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Renormalization Review



Renormalization

Probe of wavelength A (= h/p) insensitive to structure at
distances < A.

A large =

Can replace true theory (complex, unknown?) by a simpler
theory (infinitely many choices!).



Eg)



Effective Field Theory
Large-A theory.

* Low-energy approximation.
¢ Systematically improvable.

e UV cutoff: p < A.

A ~ threshold for next
level of structure




Pedagogical Example



1. Synthetic Data

Low-energy data — effective theory.
Invent physical problem: Coulombic atom + short-range potential:
2
H=2 4y
2m

where a
V() =~ + V@)

—

Arbitrary short-range potential.
e Make one up.

e Details irrelevant (secret).



Infrared (large-distance) behavior specified by:

m=1 a=1 (= strongly coupled).

Generate precise low-energy “data” by solving numerically.

Bound state binding energies:

level binding energy level binding energy
1S 1.28711542 6S  0.0155492598
2S5 0.183325753
3S 0.0703755485 10S  0.00534541931

4S  0.0371495726 20S  0.00129205010
55  0.0229268241



Phase shifts computed for r=50 (Coulomb tail).

energy phase shift energy phase shift
10719 —0.000421343353 .03 1.232867297
107 —0.133227246 .07 —0.579619620
.001 —1.319383451 1 —1.156444634
.003 0.900186195 3 —0.106466466
.007 —0.146570028 .7 —1.457426179
.01 —0.654835316 1 1.160634967

(1s|p*|1s) = 69.0. ..



Challenge

Given the large-r behavior, design a simple theory that reproduces the
low-energy data to arbitrarily high precision.



2. Traditional Approach
Model V,(r) by &3(r):

p
Hege = om T Vege(1)

a 3
Veff=—?+c5 (T)

Large r J R Treat as

known. perturbation.



First order perturbation theory =

EaPP — Ercl(l)ul +c |¢cou1(0)}2

nl nl

1 810
— tc—
2n Jrn

One parameter theory: choose c to
match most infrared data.

o MatCh EZOS =>Cc= _0.5963.
® Most IR = most accurate.
e Same c for all levels.
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More Accuracy?

1) Interaction strong = 2" order perturbation theory, but

Z (nlc 53(x)|Im) (mc 53(x)In)
E —E,

m#n

> over k — oo states diverges = UV divergence.



2) Finite-range corrections to short-range V, =

Vi(r) 5 vi(q®) ~vy(0) + 2 V(0) + -

Suggests
V(1) = Vg = c53(r) + dV253(r)

except
(n|v283(r)|n) = 0o

k — oo UV divergence!



Why the infinities?
k — oo behavior of V4 is very bad (and wrong).

Conventional wisdom = give up after 1% order; must use real
potential to go further.



3. Effective Theory

Low-energy theory insensitive to short distance details
= redesign short distance so not singular & “accurate.”

1) Preserve large-r behavior.

2) Introduce UV cutoff to prevent infinities, and exclude
high-momentum states about which ignorant.

3) Add local operators to H.g to mimic effects of states excluded by
cutoff.



UV Cutoff

1 rr. 4r
r q>
cutoff 471 —g?a®/2
— —e (cutoff > g<1/a=A)
q
F.T. erf(r/ \/Ea) 2 x 2
- — f(x) = — “Udt
" erf(x) ) e

=  Analyticatr =0, and 1/r at large r.



Cutoff = errors of &((pa)™). Remove errors order-by-order using local
correction terms (mimics excluded k > 1/a physics):

Vege(1)

—% erf(r/v2a)
+ca®&3(r) «— removes &(pa)? errors
+d, a* V263 (r) + dya* V-83(r)V < removes ¢ (pa)*

—r?/2a?

n+2wn <3 — 53 —
RS O HO R e



Procedure

Focus on S states through ¢ ((pa)*) = need only c and d; terms.

1) Choose an a < important long-range distance scales (eg, atom
size) —want pa small. (Choose a =1 for now.)

2) Tune c, d; to fit IR data— 1 piece of data/coupling. (Use most IR
data to minimize (pa)® errors.)

c = 50(107>)
d; 50(10719)

3) Generate everything else using same c, d;.



Note:
a#0

= V.(r) simple, nonsingular (analytic!) at r = 0.
= Trivial to solve for any c, d;, a (eg, numerically).

— No infinities, because of cutoff.
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Note:

2 phase shifts = all these results!
Errors smaller for smaller Es— (pa)”.

Adding V2§, term = error curve slope steeper by one power of
(pa)? « E.

Corrections stop working for pa~ 1. (Herea =1.)

1% error in E,¢ even though a ~ ry5/4;
Eos accurate to 6 digits.



a Dependence

Errors o< (pa)®

— large a = larger errors

Buta—0=
e infinities
* bad (unphysical) high-energy states
* no values of ¢, d; ... fit data

[ Typically want a ~ true scale of V,(r). ]
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Physics in a
Tune a to point a = a, where errors stop decreasing with decreasing a.

= a, ~ true scale of V(r).

A\ Point where true V, starts
to compete with long-range
potential.

a)t a>a
Errorsoc{(p)n B ¢
(pa.) asa

Here a. ~ 1.



“Running” Couplings

¢ Depend upon number of corrections:

a=1,d1=0 = ¢c=6.9
a=1 = ¢c=64,d,=1.6

* Depend upon a (hence “running”):

a= 10 c= 5.8
3 6.1 ¢ A const.
1 6.9
0.1 12.5
0.01 147.9 ¢ — oo (cancels wrong
: physics at r < a,)



Misconceptions

1) As high-order corrections are added

Vege(r) — true V(r)
Wrong! Infinitely many V.gs: all give same low-energy results,

but totally different high-energy results.

N.B. “True V” may not exist! (Eg, quantum field theory at short
distances, quarks in nucleus, etc.)



trueV ----
Veff with ﬁ(az) —
Veff with ﬁ(a4) —

2

3




2) Just ordinary curve fitting— add more parameters, get better
answers.

Wrong! Highly optimized curve fitting — systematically removes
errors order-by-order in (pa).

Eg) Compare two 2-parameter fits:
1) vary a,c holding d; = 0 = E; s error ~ 1073;

>

2) varyc, d; holding a =1 = E, o error ~ 1076,



4. Improved Operators

Connection between true and effective theories is subtle.

Low-energy spectra, §;(E)s nearly identical.
4 (r) and (1) totally different at small r.

Eg) (n|p*n) forn=1S,2S...:

level (P4) (P4)eff
1S 69 5.9
25 5.50 1.7
3S 1.309 0.4

4S 0.5070 0.17
55 0.24740  0.08
6S 0.138784 0.05

= Complete disagreement even for E,, — 0!



Renorm’n theory = local corrections for p*, as for Heg:

(Bhwue =2 (p*)esr+ = (62D esr+ 1@ (V53X + 0(a%)

Z, v, n from IR data; same for all other states.



Renorm’n theory = local corrections for p*, as for Heg:
Y
(P irue = Z (PHetr + a (83(0))ee+ 1 a(V285(1)err + 0(a*)

Z, v, n from IR data; same for all other states.
208, 158, 10S data = Z=1,y=-96.2, n = —140.6,

level (p*) (PNer  (ZP*+7183 /a4 )err
1S 69 5.9 28
2S 5.50 1.7 5.34
3S 1.309 0.4 1.306

4S 0.5070 0.17 0.5068
55 0.24740  0.08 0.24738
6S 0.138784 0.05 0.138780



True Theory Effective Theory

p2/2m+V(r) «—> p2/2m—aerf()/r+ca253+...

pt — Zpt+y/asi+--

[ Couplings ¢, Z ... depend on a but not on state (universal!) ]




Operator Product Expansion (OPE)
1»btrue(r) = ?(T‘) fd:arweff 52(1')

+ 7m(r)a’ Jd3r¢effv252(r)

+ 2@ forr<a.



Operator Product Expansion (OPE)
7*»btrue(r) = ?(r) fd:;rweff 62(1')

+ 1) fd3T¢effV253(l‘)
+ o forr<a.

Taker=0 = 7¥(0)=—-28and 1n(0)=—-3.6,

level (0) Yeir(0) 7 [ eSS+
1S 1.50 0.53 -3.4
2S5 0.383 0.19 0.369

3S 0.1837 0.09 0.1830
4S5 0.11353  0.06 0.11344
55 0.079005 0.04 0.078986
6S 0.059031 0.03 0.059025



