How to Renormalize the Schrödinger Equation

Peter Lepage

Cornell University

February 2006

Renormalization Review

Renormalization

Probe of wavelength λ (= h/p) insensitive to structure at distances $\ll \lambda$.

 λ large \Rightarrow

Can replace true theory (complex, unknown?) by a simpler theory (infinitely many choices!).

Effective Field Theory

Large- λ theory.

- Low-energy approximation.
- Systematically improvable.
- UV cutoff: $p < \Lambda$.

 $\Lambda \approx$ threshold for next level of structure

Pedagogical Example

1. Synthetic Data

Low-energy data \rightarrow effective theory.

Invent physical problem: Coulombic atom + short-range potential:

$$H = \frac{\mathbf{p}^2}{2m} + V(\mathbf{r})$$

where

$$V(\mathbf{r}) = -\frac{\alpha}{r} + V_s(\mathbf{r})$$

Arbitrary short-range potential.

- Make one up.
- Details irrelevant (secret).

Infrared (large-distance) behavior specified by:

$$m = 1$$
 $\alpha = 1$ (\Rightarrow strongly coupled).

Generate precise low-energy "data" by solving numerically.

Bound state binding energies:

level	binding energy	level	binding energy
1 <i>S</i>	1.28711542	6 <i>S</i>	0.0155492598
2S	0.183325753		
3 <i>S</i>	0.0703755485	10 <i>S</i>	0.00534541931
4 <i>S</i>	0.0371495726	20 <i>S</i>	0.00129205010
5 <i>S</i>	0.0229268241		

• Phase shifts computed for r=50 (Coulomb tail).

energy	phase shift	energy	phase shift
10^{-10}	-0.000421343353	.03	1.232867297
10^{-5}	-0.133227246	.07	-0.579619620
.001	-1.319383451	.1	-1.156444634
.003	0.900186195	.3	-0.106466466
.007	-0.146570028	.7	-1.457426179
.01	-0.654835316	1	1.160634967

•
$$\langle 1s | \mathbf{p}^4 | 1s \rangle = 69.0...$$

Challenge

Given the large-r behavior, design a simple theory that reproduces the low-energy data to arbitrarily high precision.

2. Traditional Approach

Model $V_s(r)$ by $\delta^3(r)$:

$$H_{\text{eff}} = \frac{p^2}{2m} + V_{\text{eff}}(r)$$

$$V_{\text{eff}} = -\frac{\alpha}{r} + c \,\delta^3(r)$$

Large *r* known.

Treat as perturbation.

First order perturbation theory \Rightarrow

$$E_{nl}^{\text{app}} = E_{nl}^{\text{coul}} + c \left| \psi_{nl}^{\text{coul}}(0) \right|^2$$
$$= -\frac{1}{2n^2} + c \frac{\delta_{l,0}}{\sqrt{\pi} n^3}$$

One parameter theory: choose *c* to match most infrared data.

- Match $E_{20S} \Rightarrow c = -0.5963$.
- Most IR ⇒ most accurate.
- Same *c* for all levels.

More Accuracy?

1) Interaction strong $\Rightarrow 2^{nd}$ order perturbation theory, but

$$\sum_{m \neq n} \frac{\langle n | c \, \delta^3(\mathbf{r}) | m \rangle \, \langle m | c \, \delta^3(\mathbf{r}) | n \rangle}{E_n - E_m} \quad = \quad \infty$$

 \sum over $k \to \infty$ states diverges \Rightarrow UV divergence.

2) Finite-range corrections to short-range $V_s \Rightarrow$

$$V_s(\mathbf{r}) \stackrel{\text{F.T.}}{\longrightarrow} v_s(q^2) \approx v_s(0) + q^2 v_s'(0) + \cdots$$

Suggests

$$V_s(\mathbf{r}) \rightarrow V_{\text{eff}} \equiv c \, \delta^3(\mathbf{r}) + d \, \nabla^2 \delta^3(\mathbf{r})$$

except

$$\langle n|\nabla^2\delta^3(\mathbf{r})|n\rangle = \infty$$

$$k \to \infty \text{ LIV divergence}$$

Why the infinities?

 $\mathbf{k} \to \infty$ behavior of $V_{\rm eff}$ is very bad (and wrong).

Conventional wisdom \Rightarrow give up after 1st order; must use real potential to go further.

3. Effective Theory

Low-energy theory insensitive to short distance details ⇒ redesign short distance so not singular & "accurate."

- 1) Preserve large-*r* behavior.
- 2) Introduce UV cutoff to prevent infinities, and exclude high-momentum states about which ignorant.
- 3) Add local operators to $H_{\rm eff}$ to mimic effects of states excluded by cutoff.

UV Cutoff

$$\frac{1}{r} \xrightarrow{\text{F.T.}} \frac{4\pi}{q^2}$$

$$\xrightarrow{\text{cutoff}} \frac{4\pi}{q^2} e^{-q^2 a^2/2} \qquad \text{(cutoff} \Rightarrow q < 1/a = \Lambda)$$

$$\xrightarrow{\text{F.T.}} \frac{\text{erf}(r/\sqrt{2}a)}{r} \qquad \left(\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt\right)$$

 \Rightarrow Analytic at r = 0, and 1/r at large r.

Cutoff \Rightarrow errors of $\mathcal{O}((pa)^n)$. Remove errors order-by-order using local correction terms (mimics excluded k > 1/a physics):

$$\begin{split} V_{\mathrm{eff}}(\mathbf{r}) &= -\frac{\alpha}{r} \operatorname{erf}(r/\sqrt{2}a) \\ &+ c a^2 \, \delta_a^3(\mathbf{r}) \quad \leftarrow \operatorname{removes} \, \mathscr{O}(pa)^2 \, \operatorname{errors} \\ &+ d_1 \, a^4 \, \nabla^2 \delta_a^3(\mathbf{r}) + d_2 \, a^4 \, \nabla \cdot \delta_a^3(\mathbf{r}) \nabla \quad \leftarrow \operatorname{removes} \, \mathscr{O}(pa)^4 \\ &+ \cdots \\ &+ g \, a^{n+2} \, \nabla^n \delta_a^3(\mathbf{r}) \qquad \leftarrow \, \delta_a^3(\mathbf{r}) \equiv \frac{\mathrm{e}^{-r^2/2a^2}}{(2\pi)^{3/2} \, a^3} \\ &+ \cdots \end{split}$$

Procedure

Focus on *S* states through $\mathcal{O}((pa)^4) \Rightarrow$ need only *c* and d_1 terms.

- 1) Choose an a < important long-range distance scales (eg, atom size) want pa small. (Choose a = 1 for now.)
- **2)** Tune c, d_1 to fit IR data 1 piece of data/coupling. (Use most IR data to minimize $(pa)^6$ errors.)

$$\begin{array}{ccc}
c & & \delta_0(10^{-5}) \\
d_1 & \longleftrightarrow & \delta_0(10^{-10})
\end{array}$$

3) Generate everything else using same c, d_1 .

Note:

- $a \neq 0$
 - $\Rightarrow V_{\text{eff}}(\mathbf{r})$ simple, nonsingular (analytic!) at r = 0.
 - \Rightarrow Trivial to solve for any c, d_1 , a (eg, numerically).
 - → No infinities, because of cutoff.

Note:

- 2 phase shifts ⇒ all these results!
- Errors smaller for smaller $Es (pa)^n$.
- Adding $\nabla^2 \delta_a$ term \Rightarrow error curve slope steeper by one power of $(pa)^2 \propto E$.
- Corrections stop working for $pa \approx 1$. (Here a = 1.)
- 1% error in E_{2S} even though $a \approx r_{2S}/4$; E_{10S} accurate to 6 digits.

a Dependence

```
Errors \propto (pa)^n

\rightarrow large a \Rightarrow larger errors
```

But $a \rightarrow 0 \Rightarrow$

- infinities
- bad (unphysical) high-energy states
- no values of $c, d_1 \dots$ fit data
- ..

Typically want $a \approx$ true scale of $V_s(\mathbf{r})$.

Physics in *a*

Tune a to point $a = a_c$ where errors stop decreasing with decreasing a.

 $\Rightarrow a_c \approx \text{true scale of } V_s(\mathbf{r}).$

Point where true V_s starts to compete with long-range potential.

Errors
$$\propto \begin{cases} (pa)^n & a > a_c \\ (pa_c)^n & a \le a_c \end{cases}$$

Here $a_c \approx 1$.

"Running" Couplings

• Depend upon number of corrections:

$$a = 1, d_1 = 0 \implies c = 6.9$$

 $a = 1 \implies c = 6.4, d_1 = 1.6$

• Depend upon *a* (hence "running"):

Misconceptions

1) As high-order corrections are added

$$V_{\rm eff}(\mathbf{r}) \rightarrow \text{true } V(\mathbf{r})$$

Wrong! Infinitely many V_{eff} s: all give same low-energy results, but totally different high-energy results.

N.B. "True V" may not exist! (Eg, quantum field theory at short distances, quarks in nucleus, etc.)

Just ordinary curve fitting — add more parameters, get better answers.

Wrong! Highly optimized curve fitting — systematically removes errors order-by-order in (pa).

- Eg) Compare two 2-parameter fits:
 - 1) vary a,c holding $d_1 = 0 \Rightarrow E_{10S}$ error $\approx 10^{-3}$;
 - **2)** vary c, d_1 holding $a = 1 \Rightarrow E_{10S}$ error $\approx 10^{-6}$.

4. Improved Operators

Connection between true and effective theories is subtle.

- Low-energy spectra, $\delta_l(E)$ s nearly identical.
- $\psi(\mathbf{r})$ and $\psi_{\text{eff}}(\mathbf{r})$ totally different at small r.

Eg)
$$\langle n|\mathbf{p}^4|n\rangle$$
 for $n=1S,2S...$:

level	$\langle {f p}^4 angle$	$\langle {f p}^4 angle_{ m eff}$
1 <i>S</i>	69	5.9
2 <i>S</i>	5.50	1.7
3 <i>S</i>	1.309	0.4
4 <i>S</i>	0.5070	0.17
5 <i>S</i>	0.24740	0.08
6 <i>S</i>	0.138784	0.05

 \Rightarrow Complete disagreement even for $E_n \rightarrow 0!$

• Renorm'n theory \Rightarrow local corrections for \mathbf{p}^4 , as for H_{eff} :

$$\langle \mathbf{p}^4 \rangle_{\text{true}} = \frac{\mathbf{Z}}{\langle \mathbf{p}^4 \rangle_{\text{eff}}} + \frac{\gamma}{a} \langle \delta_a^3(\mathbf{r}) \rangle_{\text{eff}} + \frac{\eta}{a} \langle \nabla^2 \delta_a^3(\mathbf{r}) \rangle_{\text{eff}} + \mathcal{O}(a^3)$$

Z, γ , η from IR data; same for all other states.

20S, 15S, 10S data
$$\Rightarrow Z = 1$$
, $\gamma = -96.2$, $\eta = -140.6$,

level	$\langle {f p}^4 \rangle$	$\langle {f p}^4 angle_{ m eff}$	$\langle Z\mathbf{p}^4 + \gamma \delta_a^3/a + \cdots \rangle_{\text{eff}}$
1 <i>S</i>			28
25		1.7	5.34
	1.309	0.4	1.306
48		0.17	
	0.24740		0.24738
	0.138784		0.138780

• Renorm'n theory \Rightarrow local corrections for \mathbf{p}^4 , as for H_{eff} :

$$\langle \mathbf{p}^4 \rangle_{\text{true}} = \frac{\mathbf{Z}}{\langle \mathbf{p}^4 \rangle_{\text{eff}}} + \frac{\gamma}{a} \langle \delta_a^3(\mathbf{r}) \rangle_{\text{eff}} + \frac{\eta}{a} \langle \nabla^2 \delta_a^3(\mathbf{r}) \rangle_{\text{eff}} + \mathcal{O}(a^3)$$

Z, γ , η from IR data; same for all other states. 20S, 15S, 10S data $\Rightarrow Z = 1$, $\gamma = -96.2$, $\eta = -140.6$,

level	$\langle {f p}^4 angle$	$\langle {f p}^4 angle_{ m eff}$	$\langle Z\mathbf{p}^4 + \gamma \delta_a^3/a + \cdots \rangle_{\text{eff}}$
1 <i>S</i>	69	5.9	28
2 <i>S</i>	5.50	1.7	5.34
3 <i>S</i>	1.309	0.4	1.306
4 <i>S</i>	0.5070	0.17	0.5068
5 <i>S</i>	0.24740	0.08	0.24738
6 <i>S</i>	0.138784	0.05	0.138780

True Theory Effective Theory
$$\mathbf{p}^{2}/2m + V(r) \iff \mathbf{p}^{2}/2m - \alpha \operatorname{erf}()/r + \mathbf{c}a^{2}\delta_{a}^{3} + \cdots$$
$$\mathbf{p}^{4} \iff \mathbf{Z}\mathbf{p}^{4} + \gamma/a \delta_{a}^{3} + \cdots$$

Couplings *c*, *Z* ... depend on *a* but not on state (universal!)

Operator Product Expansion (OPE)

$$\psi_{\text{true}}(r) = \overline{\gamma}(r) \int d^3r \, \psi_{\text{eff}} \, \delta_a^3(\mathbf{r})$$

$$+ \overline{\eta}(r) a^2 \int d^3r \, \psi_{\text{eff}} \, \nabla^2 \delta_a^3(\mathbf{r})$$

$$+ \mathcal{O}(a^4) \qquad \text{for } r < a.$$

Take
$$r = 0 \implies \overline{\gamma}(0) = -28$$
 and $\overline{\eta}(0) = -3.6$,

			$\overline{\gamma} \int \psi_{\rm eff} \delta_a^3 + \cdots$
1 <i>S</i>	1.50		-3.4
25		0.19	
	0.1837		0.1830
4 <i>S</i>	0.11353		0.11344
		0.04	
	0.059031		0.059025

Operator Product Expansion (OPE)

$$\psi_{\text{true}}(r) = \overline{\gamma}(r) \int d^3r \, \psi_{\text{eff}} \, \delta_a^3(\mathbf{r})$$

$$+ \overline{\eta}(r) a^2 \int d^3r \, \psi_{\text{eff}} \, \nabla^2 \delta_a^3(\mathbf{r})$$

$$+ \mathcal{O}(a^4) \qquad \text{for } r < a.$$

Take
$$r = 0 \implies \overline{\gamma}(0) = -28$$
 and $\overline{\eta}(0) = -3.6$,

level	$\psi(0)$	$\psi_{ ext{eff}}(0)$	$\overline{\gamma} \int \psi_{\rm eff} \delta_a^3 + \cdots$
1 <i>S</i>	1.50	0.53	-3.4
2 <i>S</i>	0.383	0.19	0.369
3 <i>S</i>	0.1837	0.09	0.1830
4 <i>S</i>	0.11353	0.06	0.11344
5 <i>S</i>	0.079005	0.04	0.078986
6 <i>S</i>	0.059031	0.03	0.059025