsthe Gribov horizons ∂Ωn are given by the surfa
es of spheres around the origin with radius

|A| = 2πn
L

(ϑ = nπ), see Eq. (3.33). Note also that in the limit L → ∞ the �rst Gribovregion Ω1 shrinks to the point A = 0, in agreement with the fa
t that 1 + 1 dimensionalYang�Mills theory be
omes trivial on a �at spa
e-time manifold.The pure Coulomb gauge is not a 
omplete gauge �xing sin
e it leaves invarian
e withrespe
t to global gauge transformations, whi
h form the zero modes of the Faddeev�Popov16



L

6π
L

4π

L

2π
L

2π
L

4π
L

6π0
A

3           2                  1                  2           3

V V VV
1 1 1 V−1 −1

Fig. 2. Illustration of the displa
ements of a �eld 
on�guration A from inside the �rst Gribovregion to Gribov 
opies in the neighbouring Gribov regions by the large gauge transformations
V±1 = (V (Â))±1.kernel. However, the global gauge transformations are not the only symmetries left. In thefollowing we will 
arefully examine the residual symmetries left after pure Coulomb gauge�xing. Due to the existen
e of these residual symmetries, the �rst Gribov region Ω1 
annotyet be the fundamental modular region whi
h, by de�nition, 
ontains only a single 
opyof ea
h gauge orbit. Sin
e the pure Coulomb gauge is 
ontained in the diagonal Coulombgauge, the fundamental modular region is the same in both gauges, while the Gribov regionsare, of 
ourse, di�erent. The determination of the fundamental modular region is ne
essaryin order to identify the symmetry relations (i.e. boundary 
onditions) to be ful�lled by thewave fun
tionals.Consider the large (i.e. anti-periodi
) gauge transformation, 
f. Eqs. (4.3) and (4.5),

V (Â) = exp
(

2π

L
x Â · T

)
, Â =

A

|A| (4.7)whi
h shifts a 
onstant gauge �eld A = |A|n̂ along its dire
tion n̂ in 
olour spa
e bymultiples of 2π
L
,

A → A
V = A − 2π

L
Â =

(
|A| − 2π

L

)
Â . (4.8)Obviously, the transformed 
on�guration AV still satis�es the (pure or diagonal) Coulombgauge 
ondition if the original does.The large gauge transformation (4.8) maps a 
on�guration from the nth Gribov region Ωnto a 
on�guration (on the same ray through the origin in 
olour spa
e but) within Ωn−1. 6In this way, any gauge 
on�guration in one Gribov region has a unique 
opy in every otherGribov region and all Gribov regions are homeomorphi
 to ea
h other. Fig. 2 illustrates theshifting of a parti
ular gauge 
on�guration from the �rst Gribov region to the neighbouringones. Furthermore, the large gauge transformation (4.8) maps a 
on�guration of the nthGribov horizon ∂Ωn to the 
on�guration on the same ray through the origin on ∂Ωn−1.

6 For a pe
uliarity of n = 1, see below. 17



In parti
ular, the 
on�gurations on the �rst Gribov horizon ∂Ω1, where |A| = 2π
L
, aremapped to the va
uum A = 0. This shows that all 
on�gurations of (all) Gribov horizonsare equivalent under large gauge transformation to the va
uum A = 0. In parti
ular, sin
etwo su

essive large gauge transformations form a small one, all 
on�gurations on a givenGribov horizon are related by small gauge transformations and are thus gauge 
opies ofea
h other. Let us stress, however, that the 
on�gurations on the �rst Gribov horizon

∂Ω1 (and on all ∂Ωn with odd n) are not equivalent to the va
uum A = 0 with respe
tto small gauge transformations, they are related to A = 0 by a non-trivial (large) gaugetransformation. In the quantum theory tunnelling between these va
ua will o

ur. Thistunnelling will be entirely a

ounted for by solving the S
hrödinger equation.By a large gauge transformation (4.7), a 
on�guration A inside the �rst Gribov region with
|A| ≤ π

L
is also mapped to a 
opy AV with π

L
≤ |AV | ≤ 2π

L
, ÂV = −Â and vi
e versa. One
ould eliminate the large gauge transformation by restri
ting the modulus of the gauge�eld to

0 ≤ |A|< π

L
. (4.9)However, Gauss' law only enfor
es the wave fun
tionals to be invariant under small gaugetransformations while they 
an transform a

ording to an arbitrary representation of thesymmetry group under large gauge transformations. For example, in the 
olour singletse
tor under a large gauge transformation the wave fun
tional 
an a
quire a non-trivialphase eiα, whi
h is well-known from the Θ-va
uum in D = 3 + 1. Therefore we will notremove the large gauge symmetry. 7The �rst Gribov region in the pure Coulomb gauge, Ω1, is a ball B3 around the originwith radius |A| = 2π

L
, bounded by the �rst Gribov horizon ∂Ω1, whi
h is the S2. Sin
e all
on�gurations on this Gribov horizon are equivalent with respe
t to small gauge transfor-mations, we have to identify all points of the �rst Gribov horizon, S2, whi
h 
ompa
ti�esthe �rst Gribov region to S3, whi
h is the manifold of the SU(2) group. This shows that the
on�guration spa
e of Yang�Mills theory on S1×R is the gauge group manifold itself. Themapping from the 
on�guration spa
e into the gauge group is provided by the (untra
ed)spatial Wilson loop winding around S1. In the fundamental representation we have

W [A] = P exp



∮

S1

dxA


 = exp(LA · T) = 1 cosϑ+ 2Â · T sinϑ , (4.10)

ϑ =
|A|L

2
, 0 ≤ |A| ≤ 2π

L
.

7 If one restri
ted the 
on�guration spa
e to |A| ≤ π
L , from the large gauge transformations onlya residual dis
rete symmetry on the new Gribov horizon |A| = π

L would be left, whi
h is givenby the displa
ement transformations V (Â) (4.7) and whi
h relates the antipodal points ± π
LÂ.Identifying these antipodal points, whi
h are equivalent by the displa
ement transformation (4.8)the Gribov region, the ball B3 with radius π

L , be
omes the group manifold of SO(3), whi
h is thegauge group in the absen
e of fundamental 
harges.18



The Gribov horizons ∂Ωn with odd n (and in parti
ular ∂Ω1) are mapped onto the non-trivial 
entre element
W
[
|A| = (2n+ 1)

2π

L

]
= −1 . (4.11)In higher dimensions, �eld 
on�gurations A, non-trivially linked to a 
losed loop C forwhi
h the 
orresponding Wilson loop W [A](C) equals a non-trivial 
entre element, arereferred to as 
entre vorti
es. In this spirit, the �eld 
on�gurations on the Gribov horizons

∂Ωn with odd n represent 
entre vorti
es, in agreement with the general observation that
entre vorti
es are on the Gribov horizon [18℄, due to their larger symmetry.The �rst Gribov region Ω1 of the pure Coulomb gauge 
an be restri
ted further by im-plementing the diagonal Coulomb gauge (2.21). In the diagonal Coulomb gauge, the �rstGribov region is given by
− π ≤ A3L

2
< π , (4.12)see Eq. (3.23), and is obviously a subset of Ω1. There are still gauge 
opies within the �rstGribov region of the diagonal Coulomb gauge, due to the fa
t that there remains a residualdis
rete gauge symmetry, the Weyl re�e
tion

A3 → −A3 . (4.13)Removing this symmetry by identifying 
on�gurations of opposite sign,
A3 = |A| =

2ϑ

L
, (4.14)redu
es the 
on�guration spa
e (4.12) to the fundamental modular region

A3 ∈
[
0,

2π

L

]
, ϑ ∈ [0, π] . (4.15)This physi
al 
on�guration spa
e was already found from the gauge-invariant spatial Wil-son loop, see Eq. (2.24), and redu
es the 
on�guration spa
e to the genuinely gauge in-variant degree of freedom ϑ = |A|L/2. The Faddeev�Popov determinant JD(ϑ), see Eq.(3.20), is gauge invariant as well, sin
e it 
orresponds to the Faddeev�Popov determinantof a 
ompletely �xed gauge. Su
h a Faddeev�Popov determinant is gauge invariant due tothe invarian
e of the Haar measure Dµ(U).The gauge 
ondition that immediately rotates the 
onstant 
olour ve
tor A of the pureCoulomb gauge into the positive 3-dire
tion is a

omplished by the gauge transformation

Û given by Eq. (A.9). In this gauge the Faddeev�Popov determinant has zeros (Gribovhorizons) at ϑ = nπ , n ∈ N and the Gribov regions are given by the one-dimensionalintervals
nπ≤ϑ < (n+ 1)π , n = 0, 1, 2, . . . . (4.16)For su
h a gauge, the �rst Gribov region, n = 0, 
oin
ides with the fundamental modularregion (4.15). 19



4.3 Boundary 
ondition on the wave fun
tionalsLet us now dis
uss the impli
ations of the residual gauge symmetries on the wave fun
-tionals. In general, by Gauss' law the residual gauge symmetries whi
h 
orrespond to smallgauge transformations that are not �xed by the gauge 
onsidered have to be respe
ted bythe wave fun
tional. In the pure Coulomb gauge global gauge invarian
e is left un�xed and
onsequently the wave fun
tional has to respe
t this symmetry, i.e.
Ψ(AU) = Ψ(A) , U = const . (4.17)Sin
e the global gauge transformations are just rotations in 
olour spa
e, the wave fun
-tionals have to be 
olour singlet states satisfying

LΨ(A) = 0 (4.18)where
La = ǫabcAb d

idAc
(4.19)is the �orbital� angular momentum in 
olour spa
e, whi
h is nothing but the 
olour spinof the gauge �eld. In the next se
tion, we will obtain this 
onstraint in the resolution ofGauss' law in the pure Coulomb gauge as a 
onsequen
e of the zero modes of the Faddeev�Popov kernel belonging to the global gauge symmetry. Equation (4.18) implies that thewave fun
tional is rotationally invariant,

Ψ(A) = Ψ(|A|) (4.20)and thus depends only on the gauge invariant modulus |A| of A.The global gauge transformations do not exhaust the set of small gauge transformationsremaining un�xed in the pure Coulomb gauge. An even number of large gauge transforma-tions (4.7) forms a spa
e-dependent small one
V 2n(Â) = exp

(
2xkn Â · T

)
, kn =

2πn

L
, (4.21)whi
h shifts the gauge �eld by

A → A
V 2n(Â) =

(
A− 2knÂ

)
. (4.22)Note that the gauge transform AV 2n still satis�es the pure Coulomb gauge if the original
on�guration A does so. Sin
e the wave fun
tional has to be invariant under small gaugetransformations, it has to satisfy the 
ondition

Ψ
(
A − 2knÂ

)
= Ψ(A) (4.23)20



and by Eq. (4.20)
Ψ (|2kn − |A||) = Ψ(|A|) . (4.24)Restri
ting A to the �rst Gribov region

0 ≤ |A| < k1 ≡
2π

L
, (4.25)the above 
ondition be
omes

Ψ
(

4π

L
− |A|

)
= Ψ (|A|) (4.26)or when expressed in terms of the dimensionless variable ϑ = |A|L

2

Ψ(2π − ϑ) = Ψ(ϑ) . (4.27)Under large gauge transformations V (Â) (4.7) the wave fun
tional needs only to be invari-ant up to a phase
Ψ
(
AV (Â)

)
= eiαΨ(A) (4.28)and sin
e (V (Â))2 is a small gauge transformation this phase has to be eiα = ±1. UsingEq. (4.8) and pro
eeding as above we �nd from the e�e
t of the large gauge transformationthe boundary 
ondition

Ψ(π − ϑ) = ±Ψ(ϑ) . (4.29)The two signs 
orrespond to two supersele
tion se
tors of the theory, whi
h are the dis
reteanalog of the Θ-va
uum inD = 3+1. In se
tion 6, we will �nd that the ground state belongsto the se
tor with the plus sign.The global gauge symmetry left in the pure Coulomb gauge is used in the diagonal Coulombgauge to diagonalise the (algebra-valued) gauge �eld
Aa = δa3A3 , A3 = ±|A| . (4.30)After implementing this gauge there is still the residual SO(2) ≃ U(1) global symmetryof rotations around the 3-axis. This abelian symmetry 
annot be �xed sin
e the gauge-�xed 
on�gurations (4.30) are invariant under these rotations. This implies that also thewave fun
tional de�ned on the gauge-�xed manifold automati
ally respe
ts this symmetry.Therefore, the residual global U(1) symmetry 
an be left out in further 
onsiderations.A small gauge transformation 
onsisting of two su

essive displa
ement transformations

V (e3) (4.8) shifts A3 to A3− 4π
L
. By the identi�
ation of±A3 this 
on�guration is equivalentto 4π

L
−A3. Thus A3 and 4π

L
−A3 (or ϑ and 2π−ϑ) represent the same 
on�guration. Thisresidual invarian
e under the small gauge transformations (V (e3))

2 left by the diagonal21



Coulomb gauge has to be respe
ted by the wave fun
tional, whi
h therefore has to satisfythe boundary 
ondition
Ψ(2π − ϑ) = Ψ(ϑ) . (4.31)This 
ondition (4.31) was already obtained above in the pure Coulomb gauge, see Eq.(4.27). This is not surprising: Sin
e the diagonal Coulomb gauge 
ontains the pure Coulombgauge the boundary 
onditions following from the residual gauge invarian
e in the diago-nal Coulomb gauge apply also to the pure Coulomb gauge. In se
tion 6 we will solve theS
hrödinger equation thereby imposing the boundary 
onditions (4.31) in the diagonalCoulomb gauge and the 
onditions (4.18) and (4.31) in the pure Coulomb gauge.5 Resolution of Gauss' lawAs already dis
ussed in se
tion 2, in the Hamiltonian approa
h in Weyl gauge (A0 = 0)Gauss' law (2.12) does not follow from the Heisenberg equation of motion and has to beimposed as a 
onstraint on the wave fun
tional. In the following, we expli
itly resolve Gauss'law in both the pure and diagonal Coulomb gauges, thereby paying proper attention to thezero modes of the Faddeev�Popov kernel. We will �nd that the modes n = 0, σ = 0,±1 areex
luded from the Coulomb propagator in the pure Coulomb gauge (although the modes

n = 0, σ = ±1 are not zero modes of the Coulomb kernel λn=0,σ±1 = σA 6= 0!). In thediagonal Coulomb gauge only the true zero mode n = σ = 0 is ex
luded from the Coulombpropagator. This is in a

ord with our dis
ussion of the Faddeev�Popov method in se
tion3. We will �rst outline the general strategy of resolving Gauss' law and afterwards applyit separately to the pure and diagonal Coulomb gauges.First note, that even in the pure Coulomb gauge where only 
onstant gauge ��elds� areleft, the momentum operator has spa
e-dependent 
omponents. We denote the part of themomentum operator 
onjugate to the modes of the gauge �eld left after gauge �xing by
Π⊥ and the remaining part by Π||(x),

Π(x) = Π⊥ + Π||(x) . (5.1)These 
omponents are orthogonal to ea
h other in the sense that
∫
dxΠ⊥Π||(x) =

∫
dxΠ||(x)Π⊥ = 0 (5.2)and we refer to them here as the �transversal� and �longitudinal� 
omponents of the mo-mentum operator, respe
tively, although this notation is somewhat misleading in the 
aseof the diagonal Coulomb gauge (see Appendix B). With Eq. (5.2), the Yang�Mills Hamil-tonian (2.10) be
omes

H =
g2

2

∫
dxΠ2(x) =

g2

2

∫
dx

(
Π2

⊥ + Π2
||(x)

)
. (5.3)22



As usual, we will solve Gauss' law for the longitudinal part Π||(x). Sin
e ∂Π⊥ = 0 (in bothgauges) we 
an rewrite Gauss' law (2.12) as
D̂ab(x)Πb

||(x)Ψ(A) = ρa
tot(x)Ψ(A) , (5.4)where

ρa
tot(x) = ρa(x) + ρa

g (5.5)is the total 
olour 
harge, in
luding the external 
harge ρa(x) and the 
harge of the gaugebosons
ρa

g(x) = −Âab(x)Πb
⊥ . (5.6)Sin
e Gauss' law is a 
onstraint on the wave fun
tional and not an operator identity, one
an extra
t from Gauss' law only Π||Ψ(A) but 
annot obtain Π|| itself. For this reason, we
onsider the expe
tation value of the Hamiltonian and perform a partial integration withrespe
t to the gauge �eld to obtain

〈Ψ|H|Ψ〉 =
g2

2

∫
DA

∫
dx (Π(x)Ψ(A))∗ Π(x)Ψ(A) . (5.7)Implementing here the (pure or diagonal) Coulomb gauge by the Faddeev�Popov method,splitting the momentum operator into longitudinal and transversal parts Π = Π|| + Π⊥,expressing Π||Ψ by Gauss' law and performing a partial integration with respe
t to thegauge-�xed �eld, the Hamiltonian be
omes

H =
g2

2

∫
dxJ −1

FP Π⊥ JFP Π⊥ +HC , (5.8)where JFP is the Faddeev�Popov determinant and HC is the so-
alled Coulomb Hamilto-nian, de�ned by
∫

DAJFP (A)
g2

2

∫
dx
(
Πa

||(x)Ψ(A)
)∗

Πa
||(x)Ψ(A) =:

∫
DAJFP (A)Ψ∗(A)HCΨ(A) . (5.9)Formally, from Eq. (5.4) follows

Πa
||(x)Ψ(A) =

∫
dy 〈x|

(
D̂−1

)ab |y〉 ρb
tot(y) Ψ(A) (5.10)and the Coulomb Hamiltonian be
omes

HC =
g2

2

∫
dxdy J −1

FP ρ
a
tot(x)F

ab(x, y)JFP ρ
b
tot(y) , (5.11)where

F ab(x, y) = 〈x|(−D̂−2)ab|y〉 = 〈x|
[(
−D̂∂

)−1
(−∂2)

(
−D̂∂

)−1
]ab

|y〉 (5.12)is the so-
alled Coulomb kernel. However, the operator D̂ has zero modes, whi
h forbid anaive inversion. In Appendix B, we expli
itly solve Eq. (5.4) for Πa
||(x)Ψ(A) and extra
t HC23



for both the pure Coulomb gauge and the diagonal Coulomb gauge, thereby paying properattention to the zero modes. The upshot of these 
onsiderations is that the zero modes ofthe Faddeev�Popov kernel, whi
h are a 
onsequen
e of in
omplete gauge �xing, give riseto additional 
onstraints on the wave fun
tionals. These 
onstraints basi
ally arise fromthe proje
tion of Gauss' law onto the zero modes of the Faddeev�Popov kernel. In the pureCoulomb gauge these 
onstraints read (B.31)
Qa

totΨ = 0 , (5.13)where
Qa

tot =

L∫

0

dx ρa
tot(x) =

L∫

0

dx
(
ρa(x) + ρa

g(x)
)
≡ Qa +Qa

g (5.14)is the total 
olour 
harge. In this gauge the transverse momentum operator (A.7) reads
Πa

⊥ =
1

L

d

idAa
(5.15)and the dynami
al 
harge of the gauge bosons Qa

g (5.6) be
omes (up to a sign) the 
olourangular momentum operator (more pre
isely the 
olour spin) of the gauge �eld, La (4.19).The residual 
onstraint (B.13) from Gauss' law be
omes
LaΨ = QaΨ , (5.16)where Qa is the external 
harge. In the absen
e of external 
olour 
harges Qa = 0 this
onstraint simpli�es to

LΨ = 0 , (5.17)i.e. the physi
al wave fun
tionals do not depend on the angle degrees of freedom Â(θ, φ),whi
h, in fa
t, are unphysi
al sin
e they represent the residual global 
olour gauge degreesof freedom, whi
h are not �xed by the pure Coulomb gauge 
ondition. Thus, the physi
alva
uum wave fun
tionals depend only on the �radial� 
oordinate |A| whi
h is the physi
aldegree of freedom of the gauge �eld. The 
onstraint (5.17) was already found in the previousse
tion, see Eq. (4.18), and re�e
ts the invarian
e of the wave fun
tional under global gaugetransformations.In the diagonal Coulomb gauge, where
Aa = δa3A3 , Πa

⊥ = δa3Π3
⊥ , (5.18)the dynami
al 
harge of the gauge bosons ρa

g (5.6) vanishes and the residual 
onstraintfrom Gauss' law implies the vanishing of the Cartan 
omponent of the external 
harge inthe physi
al state (see Eq. (B.32))
Q3Ψ = 0 . (5.19)In absen
e of external 
harges Q3 = 0, in this gauge there is no residual 
onstraint on thewave fun
tional from Gauss' law. 24



The diagonal Coulomb gauge rotates the 
onstant gauge mode in the 3-dire
tion, i.e. A3 =
±|A| and with the restri
tion to the fundamental modular region (4.15), in this gauge A3equals the modulus ofA. Thus, in both gauges the physi
al wave fun
tional depends only onthe modulus of the 
onstant gauge mode Aa, whi
h is the only physi
al degree of freedom.Both gauges leave a residual global gauge invarian
e: Global SU(2) symmetry in the 
aseof the pure Coulomb gauge and global U(1) symmetry in the 
ase of the diagonal Coulombgauge. By Noether's theorem, these global symmetries imply the existen
e of 
onserved
harges: Qa=1,2,3

tot in the 
ase of the pure Coulomb gauge and Q3 in the diagonal Coulombgauge. The residual 
onstraints on the wave fun
tionals obtained above from Gauss' law arenothing but the quantum version of Noether's theorem for these global 
olour symmetries.Also in 3 + 1 dimensions the pure Coulomb gauge �xing still leaves invarian
e with respe
tto global 
olour gauge transformations and by Noether's theorem the total 
olour 
hargehas to be 
onserved [35℄.After resolution of Gauss' law (see Appendix B) one �nds the following gauge-�xed Hamil-tonian in the pure Coulomb gauge
H = − g2

2L

1

JP

d

dAa
JP

d

dAa
+HC , (5.20)where JP is de�ned by Eq. (3.32) and the Coulomb Hamiltonian (
f. Eq. (5.11)) is givenby

HC =
g2

2

∫
dxdy ρa(x)F ab(x, y)ρb(y) (5.21)with Coulomb kernel

F ab(x, y) = F ab[A = AaTa](x, y) =
∑

n 6=0

〈x|n〉
∑

σ

〈a|Û |σ〉λ−2
n,σ〈σ|ÛT |b〉〈n|y〉 , (5.22)from whi
h all zero modes n = 0 of the Faddeev�Popov operator (3.24) are ex
luded,although n = 0, σ = ±1 are not zero modes of the operator (−D̂2) in Eq. (5.12)! Notealso that the dynami
al 
harge ρg (5.6), although being here non-zero, has dropped outfrom the Coulomb Hamiltonian (5.21). This is a spe
ial feature of 1 + 1 dimensions (seeAppendix B) and is a 
onsequen
e of ρg being spa
e-independent in the Coulomb gauge.Similarly, the Faddeev�Popov determinant also drops out from the Coulomb Hamiltonian.The �rst term in Eq. (5.20) arises from the �transversal� momentum operators Πa

⊥ 
or-responding to the physi
al mode (Aa = const). This term has the form of a Lapla
ianin a 
urved spa
e with the Faddeev�Popov determinant a
ting as the determinant of themetri
. The se
ond term of Eq. (5.20) arises from the �longitudinal� (here x-dependent)part Πa
‖(x) of the momentum operator. This term gives the stati
 potential of externalstati
 
olour 
harges, and it is 
onsidered an advantage of the pure Coulomb gauge thatthis term is expli
itly isolated. Note, the Hamiltonian in the pure Coulomb gauge (5.20) isstill invariant under global 
olour rotations, whi
h are not �xed in this gauge.25



Resolving Gauss' law in the diagonal Coulomb gauge (2.20) (whi
h does �x the global
olour rotations) yields the gauge-�xed Hamiltonian
H = − g2

2L

1

JD

d

dA3
JD

d

dA3
+HC , (5.23)where JD is de�ned in Eq. (3.20). Here the Coulomb Hamiltonian HC is still given by Eq.(5.21), however, with the Coulomb kernel F ab[A](x, y) (5.22) repla
ed by

F ab(x, y) = F ab[A = |A|T3](x, y) =
∑

n,σ

′〈x|n〉〈a|σ〉λ−2
n,σ〈σ|b〉〈n|y〉 , (5.24)where the prime indi
ates that the mode n = σ = 0 is ex
luded, whi
h is the only zeromode of the Faddeev�Popov operator in this gauge.Note, sin
e the pure Coulomb gauge �eld A is related to the �eld in the diagonal Coulombgauge by a global gauge transformation, see Eq. (3.25), one would expe
t that in view ofEq. (3.26), the Coulomb kernels (5.12) in these two gauges are related by

F ab[A = UA3T3U
†](x, y) = ÛacF

cd[A3T3](x, y)Û
T
db . (5.25)This is almost the 
ase (
f. Eqs. (5.22) and (5.24)) ex
ept for the additional zero modes

n = 0, σ = ±1 to be ex
luded from the kernel (5.22) in the pure Coulomb gauge. The zeromodes n = 0, σ = 0,±1 are pre
isely given by the 
onstant gauge transformation (3.29)
ua

σ = 〈a|Û |σ〉(〈x|n = 0〉 = const) not �xed in the pure Coulomb gauge.By �xing the pure Coulomb gauge, one swit
hes from Cartesian to 
urvilinear 
oordi-nates and a

ordingly the gauge-�xed Hamiltonian a
quires the form of the Hamiltonianin 
urved spa
e [1℄. The gauge-�xed Hamiltonian is, of 
ourse, no longer gauge invariant.In parti
ular, the Hamiltonian (5.23) is not even invariant under global 
olour rotationsin
e the diagonal Coulomb gauge (2.20) �xes also the global gauge transformations. Nev-ertheless, the diagonal Coulomb gauge still leaves invarian
e under global abelian gaugetransformations (
olour rotations around the 3-axis).In the absen
e of external 
harges (ρa(x) = 0), the Coulomb term HC (5.21) obviouslyvanishes in both gauges, however, for di�erent reasons, see appendix B. In the pure Coulombgauge it vanishes be
ause all 
onstant modes n = 0, σ = 0,±1 are ex
luded from theCoulomb kernel F ab(x, y), while in the diagonal Coulomb gauge it vanishes be
ause thephysi
al modes live all in the Cartan algebra, resulting in a vanishing 
olour 
harge (5.6)of the gauge bosons. 26



6 The physi
al state spa
eThe spe
trum of the Yang�Mills Hamiltonian in 1 + 1 dimensions 
an be obtained in agauge invariant way [36℄. We 
hoose here the diagonal Coulomb gauge, with all unphysi
aldegrees of freedom eliminated and the physi
al degree of freedom ϑ within the fundamentalmodular region 0 ≤ ϑ ≤ π, see se
tion 4. Thus, one 
an regain the gauge invariant spe
trumand simultaneously �nd the physi
al state spa
e. From the va
uum wave fun
tional Ψ[A]in the diagonal Coulomb gauge, the one in the pure Coulomb gauge 
an be derived whi
hwill be very useful in the subsequent se
tions.6.1 Diagonal Coulomb gaugeIn the diagonal Coulomb gauge (2.20), the Yang�Mills S
hrödinger equation of the 1 + 1dimensional theory
HΨk = EkΨk (6.1)
an be solved exa
tly [28℄. In the absen
e of external 
olour 
harges the Yang�Mills Hamil-tonian (5.23) reads in the 
ompa
t variable ϑ = |A|L

2

H = − 1

2L

(
gL

2

)2 1

JD(ϑ)

d

dϑ
JD(ϑ)

d

dϑ
. (6.2)To solve the S
hrödinger equation, we introdu
e the �radial� wave fun
tional φ(ϑ) by

Ψ(ϑ) =
1

√
JD(ϑ)

φ(ϑ) . (6.3)This eliminates the Faddeev�Popov determinant JD(ϑ) = sin2 ϑ in the s
alar produ
t
〈Ψ1|Ψ2〉 =

π∫

0

dϑJD(ϑ)Ψ∗
1(ϑ)Ψ2(ϑ) =

π∫

0

dϑφ∗
1(ϑ)φ2(ϑ) (6.4)and redu
es the S
hrödinger equation (6.1) to

d2φ

dϑ2
= −k2φ , k2 = 1 +

8E

g2L
. (6.5)The boundary 
ondition (4.31) on the total wave fun
tionals ψ(ϑ) requires the radial wavefun
tional φ(ϑ) to satisfy

φ(2π − ϑ) = −φ(ϑ) . (6.6)27



Thus, the solutions to Eq. (6.5) read
φk(ϑ) =

√
2

π
sin(kϑ) , k ∈ N . (6.7)These are normalised with respe
t to the s
alar produ
t (6.4). The 
orresponding energyeigenvalues are given by

Ek =
g2L

8
(k2 − 1) =

g2L

2
j(j + 1) =

g2L

8
l(l + 2) . (6.8)Here, we have de�ned

j =
k − 1

2
= 0,

1

2
, 1, . . . (6.9)to identify the spe
trum (6.8) as a rigid rotor in 
olour spa
e where the integer and half-integer j 
orrespond to the two supersele
tion se
tors de�ned by the boundary 
ondition(4.29). Alternatively, one 
an use the de�nition

l = k − 1 = 2j (6.10)to re
ognise in Eq. (6.8) the energy eigenvalues of a point parti
le with mass 4/(g2L) andangular momentum l on a unit sphere S3 in D = 4, whi
h is the group manifold of SU(2).(In fa
t, H (6.2) is (up to the 
onstant fa
tor) the polar angle part of the Lapla
ian on
S3.) Either way, the eigenfun
tions

ψj(ϑ) =

√
2

π

sin((2j + 1)ϑ)

sin ϑ
=

√
2

π
χj(2ϑ) (6.11)are the 
hara
ters of SU(2) (n̂ � arbitrary unit ve
tor)

χj(β) =
∑

m

〈jm|ei β

2
n̂·τ |jm〉 (6.12)and the eigenvalues (6.8) are seen to diverge in the thermodynami
 limit L → ∞ ex
eptfor j = 0. Therefore, all states are frozen, ex
ept the one with j = 0, whi
h has vanishingenergy (Ek=1 = 0) and the va
uum wave fun
tional

Ψ(ϑ) =

√
2

π
. (6.13)The va
uum wave fun
tional Ψ has no dependen
e on the gauge ��eld� ϑ = |A|L

2
anddes
ribes a sto
hasti
ally distributed weight of gauge �eld 
on�gurations in the expe
tationvalues of the diagonal Coulomb gauge,

〈O(ϑ)〉diagonal gauge =

π∫

0

dϑJD(ϑ)O(ϑ)|Ψ(ϑ)|2 =
2

π

π∫

0

dϑ sin2 ϑO(ϑ) . (6.14)28



It is 
laimed that in 3 + 1 dimensions the gauge �eld 
on�gurations that dominate theinfrared physi
s are lo
ated on the 
ommon boundary of the Gribov region and the fun-damental modular region [37℄. In 1 + 1 dimension, this is obviously not realized. TheFaddeev�Popov determinant JD = sin2 ϑ a
tually suppresses the 
ontributions of ϑ = πwhi
h is the 
ommon boundary of Gribov and fundamental modular regions. This is dueto the fa
t that in the fully gauge-�xed theory, i.e. in the diagonal Coulomb gauge, the
on�guration spa
e is merely one-dimensional and entropy does not favour boundary 
on-tributions (although expe
ted to do so in D = 3 + 1).6.2 Pure Coulomb gaugeWe are interested here in the va
uum wave fun
tional in the pure Coulomb gauge. Althoughthe pure Coulomb gauge Hamiltonian (5.20) apparently has a mu
h more 
ompli
atedstru
ture than the Hamiltonian (6.2) in the diagonal Coulomb gauge both expressionsare equivalent, due to gauge invarian
e. In the following, we will expli
itly redu
e theHamiltonian in the pure Coulomb gauge to the diagonal Coulomb gauge Hamiltonian (6.2).This will provide us with the expli
it form of the wave fun
tional in the pure Coulombgauge, whi
h is needed for subsequent 
onsiderations.In the absen
e of external 
harges, the Yang�Mills Hamiltonian (5.20) is proportional tothe Lapla
ian ∆C in the spa
e of gauge orbits proje
ted on the hyperplane de�ned by thepure Coulomb gauge 
ondition
H = −g

2L

8
∆C , ∆C :=

1

JP
∇ · JP∇ , ∇ = ea

∂

∂Aa
. (6.15)Using spheri
al 
oordinates of the gauge ��eld�, introdu
ed already in Eq. (2.25),

A = A Â(θ, φ) , A = |A| =
√
AaAa , (6.16)and expressing the ∇ operators in Eq. (6.15) by the standard form

∇ = Â
d

dA
− i

A
Â × L , (6.17)where L is the 
olour angular momentum operator (4.19), the Lapla
ian ∆C reads

∆C =
(
A2JP

)−1 d

dA

(
A2JP

) d

dA
− L

2

A2

=
1

JD

d

dA
JD

d

dA
− L

2

A2
. (6.18)Here, we have used the expli
it forms of the Faddeev�Popov determinants JP in the pureCoulomb gauge (3.32) and JD in the diagonal Coulomb gauge (3.20). In the physi
al spa
e29



of 
olour singlet states where (see Eq. (5.17))
L

2|Ψ〉 = 0 , (6.19)the last term in Eq. (6.18) be
omes irrelevant and the HamiltonianH in Eq. (6.15) redu
espre
isely to the one in the diagonal Coulomb gauge (6.2). Its eigenfun
tions in the 
oloursinglet Hilbert spa
e (6.19) are therefore the same as in the diagonal Coulomb gauge.However, in the pure Coulomb gauge the global gauge degrees of freedom θ, φ de�ning theorientation Â(θ, φ) of the 
olour ve
tor A remain as 
oordinates, whi
h enter the de�nitionof the s
alar produ
t in the Hilbert spa
e of the wave fun
tionals,
〈Ψ1|Ψ2〉 =

1

4π

∫

S2

dΩ

π∫

0

dϑϑ2JP (ϑ)Ψ∗
1(ϑ, θ, φ)Ψ2(ϑ, θ, φ) . (6.20)Here, dΩ(θ, φ) denotes the usual integration measure on S2 and the Ja
obian ϑ2 
omes fromthe transformation to spheri
al 
olour 
oordinates. Due to the fa
tor 1

4π
in the de�nitionof the s
alar produ
t (6.20), the normalisation of the va
uum wave fun
tional in the pureCoulomb gauge is identi
al to the one in the diagonal Coulomb gauge in Eq. (6.13),

Ψ(A) =

√
2

π
. (6.21)The pure Coulomb gauge expe
tation values

〈O[A]〉 =
∫
DAJP [A]Ψ∗[A]O[A]Ψ[A]

=

π∫

0

dϑϑ2 JP (ϑ)
1

4π

∫

S2

dΩO[ϑ, θ, φ] |Ψ|2

=
2

π

π∫

0

dϑ sin2 ϑ
1

4π

∫

S2

dΩO[ϑ, θ, φ] (6.22)average the gauge degrees of freedom θ, φ. The gauge invariant variable ϑ is integrated withthe same weight as in the diagonal Coulomb gauge expe
tation value (6.14). For operators
O(ϑ) in the diagonal Coulomb gauge, the expe
tation value (6.22) gives the same resultas the one in the diagonal Coulomb gauge (6.14). Hen
e, we may use the de�nition (6.22)ex
lusively.In subsequent se
tions we will use the exa
t wave fun
tionals to 
al
ulate various propa-gators and verti
es, the 
olour Coulomb potential and derive their Dyson�S
hwinger equa-tions. 30



7 Exa
t Propagators and Verti
esIn D = 3 + 1, the study of Landau gauge Dyson�S
hwinger equations (DSEs) has re
entlybe
ome quite popular (for a re
ent review, see Ref. [38℄ and referen
es therein). The 
o-variant Landau gauge is te
hni
ally 
onvenient and the stru
ture of the DSEs is similar tothe pure Coulomb gauge. In the pure Coulomb gauge, the variational approa
h to D = 3+1Yang�Mills theory also results in a set of DSEs for the propagators and verti
es [8℄. In any
ase, a trun
ation of the non-linearly 
oupled DSEs is unavoidable. It is di�
ult to assessthe validity of this approximation. In 1+1 dimension, on the other hand, we 
an 
al
ulatethe exa
t Green fun
tions and 
ompare them to the solution of approximated DSEs. In thisse
tion, we will use the exa
t va
uum state (6.21) to 
al
ulate the propagators and verti
esin the pure Coulomb gauge. We begin with the gluon propagator. After the 
omputationof the ghost and Coulomb propagators, the ghost-gluon vertex is 
al
ulated in the pureCoulomb gauge. Finally, we dis
uss the propagators in the diagonal Coulomb gauge.7.1 Gluon propagator in pure Coulomb gaugeIn 1 + 1 dimensions, the pure Coulomb gauge �elds are spatially independent. The gluonpropagator is therefore a 
onstant matrix, de�ned as the expe
tation value of two �eldoperators,
Dab = 〈AaAb〉 . (7.1)Expressing the 
olour ve
tor Aa = 2

L
ϑ Â

a(θ, φ) in spheri
al 
oordinates, the pure Coulombgauge expe
tation value (6.22) for the gluon propagator (7.1) yields
Dab =

2

π

(
2

L

)2 π∫

0

dϑϑ2 sin2 ϑ
1

4π

∫
dΩ Â

a(θ, φ)Âb(θ, φ) . (7.2)By symmetry, the angular integration yields
1

4π

∫
dΩ Â

a(θ, φ)Âb(θ, φ) =
1

3
δab (7.3)and thus for Eq. (7.2)

Dab = δab 1

L2

(
4

9
π2 − 2

3

)
=: DA δ

ab , DA ≈ 3.72
1

L2
. (7.4)The pure Coulomb gauge gluon propagator has only diagonal 
omponents whi
h all have thesame value DA. In the thermodynami
 limit, L → ∞, the gluon propagator is identi
allyzero, in agreement with the fa
t that the theory be
omes trivial for L→ ∞.31



7.2 Ghost propagator in pure Coulomb gaugeThe ghost propagator o

urs in the Dyson�S
hwinger equations as a 
onsequen
e of theproje
tion on the hypersurfa
e of Coulomb gauge (or Landau gauge). In the variationalapproa
h [8℄, this propagator is merely an auxiliary obje
t to fa
ilitate the 
omputationof the energy density. It is de�ned as the expe
tation value of the inverse Faddeev�Popovkernel. The Faddeev�Popov kernel M of the pure Coulomb gauge is given in 
oordinatespa
e by Eq. (3.24). In the momentum spa
e, we have
Mab

n =

L∫

0

dxMab(x, y) e−iknx = δabk2
n − iÂabkn =:

(
G−1

n

)ab
. (7.5)We refer to the inverse M−1

n as the �ghost kernel� denoted by Gn. It is 
ustomary to
onsider the Cartesian 
olour 
omponents of the matrix-valued ghost propagator. Let ustherefore invert Mn in the Cartesian basis. Using the SU(2) identity
(ÂÂ)ab = AaAb − δab

A
2 , (7.6)one 
an verify that

Gab
n =

1

k2
n

1

1 − A2

k2
n

(
δab − AaAb

k2
n

+ i
Âab

kn

) (7.7)is indeed the inverse of Mab
n (7.5). The expe
tation value (6.22) then de�nes the ghostpropagator

〈
Gab

n

〉
=
dab

n

k2
n

(7.8)as well as the ghost form fa
tor dab
n , whi
h measures the deviation of 〈Gab

n 〉 from the tree-level behaviour δab/k2
n. The angular averages within the pure Coulomb gauge expe
tationvalue (7.8) 
an be taken with Eq. (7.3) and the identity

1

4π

∫
dΩ Âab = 0 . (7.9)One thus �nds a 
olour diagonal ghost form fa
tor,

dab
n = δab

〈
1

1 − A2

k2
n

(
1 − 1

3

A
2

k2
n

)〉
=: δab dn . (7.10)Its diagonal elements dn 
an be rewritten as ( |A|

kn
= ϑ

πn

)

dn = 1 +
2

3

〈
ϑ2

(πn)2 − ϑ2

〉
= 1 +

4

3π

π∫

0

dϑ sin2 ϑ
ϑ2

(πn)2 − ϑ2
. (7.11)32
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nFig. 3. The exa
t ghost form fa
tor, given by Eq. (7.11).The above integral may be expressed by integral sine fun
tions. The allowed modes n ∈
Z \ {0} ex
lude the zero mode n = 0 of the Faddeev�Popov operator. In the ultravioletlimit, the ghost form fa
tor (7.11) approa
hes tree-level,

lim
n→∞ dn = 1 , (7.12)sin
e the D = 1+1 theory is super-renormalisable and there are no anomalous dimensions.In the infrared, the ghost form fa
tor is enhan
ed, as 
an be seen in Fig. 3. This enhan
e-ment is also found in D = 3 + 1 dimensions and is understood to 
ome from near-zeroeigenvalues of the Faddeev�Popov kernel in the vi
inity of the Gribov horizon.In the 3 + 1 dimensional 
ontinuum theory, the inverse of the ghost form fa
tor, d−1,represents the generalised diele
tri
 fun
tion ǫ of the Yang�Mills va
uum [39℄. Fig. 3 showsthat also in D = 1 + 1 the Yang�Mills va
uum behaves like a dia-ele
tri
 medium (ǫ < 1)in the infrared and be
omes the ordinary va
uum (ǫ = 1) in the ultraviolet.7.3 Coulomb propagator in the pure Coulomb gaugeThe pure Coulomb gauge Hamiltonian (5.20) 
omprises the so-
alled Coulomb term HC ,see Eq. (5.21), whi
h a

ounts for the intera
tion energy between 
olour 
harges. By the
al
ulation of the expe
tation value 〈HC〉, the quark potential 
an be found, see se
tion8. The �Coulomb kernel� F , whi
h mediates this intera
tion is de�ned in Eq. (5.22) andreads in momentum spa
e

F ab
n = Gac

n k
2
nG

cb
n . (7.13)Using the expli
it form (7.7) of the ghost kernel Gab
n and the identity (7.6), the Coulomb33
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nFig. 4. Form fa
tor φn of the Coulomb potential as given by Eq. (7.17).kernel F ab
n is 
ast into the form

F ab
n =

1

k2
n

1
(
1 − A2

k2
n

)2

[
δab

(
1 +

A
2

k2
n

)
+
AaAb

k2
n

(
A

2

k2
n

− 3

)
+ 2i

Âab

kn

]
. (7.14)The expe
tation value (6.22) of the operator F ab

n in Eq. (7.14) de�nes the Coulomb prop-agator
〈
F ab

n

〉
=
φab

n

k2
n

(7.15)and the form fa
tor φab
n whi
h measures the deviation of 〈F ab

n 〉 from tree-level, δab/k2
n (beingthe abelian 
ase). To evaluate the expe
tation value (7.15), let us �rst integrate the gaugedegrees of freedom of F ab

n (A). Using the identities (7.3) and (7.9), one �nds from F ab
n inEq. (7.14)

1

4π

∫
dΩF ab

n =
δab

k2
n

(
1 −

( ϑ
πn

)2
)−2

[
1 +

( ϑ
πn

)2
+

1

3

( ϑ
πn

)2
(( ϑ
πn

)2 − 3
)]

=
δab

k2
n

1

3

(
1 + 2(πn)2 (πn)2 + ϑ2

((πn)2 − ϑ2)2

)
. (7.16)The form fa
tor φab

n (7.15) of the Coulomb propagator is therefore stri
tly diagonal and itsdiagonal elements yield
φab

n =: δabφn , φn =
1

3



1 + 4πn2

π∫

0

dϑ sin2 ϑ
(πn)2 + ϑ2

((πn)2 − ϑ2)2



 . (7.17)In the ultraviolet limit, the form fa
tor φn approa
hes tree-level. As shown in Fig. 4, φnis infrared enhan
ed. In the D = 3 + 1 theory, the infrared enhan
ement of the Coulombpropagator is expe
ted to 
ome from the restri
tion of the 
on�guration spa
e to the Gribov34
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tor fn, as de�ned in Eq. (7.18).region, as 
laimed by Gribov in his seminal paper [40℄, and to lead to a 
on�ning quarkpotential. This will be dis
ussed further in se
tion 8.An issue in D = 3 + 1 dimensions is whether the expe
tation value of (7.13) 
an be fa
-torised, i.e. 
an the 
onne
ted part be negle
ted? In order to answer this question, a furtherform fa
tor was introdu
ed in Ref. [8℄. It measures the deviation from the fa
torisation,
〈
Gn k

2
nGn

〉
=: 〈Gn〉 k2

n fn 〈Gn〉 , ⇒ fn =
φn

d2
n

. (7.18)and 
an be expressed by the ratio of the form fa
tor φn of the Coulomb propagator and theghost form fa
tor squared. Following Ref. [8℄, we refer to fn as the �Coulomb form fa
tor�.In 1+1 dimensions, where the exa
t solutions for dn and φn are available, we 
an 
al
ulate
fn exa
tly. In Fig. 5, the result for fn is depi
ted. It shows an infrared enhan
ement. Afurther dis
ussion in the 
ontext of the D = 3 + 1 theory will follow in se
tion 12.7.4 Ghost-gluon vertex in pure Coulomb gaugeIn the variational approa
h in the pure Coulomb gauge [8℄ and the Dyson�S
hwinger ap-proa
h in Landau gauge, the ghost-gluon vertex is of parti
ular interest. In these ap-proa
hes the proper ghost-gluon vertex is usually repla
ed by the bare one with the argu-ment that this vertex is not renormalised [41℄. In fa
t, re
ent latti
e 
al
ulations performedinD = 1+1 Landau gauge provide little eviden
e for a dressing of this vertex [42℄. However,although larger latti
es are available in D = 1 + 1, there are signi�
ant statisti
al errors.The latti
e results are also plagued by the existen
e of Gribov 
opies. The 1+1 dimensional
ontinuum theory, on the other hand, has full 
ontrol of the Gribov problem, see se
tion 4.In the following we will 
al
ulate the proper (one-parti
le irredu
ible) ghost-gluon vertexin the pure Coulomb gauge. 35



The bare ghost-gluon vertex is de�ned by [8℄
Γ0,a(x, x′) = −dG

−1(x, x′)

dAa
= T̂ a∂xδ(x, x

′) , (7.19)where G−1 ≡ M is the Faddeev�Popov kernel (3.24). Fourier expansion
Γ0,a(x, x′) =

1

L

∑

n

eikn(x−x′)Γ0,a
n (7.20)yields the momentum spa
e representation

Γ0,a
n = iknT̂

a . (7.21)In theD = 1+1 Coulomb gauge the ghost-gluon vertex depends only on a single momentumfor there is only the zero momentummode of the gauge �eld. The proper ghost-gluon vertex
Γa

n is de�ned via the expe
tation value for the 
onne
ted ghost-gluon vertex 8

〈
AaGbc

n

〉
= Daa′

〈
Gbb′

n

〉
(Γa′

n )b′c′
〈
Gc′c

n

〉
= DA

dn

k2
n

(Γa
n)bc dn

k2
n

(7.22)whi
h is the proper vertex with propagators atta
hed on its legs. We have used the fa
tthat the exa
t ghost and gluon propagators in the pure Coulomb gauge are 
olour diagonal.Using the expli
it form (7.7) of the ghost kernel Gab
n , we 
an write the expe
tation value(7.22) as

〈
AaGbc

n

〉
=

1

k2
n

〈
1

1 − A2

k2
n

(
Aaδbc −AaA

bAc

k2
n

+ iAa Â
bc

kn

)〉
. (7.23)In the pure Coulomb gauge expe
tation value (6.22), the angular integration renders the�rst two terms in Eq. (7.23) zero, while the last one yields

〈
AaGbc

n

〉
=

1

k2
n

ikn(T̂ d)bc

〈
AaAd

k2
n −A2

〉

=
1

k2
n

(Γ0,d
n )bc 1

3
δad

〈
ϑ2

(πn)2 − ϑ2

〉

=
1

k2
n

(Γ0,a
n )bc 1

2
(dn − 1) (7.24)where in the last line we have used the expression (7.11) for the ghost form fa
tor dn. It ishelpful to de�ne the form fa
tor γn of the ghost-gluon vertex by

Γa
n =: γn Γ0,a

n . (7.25)
8 For the wave fun
tional 
hosen in Ref. [8℄, the de�nition (7.22) 
oin
ides with the one usedthere, 〈GΓ0G

〉
=: 〈G〉Γ 〈G〉. 36
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nFig. 6. Form fa
tor γn of the proper ghost-gluon vertex, as given by Eq. (7.26).This form fa
tor 
an now be expressed by Eq. (7.24) using the de�nition (7.22) of Γa
n,

γn =
k2

n(dn − 1)

2DA d2
n

. (7.26)Let us 
he
k the ultraviolet limit, n → ∞. From Eqs. (7.11), (7.2) and (7.3), one 
an seethat
lim

n→∞
k2

n(dn − 1) =
16

3πL2

π∫

0

dϑϑ2 sin2 ϑ ≡ 2DA (7.27)where DA is the gluon propagator de�ned in Eq. (7.4). It then follows immediately fromEqs. (7.26) and (7.12) that the ghost-gluon vertex approa
hes tree-level asymptoti
ally,
lim

n→∞
γn = 1 . (7.28)In Fig. 6, one 
an see that the form fa
tor γn, given by Eq. (7.26), hardly deviates fromtree-level for the entire momentum range. Deviations are in the range of 5%. This stronglysupports the popular approximation of trun
ating Dyson�S
hwinger equations by 
hoosinga tree-level ghost-gluon vertex. Further dis
ussion will follow in se
tion 11.7.5 Propagators in diagonal Coulomb gaugeFor a 
omparison to the pure Coulomb gauge, whi
h does not 
ompletely eliminate thegauge degrees of freedom, we here 
al
ulate the propagators in the diagonal Coulombgauge with restri
tion to the fundamental modular region. The gluon propagator Dab inthe diagonal Coulomb gauge is most easily found by letting Aa → 2

L
ϑ δa3 before taking theexpe
tation value (7.1). We 
an then express Daa in the diagonal Coulomb gauge by the37



pure Coulomb gauge result (7.4) for DA,
D33 =

2

π

(
2

L

)2 π∫

0

dϑϑ2 sin2 ϑ = 3DA , D11 = D22 = 0 (7.29)The 
olour tra
e of the gluon propagator is evidently the same in both gauges. From theobservation that the diagonal Coulomb gauge 
an be rea
hed from the pure Coulomb gaugeby the unitary transformation (see appendix A)
A→ U AU † (7.30)of the matrix-valued variable A = AaT a, the invarian
e of the 
olour tra
e of the gluonpropagator is seen to be an immediate 
onsequen
e.The Faddeev�Popov kernel Mn in the diagonal Coulomb gauge is substantially di�erentfrom the one in the pure Coulomb gauge, see Eq. (3.9) (
f. Eq. (3.24)). It is 
onvenient toexpand Mn in the spheri
al basis (A.13) where Mn is diagonal,

〈σ′|Mn|σ〉 = Λn,σδσ′σ =:
(
G−1

n

)σ
δσ′σ (7.31)and the eigenvalues Λn,σ are given by Eq. (3.16). We use the va
uum expe
tation value ofthe ghost kernel Gσ

n in the diagonal Coulomb gauge (7.31) to de�ne the ghost form fa
tor
omponents dσ
n, 9

〈Gσ
n〉 =:





idσ
n

kn
, σ = ±1

dσ
n

k2
n
, σ = 0

. (7.32)The va
uum expe
tation values (6.22) then yield for n 6= 0

dσ=±1
n =

〈
1

1 + σ ϑ
πn

〉
, dσ=0

n = 1 . (7.33)Taking the 
olour tra
e ∑σ d
σ
n of the ghost form fa
tor in the diagonal Coulomb gauge givesthe same result as summing the diagonal elements daa

n of the ghost form fa
tor in the pureCoulomb gauge (see Eq. (7.11)),
∑

σ

dσ
n = 1 + 2

〈
1

1 − ( ϑ
πn

)2

〉
=
∑

a

daa
n . (7.34)

9 For the 
omponents σ = ±1, we related the form fa
tor to the propagator di�erently fromthe σ = 0 
omponent, in order for all dσ
n to have the same dimension and 
omplex phase. This
ir
umstan
e whi
h does not o

ur in the pure Coulomb gauge 
an here be tra
ed ba
k to thestru
ture of the gauge 
ondition (2.20) of the diagonal Coulomb gauge.38



While the abelian 
omponent σ = 0 of the diagonal Coulomb gauge ghost form fa
tor is attree-level, see Eq. (7.33), the other diagonal 
omponents are larger than the pure Coulombgauge result (7.11) for dn, su
h that the 
olour tra
e is invariant.The same s
enario o

urs for the Coulomb propagator 〈Fn〉. With the the de�nition (5.24)of Fn and λn,σ given by Eq. (3.15), we have with Fn|σ〉 = F σ
n |σ〉

〈F σ
n 〉 =

〈
1

λ2
n,σ

〉
=

〈
1

(kn + σA3)2

〉
=
φσ

n

k2
n

(7.35)and �nd for the form fa
tor φσ
n of the Coulomb propagator for n 6= 0

φσ=±1
n =

〈
1

(1 + σ ϑ
πn

)2

〉
, φσ=0

n = 1 . (7.36)Noting that the Coulomb kernel Fn in the diagonal Coulomb gauge a
tually follows froma rotation in 
olour spa
e from the one in the pure Coulomb gauge, see Eq. (5.25), theinvarian
e of the 
olour tra
e is 
lear.The above results ex
lude the n = 0 modes whi
h are the zero modes of the Faddeev�Popov operator in the pure Coulomb gauge. In the diagonal Coulomb gauge, however, the
onstant n = 0 modes with σ = ±1 are allowed. These give the results
〈
Gσ=±1

n=0

〉
= iσ

L

2

〈
1

ϑ

〉
≈ 0.39 iσL (7.37)

〈
F σ=±1

n=0

〉
=
L2

4

〈
1

ϑ2

〉
≈ 0.23L2 (7.38)It turns out that these values are of no importan
e for the 
onsiderations below and arejust given here for 
ompleteness.8 The stati
 quark potentialThe gauge invariant potential energy of a quark-antiquark pair in D = 1+1 is well-knownfrom the 
al
ulation of the temporal Wilson loop. A linearly rising potential emerges andthe 
orresponding string tension σj shows stri
t Casimir s
aling [43℄,

σj =
g2

2
j(j + 1) . (8.1)In the fundamental representation we have with j = 1

2
the string tension

σ := σ 1

2

=
3

8
g2 . (8.2)39



In the Hamiltonian approa
h, the stati
 
olour potential 
an be obtained by taking theexpe
tation value of the Hamiltonian if the 
harge distribution ρa(x′) is 
hosen to be apair of opposite point 
harges of strength qa and −qa, lo
alised at the positions x and y,respe
tively,
ρa(x′) = qa (δ(x′ − x) − δ(x′ − y)) . (8.3)This 
al
ulation is shown here to also give rise to a linear potential whi
h is, however, agauge dependent quantity. Therefore, the string tension σC de�ned by this linear potentialgives only an upper bound [37,44℄ on the gauge invariant string tension σ in Eq. (8.2).Nevertheless, the Coulomb potential is 
al
ulated here for 
omparison to the potential
al
ulated in the D = 3 + 1 theory.8.1 Pure Coulomb gaugeWe �rst �x only the pure Coulomb gauge. For the 
olour 
harge density (8.3), the CoulombHamiltonian (5.21) redu
es to

HC =
g2

2
qaqb

[
F ab(x, x) + F ab(y, y)− F ab(x, y) − F ab(y, x)

]
, (8.4)with the Coulomb kernel F ab(x, y) (5.22) in the pure Coulomb gauge. The �rst two terms ofEq. (8.4) represent the self-energy of the stati
 point 
harges. Only the 
harges belongingto the generators of the Cartan subalgebra 
an be spe
i�ed and the expe
tation value of(8.4) in the Yang�Mills va
uum state for abelian (Cartan) unit 
harges de�nes the stati
quark potential. With qa = δa3 for SU(2), the stati
 quark potential VC(r) with r = |x−y|be
omes

VC(r) = 〈HC〉|qa=δa3 = g2 〈F 33(x, x) − F 33(x, y)〉 (8.5)To obtain the above expe
tation value, we �rst take the angular average of the momentumspa
e Coulomb kernel F ab
n , see Eq. (7.16),

1

4π

∫

S2

dΩ
(
F 33(x, x) − F 33(x, y)

)

=
1

L

∑

n 6=0

1

4π

∫

S2

dΩF 33
n

(
1 − e−iknr

)

=
2

L

∞∑

n=1

1

3

(
L

2πn

)2
(

1 + 2(πn)2 (πn)2 + ϑ2

((πn)2 − ϑ2)2

)(
1 − cos

(
2πr
L
n
))

. (8.6)40



With 1 − cos(2α) = 2 sin2(α), the Fourier transformation yields
1

4π

∫

S2

dΩ
(
F 33(x, x) − F 33(x, y)

)

=
1

3

L

π2

∞∑

n=1

(
1

n2
+ 2

∂

∂ϑ

ϑ

n2 − (ϑ/π)2

)
sin2

(
πr
L
n
)

=
1

3

(
1

2
r − 1

2

r2

L
+

1

2 sin2 ϑ

(
L− r cos

(
2 L−r

L
ϑ
)
− (L− r) cos

(
2 r

L
ϑ
))) (8.7)Here, we have used the formulae in Ref. [45℄ to obtain for the above sums

∞∑

n=1

sin2
(

πr
L
n
)

n2 − (ϑ/π)2
=
π2

2

sin(L−r
L
ϑ) sin( r

L
ϑ)

ϑ sinϑ
ϑ→0−→ π2

2

(
r

L
−
( r
L

)2
)
. (8.8)The (elementary) ϑ-integration of the expression (8.7) as de�ned in the expe
tation value(6.22) yields the stati
 quark potential (8.5)

VC(r) =
g2

3

(
L+

1

2
r − r2

2L
+ L

2r − L

L− r

sin(2π r
L
)

2π r
L

)
=
g2

2
r
(
1 + O

( r
L

))
. (8.9)In the thermodynami
 limit, the string tension σC is de�ned by

lim
L→∞

VC(r) = σC r , ⇒ σC =
g2

2
> σ (8.10)and is found to be larger than the gauge invariant string tension σ (8.2), as expe
ted.8.2 Diagonal Coulomb gaugeLet us now apply the global gauge transformation from the pure to the diagonal Coulombgauge and re
al
ulate the string tension of the potential. The 33-
omponent of the Coulombkernel F ab

n 
an be found by setting Aa = 2
L
ϑ δa3 in Eq. (7.14),

F 33
n =

1

k2
n

. (8.11)It apparently mediates only the tree-level (abelian) part of the Coulomb intera
tion. Sin
e
F 33

n is thus �eld independent, the va
uum expe
tation value needs not to be taken and we41
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Fig. 7. Coulomb potential VC(r) for the pure and the diagonal Coulomb gauge.dire
tly arrive at the Coulomb potential (8.5) by Fourier transformation, 10

VC(r) = g2 1

L

∑

n 6=0

F 33
n

(
1 − e−iknr

)
= g2 L

π2

∞∑

n=1

sin2
(

πr
L
n
)

n2

=
g2

2

(
r − r2

L

)
=
g2

2
r
(
1 + O

( r
L

))
. (8.12)The string tension of the diagonal Coulomb gauge is obviously identi
al to the one in thepure Coulomb gauge, see Eq. (8.10). It 
an a
tually be seen by taking the limit L → ∞in the pure Coulomb gauge expression (8.7) that there Coulomb kernel also turns out �eldindependent (i.e. ϑ independent) and 
oin
ides with the Fourier transform of the diagonalCoulomb gauge kernel (8.11).The potential VC(r) is shown in Fig. 7 for the result in the pure Coulomb gauge (8.9) andin the diagonal Coulomb gauge (8.12). It is 
lear that in either gauge the fun
tion VC(r)must be symmetri
 about the axis r = L

2
, sin
e a separation of 
harges by r is identi�edwith a separation by L − r on the spatial manifold S1. For r

L
≪ 1, the potentials VC(r)are seen in Fig. 7 to have the same slope in both gauges, i.e. the string tensions have thesame value σC given by Eq. (8.10).

10 Stri
tly speaking, the sum of momentum modes n must be 
hanged to ∑n
′ whi
h ex
ludes thezero mode n = σ = 0 of the Faddeev�Popov operator in the diagonal Coulomb gauge, but in
ludesthe modes n = 0 and σ = ±1, see se
tion 3. The result for these zero modes is given in Eq. (7.38).However, in the subtra
tion of eigenenergies in the potential VC(r), see Eq. (8.5), all modes with

n = 0 
an
el and it makes no di�eren
e whether ∑n 6=0 or ∑n
′ is used.42



9 Dyson�S
hwinger equationsIn this paper, it is intended to test the approximations made in the study of Dyson�S
hwinger equations (DSEs) in higher dimensions by 
onsidering the D = 1 + 1 
ase. Theexa
t DSEs for the ghost and gluon propagators are usually derived from the partitionfun
tion of Yang�Mills theory. In the present 
ase, we 
an simply use the de�nition (6.22)of va
uum expe
tation values to 
ome by this set of equations. We restri
t ourselves tothe exa
t ground state of the pure Coulomb gauge, leaving aside the global rotation to thediagonal Coulomb gauge. It will be shown how Gribov 
opies a�e
t the Dyson�S
hwingerequations and their solution.Let us start with the derivation of the DSE for the gluon propagator. It follows dire
tlyfrom the expe
tation value (6.22) that (Ψ(A) = const)
0 =

∫

Ω1

DA δ

δAa
JP (A) |Ψ(A)|2 ejcAc

=

〈(
δ lnJP

δAa
+ ja

) ejcAc

〉 (9.1)holds, sin
e the integral of the total derivative in Eq. (9.1) is proportional to the Faddeev�Popov determinant JP evaluated at the �rst Gribov horizon ∂Ω1, where it vanishes. Ap-plying a derivative δ/δjb and setting the sour
es jc to zero gives
0 =

〈
Ab δ lnJP

δAa
+ δab

〉
= −

〈
Ab TrGΓ0,a

〉
+ δab . (9.2)The tra
e �Tr� in Eq. (9.2) sums up the diagonal elements in 
olour spa
e as well as allmodes kn with n = ±1,±2 . . . , ex
luding the zero mode n = 0 of the Faddeev�Popovdeterminant

JP = expTr lnG−1 (9.3)in the pure Coulomb gauge. We re
ognise in Eq. (9.2) the 
onne
ted ghost-gluon vertex
〈AbG〉. With its de
omposition (7.22) into the proper vertex Γa

n and the atta
hed propa-gators in momentum spa
e, Eq. (9.2) 
an be written after 
ontra
ting with δab as
D−1

A =
∑

n 6=0

( trΓ0,a
n Γa

n

(N2
c − 1)k2

n

)
d2

n

k2
n

(9.4)This Dyson�S
hwinger equation holds for any SU(Nc) but we eventually set Nc = 2 for
omparison with the exa
t SU(2) results in 
hapter 7. Using the de�nition (7.25) of theform fa
tor γn for the ghost-gluon vertex and tr T̂ aT̂ a = −Nc(N
2
c − 1), the DSE for thegluon propagator (9.4) 
an be written more 
on
isely,

D−1
A = Nc

∑

n 6=0

γn
d2

n

k2
n

. (9.5)43
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Fig. 9. DSE for the ghost propagator. The dotted line is the tree-level propagator.Diagrammati
ally, the inverse gluon propagator is given by a ghost loop as shown in Fig.8. 11 Inserting into the right-hand side of Eq. (9.5) the exa
t expressions for the ghostform fa
tor dn (7.11) and the ghost-gluon vertex γn (7.26), one 
an expli
itly show thatthe ghost loop (r.h.s. of Eq. (9.5)) equals the expression for D−1
A obtained in Eq. (7.4). InRef. [8℄, the ghost loop is referred to as the �
urvature� sin
e it in
orporates the 
urvatureof the spa
e of gauge-�xed variables. It is found that the 
urvature governs the infraredbehaviour of the gluon propagator su
h that the exa
t DSE of 1 + 1 dimensions in Fig. 8is the infrared limit of the 
orresponding DSE in 3 + 1 dimensions.The DSE for the ghost propagator 
an be derived from the following operator identity 12for the ghost kernel G:

Gab
n = k−2

n δab + k−2
n (Γ0,d

n )acAdGcb
n (9.6)whi
h follows from de�nition (7.5) and Eq. (7.21). Taking the expe
tation value of Eq.(9.6), we �nd with the de
omposition (7.22) of the 
onne
ted ghost-gluon vertex

dnδ
ab = δab + (Γ0,d

n )acDA
dn

k2
n

(Γd
n)cbdn

k2
n

. (9.7)After 
ontra
tion with δab and using the de�nition (7.25) for the form fa
tor γn of theghost-gluon vertex, Eq. (9.7) turns into
dn = 1 +

( trΓ0,a
n Γa

n

(N2
c − 1)k2

n

)
DA

d2
n

k2
n

= 1 +NcγnDA
d2

n

k2
n

(9.8)In Fig. 9, the ghost Dyson�S
hwinger equation (9.8) is depi
ted. It is equivalent to theexa
t ghost DSE in 3+1 dimensions. This is due to the fa
t that Eq. (9.8) follows from the
11 Sin
e in D = 1 + 1 pure Coulomb gauge the gauge �eld is 
onstant, the 
onvolution integral ofthe loop breaks down into a simple produ
t in momentum spa
e, see Eq. (9.5).
12 Alternatively, one 
an introdu
e ghost �elds and pro
eed similarly as for the gluon propagator.44
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|A|

Fig. 10. Gribov regions of the pure Coulomb gauge, sket
hed as spheri
al shells de�ned by themagnitude of |A| = k1, k2, k3, k4, . . . . The lo
ation of the fundamental modular region (FMR)is indi
ated by a fat line.operator identity (9.6) and not from the details of the wave fun
tional. 13 The ghost DSE(9.8) 
an be solved for γn whi
h 
on�rms the relation (7.26) found in se
tion 7 for Nc = 2.In the derivation of the DSEs (9.5) and (9.8) the integrated 
on�guration spa
e was setto be the �rst Gribov region Ω1 of the pure Coulomb gauge, given by |A| < 2π
L

≡ k1 (seese
tion 4). We now point at an important property of the Dyson�S
hwinger equations. Ifthe 
on�guration spa
e, here being the �rst Gribov regions Ω1, is repla
ed by the unionof the �rst two Gribov regions, Ω1 ∪ Ω2, the DSEs (9.5) and (9.8) do not 
hange. This ismost readily seen for the ghost DSE (9.8) whi
h follows from the operator identity (9.6)and therefore is not a�e
ted by the 
hoi
e of the 
on�guration spa
e. The gluon DSE(9.5) is derived from the path integral identity (9.1) whi
h makes use of the fa
t that theFaddeev�Popov determinant JP vanishes at the �rst Gribov horizon ∂Ω1. Changing the
on�guration spa
e to Ω1 ∪ Ω2, the path integral identity (9.1) still holds true sin
e byde�nition, the Gribov horizon is where the Faddeev�Popov determinant vanishes,
JP [A ∈ ∂Ωn] = 0 ∀n . (9.9)We are therefore led in Ω1∪Ω2 to the same gluon DSE as in Eq. (9.5). More generally speak-ing: Regardless of the 
on�guration spa
e, so long as it is a union of Gribov regions, ⋃n Ωn,the Dyson�S
hwinger equations stay form invariant. This form invarian
e also applies tothe DSEs in 3 + 1 dimensions.In Fig. 10, the various Gribov regions Ωn of the pure Coulomb gauge are sket
hed. For

13 On the other hand, the gluon DSE as it stands in (9.4) is only true for the a
tual 
onstant wavefun
tional. 45



de�niteness, we put to our disposal the union
ΓNG

:= Ω1 ∪ Ω2 ∪ . . .ΩNG
, NG ∈ N (9.10)of NG Gribov regions. By the 
hoi
e of NG the 
on�guration spa
e is restri
ted to |A| <

2π
L
NG ≡ kNG

. Despite the form invarian
e of the DSEs with respe
t to ΓNG
, their solution
annot be expe
ted to be the same for all NG. As a matter of fa
t, the gluon and ghostpropagators strongly depend on NG, as shown in the up
oming se
tion. Thus, the set ofDSEs does not have a unique solution, but for every NG there exists (at least) one separatesolution. The information on the 
on�guration spa
e (9.10) is missing in the set of DSEsand must be provided by subsidiary 
onditions, i.e. put in by hand. In this sense, theDSEs alone do not provide the full non-abelian quantum gauge theory. In the D = 3 + 1dimensional 
ase, some approximation is used to solve the DSEs. Having obtained anapproximative solution, there is no means of de
iding on the value of NG, i.e. whether thissolution approximates the exa
t solution in the �rst Gribov region Γ1 ≡ Ω1, or rather in Γ2,or any other ΓNG

, remains unknown. The e�e
t of trun
ating the set of DSEs in D = 1+1will be studied in se
tion 11.10 Many Gribov 
opiesIn this se
tion, the 
on�guration spa
e is extended from the �rst Gribov region to a union
ΓNG

(9.10) of several Gribov regions, thus in
luding many Gribov 
opies. Using the exa
t
onstant wave fun
tional, the propagators, verti
es and the 
olour Coulomb potential are
al
ulated in ΓNG
. Moreover, we extend the 
on�guration spa
e to NG = ∞, dampinglarge NG 
ontributions with a Gaussian wave fun
tional. This will illustrate the e�e
t ofinsu�
ient gauge �xing on the infrared features of the theory.10.1 Exa
t Green fun
tionsThe 
al
ulation of the Green fun
tions in the extended 
on�guration spa
e ΓNG

, de�nedin Eq. (9.10), is identi
al to the one in se
tion 7 with the ex
eption that the 
onstant wavefun
tional (6.21) needs to be normalised di�erently. This 
an be a

ounted for by letting
π∫

0

dϑ . . . → 1

NG

πNG∫

0

dϑ . . . (10.1)in the expe
tation values (6.22). 46
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t ghost form fa
tor, in
luding NG Gribov regions. Right: The form fa
tor γn ofthe ghost-gluon vertex for various 
hoi
es of NG.For the gluon propagator in the pure Coulomb gauge we thus �nd from Eq. (7.2)
DA(NG) =

1

L2

(
4

9
N2

Gπ
2 − 2

3

) (10.2)and it redu
es to the result (7.4) for NG = 1. Note that there is a strong dependen
e onthe parameter NG, i.e. a strong Gribov 
opy e�e
t.The result for the ghost form fa
tor dn in the pure Coulomb gauge follows from making therepla
ement (10.1) in the expe
tation value (7.11),
dn(NG) = 1 +

4

3π

1

NG

πNG∫

0

dϑ
ϑ2 sin2 ϑ

(nπ)2 − ϑ2
. (10.3)Obviously, the ghost form fa
tor still approa
hes tree-level for the ultraviolet limit n→ ∞.There are, however, substantial 
hanges in the infrared. The result (10.3) for the exa
tghost form fa
tor dn 
an be seen in Fig. 11. In the �rst Gribov region, NG = 1, the ghostform fa
tor shows an infrared enhan
ement, as already shown in se
tion 7. In
luding furthergauge 
opies makes dn peak for intermediate momenta. This peak resembling a resonan
eappears at n = NG where the momentum kn equals the radius of the 
on�gurations spa
e. 14For n < NG, the ghost form fa
tor drops below tree-level, due to negative eigenvalues ofthe Faddeev�Popov operator. In the limit NG → ∞, the lowest momentum mode dn=1approa
hes a de�nite value,

lim
NG→∞

d1(NG) =
1

3
. (10.4)It is interesting to note that the deviation of the ghost form fa
tor dn from tree-level, when

14 In the thermodynami
 limit, L → ∞, the peak of the ghost form fa
tor in the �rst Gribov regionis asymptoti
ally at k = 0. This 
orresponds to the �horizon 
ondition� in D = 3 + 1 dimensions.47
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Fig. 12. Coulomb potential VC(r).summed over all modes, gives a 
onstant independent of NG,
∑

n 6=0

(dn − 1) =
4

3π

1

NG

πNG∫

0

dϑ
∑

n 6=0

ϑ2 sin2 ϑ

(nπ)2 − ϑ2
=

4

3π

1

NG

πNG∫

0

dϑ sin ϑ(sin ϑ− ϑ cosϑ) = 1 .(10.5)This is illustrated in Fig. 11 and 
an be understood as being a 
onsequen
e of the gluonpropagator DSE. Solving the ghost DSE (9.8) for the ghost-gluon vertex γn,
γn =

k2
n (dn − 1)

NcDA d2
n

, (10.6)and plugging it into the gluon DSE (9.5) dire
tly leads to Eq. (10.5).Relation (10.6) holds for any SU(Nc) gauge group and, more importantly, for any 
hoi
e
ΓNG

of the 
on�guration spa
e. Having 
al
ulated the gluon propagator DA and the ghostform fa
tor dn as fun
tions of NG, Eq. (10.6) gives the solution for the form fa
tor γn of theghost-gluon vertex. The result is shown in Fig. 11. While within the �rst Gribov region,
NG = 1, there is hardly any deviation from tree-level, this deviation is quite pronoun
edfor NG > 1. Let us note here that an approximation of the proper ghost-gluon vertexby the tree-level vertex is good if and only if the 
on�guration spa
e is restri
ted to the�rst Gribov region Ω1. Working with this approximation in solving the Dyson�S
hwingerequations has an important e�e
t on the propagators. This will be dis
ussed in the nextse
tion.The form fa
tor φn for the Coulomb propagator with the result (7.17) for NG = 1 is foundfor general NG by making the repla
ement (10.1) in Eq. (7.17). By Fourier transformation,the Coulomb potential VC(NG, r) for external 
harges separated by r 
an be obtained in48



the same manner as presented for NG = 1 in se
tion 8. The result is
VC(NG, r) =

g2

3


1

2
r − r2

2L
+ L− L

L− 2r

L− r

sin
(
2πNG

r
L

)

2πNG
r
L


 (10.7)

L→∞−→ g2

2
r ∀NG (10.8)and 
an be seen in Fig. 12. While the string tension remains the same for all values of NG(
f. Eqs. (8.9) and (10.8)), visible e�e
ts o

ur for large ratios r

L
. For NG > 1, there arelo
ally stable minima of the potential near r = L

2
, an unphysi
al gauge 
opy e�e
t.10.2 Insu�
ient gauge �xingIf latti
e 
al
ulations use a gauge �xing, the 
ommon te
hnique is to minimise a suitablefun
tional along the gauge orbit. The restri
tion to the fundamental modular region isa
hieved only at the absolute minimum of this fun
tional. If this absolute minimum 
annotbe rea
hed exa
tly, extra gauge 
opies will alter the result. In order to mimi
 the situationthat the in�uen
e of gauge 
opies 
annot be stri
tly ex
luded but only suppressed, we
hoose here a Gaussian damping of the gauge �eld 
on�gurations,

ψ[A] = N
√

2

π
exp

(
− ϑ2

4α2

)
, N 2 =

√
2π
α

(1 + coth(α2)) , (10.9)extending the 
on�guration spa
e, see Eq. (9.10), to Γ∞. Expe
tation values in the state(10.9) are most readily obtained by repla
ing
π∫

0

dϑ . . . → N 2

∞∫

0

dϑ e− ϑ2

2α2 . . . (10.10)in the 
orresponding integrals. By adjustment of the (free) parameter α ∈ R, it 
an be
ontrolled how many Gribov 
opies have a 
onsiderable weight in an expe
tation value. Alarge value α will take along many Gribov 
opies while a small value lo
alises the weightof �eld 
on�gurations around A = 0, suppressing Gribov 
opies.Let us 
al
ulate the 
onstant gluon propagator DA (7.1) in the Gaussian wave fun
tional(10.9) as a fun
tion of α. Using the repla
ement (10.10) in the expe
tation value (7.2) gives
DA(α) =

2

3π
N 2

(
2

L

)2 ∞∫

0

dϑ sin2 ϑϑ2 e−ϑ2/2α2

=
1

L2

4

3

(
α2 +

4α4e2α2 − 1

)
. (10.11)Obviously, the larger the width α of the Gaussian (10.9), the largerDA(α). This agrees with49
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tor in the state (10.9) for the value α ≈ 1.40 that givesthe strongest infrared enhan
ement, 
ompared to the exa
t physi
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the result (10.2) of the exa
t wave fun
tional where DA(NG) rises quadrati
ally with thenumber NG of Gribov 
opies. One 
an now adjust α in Eq. (10.11) su
h that it equals theresult (10.2) for the exa
t va
uum state, given a spe
i�
 NG. For the values NG = 1, 2, 5, 10,respe
tively, the 
orresponding values for α are
α1 ≈ 1.63 , α2 ≈ 3.56 , α5 ≈ 9.04 , α10 ≈ 18.1 . (10.12)This pro
edure simulates the in
lusion of NG Gribov regions in the expe
tation values bya 
hoi
e of the Gaussian wave fun
tional (10.9).We now pro
eed to 
al
ulate the ghost form fa
tor dn(α) in the state (10.9). The repla
e-ment (10.10) in the integral (7.11) yields
dn(α) = 1 +

4

3π
N 2

∞∫

0

dϑ sin2 ϑ
ϑ2

(πn)2 − ϑ2
e−ϑ2/2α2

. (10.13)The limits of α → 0 and α → ∞ produ
e results that 
an be anti
ipated. As α → 0,the Gaussian pi
ks out the point A = 0 from 
on�guration spa
e. Hen
e the tree-levelbehaviour of the ghost form fa
tor appears:
lim
α→0

dn(α) = 1 , ∀n . (10.14)The other extreme, α→ ∞, takes in�nitely many Gribov 
opies into a

ount and thereforemust resemble the 
ase NG → ∞ for the exa
t va
uum state. Indeed, for d1(α), we �nd
lim

α→∞
d1(α) =

1

3
, (10.15)in agreement with Eq. (10.4).In Fig. 13, the result (10.13) for dn(α) is shown for the four values of α in Eq. (10.12)whi
h yield the exa
t gluon propagator for NG = 1, 2, 5, 10. This should be 
ompared tothe ghost propagator in the exa
t wave fun
tional for NG = 1, 2, 5, 10 in Fig. 11. Thee�e
t visible in the exa
t wave fun
tional, that taking more Gribov 
opies into a

ountdamps the infrared enhan
ement of dn and produ
es a spurious peak (here weakened) atintermediate momenta, 
an indeed be mimi
ked by the wave fun
tional (10.9) with theappropriate Gaussian damping α.However, if one tries to quantitatively a
hieve the infrared enhan
ement of the physi
alsolution, i.e. the exa
t dn within the �rst Gribov region Ω1, the wave fun
tional (10.9)fails. There exists no value for α su
h that the infrared enhan
ement of the exa
t physi
alsolution, dn in Fig. 3, is realized. The value dn=1 = 1.37 of the exa
t form fa
tor (7.11)is larger than any 
hoi
e of α 
an produ
e for the mode dn=1(α) in the Gaussian wavefun
tional (10.9). In Fig. 14, it is shown how d1(α) varies with α. For the value αmax where51
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Fig. 15. Coulomb potential VC(α, r) in the Gaussian wave fun
tional (10.9) with the �best� value(10.16) for the width α. Also shown are the results in the exa
t ground state for the pure Coulombgauge and the diagonal Coulomb gauge from Fig. 7.the infrared enhan
ement of the ghost propagator in the Gaussian wave fun
tional (10.9)is the strongest,
αmax ≈ 1.40 , d1(αmax) ≈ 1.20 , (10.16)it is seen how it still underestimates the physi
al result, d1(αmax) < 1.37. This indi
ates thatif a latti
e 
al
ulation is unable to ex
lude all Gribov 
opies, the genuine infrared physi
s
annot be des
ribed. In higher dimensions, this would mean that the infrared enhan
ementof the ghost form fa
tor on the latti
e is weaker than expe
ted from 
ontinuum studies, ane�e
t that is indeed observed [19,46℄.Expe
ting that with the 
hoi
e α = αmax, most (though not all) of the infrared features 
anbe 
arried along, 15 we go on to 
ompute other expe
tation values of interest. For instan
e,the Coulomb potential VC(α, r) between two external stati
 
olour 
harges separated by

r 
an be 
omputed by taking the pure Coulomb gauge expe
tation value of the operator(8.7) in the Gaussian wave fun
tional (10.9),
VC(α, r) = g2 2

3π
N 2

∞∫

0

dϑ sin2 ϑ e− ϑ2

2α2

×
(

1

2
r − 1

2

r2

L
+

1

2 sin2 ϑ

(
L− r cos

(
2 L−r

L
ϑ
)
− (L− r) cos

(
2 r

L
ϑ
)))

=
g2

6

(
r − r2

L
+
(
1 + coth(α2)

) (
L− r e−2α2(1− r

L
)2 − (L− r) e−2α2( r

L
)2
))

L→∞−→ g2

2
r ∀α (10.17)

15 This 
hoi
e is reminis
ent of the �horizon 
ondition� in higher dimensions.52
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tor γn in the Gaussian wave fun
tional (10.9) with the �best�value (10.16) for the width α. Also shown is the physi
al solution, see Fig. 6, and the tree-levelvalue.In the thermodynami
 limit L→ ∞, the potential (10.17) approa
hes the same behaviouras VC(r) in the exa
t ground state. It was already shown above that the Coulomb stringtension σC , de�ned in the thermodynami
 limit, turns out independent of the wave fun
-tional and the 
on�guration spa
e ΓNG
. For the 
hoi
e (10.16) of α, the potential VC(r) inEq. (10.17) is shown in Fig. 15. Varying α, the potential is seen to vary between the exa
tsolutions of the pure Coulomb gauge and the diagonal Coulomb gauge. As a matter of fa
t,the result (8.12) of the diagonal Coulomb gauge is rea
hed in the limit α → 0,

lim
α→0

VC(α, r) =
g2

2

(
r − r2

L

)
≡ VC(r)|diagonal gauge . (10.18)Re
all that the limit α → 0 turns the Gaussian wave fun
tional (10.9) into a delta distri-bution, peaked at A = 0. The limit (10.18) therefore emphasises that in 1 + 1 dimensions,the Coulomb potential VC(r) is a quantity that is independent of quantum �u
tuations,when properly evaluated in the fundamental modular region.In the opposite limit, α→ ∞, the potential VC(α, r) 
oin
ides with VC(NG, r) in the exa
tva
uum state, see Eq. (10.8), having taken the limit NG → ∞. This is intuitively 
learsin
e the Gaussian state (10.9) be
omes 
onstant for α → ∞ (and not normalisable).Note, however, that the limits α → ∞ and L → ∞ are not inter
hangeable. In order to�nd the right string tension, one is to �rst evaluate the energy in a normalisable state(α <∞), take the thermodynami
 limit L→ ∞, and then determine the string tension asa fun
tion of α. In the opposite order of limits, one �nds a di�erent result for σC .Finally, we 
al
ulate the ghost-gluon vertex in the state (10.9). It 
an be found using theexpression (10.6) whi
h holds for any wave fun
tional (and any ΓNG

); in the evaluation wesimply use the results (10.11) and (10.13) for the gluon and ghost propagators. The resultis shown in Fig. 16. The deviation of γn from the exa
t physi
al result is small, although it53



is enhan
ed for the infrared modes. Anyhow, the tree-level vertex is a better approximationof the exa
t ghost-gluon vertex than the one in the Gaussian wave fun
tional (10.9).
11 Trun
ation e�e
tsIn higher dimensions, it is not possible to obtain exa
t nonperturbative expressions for theGreen fun
tions. A 
ommon approximation that enables us to �nd the infrared asymptoti
solutions of the Dyson�S
hwinger equations is to render the ghost-gluon vertex tree-level.We will make this approximation here in 1+1 dimensional pure Coulomb gauge and inves-tigate the e�e
t on the propagators. To be expli
it, we set

Γa
n → Γ0,a

n , ⇒ γn = 1 . (11.1)Re
all it was shown in the pre
eding se
tions that despite the form invarian
e of the exa
tDSEs with respe
t to the 
on�guration spa
e ΓNG
, the true Green fun
tions (
al
ulatedwith the exa
t va
uum wave fun
tional) do depend on ΓNG

. With the approximation (11.1),the DSEs for the gluon and ghost propagators, Eqs. (9.5) and (9.8), turn into
dn = 1 +NcDA

d2
n

k2
n

, D−1
A = Nc

∑

n 6=0

d2
n

k2
n

. (11.2)Diagrammati
ally, these equations are depi
ted in Figs. 8 and 9, with the blobs repla
edby dots. We note that due to the approximation (11.1), this set of equations is 
losedand 
an be solved. The 
ru
ial point is to realize that the solution will no longer dependon the 
hoi
e of the 
on�guration spa
e ΓNG
. Sin
e the ghost-gluon vertex was 
hosento be independent of ΓNG

, see Eq. (11.1), the gluon and ghost propagators are now alsoindependent of ΓNG
. The original exa
t set of DSEs holds within any of the Gribov regions.However, solving the approximated set of DSEs, the information is lost in whi
h Gribovregion the Green fun
tions are evaluated in. This problem also o

urs in the infrared ghostdominan
e model of the D = 3 + 1 theory.Let us now solve Eq. (11.2) expli
itly. Sin
e it is quadrati
 in dn, we �nd two solutions,

dn =
1 ±

√
1 − 4NcDA

k2
n

2NcDA

k2
n

. (11.3)In order for the limit dn → 1 for kn = 2πn
L

→ ∞ to be ful�lled, we need the lower sign.54
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Fig. 17. Left: Comparison of the exa
t gluon propagator to the one from the DSEs with a tree-levelghost-gluon vertex, shown as a fun
tion of NG. Right: Comparison of the exa
t ghost form fa
tor
dn in the �rst Gribov region (NG = 1) to one 
al
ulated from the trun
ated DSEs, both shownas fun
tions of the momentum mode n.Plugging this solution into the se
ond DSE in Eq. (11.2), we �nd

DANcL
2 =

∑

n 6=0

(πn)2


1 −

√√√√1 − DANcL2

(πn)2




2

⇒ DANcL
2 ≈ 7.74 (11.4)The numeri
al solution yields with Nc = 2 for the gluon propagator

DA ≈ 3.87
1

L2
. (11.5)This value 
an be plugged into Eq. (11.3), with the lower sign, to immediately get theresult for the ghost form fa
tor.The gluon propagator (11.5) is evidently independent of the Gribov region. One 
an 
hoose

ΓNG
with any NG, the approximation (11.1) will always yield the gluon propagator givenby Eq. (11.5). On the other hand, we know the exa
t result for the gluon propagator with agiven value of NG, see Eq. (10.2). The latter 
an now be 
ompared with the approximativeresult (11.5), for ea
h NG.In Fig. 17, it is seen how for large NG, the exa
t and approximative results di�er dramat-i
ally. However, for NG = 1, i.e. in the �rst Gribov region, there is a good agreement. Thetree-level approximation for the ghost-gluon vertex yields a value for the gluon propagatorthat is very 
lose to the exa
t result in the �rst Gribov region. The same o

urs for theghost propagator. As 
an be seen in on the right panel of Fig. 17, the approximative (with

γn = 1) DSE result for the ghost form fa
tor dn hardly deviates from the exa
t result for
NG = 1. At the same time, the approximative and exa
t solutions of dn for other values of
NG disagree both quantitatively and qualitatively, 
f. Fig. 11. Also shown in Fig. 11 is theghost-gluon vertex in the exa
t va
uum state for di�erent values of NG. One 
an realizethat the tree-level approximation (11.1) is only for NG = 1 a good one.55



We infer that while the exa
t Dyson�S
hwinger equations are form invariant with respe
t tothe 
on�guration spa
e ΓNG
, the approximation of the ghost-gluon vertex by its tree-levelvalue e�e
tively puts the approximative solution of the propagators into the �rst Gribovregion Γ1 ≡ Ω1. This supports the approa
h of solving DSEs in D = 3 + 1, trun
ated bymeans of a tree-level ghost-gluon vertex.12 Variational approa
hIn order to test the variational approa
h to Yang�Mills theory in 3 + 1 dimensions, thesame ansatz for the wave fun
tional as in Ref. [8℄ is here applied to solve the Yang�MillsS
hrödinger equation in D = 1 + 1 in the pure Coulomb gauge. The variational 
al
ulationis performed using the same approximations as in Ref. [8℄.The variational wave fun
tional is given by

Ψ(A) =
1

√
JP (A)

Ψ̃(A) , Ψ̃(A) = N e− 1

2
AaωAa

:= 〈A|ω〉 , (12.1)where ω is a variational parameter determined by minimising the va
uum energy density.The ansatz (12.1) is mainly motivated by simpli
ity. It removes the Faddeev�Popov deter-minant JP from the integration measure in the expe
tation values of the pure Coulombgauge,
〈Ψ|O(A)|Ψ〉 =

∫

Γ∞

DAJP (A)O(A)|Ψ(A)|2 =
∫

Γ∞

DAO(A)|Ψ̃(A)|2 =: 〈O(A)〉ω . (12.2)and thus allows for an immediate appli
ation of Wi
k's theorem. Here and in the following,
〈. . . 〉ω denotes the expe
tation value in the state |ω〉 (12.1), for whi
h the s
alar produ
tis de�ned with the �at integration measure DA ≡ ∏

a
dAa.The 
on�guration spa
e in the expe
tation value (12.2) is not restri
ted to the �rst Gribovregion Ω1 but is extended to the union Γ∞ of all Gribov regions, see Eq. (9.10). This ismotivated from the D = 3 + 1 
ase where only little is known about the Gribov horizonand a restri
tion to Ω1 is te
hni
ally 
umbersome. 16 In se
tion 10.2, we have seen thatwithin Γ∞, any Gaussian damping of gauge 
opies will fail to re
over the exa
t infraredbehaviour of the ghost form fa
tor. Note, however, that the wave fun
tional in Eq. (12.1) issupplemented by a Faddeev�Popov determinant. We will show below that with appropriateapproximations, the 
orre
t infrared behaviour of the ghost form fa
tor 
an thus still bemaintained.

16 The so-
alled Gribov�Zwanziger a
tion is used in a few studies [47℄ to realize a restri
tion to
Ω1. 56



The normalisation 
onstant N in the ansatz (12.1) for the wave fun
tional is 
hosen su
hthat 〈1〉ω = 1 and is given by
lnN =

N2
c − 1

4
ln
(
ω

π

)
. (12.3)Thus, the stati
 (equal-time) gluon propagator reads

Dab = 〈Ψ|AaAb|Ψ〉 = 〈AaAb〉ω = δab(2ω)−1 =: δabDA . (12.4)In D = 3 + 1 the kernel ω has the meaning of the gluon energy. In the present 1 + 1dimensional 
ase ω has dimension mass−2 and is required by normalisability of the wavefun
tional to be positive, ω > 0. Let us emphasise that whatever the variational prin
ipleyields for ω, it will determine the gluon propagator DA by Eq. (12.4).The va
uum energy E(ω) is 
al
ulated by taking the expe
tation value of the Yang�MillsHamiltonian in the pure Coulomb gauge (5.20) in the absen
e of external 
harges. After apartial integration, E(ω) yields
E(ω) = 〈Ψ|H|Ψ〉 =

∫
DAJP (A)Ψ∗(A)HΨ(A)

=
g2L

2

∫
DA

(
Π̃a

⊥Ψ̃
)∗ (

Π̃a
⊥Ψ̃

)
, (12.5)where

Π̃a
⊥ = J 1/2

P Πa
⊥J −1/2

P = Πa
⊥ − 1

2
(Πa

⊥ lnJP ) . (12.6)Using
Π̃a

⊥Ψ̃ =
i

L

[
ωAa +

1

2

(
d lnJP

dAa

)]
Ψ̃ (12.7)we �nd

E(ω) =
g2

2L

〈(
ωAa +

1

2

d lnJP

dAa

)2〉

ω

=
g2

2L



ω2 〈AaAa〉ω + ω

〈
Aad lnJP

dAa

〉

ω

+
1

4

〈(
d lnJP

dAa

)2〉

ω



 . (12.8)Following Ref. [8℄ we will expli
itly 
al
ulate the �rst two terms and then �nd the last termby 
ompleting the result to a total square, whi
h is 
orre
t up to two loops. The �rst termin Eq. (12.8) 
an obviously be expressed by the gluon propagator (12.4). For the se
ondterm, we use the abbreviation
χab := −ω

〈
Aad lnJP

dAb

〉

ω

, (12.9)57



whi
h was referred to as the �
urvature� in Ref. [8℄. Using the de�nition (7.22) of the properghost-gluon vertex and its form fa
tor γn (7.25), the 
urvature χab 
an be written as 17

χab = +ω
〈
Aa TrGΓ0,b

n

〉

ω
=

1

2

∑

n 6=0

γn
d2

n

k4
n

tr (Γ0,a
n Γ0,b

n

)

=
Nc

2

∑

n 6=0

γn
d2

n

k2
n

δab =: χ δab (12.10)and its diagonal elements de�ne the s
alar 
urvature χ. Performing the quadrati
 
omple-tion, the expression (12.8) for the va
uum energy 
an be 
ast into the form
E(ω) = g2 N

2
C − 1

4L

(ω − χ)2

ω
(12.11)and it is obviously minimised for the 
hoi
e

ω = χ (12.12)of the variational kernel ω. Equation (12.12) is 
alled the gap equation and it gives rise toan infrared divergent gluon energy ω(k) in 3 + 1 dimensions [8,27℄.The gap equation (12.12) states that the gluon propagator (12.4) 
an be related to the
urvature χ and we may use the de�nition (12.9) of χab to 
al
ulate the gluon propagatorexa
tly. However, approximations have been made and�more importantly�the 
on�gu-ration spa
e was not properly restri
ted to Γ1. Let us look at the task of determining thesolution for the gluon and ghost propagators di�erently. We note that plugging the gapequation (12.12) into Eq. (12.4) yields with Eq. (12.10)
D−1

A = Nc

∑

n 6=0

γn
d2

n

k2
n

. (12.13)Turning ba
k to Eq. (9.5), we re
ognise that relation (12.13) is identi
al to the gluonpropagator DSE in the exa
t va
uum state. Moreover, we 
an use the ghost propagator DSE(9.8) from the exa
t va
uum state sin
e it follows from an operator identity, independent ofthe wave fun
tional or 
on�guration spa
e. The set of equations the variational 
al
ulationabove resulted in is equivalent to the set of Dyson�S
hwinger equations derived in theexa
t va
uum state. The di�eren
e is that here the expe
tation values (i.e. dn, DA, γn)are evaluated in the state (12.1) and in the 
on�guration spa
e Γ∞, yielding di�erentresults. It was shown in se
tion 10 that 
hoosing a set of several (NG > 1) Gribov regionsfor ΓNG
results in drasti
 
hanges for the Green fun
tions. However, if we use the tree-level approximation for the ghost-gluon vertex, it is 
lear from the dis
ussion in se
tion

17 The de�nition (12.9) of the 
urvature is equivalent to the one in Ref. [8℄ within the wavefun
tional (12.1). The same holds for the proper ghost-gluon vertex.58



11 that the solution to the DSEs so obtained is very 
lose to the exa
t solution. Witha 
onspira
y of approximations, namely the quadrati
 
ompletion in Eq. (12.8) and thevertex approximation γn = 1, the variational state (12.1) in Γ∞ yields the same propagatorsas the exa
t va
uum state (6.21) in the �rst Gribov region Γ1 ≡ Ω1.Identifying the variational wave fun
tional (12.1) for the solution ω = χ with the exa
twave fun
tional Ψ = const implies that the Gaussian must 
an
el the Faddeev�Popovdeterminant JP ,
JP −→ exp

(
−AaχabAb

)
. (12.14)In Ref. [10℄ it was shown that up to two-loop order in the energy the repla
ement (12.14)is exa
t and thus results in the 
orre
t DSEs.In D = 3+1 both ω and χ are momentum dependent and the 
an
ellation of J − 1

2

P againstthe Gaussian in the wave fun
tional is obtained in the infrared limit k → 0 only. We thusobserve that in the infrared limit the wave fun
tional in D = 3 + 1 redu
es to the exa
twave fun
tional in D = 1 + 1 dimensions. As dis
ussed in Ref. [10℄ the 
onstant wavefun
tional does not 
onstrain the infrared modes of the gauge �eld and thus des
ribes asto
hasti
 va
uum where the infrared modes 
an arbitrarily �u
tuate.As shown in Ref. [10℄, the 
an
ellation of Gaussian and Faddeev�Popov determinant per-sists in D = 3 + 1 in the infrared even if the more general ansatz is used,
Ψ(A) = J −α

P (A)Ψ̃(A) . (12.15)In this state with a arbitrary exponent α of the Faddeev�Popov determinant, the gluonpropagator be
omes
〈AaAb〉 = δab(2ω̃)−1 , (12.16)where
ω̃ = ω − (2α− 1)χ . (12.17)The gap equation is the same as above, see Eq. (12.12), ex
ept that ω is repla
ed by ω̃,

ω̃ = χ . (12.18)We therefore �nd from (12.17)
ω = 2αχ . (12.19)For α = 1

2
we re
over, of 
ourse, the previous result (12.12), while α = 0 yields ω = 0 andthe variational wave fun
tional (12.15) be
omes the exa
t one

Ψ(A) = N = const. (12.20)and thus yields also the exa
t results for the propagators, provided the range of the �eld
A is properly restri
ted to the �rst Gribov region.59



Finally, let us turn to the Coulomb form fa
tor fn whi
h measures the deviation of theCoulomb propagator 〈G(−∂2)G〉 from the fa
torised form 〈G〉 (−∂2) 〈G〉 and was 
al
ulatedin the exa
t wave fun
tional at the end of se
tion 7.5. In 3+1 dimensions, the (momentum-dependent) form fa
tor f(k) is set to unity sin
e it fails to satisfy the 
orresponding integralequation within the approximations made [48℄. The form fa
tor f(k) requires a higher-order
al
ulation (as pointed out in Ref. [8,31℄), and for this reason it is investigated here in 1+1dimensions where approximations are not ne
essary.The integral equation that is derived for the Coulomb form fa
tor fn follows from theidentity [49℄
F (A) = G(A)(−∂2)G(A) =

∂

∂g
(gG(gĀ)) . (12.21)Here, we have s
aled the gauge �eld by the 
oupling 
onstant g,

A = g Ā (12.22)so that with
G−1(g Ā) = − ∂2 − g ˆ̄A∂ (12.23)we 
an derive Eq. (12.21) by di�erentiation. Following Ref. [2℄, in the variational approa
h[8℄ the va
uum expe
tation value of the relation (12.21) was taken, thereby ignoring theimpli
it g-dependen
e of the wave fun
tional to obtain the approximative relation

〈F 〉 ≈ ∂

∂g
(g〈G〉) (12.24)whi
h is the so-
alled Swift relation [2℄. In the present 1 + 1 dimensional 
ase the exa
tva
uum wave fun
tional is independent of g but the Faddeev�Popov determinant JP (gĀ)in the integration measure is g-dependent and this g-dependen
e is ignored in Eq. (12.24).Expressing 〈G〉 and 〈F 〉 in terms of the ghost and Coulomb form fa
tors, dn (7.8) and fn(7.18), the Swift relation (12.24) be
omes 18

fn ≈ d−2
n

∂

∂g
(g dn) = d−1

n − g
∂

∂g
d−1

n . (12.25)Using the inverse form of the DSE (9.8) for the ghost form fa
tor,
d−1

n = 1 −Nc γnDA
dn

k2
n

, (12.26)an integral equation for fn 
an be found,
fn ≈ 1 +Nc γnDA

d2
nfn

k2
n

. (12.27)
18 This relation di�ers from the one given in Ref. [8℄, where an extra fa
tor of g was in
luded inthe ghost form fa
tor. 60
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Fig. 18. Coulomb form fa
tor fn, de�ned by Eq. (7.18), in the exa
t va
uum state depending onthe number NG of in
luded Gribov regions.Note that this integral equation is not exa
t, due to the Swift approximation (12.24). In theexa
t wave fun
tional of the 1 + 1 dimensional pure Coulomb gauge, the ghost propagatoris independent of g [31℄ 19

∂

∂g
〈G〉 =

∂

∂g

∫
Ω1

DĀG(g Ā)DetG−1(g Ā)
∫
Ω1

DĀDetG−1(g Ā)

=
∂

∂g

∫
Ω1

DĀG(Ā)DetG−1(Ā)
∫
Ω1

DĀDetG−1(Ā)
= 0 (12.28)and hen
e the ghost form fa
tor also is, ∂dn/∂g = 0. The Swift relation (12.25) thussimpli�es to

fn = d−1
n . (12.29)This relation implies that fn is infrared suppressed if dn is infrared enhan
ed, whi
h is in
ontradi
tion to the true behaviour of fn and dn, see Figs. 3 and 5. Even more dire
tly, the
ontradi
tion 
an be seen by plugging Eq. (12.29) into the approximative integral equation(12.27) and 
omparing to the exa
t ghost form fa
tor DSE (12.26).The 
ontradi
tion arises from the approximation made to arrive at the Swift relation(12.24). In the infrared limit of the D = 3 + 1 theory whi
h is 
orre
tly des
ribed bythe D = 1 + 1 wave fun
tional [10℄, the Swift relation therefore must lead to in
onsisten-
ies [31,48℄.Re
ent latti
e 
al
ulations in D = 3 + 1 of the Coulomb form fa
tor f(k) seem to indi
atethat in the infrared f(k) is enhan
ed. This enhan
ement gets weaker the better the Coulombgauge is �xed. In 1+1 dimensions, the form fa
tor fn 
an be 
al
ulated exa
tly, see se
tion7.5. The e�e
t of in
luding several Gribov regions, i.e. 
hoosing ΓNG>1 as done in se
tion

19 The same is true for the ghost propagator in 3 + 1 dimensions if we 
onsider the sto
hasti
va
uum Ψ[A] = const of the Coulomb gauge Hamiltonian approa
h or the ghost dominan
emodel SY M = 0 in the Landau gauge to study the infrared asymptoti
s.61



10.1, leads to an interesting observation. In Fig. 18, it is shown how the exa
t result for fnvaries with the number NG of in
luded Gribov regions. The largerNG, the more pronoun
eda (spurious) infrared enhan
ement. This gauge 
opy e�e
t is in agreement with the �ndingson the latti
e in 3 + 1 dimensions and indi
ates that in order to get the exa
t result for
f(k), gauge �xing on the latti
e has to be performed very 
arefully.13 Summary and Con
lusionsIn this paper, we have 
onsidered 1+ 1 dimensional SU(2) Yang�Mills theory in 
anoni
alquantisation in the pure Coulomb gauge as a testing ground for Yang�Mills theory studiesin higher dimensions. The investigations were 
arried out in the pure Coulomb gauge and inthe diagonal Coulomb gauge, where the residual global gauge invarian
e, left un�xed in thepure Coulomb gauge, is �xed by diagonalising the 
onstant spatial gauge �eld. Although thetwo gauges di�er only by a global SU(2)/U(1) gauge-�xing 
onstraint, they have di�erentFaddeev�Popov determinants due to additional zero modes of the Faddeev�Popov kernel inthe pure Coulomb gauge. While the pure Coulomb gauge is perfe
tly suitable for perturba-tion theory, the diagonal Coulomb gauge is ill-de�ned for the perturbative va
uum A = 0,for whi
h the Faddeev�Popov determinant vanishes. The o

urren
e of su
h gauge-�xingdefe
ts is a 
hara
teristi
 feature of so-
alled abelian gauges the diagonal Coulomb gaugebelongs to. In higher dimensions gauge-�xing defe
ts of abelian gauges manifest themselvesas magneti
 monopoles in the 
orresponding abelian proje
tion [50℄ (see also Ref. [51℄).We have expli
itly demonstrated that the Faddeev�Popov method does not require 
om-plete gauge �xing but works for any partial gauge �xing, provided that the zero modes ofthe Faddeev�Popov kernel arising from the residual gauge symmetry (left un�xed by thepartial gauge �xing) are properly treated. In the resolution of Gauss' law, these zero modesgive rise to residual 
onstraints on the wave fun
tional, whi
h express the invarian
e of thewave fun
tional under the residual gauge symmetry: The Noether 
harges 
orrespondingto these residual symmetries must vanish in physi
al states. The 
onstraints on the wavefun
tionals arising from the residual un�xed gauge symmetry exist also in higher dimen-sions but have not been expli
itly identi�ed so far, ex
ept for spa
e-independent gaugetransformations [35℄. They also naturally emerge in the fun
tional integral approa
h in theso-
alled �rst order formalism where the temporal gauge �eld 
an be expli
itly integratedto leave a δ-fun
tional, whi
h enfor
es Gauss' law [14℄. In the pure Coulomb gauge, theGauss' law 
onstraint 
an be worked out analogously to the Hamiltonian approa
h andthe δ-fun
tional 
an be used to integrate out the longitudinal 
omponents of the momen-tum �eld. When the resolution of Gauss' law is properly done, i.e. the zero modes of theFaddeev�Popov kernel properly treated, from the δ-fun
tional some ordinary δ-fun
tionsurvives, whi
h pre
isely enfor
es the vanishing of the Noether 
harges 
orresponding tothe residual un�xed gauge symmetries [35℄.62



The exa
t spe
trum of the Yang�Mills Hamiltonian was obtained within both the diagonaland the pure Coulomb gauge, having implemented the 
onstraints on the wave fun
tionalarising in the resolution of Gauss' law from the zero modes of the Faddeev�Popov kernel.In the thermodynami
 limit, we re
overed the well-known spe
trum that leaves only theva
uum state at zero energy, freezing out all ex
ited states. The exa
t va
uum state wasused to 
al
ulate the ghost and gluon propagators, the ghost-gluon vertex and the stati

olour Coulomb potential. We 
ompared the results in the pure Coulomb gauge restri
ted tothe �rst Gribov region to those in the diagonal Coulomb gauge restri
ted to the fundamentalmodular region. For the propagators, the 
olour tra
e was found to be left invariant whentransforming from the pure Coulomb gauge to the diagonal Coulomb gauge. We found thatthe ghost propagator is infrared enhan
ed, in agreement with the horizon 
ondition widelyused in Dyson�S
hwinger studies of D = 3+1. This infrared enhan
ement is the strongestwhen the 
on�guration spa
e is properly restri
ted to the �rst Gribov region. We studiedthe e�e
t of in
luding several Gribov 
opies, either by extending the 
on�guration spa
eto a union of Gribov regions, or by using all Gribov regions with a Gaussian damping.It was seen that the quantitative infrared enhan
ement of the ghost propagator 
annotbe realized by any of these 
al
ulations that in
lude gauge 
opies from outside the �rstGribov region. This indi
ates that latti
e 
al
ulations of the ghost propagator require avery a

urate gauge �xing and explains the short
omings of the infrared enhan
ement ofthe ghost propagator on the latti
e when 
ompared to 
ontinuum studies [19,46℄.The Coulomb string tension yielded the same results for both gauges whi
h is a fortunateresult, 
onsidering that in D = 3 + 1 
al
ulations the gauge is not 
ompletely �xed. Thequantitative result of the stati
 
olour Coulomb potential, away from the thermodynami
limit, di�ers for both gauges. The result of the pure Coulomb gauge 
an be sort of arti�
iallydeformed into the result in the diagonal Coulomb gauge by suppressing Gribov 
opies witha Gaussian wave fun
tional of width zero, as dis
ussed in se
tion 10. The investigationsshowed that on S1 × R, the Coulomb string tension arises from the abelian part of theCoulomb intera
tion and a
tually is identi
al to the string tension of the abelian theory,thus providing an upper bound of the gauge invariant string tension [44℄. The e�e
t ofgauge 
opies on the stati
 
olour Coulomb potential was studied by taking several Gribovregions into a

ount, and resulted in spurious lo
ally stable minima for large separationsof external 
olour 
harges.The Dyson�S
hwinger equations for the propagators and verti
es in the pure Coulombgauge were derived. It was shown that the exa
t solution within the �rst Gribov regionsatis�es the Dyson�S
hwinger equations, but that these solutions are not the only ones.Changing the 
on�guration spa
e from any union of Gribov regions to another leaves theDyson�S
hwinger equations form invariant. This persists in theD = 3+1 
ase. Therefore, itis legitimate to ask: In whi
h union of Gribov regions are the Green fun
tions given whenthe set of Dyson�S
hwinger equations is solved by means of a trun
ation? We found in
D = 1 + 1 that 
hoosing the ghost-gluon vertex at tree-level, e�e
tively puts the solutionsfor the propagators and verti
es into the �rst Gribov region. As for the 
olour tra
es63



of the propagators, even the result within the fundamental modular region is attained.The tree-level ghost-gluon vertex approximation for solving Dyson�S
hwinger equations�whi
h was advo
ated by several investigations before [8,52,53,54℄�thus re
eives furtherstrong support.The variational approa
h to Coulomb gauge Yang�Mills theory in D = 3 + 1 dimensions[8℄ integrates over all Gribov regions for te
hni
al reasons. It was shown in se
tion 12 byusing the same ansatz for the va
uum wave fun
tional in D = 1 + 1, that with the appro-priate approximation (quadrati
 
ompletion in kineti
 energy expression) the variationalprin
iple yields a set of Dyson�S
hwinger equations that is the exa
t one. With the tree-level ghost-gluon vertex, the exa
t solution within the �rst Gribov region is thus very wellapproximated. It 
an be expe
ted that the infrared limit of the D = 3 + 1 theory, whi
h isdes
ribed by a sto
hasti
 wave fun
tional as in D = 1 + 1, is thus also well-approximated.Furthermore, we found that the Coulomb form fa
tor that is ne
essary for the 
al
ulationof the stati
 
olour Coulomb potential is not too far from tree-level in the exa
t D = 1+ 1
al
ulation and that the in
lusion of many Gribov 
opies simulate a spurious infrared en-han
ement of the Coulomb form fa
tor. We infer there are no indi
ations that the 
hoi
e ofa trivial Coulomb form fa
tor is worse than any other approximation made in the D = 3+1
al
ulations.A
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Appendix A SU(2) 
olour rotationsThe unitary matrix U , whi
h rotates the 
olour ve
tor n̂(θ, φ) into the 3-dire
tion (andthus, in parti
ular, diagonalises the gauge �eld (2.19)) is de�ned by
U †

n̂(θ, φ) · TU = T3 . (A.1)This matrix is de�ned up to an abelian gauge transformation U → Uω , ω = exp(ϕT3) ∈
U(1) ⊂ SU(2), i.e. it is de�ned on the 
oset SU(2)/U(1). The adjoint representation Û ,de�ned by

U †TaU = ÛabTb (A.2)is related to the fundamental representation U by
Ûab = −2 tr (U †TaUTb

)
, tr (TaTb) = −1

2
δab . (A.3)Equation (A.3) is most easily proved by Taylor expanding U in terms of Θ = ΘaTa andusing

[Ta,Θ] = Θ̂abTb . (A.4)Furthermore, sin
e (A.2) is based only on the algebra of the generators it is valid in anyrepresentation, in parti
ular the adjoint representation (where U † = UT ),
ÛT T̂aÛ = ÛabT̂b . (A.5)The matrix U 
an be realized by

U(θ, φ) = eθeφ ·T , T = − i

2
τ , (A.6)where

eφ = − sin φ e1 + cosφ e2 (A.7)is the unit ve
tor in the dire
tion of the azimuthal angle φ. The matrix U (A.6) 
an bealternatively expressed in terms of Euler angles as
U(θ, φ) = eφT3eθT2 . (A.8)Equations (A.1), (A.6), (A.7) are valid in any representation of SU(2) and thus also in theadjoint representation

Û(θ, φ) := eθeφ · T̂ = eφT̂3eθT̂2 . (A.9)From the de�ning equations (A.1), (A.3) and ÛT = Û−1 also follows that the 
omponentsof the unit 
olour ve
tor n̂(θ, φ) are given by
n̂

a(θ, φ) = Ûa3(θ, φ) . (A.10)65



It is 
onvenient to use the bra
ket notation
Ûab ≡ 〈a|Û |b〉 (A.11)and to express Û in the basis of the eigenve
tors |σ = 0,±1〉 of the spin 1 operators

Ŝa = iT̂ a , (T̂a)
bc = ǫbac (A.12)satisfying

Ŝ2|σ〉 = 1(1 + 1)|σ〉
Ŝ3|σ〉 = σ|σ〉 . (A.13)The transition elements

〈a|σ〉 =: ea
σ (A.14)are the Cartesian 
omponents of the spheri
al unit ve
tors (in 
olour spa
e)

eσ=1 = − 1√
2




1

i

0



, eσ=−1 =

1√
2




1

−i
0



, eσ=0 =




0

0

1



. (A.15)Here, Greek letters σ, τ, . . . denote spheri
al 
olour 
omponents {1, 0,−1}, while Latinletters a, b, . . . denote the Cartesian 
olour 
omponents {1, 2, 3}. The matrix elements ofthe adjoint representation Û (A.9) in the spheri
al basis

〈σ|Û(θ, φ)|σ′〉 = 〈σ|a〉〈a|Û |b〉〈b|σ′〉 = ea∗

σ Ûab(θ, φ)eb
σ′ (A.16)are related to the Wigner D-fun
tion by

〈σ|Û(θ, φ)|σ′〉 = DJ=1
σσ′ (φ, θ, 0) . (A.17)Using 〈σ|3〉 = e3∗

σ = δσ0, the 
olour unit ve
tor (A.10) 
an be expressed as
n̂a(θ, φ) = 〈a|σ〉〈σ|Û |τ〉〈τ |3〉 = ea

σD
1
σ0(φ, θ, 0) . (A.18)Appendix B Expli
it resolution of Gauss' lawTo identify Πa

||(x) we Fourier expand the periodi
 gauge �eld A(x+ L) = A(x)

A(x) =
1

L

∑

n

eiknxA(n) , kn =
2πn

L
, n ∈ Z . (B.1)66



The inverse transformation reads
A(n) =

L∫

0

dx e−iknxA(x) (B.2)and the 
ontinuum limit L→ ∞ is obtained by the repla
ement
1

L

∑

n

→
∫
dk

2π
. (B.3)For later use we also quote the 
ompleteness and orthogonality relations

δ(x) =
1

L

∑

n

eiknx , δm,n =
1

L

L∫

0

dx ei(km−kn)x , (B.4)where δ(x) denotes the periodi
 δ-fun
tion, satisfying
δ(x+ L) = δ(x) . (B.5)From (B.1) we �nd for the momentum operator

Πa(x) =
δ

iδAa(x)
=

1

L

∑

n

e−iknx d

idAa(n)
. (B.6)B.1 Pure Coulomb gaugeIn momentum spa
e the pure Coulomb gauge (2.16) reads

A(n) = δn,0A(0) , (B.7)where
A(0) =

1

L

L∫

0

dxA(x) =: A (B.8)is the 
onstant part of the gauge �eld, whi
h is left after gauge �xing. From Eq. (B.6)we read o� the transversal (x-independent) and longitudinal (x-dependent) parts of themomentum operator to be given by
Πa

⊥ =
1

L

d

idAa
, Πa

||(x) =
1

L

∑

n 6=0

e−iknx d

idAa(n)
. (B.9)In the pure Coulomb gauge, where the degrees of freedom are Aa=1,2,3, the 
harge of thegauge bosons (5.6) is spa
e independent but non-zero. Using (
f. Eq. (3.26))

iD̂abe−iknx = e−iknx〈a|Û |σ〉λn,σ〈σ|ÛT |b〉 , (B.10)67



we obtain
iD̂abΠb

||(x) =
1

L

∑

n 6=0

e−iknx〈a|Û |σ〉λn,σ〈σ|ÛT |b〉 d

idAb(n)
. (B.11)Inserting this relation into Gauss' law (5.4) and multiplying the resulting equation by eikmx,and integrating over x thereby using Eq. (B.4) we obtain

∑

n 6=0

δn,m〈a|Û |σ〉λn,σ〈σ|ÛT |b〉 d

idAb(n)
Ψ(A) = i

L∫

0

dxeikmxρa
tot(x)Ψ(A) . (B.12)For m = 0 the l.h.s. of Eq. (B.12) vanishes and we �nd that the wave fun
tional has tosatisfy the following 
onstraint

Qa Ψ(A) ≡
L∫

0

dx ρa
tot(x) Ψ(A) = 0 . (B.13)For m 6= 0 the summation over n on the l.h.s. 
ollapses to the term m = n and Eq. (B.12)be
omes after multiplying it by 〈σ|ÛT |a〉 and summing over a

λm,σ〈σ|ÛT |b〉 d

idAb(m)
Ψ(A) = i〈σ|ÛT |a〉

L∫

0

dx eikmxρa
tot(x)Ψ(A) . (B.14)Multiplying Eq. (B.14) by 1

L
e−ikmy〈c|Û |σ〉λ−1

m,σ and summing over m 6= 0 and σ we get
Πc

||(y)Ψ(A) =
1

L

∑

m6=0

e−ikmy d

idAc(m)
Ψ(A)

= i
1

L

∑

m6=0

∑

σ

e−ikmy

L∫

0

dx eikmx〈c|Û |σ〉λ−1
m,σ〈σ|ÛT |a〉ρa

tot(x)Ψ(A) (B.15)
= i

L∫

0

dx
∑

m6=0

∑

σ

ϕ̃c
m,σ(y)λ−1

m,σϕ̃
a∗

m,σ(x)ρa
tot(x)Ψ(A) , (B.16)where we have used the expli
it form of the eigenfun
tions ϕ̃a

n,σ(x) (3.28) of the 
ovariantderivative iD̂ab. Note if the modes m = 0, σ = ±1 were in
luded in Eq. (B.16), the sumwould produ
e the inverse kernel
〈y, b|(iD̂)−1|a, x〉 =

∑

m,σ

′ϕ̃b
m,σ(y)λ

−1
m,σϕ̃

a∗

m,σ(x) , (B.17)where the prime indi
ates that the mode m = σ = 0 is ex
luded (while m = 0, σ = ±1 isin
luded). 68



It is now straightforward to 
al
ulate the Coulomb Hamiltonian HC de�ned by Eq. (5.9).With Eq. (B.16) we obtain after straightforward manipulations
HC =

g2

2

∫
dxdy ρa

tot(x)F
ab(x, y)ρb

tot(y) , (B.18)where
F ab(x, y) =

∑

n 6=0

∑

σ

〈x, a|Û |n, σ〉λ−2
n,σ〈n, σ|ÛT |y, b〉 =

∑

n 6=0

∑

σ

ϕ̃a
n,σ(x)λ

−2
n,σϕ̃

b∗

n,σ(y) (B.19)is the so-
alled Coulomb kernel. Let us stress the mode n = 0, σ = ±1 is here not in
ludedalthough it is not a zero mode λn=0,σ=±1 6= 0. Sin
e this mode is also ex
luded from theghost kernel
Ĝab(x, y) = 〈x, a|Ĝ−1|y, b〉 = 〈x, a|(−D̂∂)−1|y, b〉 =

∑

n 6=0

∑

σ

ϕ̃a
n,σ(x) (knλn,σ)

−1 ϕ̃b∗

n,σ(y)(B.20)the Coulomb kernel (B.19) 
an be represented as
F ab(x, y) = 〈x, a|(−D̂∂)−1(−∂2)(−D̂∂)−1|y, b〉 , (B.21)whi
h is the usual representation. In the abelian 
ase, this kernel redu
es to the usualCoulomb potential. In the non-abelian theory, this is a dynami
al obje
t depending on the�eld variables via the 
ovariant derivative.The above derivation of HC has shown that Gauss' law in the pure Coulomb gauge does notonly give rise to the Coulomb Hamiltonian HC (B.18) but in addition yields the 
onstraint(B.13) on the wave fun
tional. This 
onstraint arises from the zero modes of the Faddeev-Popov kernel, whi
h are a 
onsequen
e of the in
omplete gauge �xing. In a 
omplete gauge�xing su
h residual 
onstraints would not arise 20 .Due to the fa
t that 
onstant modes kn = 0 are ex
luded from the Coulomb kernel, thedynami
al 
harge of the gauge bosons, ρg, being spa
e-independent, drops out from the

20 When the 
onstraint (B.13) is obeyed by the wave fun
tional the mode m = 0, σ = ±1 
ansafely be in
luded in the Coulomb kernel (B.19) sin
e it does not 
ontribute when the CoulombHamiltonian a
ts on the wave fun
tional. Thus with the 
onstraint (B.13) satis�ed we 
an use thealternative kernel
F ab(x, y) =

∑

n,σ

′〈x, a|Û |n, σ〉λ−2
n,σ〈n, σ|ÛT |y, b〉 = 〈x, a|(iD̂)−2|y, b〉 (B.22)in the Coulomb Hamiltonian. It is pre
isely this kernel (but with A restri
ted to the hyperplaneof the diagonal Coulomb gauge) whi
h arises as �Coulomb kernel� in the diagonal Coulomb gaugederived in the next subse
tion. 69



Coulomb term (B.18). In fa
t, with the expli
it form of eigenfun
tions ϕ̃a
n,σ(x) (3.28) wehave ∫

dxF ab(x, y) =
1

L

∫
dx
∑

n 6=0

eikn(x−y)F ab
n =

∑

n 6=0

δn,0F
ab
n = 0 . (B.23)Thus we 
an repla
e in HC (B.18) the total 
harge ρa

tot by the external 
harge ρa,
HC =

g2

2

∫
dxdyρa(x)F ab(x, y)ρb(y) , (B.24)and in the absen
e of external 
harges ρa(x) = 0 the Yang-Mills Hamiltonian redu
es tothe transversal part (6.15).B.2 Diagonal Coulomb gaugeIn the diagonal Coulomb gauge (2.20) the remaining physi
al degree of freedom of thegauge �eld is A3 ≡ A3(n = 0) and the 
orresponding physi
al momentum reads

Πa
⊥ = δa3Π3

⊥ , Π3
⊥ =

1

L

d

idA3
. (B.25)We will keep here the same notation as in the pure Coulomb gauge and denote the remainingunphysi
al part of the momentum operator by

Πa
|| = Πa − Πa

⊥ . (B.26)This part is given here by
Πa

|| =
1

L

∑

n

′e−iknx d

idAa(n)
, (B.27)where the prime indi
ates that the term n = 0 is ex
luded for the generator of the Cartanalgebra a = a0 = 3 only. Note that 
ontrary to the pure Coulomb gauge, the �transverse�
omponents d/dAa=ā(0) belonging to the generators a = ā of the 
oset SU(N)/U(1)N−1are here parts of Π||.With the expli
it form of the gauge-�xed �eld (2.20) and the 
orresponding momentum

Π⊥ (B.25) one noti
es that the 
harge of gauge boson (5.6) vanishes in this 
ase,
ρa

g = −Âab
⊥ Πb

⊥ = −Âa3
⊥ Π3

⊥ = −fa33A3
⊥Π3

⊥ = 0 . (B.28)Inserting the expli
it form of Πa
||, given by Eq. (B.27), into Gauss' law (5.4) and usingfurthermore

iD̂ab[A3T3]e−iknx = e−iknx
∑

σ

〈a|σ〉λn,σ〈σ|b〉 , (B.29)70



Gauss' law be
omes
1

L

∑

n

′e−iknx
∑

σ

〈a|σ〉λn,σ〈σ|b〉
d

idAb(n)
Ψ(A) = iρa(x)Ψ(A) . (B.30)Multiplying this equation by eikmx〈σ|a〉, integrating over x and summing over a, we obtain

∑

n

′δn,mλn,σ〈σ|b〉
d

idAb(n)
Ψ(A) = i〈σ|a〉

L∫

0

dxeikmxρa(x)Ψ(A) . (B.31)Re
all that the prime indi
ates that the term n = 0 is ex
luded from the sum for b = 3.Sin
e 〈σ|b = 3〉 = e3∗

σ ≡ δσ0 on the l.h.s. the term n = 0 is ex
luded for σ = 0. Thus for
m = σ = 0 the l.h.s. vanishes and we �nd the following 
onstraint on the wave fun
tional

Q3Ψ ≡
L∫

0

dxρ3(x)Ψ = 0 , (B.32)whi
h should be 
ompared with the 
onstraint (B.13) in the pure Coulomb gauge. Sin
ein the present 
ase the 
harge of the gauge bosons vanishes, Eq. (B.32) is the restri
tionof the 
onstraint (B.13) to the 
harge of the Cartan subgroup. For m = 0, σ 6= 0 and for
m 6= 0, σ-arbitrary, Eq. (B.31) be
omes

λm,σ〈σ|b〉
d

idAb(m)
Ψ(A) = i〈σ|a〉

L∫

0

dx eikmxρa(x)Ψ(A) . (B.33)Note that sin
e 〈σ 6= 0|b = 3〉 = 0 the summation over b is for m = 0, σ 6= 0 restri
ted to
b = 1, 2. Multiplying the last equation by 〈c|σ〉λ−1

m,σ and summing over σ we obtain
d

idAc(m)
Ψ(A) = i

∑

σ

′〈c|σ〉λ−1
m,σ〈σ|a〉

L∫

0

dx eikmxρa(x)Ψ(A) , (B.34)where the prime indi
ates again that the term σ = 0 is ex
luded for m = 0. Multiplyingthis equation by e−ikmy/L and summing over m and using (B.27) we obtain the desiredrepresentation
Πc

||(y)Ψ(A) = i

L∫

0

dx〈y, c|(iD̂[A3T3])
−1|x, a〉ρa(x)Ψ(A) , (B.35)where

〈y, c|(iD̂[A3T3])
−1|x, a〉 =

∑

m,σ

′ϕc
m,σ(y)λ−1

m,σϕ
a∗

m,σ(x) , ϕa
m,σ(x) =

1√
L
e−ikmxea

σ . (B.36)71



With Eq. (B.35) one �nds for the Coulomb Hamiltonian HC de�ned by Eq. (5.9) in thisgauge with JFP = JD the following expression
HC =

g2

2

∫
dxdyρa(x)F ab(x, y)ρb(y) (B.37)with the Coulomb kernel given by

F ab(x, y) = 〈x, a|(iD̂[A3T3]))
−2|y, b〉 =

∑

n,σ

′〈x|n〉〈a|σ〉λ−2
n,σ〈σ|b〉〈n|y〉 . (B.38)Contrary to the Coulomb kernel in the pure Coulomb gauge (B.19) here only the zeromode m = σ = 0 is ex
luded, as indi
ated by the prime, while the mode m = 0, σ = ±1 isin
luded. The above 
onsiderations show that the Coulomb Hamiltonian depends on thedetails of the gauge �xing and is thus a priori not a physi
al quantity.
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