How to Renormalize the Schrödinger Equation III

Peter Lepage

Cornell University

February 2006

Example: QED in Atoms — Ps, H, He...

8. QED Bound States

Top 10 Reasons to Work on Something Else • Bound state = nonperturbative + multi-scale.

$$K \sim mv^2$$
, $P \sim mv$, m where $v \approx \alpha$

$$= \alpha^3 m f(K/m, P/m)$$

$$=\alpha^3 m \left(\#+\#\alpha+\#\alpha^2+\cdots\right)$$

$$(= \alpha^5 m (\# + \cdots) \text{ in Coulomb gauge!})$$

- QED renormalization ⇒ perturbation theory.
 (Feynman, Schwinger, Tomonaga...)
- ⇒ Bound state must be analyzed perturbatively:

Eg)
$$H = H_0 + \delta H_{\rm QED}$$
 with $H_0 = \frac{p^2}{2m} - \frac{\alpha}{r}$
$$\Rightarrow E_0 = \frac{-\alpha^2 m}{2} \quad \psi_0 = \frac{{\rm e}^{-r\alpha m}}{\sqrt{\pi}} \quad \delta H_{\rm QED} = {\rm Feyn.~Diags.}$$

+ Rayleigh-Schrödinger Perturbation Th.

 \Rightarrow Big problem for He, Li... (no exact ψ_0, E_0 !).

• α expansion of E's, Γ 's not so convergent.

 \rightarrow Due to multi-scales: $\ln^2(K/m)...$

QED renormalization gauge non-invariance relativity nonperturbative bound state

 \Rightarrow Too Hard!

Don't solve bound state problem directly in relativistic QFT.

Effective Theory: Nonrelativistic QED System

- $p_e \sim m_e v \ll m_e$
 - ⇒ Pair production highly suppressed.
 - ⇒ e number doesn't fluctuate.
 - \Rightarrow Don't need QFT for e.
- $p_{\gamma} \sim p_e \Rightarrow E_{\gamma}$ much larger:

$$(E_e \sim p_e^2/m_e \sim m_e v^2) \ll (E_\gamma \sim p_\gamma \sim m_e v)$$

 $(\Rightarrow \text{ photons } \approx \text{ instantaneous})$

⇒ Remove photons from theory with energy cutoff

$$\left[E_e \ll \Lambda_E < E_{\gamma} \right]$$

 \Rightarrow Don't need QFT for γ .

- γ interactions \rightarrow renormalization correction terms.
- Cutoff in *E* (not *p*)
 - \Rightarrow Corrections local in t but nonlocal in r.
 - $\Rightarrow \gamma$ interaction \rightarrow instantaneous potentials $V(\mathbf{r}), \sigma \cdot pV'(\mathbf{r}) \dots$
- \Rightarrow QED \rightarrow nonrelativistic Schrödinger theory:

$$H = \sum_{i} \frac{p_{i}^{2}}{2m_{i}} + V(\mathbf{r}_{j}, \mathbf{p}_{j}...) + \delta H(v. \text{ soft } \gamma s)$$

$$p_{\gamma} \sim mv^{2} - \text{couple weakly}$$

$$\Rightarrow E\text{-dependent } \delta V \text{ (eg. Lamb shift)}$$

Eg) Nonperturbative Positronium

Calculate O-Ps decay rate in two steps.

1) Define Hamiltonian (\equiv QED) with finite cutoff Λ built in.

$$H^{(\Lambda)} = \frac{\mathbf{p}^2}{m} - \frac{\mathbf{p}^4}{4m^3} + V + iW$$
Decay

Define V,W by matching $T = V + iW + V(E - H_0)^{-1}V + \cdots$ to QED Feynman diagrams for $e\overline{e}$ scattering, order-by-order in α and p/Λ .

R. Hill and G.P. Lepage, Phys Rev D62, 111301,2000; hep-ph/000327.

$$\langle \mathbf{l}|V|\mathbf{k}\rangle = -\frac{4\pi\alpha}{|\mathbf{k}-\mathbf{l}|^2} e^{-|\mathbf{k}-\mathbf{l}|^2/2\Lambda^2} \leftarrow \mathcal{O}(\alpha^2 m)$$

$$\mathcal{O}(\alpha^4 m) \rightarrow + \left[\frac{\pi \alpha}{m^2} \frac{(l^2 - k^2)^2}{|\mathbf{k} - \mathbf{l}|^4} - \frac{4\pi \alpha}{2\Lambda^2} + \cdots \right] e^{-|\mathbf{k} - \mathbf{l}|^2/2\Lambda^2}$$

$$\mathcal{O}(\alpha^5 m) \to + \frac{8\pi\alpha}{3\pi m^2} e^{-|\mathbf{k}-\mathbf{l}|^2/2\Lambda^2} \langle \mathbf{p} \cdot (H-E) \ln(\Lambda/(H-E)) \cdot \mathbf{p} \rangle + \cdots$$

(Lamb Shift)

$$+\frac{\alpha^2}{m^2} \left[\frac{14}{3} \ln(|\mathbf{l} - \mathbf{k}|/m) - \frac{74}{15} - \frac{16}{3} \ln 2 + D \right] e^{-|\mathbf{k} - \mathbf{l}|^2/2\Lambda^2}$$

$$\rightarrow$$
 Match $e\overline{e} \rightarrow e\overline{e}$

$$D = -\sqrt{\pi} \left[\frac{-121}{36} \frac{\Lambda}{m} - 9 \frac{m}{\Lambda} + \frac{5}{3} \left(\frac{m}{\Lambda} \right)^2 \right] - \frac{16}{3} \ln \frac{\Lambda}{m}$$

Decay piece:

$$\langle \mathbf{l}|W|\mathbf{k}\rangle = \left[A + B \frac{|\mathbf{k} - \mathbf{l}|^2}{m^2}\right] e^{-|\mathbf{k} - \mathbf{l}|^2/2\Lambda^2}$$
Not real OEI

 $A^{(0)}(1 + \alpha A^{(1)} + \cdots)$ from matching Born series for *T* with QED.

Not real QED behavior but equivalent for low-energy *e*'s, provided *A*, *B* correct.

$$\Rightarrow W(\mathbf{r}) \propto \left[A - B \frac{\nabla^2}{m^2} \right] \delta_{1/\Lambda}^3(\mathbf{r})$$

$$\begin{split} A^{(1)} &= a_0 + \frac{1}{\sqrt{\pi}} \left[\frac{4}{3} \left(\frac{\Lambda}{m} \right) + 3 \left(\frac{\Lambda}{m} \right)^{-1} \right] + \mathcal{O} \left(\frac{\lambda}{m} \right), \\ A^{(2)} &= b_0 - 2a_1 + \frac{1}{\sqrt{\pi}} \left[\frac{4}{3} \left(\frac{\Lambda}{m} \right) + 3 \left(\frac{\Lambda}{m} \right)^{-1} \right] a_0 + \frac{1}{3} \ln \frac{\Lambda}{m} \\ &+ \frac{1}{\pi \sqrt{\pi}} \left\{ \left[-\frac{44\sqrt{6}}{81} \left(\gamma - \ln \frac{2\Lambda^2}{3m^2} - 2 \right) \right] \left(\frac{\Lambda}{m} \right)^3 \right. \\ &+ \left[\frac{7}{3} \ln \frac{\Lambda}{m} + \frac{56\sqrt{6}}{27} \left(\gamma - \ln \frac{2\Lambda^2}{3m^2} - \frac{2}{7} \right) - \frac{37}{15} + \frac{1}{3} \ln 2 - \frac{7}{6} \gamma \right] \left(\frac{\Lambda}{m} \right) \right\} \\ &+ \left(\frac{83}{24\pi} - \frac{11\sqrt{3}}{12\pi} + \frac{11}{48} \right) \left(\frac{\Lambda}{m} \right)^2 \\ &+ \left(\frac{25}{2\pi} - \frac{4\sqrt{3}}{3\pi} + \frac{17}{18} - \frac{5}{6} \ln 2 - \frac{1}{3} \gamma + \frac{2}{\sqrt{\pi}} \kappa \right) \\ &+ \left(\frac{49}{6\pi} - \frac{3\sqrt{3}}{2\pi} - \frac{1}{4} \right) \left(\frac{\Lambda}{m} \right)^{-2} + \mathcal{O} \left(\frac{\lambda}{m} \right). \end{split}$$

Note:

- Given *V*,*W* can solve theory even if completely ignorant of QED, renormalization, Effective Field Theory.
 - \wedge $\Lambda = m$ (or m/2 or 2m) ⇒No divergences (V analytic at r = 0).
 - ♦ Renormalization built in, automatic.
 - ♦ High-order QED/relativity built in, automatic.
- Can solve nonperturbatively in *V* (eg, numerically).
 - ⇒ Don't need Rayleigh-Schrödinger perturbation theory.
 - \Rightarrow Move trivially to many-*e* analysis (He...).
- No $\ln \alpha$ s in $V \Rightarrow$ perturbation theory for V is more convergent than for E_n .
 - ⇒ Compute V in (QED) perturbation theory; solve nonperturbatively in V.
 - \Rightarrow Schrödinger equation generates $\ln \alpha s$ and resums them automatically.

- 2) Solve theory:
- a) Diagonalize $H^{((\Lambda))}$ (eg, on finite basis set of Gaussians). $\Rightarrow E_n s$ and $|\psi_n\rangle s$.
- b) Compute

$$\begin{split} \Gamma_n &= -2 \langle \psi_n | W | \psi_n \rangle \\ &+ \overline{A} \langle \psi_n | \mathrm{e}^{-r^2 \Lambda^2/2} | \psi_n \rangle \\ &- \overline{B} \langle \psi_n | \nabla^2 \mathrm{e}^{-r^2 \Lambda^2/2} | \psi_n \rangle \\ &+ \cdots . \end{split}$$

c) Publish numerical values obtained for Γ_n s.

$$\Rightarrow (\Gamma_{1S} = 7.039967(10) \mu s^{-1}.)$$

QED in He

Traditional approach:

· Brute force numerical diagonalization of

$$H_0 = \frac{p_1^2}{2m} + \frac{p_2^2}{2m} - \frac{2\alpha}{r_1} - \frac{2\alpha}{r_2} + \frac{\alpha}{|r_1 - r^2|}$$

 $\Rightarrow E_n^0$ to 14–17 digits; ψ_n^0 to ? digits.

• Add QED + relativity using Rayleigh-Schrödinger P.Th. and numerical ψ_n^0 s:

$$\delta E_n = \langle \psi_n^0 | \frac{-p_1^4}{8m^3} | \psi_n^0 \rangle + \cdots$$

Problems:

- Hard! Need expert in brute-force numerical analysis and QED.
- Numerical accuracy of ψ_n^0 uncertain and well explored by highly singular QED/relativity corrections.

Solution:

- QED+relativity \rightarrow potential $V_{\text{eff}}(r...)$ (from Ps, H analyses).
- Replace V_{coul} in brute-force evaluation by V_{eff} .
- \Rightarrow Brute force numerics yields E_n that includes QED to 14-17 digits. (\Rightarrow finished; no Step 2!)

Numerical Analysis Bonus

- $-\alpha/r \to \infty$ as $r \to 0$.
 - \Rightarrow Cusp in $\psi(r)$ at r = 0.
 - ⇒ Expansions (eg, on basis set) converge more slowly.
- Gaussian cutoff in $V_{\text{eff}}(r) \Rightarrow$ analytic at r = 0.
 - $\Rightarrow \psi(r=0)$ analytic.
 - \Rightarrow Expansions converge exponentially faster.

Eg) Lamb Shift in H, He

- N = # basis functions < ∞
 ⇒ effective cutoff Λ_N.
- Lamb shift

$$\psi^{\dagger} \xrightarrow{\qquad \qquad } \psi \quad \sim \quad \psi^{\dagger} \delta^{3}(r) \psi$$

$$\sim \left| \int^{\Lambda_{N}} d^{3}k \psi(k) \right|^{2} \quad \text{where } \psi(k) \to \frac{1}{k^{4}} \text{ for } k \text{ large}$$

$$\Rightarrow \quad \text{error } \propto 1/\Lambda_{N}^{2}$$

• $\psi_{\rm eff} \sim {\rm e}^{-k^2/2\Lambda^2}$ for k large

$$\Rightarrow$$
 error $\propto e^{-\Lambda_N^2/\Lambda^2}$

 \Rightarrow Errors exponentially suppressed.

H(1S): Lamb Shift

$He(1^1S)$: Binding Energy

$He(1^1S)$: QED/Relativistic Corrections

Note:

- Computing $\langle \psi_{\rm coul} | \delta^3(r_1) | \psi_{\rm coul} \rangle$ for He using $\psi_{\rm eff}$.
- $\psi_{\rm eff}(r_1 \approx 0, r_2)$ totally different from $\psi_{\rm coul}(r_1 \approx 0, r_2)$.
- Renormalization $\Rightarrow c,d$ such that

$$\langle \psi_{\rm coul} | \delta^3(r_1) | \psi_{\rm coul} \rangle = \langle \psi_{\rm eff} | (c - d \nabla^2 / \Lambda^2) \, \delta^3_{1/\Lambda}(r_1) | \psi_{\rm eff} \rangle$$

(N.B. *c*, *d* from H analysis — simple!)

All-Orders Derivation: Short-Range Interactions

9. Short-Range Interactions

All interactions short-range \Rightarrow model by

$$\mathcal{L}^{(\Lambda)} = \psi^{\dagger} \left(i \partial_t + \frac{\nabla^2}{2m} \right) \psi$$

$$- \frac{g}{\Lambda m} \left(\psi^{\dagger} \psi \right)^2 - \frac{g d}{\Lambda^3 m} \left\{ \psi^{\dagger} \nabla^2 \psi, \psi^{\dagger} \psi \right\} - \frac{g_p}{\Lambda^3 m} \psi^{\dagger} \nabla \psi \cdot \psi^{\dagger} \nabla \psi - \cdots$$

$$- \frac{h}{\Lambda^4 m} \left(\psi^{\dagger} \psi \right)^3 - \cdots \qquad (Why not g/\Lambda^2?)$$

For example:

- BEC atoms
- *N-N* interactions for p < 100 MeV.

. . .

Perturbation Theory: 2-Body

Leading order in $1/\Lambda$ (c-of-m frame):

$$p q$$
 $-p -q$

$$\frac{1}{E - \frac{p^2}{2m} - \frac{p^2}{2m} + i\epsilon} = \frac{-m}{p^2 + \gamma^2}$$

$$\gamma^2 \equiv -mE - i\epsilon$$

$$\frac{4\pi^2 g}{\Lambda m} \, \theta(p < \Lambda) \theta(q < \Lambda)$$

UV cutoff separable!

All Orders in g

$$T(E) = \times + \times \times + \times \times + \cdots$$

$$= \times \sum_{n=0}^{\infty} \left(\times \times \right)^{n}$$

$$\Rightarrow T(E)^{-1} = \frac{1}{\left(\times \right)^2} - \frac{m}{4\pi^2} \int_0^{\Lambda} k^2 dk \frac{1}{k^2 + \gamma^2}$$

IR vs UV

$$\int_0^{\Lambda} k^2 dk \, \frac{1}{k^2 + \gamma^2} = \int_0^{\Lambda} dk \, \frac{(k^2 + \gamma^2) - \gamma^2}{k^2 + \gamma^2} = \Lambda - \gamma^2 \int_0^{\Lambda} \frac{dk}{k^2 + \gamma^2}$$

$$= \Lambda - \gamma^2 \int_0^\infty \frac{dk}{k^2 + \gamma^2} + \gamma^2 \int_\Lambda^\infty \frac{dk}{k^2 + \gamma^2}$$

IR term \Rightarrow

$$-\frac{\gamma\pi}{2}$$

 \Rightarrow odd power of γ .

$$\gamma^2 \int_{\Lambda}^{\infty} \frac{dk}{k^2} \sum_{n=0}^{\infty} \left(\frac{-\gamma^2}{k^2} \right)^n$$
$$= \Lambda \left[\frac{\gamma^2}{\Lambda^2} - \frac{\gamma^4}{3\Lambda^4} + \cdots \right]$$

UV term: $\gamma \ll \Lambda \Rightarrow$

 \Rightarrow even powers of γ^2/Λ^2 .

Key Theorem (for later)

Prove by induction:

$$\int_0^{\Lambda} k^2 dk \, \frac{1}{k^2 + \gamma^2} \left(\frac{k^2}{\Lambda^2} \right)^n = \Lambda \left[c_0 + c_1 \frac{\gamma^2}{\Lambda^2} + c_2 \frac{\gamma^4}{\Lambda^4} + \cdots \right] \quad \begin{array}{l} \text{UV piece:} \\ \Rightarrow \text{ even in } \gamma \\ \Rightarrow \text{ analytic in } E. \end{array}$$

$$-\frac{\gamma\pi}{2} \left(\frac{-\gamma^2}{\Lambda^2}\right)^n \qquad \begin{array}{l} \text{IR piece: } k^{2n} \to (-\gamma)^{2n} \\ \Rightarrow \text{ odd in } \gamma \\ \Rightarrow \text{ non-analytic.} \end{array}$$

Final result (where $\gamma = \sqrt{-mE}$):

$$T(E)^{-1} = \frac{1}{\sqrt{1 + \frac{\gamma^2}{4\pi^2}}} - \frac{1}{\sqrt{1 + \frac{\gamma^2}{\Lambda^2} + \cdots}} - \frac{\gamma \pi}{2}$$

$$= \frac{\Lambda m}{4\pi^2 g} + \frac{m}{4\pi^2} \left[\Lambda \left(1 + \frac{\gamma^2}{\Lambda^2} + \cdots \right) - \frac{\gamma \pi}{2} \right]$$

$$= \frac{\Lambda m}{4\pi^2} \left(\frac{1}{g} + 1 \right) - \frac{m\gamma}{8\pi} + \mathcal{O}\left(\frac{\gamma^2}{\Lambda^2} \Lambda m \right)$$

Remove cutoff dependence by tuning $g \to g(\Lambda)$;

No coupling to tune away cutoff dependence;

⇒ unphysical but suppressed.

Note:

•
$$T(E)^{-1} = (m/8\pi)(1/a - \gamma) + \cdots$$
 where

$$\frac{1}{a} = \frac{2\Lambda}{\pi} \left(\frac{1}{g} + 1 \right)$$

defines physical "scattering length" a.

⇒ Cutoff independent physics with

$$g(\Lambda)^{-1} = \frac{\pi}{2a\Lambda} - 1$$

• $(1/g+1) > 0 \Rightarrow$ single bound state with

$$\gamma_{\rm bd} \equiv \sqrt{-mE_{\rm bd}} = \frac{2\Lambda}{\pi} \left(\frac{1}{g} + 1\right).$$

- Unphysical (and uninteresting) unless $\gamma_{bd} \ll \Lambda$ (ie, $g \approx -1$). ($\Rightarrow \mathscr{O}(\Lambda m(\gamma_{bd}^2/\Lambda^2))$ only suppressed by γ_{bd}/Λ relative to leading order.)
- "Natural" size of γ_{bd} is $\mathcal{O}(\Lambda)$; $\gamma_{bd} \ll \Lambda \Rightarrow$ tuning (BEC atoms) or luck (deuteron).

All Orders in $1/\Lambda^n$ —S-Waves

Include finite-size corrections to contact term:

$$\rightarrow \frac{4\pi^2 g}{\Lambda m} f(p^2/\Lambda^2) \theta(p < \Lambda) \theta(q < \Lambda) f(q^2/\Lambda^2)$$

⇒ still separable with

$$f(p^2/\Lambda^2) \equiv 1 + \sum_{n=1}^{\infty} d_n \left(\frac{p^2}{\Lambda^2}\right)^n$$

 \Rightarrow tuneable couplings: $g, d_1, d_2 \dots$

Note:

• Vertex *p*,*q* dependence:

$$f(p^{2}/\Lambda^{2})f(q^{2}/\Lambda^{2}) = 1 + d_{1}\left(\frac{p^{2}}{\Lambda^{2}} + \frac{q^{2}}{\Lambda^{2}}\right) + d_{1}\left(\frac{p^{2}q^{2}}{\Lambda^{4}}\right) + d_{2}\left(\frac{p^{4}}{\Lambda^{4}} + \frac{p^{4}}{\Lambda^{4}}\right) + \cdots$$

• But $p^2 = q^2 = -\gamma^2$ on energy shell $\Rightarrow p^2q^2 \equiv p^4 \equiv q^4$ in correction terms for $\mathcal{L}^{(\Lambda)}$.

$$\Rightarrow \qquad (\psi^{\dagger} \nabla^{4} \psi)(\psi^{\dagger} \psi) \equiv (\psi^{\dagger} \nabla^{2} \psi)^{2}. \quad \text{("Redundant" operator)}$$

 \Rightarrow One coupling, d_n , enough to tune entire $1/\Lambda^{2n}$ correction.

Final result (where $\gamma = \sqrt{-mE}$):

$$T(E)^{-1} = \frac{1}{\left(\times \right)^2}$$

$$= \frac{1}{f(p^2/\Lambda^2)f(q^2/\Lambda^2)} \left\{ \frac{\Lambda m}{4\pi^2 g} + \frac{m}{4\pi^2} \int_0^{\Lambda} k^2 dk \frac{f^2(k^2/\Lambda^2)}{k^2 + \gamma^2} \right\}$$

$$\frac{m}{4\pi^2} \left[\Lambda \left(c_0 + c_1 \frac{\gamma^2}{\Lambda^2} + \cdots \right) - \frac{m\gamma}{8\pi} f^2 (-\gamma^2/\Lambda^2) \right]$$

$$\stackrel{q^2,k^2\to-\gamma^2}{\longrightarrow} \frac{\Lambda m}{4\pi^2} \left(\frac{1}{g} + t_0 + t_1 \frac{\gamma^2}{\Lambda^2} + t_2 \frac{\gamma^4}{\Lambda^4} + \cdots \right) - \frac{m\gamma}{8\pi}$$

Renormalized:

$$T^{-1} = \frac{\Lambda m}{4\pi^2} \left(\frac{1}{g} + 1 + \frac{2d_1}{3} + d_1^2 + \dots \right)$$

$$+ \frac{\Lambda m}{4\pi^2} \left(\frac{\gamma^2}{\Lambda^2}\right) \left(d_1^2 - 2d_1 - \frac{1}{3} + \frac{1}{2}d_1\left(\frac{1}{g} + 1 + \frac{3d_1}{2} + \frac{d_1^2}{5}\right) + \cdots\right) \xrightarrow{d_1 \text{ removes } \Lambda \text{ dependence.}} \Rightarrow \text{Now physical!}$$

$$+\frac{\Lambda m}{4\pi^2}\left(\frac{\gamma^2}{\Lambda^2}\right)^2\left(\quad\cdots\quad\right)+\cdots$$

 d_n fixes $(\gamma^2/\Lambda^2)^n$ term.

⇒ Physical.

$$-\frac{m\gamma}{8\pi}$$

IR contribution

⇒ cutoff independent

 \Rightarrow physical.

Note:

- Each d_n added and tuned \Rightarrow errors reduced by γ^2/Λ^2 .
 - \Rightarrow If leading Λ*m* term tuned/accidently small, unlikely $(\gamma^2/\Lambda^2)^n$ corrections have same suppression (although still relatively small).
 - ⇒ Effective range (*t*₁ term) can give more reliable indicator of scale of new physics than scattering length.
- No $(\gamma^2/\Lambda^2)^n$ corrections to IR term $-m\gamma/8\pi$.
 - \Rightarrow Good: no coupling constants to tune away Λ dependence.
- Exercise: Show there is still only one *physical* bound state.
- Solution to all orders in γ^2/Λ^2 and g!
 - \Rightarrow Universal behavior for *all* short-range potentials.
 - ⇒ Effective range theory (Bethe, Schwinger, etc.).

Moving Frame: Galilean Invariance

$$\frac{1}{2}\mathbf{P} + \mathbf{p}$$

$$\frac{1}{2}\mathbf{P} + \mathbf{q}$$

$$\rightarrow \frac{4\pi^2 g}{\Lambda m} f(p^2/\Lambda^2) \,\theta(p < \Lambda) \,\theta(q < \Lambda) f(q^2/\Lambda^2)$$

$$\frac{1}{2}\mathbf{P} - \mathbf{q}$$

$$\frac{1}{2}\mathbf{P} - \mathbf{q}$$
Gal. Inv. \Rightarrow Independent of \mathbf{P} .

$$\frac{\frac{1}{2}\mathbf{P} + \mathbf{p}}{\frac{1}{2}\mathbf{P} - \mathbf{p}}$$

$$\frac{1}{E - \frac{(\mathbf{P}/2 + \mathbf{p})^2}{2m} - \frac{(\mathbf{P}/2 - \mathbf{p})^2}{2m}} = \frac{-m}{p^2 + \tilde{\gamma}^2}$$

$$\tilde{\gamma}^2 \equiv -m\left(E - \frac{P^2}{4m}\right)$$

 $\Rightarrow T(E)^{-1}$ same but with $\gamma \to \tilde{\gamma}$