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Example: QED in Atoms— Ps, H, He...



8. QED Bound States

Top 10 Reasons
to Work on
Something Else




Bound state = nonperturbative + multi-scale.

K ~mv?, P~my, m where v~ a /

=a®mf(K/m,P/m)
=a’m (#+#a+#a"+--+)

(= a®m(#+---) in Coulomb gauge!)



° QED renormalization = perturbation theory.
(Feynman, Schwinger, Tomonaga...)

= Bound state must be analyzed perturbatively:
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+ Rayleigh-Schrodinger Perturbation Th.

= Big problem for He, Li. .. (no exact vy, E,!).



* q expansion of E’s, I’s not so convergent.
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— Due to multi-scales:
In*(K/m). ..



QED renormalization
+
gauge non-invariance
+
relativity
+

nonperturbative bound
state

[ = ToO HARD! ]




Don’t solve bound state
problem directly in
relativistic QFT.




Effective Theory: Nonrelativistic QED System

¢ Pe~ My LM,
= Pair production highly suppressed.
= e number doesn’t fluctuate.
= Don’t need QFT for e.

° p, ~p. = E, much larger:

(E, ~ pf/me ~m?) < (E, ~p, ~m,V)

(= photons ~ instantaneous)

= Remove photons from theory with energy cutoff

E, < Ag<E,

= Don’t need QFT for y.



* y interactions — renormalization correction terms.

* Cutoff in E (not p)
= Corrections local in t but nonlocal in r.

= y interaction — instantaneous potentials V(r), o - pV'(r)....

= QED — nonrelativistic Schrodinger theory:

2

p, ~ mv*>— couple weakly /

= E-dependent 6V (eg, Lamb shift)

2
b;
H= Z m; +V(x;,p;...) + 6H(v. soft ys)



Eg) Nonperturbative Positronium

Calculate O-Ps decay rate in two steps.

1) Define Hamiltonian (= QED) with finite cutoff A built in.

2 4

H® = p——p—3+v+iw
m  4m
Decay

Define V,W by matching T =V +iW + V(E — Hy) "'V + -+ to QED
Feynman diagrams for ee scattering, order-by-order in a and p/A.

. Hill and G.P. Lepage, Phys Rev D62, 111301,2000; hep-ph/000327
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Decay piece:

k- 2 2 /922
(IwWk) = [A+B %} o lk—12/24
m

AO1 + aAD +...) Not real QED behavior but
from matching Born equivalent for low-energy
series for T with QED. e’s, provided A, B correct.
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Note:

Given V,W can solve theory even if completely ignorant of QED,
renormalization, Effective Field Theory.

A=m (or m/2 or 2m)

=No divergences (V analytic at r = 0).

Renormalization built in, automatic.

High-order QED/relativity built in, automatic.

Can solve nonperturbatively in V (eg, numerically).

= Don’t need Rayleigh-Schrodinger perturbation theory.
= Move trivially to many-e analysis (He...).

No lnas in V = perturbation theory for V is more convergent
than for E,,.
= Compute V in (QED) perturbation theory; solve nonperturbatively
inV.
= Schrodinger equation generates In as and resums them
automatically.



2) Solve theory:

a) Diagonalize H(™) (eg, on finite basis set of Gaussians).
= E,s and |y,,)s.

b) Compute

1—‘n - _Z(wn|W|wn)
FA e N2,
B (3, [V2e N2y, )

+

¢) Publish numerical values obtained for T',s.



QED in He

Traditional approach:
Brute force numerical diagonalization of

= EY to 14-17 digits; ¢ to ? digits.

Add QED + relativity using Rayleigh-Schrédinger P.Th. and
numerical 1) Ys:

(ll)l Iil))



Problems:

Hard! Need expert in brute-force numerical analysis and QED.

Numerical accuracy of 1 uncertain and well explored by highly
singular QED/relativity corrections.



Solution:

QED+relativity — potential Vg(r...)
(from Ps, H analyses).

Replace V,, in brute-force evaluation by V.

= Brute force numerics yields E, that includes QED to 14-17 digits.
(= finished; no Step 2!)



Numerical Analysis Bonus

° —a/r—>oo0asr—0.
= Cusp iny(r)atr=0.
= Expansions (eg, on basis set) converge more slowly.

* Gaussian cutoff in V4(r) = analytic atr =0.
= (r =0) analytic.
= Expansions converge exponentially faster.



Eg) Lamb Shift in H, He

e N = # basis functions < co
= effective cutoff Ay.

e Lamb shift

Aﬁ;w ~ YT

J Ckyp (k)

:

2

~

where ¢y (k) — for k large




o P~ e K2V for k large

A2 /A2
= [erroroce Ay/A ]

= Errors exponentially suppressed.



H(1S): Lamb Shift

Lamb Shift for H: 1S
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He(1!S): Binding Energy

Frac. Error
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He(1'S): QED/Relativistic Corrections

(63,.(r)) for He: 135,
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Note:

° ComPUting (wcoull53(rl)|wcoul) for He USing 7~»beff-
o .y ~ 0,1y) totally different from 1 o(r; & 0,75).

* Renormalization = c¢,d such that

(Y eoul8° (M) com) = (Wegrl(c — dV?/A*) 83, (1) Ihess)

(N.B. ¢, d from H analysis — simple!)



All-Orders Derivation: Short-Range Interactions



9. Short-Range Interactions

All interactions short-range = model by

2
g(/\)zw’f ia+v_ P
" 2m

~ 8 ) — 8L o2 vt — 8t T — -
< () = [TV} - ey Ty Ty
h © 3
_m(w P) = (Why not g/A??)
For example:

¢ BEC atoms
* N-N interactions for p < 100 MeV.



Perturbation Theory: 2-Body

Leading order in 1/A (c-of-m frame):

p
r—— 1 _ —m
— E-L -k yje p+y?
y?=-—mE —ie /
p q

2
>< M bp < M6lg < )
Am
-p —q \

UV cutoff separable!



All Orders in g

: i(i%)
= TE = >O<

—
| [ &)
N
Q|3
[\S)

k2 + y?



IR vs UV

JAk2dk;=JAde=A_Y2JAi
0 k2+y2 |, k2 + y? o kK242

A ZJOO dk ZJ‘” dk
=A- Y
R

/\J /—J

IR term = UVterm: y <A =
YT
= odd power of y.
e _ Y_ N
A2 3A4

= even powers of y2/A2.



Key Theorem (for later)
Prove by induction:

A 1 k2\" 7?2 r UV piece:
J kzdkﬁ (—2) =A|:C0+C1—+C2—+"':| = evenin}/
0 k*+y2 \ A = analytic in E.

= oddiny

ro (_YZ ) n IR piece: k*" — (—y)%"
= non-analytic.



Final result (where y = v/—mE):

T(E)! = L

XXy
Am Lm e y? N ym
4m2g  4m? A? 2
_ Am (1 ) mr ., yz
T 4n?
Remove cutoff dependence \ 4)uphng to tune away

by tuning g — g(A); cutoff dependence;
= physical! = unphysical but suppressed.




Note:
T(E)™' =(m/8n)(1/a—y)+--- where

1 2A(1 )
—==|=-+1
a 7w \g

defines physical “scattering length” a.

= Cutoff independent physics with

T
A l=— -1
gA) 2ah



®* (1/g+1)>0 = single bound state with

2A (1

* Unphysical (and uninteresting) unless ypq < A (ie, g~ —1).
(= o(Am(y},/A?)) only suppressed by y,4/A relative to leading order.)

e “Natural” size of ypq is O(A); 7pg € A = tuning (BEC atoms) or
luck (deuteron).



All Orders in 1/A" — S-Waves

Include finite-size corrections to contact term:

4 2
X = SR8 < M6 < Mf(a?/AY)

= still separable with

o (Y
f@*/A) =1 +;dn (F)

= tuneable couplings: g, d;, d, ...



Note:

* Vertex p,q dependence:
2

AR/ ADf(@? /A =1+ (p qz)
a2 7 A2

4 4
o[ P74 p . p
(20 (502 o

* But p? = ¢> = —y? on energy shell = p?q®> =p* = ¢* in correction

terms for W,

= W'V (YPTy) = (pTV23P)? (“Redundant” operator)

= [ One coupling, d,, enough to tune entire 1/A%" correction. ]




Final result (where y = v —mE):

TE)™ = L >O<2
X (X)
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Renormalized:

Am (1 2d, g removes A dependence.
—1=_2(_ 1+—+d§+---) = Physical.
4n= \ g 3 N.B. Operator mixing.

Am [ y? ) 1

1 3d, d&*
+2d, (E +14+ 24 _1) 4. ) d, removes A dependence.

2 5 = Now physical!
2
Am Y_2 e )4 d, fixes (y2/A?)" term.
472 \ A2 = Physical.
my IR contribution

_ = cutoff independent
8 = physical.



Note:

Each d, added and tuned = errors reduced by y2/A2.

= If leading Am term tuned/accidently small, unlikely (y2/A%)"
corrections have same suppression (although still relatively small).

= Effective range (t; term) can give more reliable indicator of scale of
new physics than scattering length.

No (y2/A?)" corrections to IR term —my /8.
= Good: no coupling constants to tune away A dependence.

Exercise: Show there is still only one physical bound state.

[ Solution to all orders in y2/A? and g! ]

= Universal behavior for all short-range potentials.
= Effective range theory (Bethe, Schwinger, etc.).



Moving Frame: Galilean Invariance
1 1
EP +p EP +q

4 2
> ~ 7 AN 0p < ) 6(g < MG/ A

;P—p ;P—q \
Gal. Inv. = Independent of P.

1 -m
- ®/21p?  (P2—p?  n2 1 o2
E— =52 2B ptty

2m 2m

1
Ep_p /
p2
7=-m (E——)

4m

= T(E)"! same but with y —



