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Homotopy groups of spheres is a branch of mathematics, specifically algebraic topology, that attempts to
understand the different ways spheres of various dimensions can be wrapped around each other. The topic can be
hard to understand because the most interesting and surprising results involve spheres in higher dimensions. An n-
dimensional sphere, n-sphere or hypersphere, is a generalization of the familiar circle (1-sphere) and sphere (2-
sphere) and is defined as all the points in a space of n+1 dimensions that are a fixed distance from a center point.

Mappings are continuous functions from one sphere into another. Two mappings are considered equivalent if one can
be continuously deformed into the other. One sphere can always be mapped into another by assigning all the points
on the first sphere to a single point on the second. This mapping, and all those equivalent to it, are called the trivial
mapping and are represented by 0. Mappings of a i-sphere (i here is another integer; we'll need n in a moment) into
any topological space, X, can be combined by splicing them together, roughly speaking, and the equivalence classes

of these mappings ("homotopy classes") form a group called the ith homotopy group of X, which is written πi (X).

Homotopy groups of spheres studies the cases where X is an n-sphere, and the groups are written πi (Sn).

The goal of algebraic topology is to categorize or classify topological spaces. Homotopy groups were invented in the
late 19th century[1] (http://www-history.mcs.st-and.ac.uk/~history/Biographies/Jordan.html) as a tool for such
classification, in effect using the set of mappings from an n-sphere in to a space as a way to probe the structure of
that space. An obvious question was how this new tool would work on n-spheres themselves. No general solution to
this question has been found to date, but many homotopy groups of spheres have been computed and the results are
surprisingly rich and complicated.
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Cases that are easy to visualize
The few cases that can be constructed in ordinary 3-dimensional space allow some sense of the subject to be gained.
These visualizations are not, of course, mathematical proofs.

π1(S1)

The simplest case considers the ways a circle (1-sphere) can be
wrapped around another circle. This can be visualized by
wrapping a rubber band around one's finger. One can wrap it
once, twice, three times and so on. One can do the wrapping in
either of two directions and if one wraps a certain number of
times in one direction and then wraps the same number of time
in the other direction, then wraps in opposite directions will
cancel out. The group that is formed is therefore the group of
integers, known as the infinite cyclic group, and denoted Z.

π2(S2)

The case of 2-spheres can be visualized as wrapping a plastic bag around an ordinary toy ball and then sealing it. The
sealed bag is topologically equivalent to a 2-sphere, as is the surface of the ball. The bag can be wrapped more than
once by twisting it and wrapping it back over the ball. (The bag is allowed to pass through itself). The twist can be in
one of two directions and opposite twists can cancel out. Again the group of integers, Z, is formed. These two results

generalize: for all n > 0, πn (Sn) = Z.

π1(S2)

Any continuous mapping from a circle to an ordinary sphere can be continuously deformed down to a point, i.e. the
trivial mapping. This can be visualized as a rubber-band wrapped around a frictionless ball - it can always be slid off.
Further, this result generalises for higher dimensions. All mappings from a hypersphere into a sphere of higher

dimension are similarly trivial: if i < n, then πi (Sn) = 0 (i.e., the trivial group).

π2(S1)

Elements of π1(S1)

Elements of π1(S1)
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All the interesting cases of homotopy groups of spheres involve mappings from an n-sphere dimensional onto spheres
of lower dimensions. Unfortunately, the one such case we might easily visualize is uninteresting, as there are no non-

trivial mappings from the ordinary sphere to the circle. Hence, π2(S1) = 0.

Higher dimensions
The rest of this article provides a summary of the homotopy groups for spheres for higher dimensions. Computing the
homotopy group can be complicated, and this article is restricted to summarizing many of the homotopy groups of
spheres that have been computed to date. The results are surprisingly complex, with no pattern discerned to date.

From a geometric point of view homotopy groups are fundamental invariants. From the algebraic aspect, there is
ample evidence that they involve substantial complexity of structure, and intense study from around 1950 has not
completely elucidated that.

π3(S2)

As mentioned above, when i is less than n, the homotopy group is the trivial group: πi (Sn) = 0, and the case i = n is

always the infinite cyclic group, πn (Sn) = Z. It is the case i > n that is of real importance, and historically it came as

a great surprise that the corresponding homotopy groups were nontrivial. This is in contrast to the behavior for

corresponding results in homology theory, where Hi (Sn) = 0 when i > n. The first nontrivial example concerned

mappings from the three-dimensional sphere to the ordinary 2-sphere, and was discovered by Heinz Hopf in 1931.

The existence of the Hopf fibration implies that π3 (S2) = Z.

Stable and unstable groups

As the homotopy groups of spheres turn out to be very difficult to compute, algebraic topologists searched for ways
to simplify the problem. A key insight was that the suspension theorem of Hans Freudenthal implies that the groups 

πn+k (Sn) depend only on k for n ≥ k + 2. These groups are called the stable homotopy groups of spheres, and are

denoted πk
S. They are finite and abelian for k ≥ 1. They have been computed in numerous cases, but the general

pattern is still elusive.

For n < k + 2, the groups are called the unstable homotopy groups of spheres. There are ad-hoc methods of
calculating these for the cases of n small. A systematic tool in this context is the J-homomorphism. These groups are

abelian, and are all finite except for those of the form π4r−1 (S2r) (for integer values of r). In this case, the group is

the product of the infinite cyclic group with a finite abelian group.



10/16/2006 06:40 PMHomotopy groups of spheres - Wikipedia, the free encyclopedia

Page 4 of 6http://en.wikipedia.org/wiki/Homotopy_groups_of_spheres#.CF.801.28S1.29

Table of homotopy groups

Tables of homotopy groups of spheres are most conveniently organized by only showing πn+k (Sn) for n > 1 and k >

0. For other cases, the homotopy group πn+k (Sn), with n > 0, is as follows:

For k < 0, the group is the trivial group (generally written 0)
For k = 0, the group is the infinite cyclic group (generally written Z)
For k > 0 and n = 1, the group is trivial.

The following table shows many of the groups πn+k (Sn) that have been computed to date, with the following

conventions:

Where the entry is an integer, m, the homotopy group is the cyclic group of that order (generally written Zm).

Where the entry is "Z", the homotopy group is the infinite cyclic group, (Z).
Where entry is a sum, the homotopy group is the direct sum (equivalently, cartesian product) of the cyclic
groups of those orders. Powers indicate repeated summation.

Example: π19 (S10) = π10+9 (S10) = Z + 23, the table entry at k = 9, n = 10. The expression Z + 23 denotes the group

Z × Z2 × Z2 × Z2.

n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11 n = 12
n > k +

1

k =
1

Z 2

k =
2

2 2 2

k =
3

2 12 Z + 12 24

k =
4

12 2 22 2 0

k =
5

2 2 22 2 Z 0

k =
6

2 3 24 + 3 2 2 2 2

k =
7

3 15 15 30 60 120 Z + 120 240
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7
3 15 15 30 60 120 Z + 120 240

k =
8

15 2 2 2 8 + 6 23 24 23 22

k =
9

2 22 23 23 23 24 25 24 Z + 23 23

k =
10 22 12 +

2
40 + 4 + 2 +

32 18 + 8 18 + 8 24 + 2
82 + 2 +

32
24 + 2 12 + 2 22 + 3 2 + 3

k =
11

12 +
2

84 +

22 84 + 25
504 +

22 504 + 4
504 +
2

504 + 2 504 + 2 504 504 Z + 504 504

k =
12

84 +

22 22 26 23 240 0 0 0 4 + 3 2 22

See
below

k =
13 22 6 8 + 22 + 32 22 + 3 6 6 22 + 3 6 6 22 + 3 22 + 3

k =
14

6 30 840 + 9 + 22 22 + 3 12 + 2 24 + 4
60 + 48 +
8

16 + 4 16 + 2 16 + 2 24 + 16

k =
15

30 30 30
15 +

22

10 + 4 +

32

120 +

23 120 + 25
240 +

23

240 +

22 30 + 16 30 + 16

k =
16

30 22 + 3 23 + 32 22 504 + 22 24 27 24 30 + 16 2 2

k =
17

22 +
3

12 +

22
8 + 42 + 22 +

32 4 + 22 24 24 25 + 3 24 23 23 24

k =
18

12 +

22

12 +

22
40 + 4 + 25 +

32

24 +

22
8 + 22 +

32
24 + 2 82 + 42 +

9
8 + 2 +
3

8 + 22 +
3

8 + 4 +
2

32 + 30 +

42

k =
19

12 +

22
132 +
2 132 + 25 66 + 8 264 + 32

264 +
2

264 + 2 264 + 2 22 + 32
264 +

23 264 + 25

n = 13 n = 14 n = 15 n = 16 n = 17 n = 18 n = 19 n = 20 n > k + 1

k = 12 2 0

k = 13 6 Z + 3 3

k = 14 16 + 2 8 + 2 4 + 2 22

k = 15 32 + 30 32 + 30 32 + 30 Z + 32 + 30 32 + 30
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k = 16 2 8 + 6 23 24 23 22

k = 17 24 24 25 26 25 Z + 24 24

k = 18 82 + 2 82 + 2 83 + 2 + 3 83 + 2 + 3 82 + 2 8 + 6 8 + 22 8 + 2

k = 19 264 + 23 66 + 8 + 4 264 + 22 8 + 22 + 3 + 11 264 + 22 66 + 8 66 + 8 Z + 66 + 8 132 + 8

Note that when a and b have no common factor, Za x Zb is isomorphic to Zab. Using this, entries in the above have

been written using fewer coefficients than in Toda's table.

See also

3-sphere#Topological properties for a table of the homotopy groups πk (S3)

Winding number
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