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Abstract. We report on our recent progress in the generation of resonant behavior in unitarized
meson-meson scattering amplitudes obtained from Chiral Perturbation Theory. These amplitudes
provide simultaneously a remarkable description of the resonance region up to 1.2 GeV as well as
the low energy region, since they respect the chiral symmetry expansion. By studying the position
of the poles in these amplitudes it is possible to determine the mass and width of the associated
resonances, as well as to get a hint on possible classification schemes, that could be of interest for
the spectroscopy of the scalar sector.

THE LIGHT MESON PUZZLE

In this work we review our recent progress in determining theposition of the poles
[1] that appear associated to resonant behavior in meson-meson scattering amplitudes,
obtained from unitarized one-loop Chiral Perturbation Theory [2]. This apparently for-
mal interest is motivated by the spectroscopy of light mesons, whose present status is
somewhat controversial. Poles in the second Riemann sheet of partial wave scattering
amplitudes are of relevance because when they are close to the real, physical values of
the center of mass energy

√
s, we can neglect all other terms in the partial wave and

simply write

t(s) =
RR

s−spole
=

RR

s− (Re
√

spole)2− (Im
√

spole)2− i 2Re
√

spole Im
√

spole
(1)

whereRR would be some real residue that can be calculated but is irrelevant for us here.
Furthermore, if by “close to the real axis” we mean that Im

√
spole≪Re

√
spole, then, we

can approximate:
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s− (Re
√
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s−M2
R+ iMRΓR

(2)

where in order to write our equation in the familiar Breit-Wigner form, in the last step we
have identified

√
spole≃ MR− iΓR/2. Breit-Wigner (BW) resonances yield the familiar

and experimentally distinct resonant shape in the cross section and its associated fast
phase movement, which increases byπ in a very small energy range. The quantum
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numbers of the resonances correspond to those of the partialwave where the pole is
sitting.

However, the farther away from the real axis the poles are, the lousier becomes the
connection with resonance parameters. Let us remark that inorder to have a BW shape,
it is essential for the pole to be near the real axis, or more quantitativelyMR ≫ ΓR.
This allows us to neglect all other terms in the amplitude as well as terms of order
Γ2

R/M2
R. Intuitively, the familiar resonances that are clearly seen or detected are quasi

bound states whose decay time is large (their width is small)compared with their rest
energy (their mass). Of course, between a nice BW resonant shape and the continuum,
one could think of all intermediate situations, which, naively correspond to changing
the pole position from the vicinity of the real axis to have aninfinite imaginary part.
In other words, starting from narrow resonances and moving the pole to−i ∞, we get
broader structures, and finally, the continuum.

In particular, broad resonant structures seem to occur in the scalar channels in meson-
meson scattering, where in the last decade there has been a renewed interest [3, 4] on
the longstanding controversy about the existence of a broadscalar-isoscalar resonance
in the low energy region: the so calledσ , or f0(600) in the latest version of the Particle
Data Group (PDG) Review [5]. Its experimental evidence onlyfrom ππ scattering is
rather confusing, since it definitely does not display a Breit-Wigner shape, although
many groups have been able to identify an associated pole in the amplitude, but deep in
the complex plane A similar or even more confusing situationoccurs inπK scattering,
where another pole, theκ , has been suggested by many groups [6, 7], but again there is
no trace of a BW shape in the scattering. For an compilation ofσ andκ poles see the
nice overview in [8].

Let us remark that meson-meson scattering data [9] are hard to obtain. As a matter of
fact the problem is that they have been extracted from reactions like meson-N →meson-
meson-N, but with assumptions like a factorization of the four mesonamplitude, or that
only one meson is exchanged and that it is more or less on shell, etc... All these approx-
imations introduce large systematic errors. There are, however, other sources of infor-
mation on meson-meson interactions like, for instance, thevery precise determination
of a combination ofππ phase shifts fromKl4 decays [10]. At higher energies the decays
of even heavier particles can be also used to study the previously mentioned and other
scalar resonances like thef0(980) or thea0(980). For instance, very recently, results
from charm decays [11], seem to find both theσ andκ poles in reasonable agreement
with the groups mentioned above, but the controversy about their existence still lingers
on.

Meson spectroscopy aims at classifying the bound states of QCD and at identifying
their nature, that is, what are they made of. Starting with the scalar-isoscalar sector, its
relevance is twofold: First, one of the most interesting features of QCD is its non-abelian
nature, which implies that the carriers of the strong force,the gluons, interact among
themselves, contrary to what happens with photons in QED. A possible consequence
of this fact is the existence of bound states of gluons, or glueballs, which will certainly
be isoscalars. In particular, the lightest ones are expected to be also scalars. Naively,
once all the members of quark multiplets are identified in thescalar-isoscalar sector,
what remains, if any, are good candidates for glueballs. Of course, the whole picture is
much more messy due to mixing phenomena, so that the resonances we actually see are
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a superposition of different kind of states. Second, it is also understood that QCD has
an spontaneous breaking of the chiral symmetry since its vacuum is not invariant under
chiral transformations. The study of the scalar-isoscalarsector is relevant to understand
the QCD vacuum, which has precisely those quantum numbers.

Nevertheless, we should not forget the other channels, since we can find there the
other members of the multiplets, since all the channels are related by the chiral SU(3)
symmetry of QCD. We cannot simply add BW resonances to different channels without
carefully taking into account this symmetry. Concerning vector channels, there are clear
BW resonances like theρ(770) in ππ scattering or theK∗(892) in πK scattering,
that the meson spectroscopy community identify withqq̄ states. These are so clearly
resonant that “vector meson dominance” is basically enoughto describe the bulk of
meson interactions.

POLES FROM CHIRAL SYMMETRY AND UNITARITY

The interest of our work in the context of meson spectroscopyis that we have been able
to generatethe resonant behavior present in meson-meson scattering. Our amplitudes
[2] have been obtained by unitarizing the one-loop amplitudes obtained from Chiral
Perturbation Theory (ChPT [12]), which is the most general effective Lagrangian built
of pions, kaons and etas, that respects the chiral symmetry constraints of QCD. However,
since the ChPT amplitudes behave as polynomials at high energy, they violate partial
wave unitarity, which is imposed with unitarization methods: in our case, the Inverse
Amplitude Method (IAM) [13, 4]. Note thatthe resonances are not included explicitly.

Part of this program had been first been carried out for partial waves in the elastic
region [13, 4], for which a simple single channel approach could be used, finding the
ρ and σ poles in ππ scattering and that ofK∗ in πK → πK. For coupled channel
processes, anapproximateform of this approach had already been shown [7] to yield a
remarkable description of the whole meson-meson scattering data up to 1.2 GeV. When
these partial waves were continued to the second Riemann sheet, several poles were
found, corresponding to theρ , K∗, f0, a0, σ andκ resonances ( note that theκ pole could
have also been obtained in the elastic single channel formalism ). The approximations
were needed because at that time not all the ChPT meson-mesonamplitudes were known
to one-loop. Hence, in [7] only the leading order and the dominant s-channel loops
were considered in the calculation, neglecting crossed andtadpole loop diagrams. Of
course, in this way the ChPT low energy expansion could only be recovered at leading
order. Concerning the divergences, they were regularized with a cutoff, which violates
chiral symmetry, making them finite, but not cutoff independent. Fortunately, the cutoff
dependence was rather weak and the description of the data was remarkable for cutoffs
of the size of the chiral scale. Nevertheless, due to this cutoff regularization, it was not
possible to compare the eight parameters of the chiral Lagrangian, which are supposed
to encode the underlying QCD dynamics, with those obtained from other low energy
processes. That is, it was not possible to test the compatibility of the chiral parameters
with the values already present in the literature.

Of course, due to the controversial nature, or even the doubts about the existence
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of the scalar states, it is very important to check that the poles are not just artifacts
of the approximations, to estimate the uncertainties in their parameters, and to check
their compatibility with other experimental information regarding ChPT. That was the
reason why, in a first step, theKK̄ → KK̄ one-loop amplitudes were calculated in [14],
also unitarizing them coupled to theππ states, and reobtaining theσ , f0 andρ poles.
The whole calculation of one-loop meson meson scattering has been recently completed
with the totally newKη → Kη,ηη → ηη andKη → Kπ amplitudes [2]. In addition
the other five existing independent amplitudes have also been recalculated. The reason
for repeating those existing calculations is that, to one loop, one could choose to write
all amplitudes in terms of justfπ , or use all fπ , fK and fη , or any other combination
of them that is equivalent up toO(p4) etc... However, when one choice is made for
one amplitude, the other ones have to be calculated consistently in order to keep the
coupled channel perturbative unitarity, which is needed for the IAM. As commented
before, with these unitarized amplitudes we obtained [2] a simultaneous description of
meson meson scattering data in the resonant region up to 1.2 GeV, but also of the low
energy region, with scattering lengths compatible with themost recent determinations.
The fact that the calculation was complete to one loop and renormalized as in standard
ChPT, also allowed us to show that the resulting set of chiralparameters was compatible
with previous determinations in the literature.

The final step is therefore to extend analytically the amplitudes to the complex plane
and search for poles in the second Riemann sheet. We will provide next a brief account
of how we have built our amplitudes, how the data have been fitted, but also our first,
preliminary, results for the poles, although a more detailed exposition and the final
calculations will be presented somewhere else soon [1].

CHIRAL PERTURBATION THEORY AMPLITUDES

The QCD massless Lagrangian for the lightu,d and s quarks is invariant under the
SU(3)L ×SU(3)R chiral symmetry, which rotates the Left (or Right) components of
these quarks among them. There is also an small explicit breaking due to the small
masses of those quarks, but at sufficiently high energies that effect should be rather
small. Nevertheless theSU(3)L×SU(3)R symmetry is not seen in the physical spectrum,
but onlySU(3)L+R is realized approximately once the small explicit breakingis taken
into account. The familiar isospin is nothing but theSU(2)L+R subgroup. TheSU(3)L−R
symmetry has to be spontaneously broken, and indeed, the pions, kaons and etas can be
identified as the associated Goldstone bosons of this breaking. Once more, they are not
massless, due to the small masses of those quarks, but they are much lighter (and much
more stable) than other hadrons with their same quantum numbers, and than the generic
hadronic scale of approximately 1 GeV.

These Goldstone bosons are expected to be the relevant degrees of freedom at low
energies. Their low energy dynamics can then be described [15] by the most general
Lagrangian made of pions, kaons and etas, that implements the symmetry breaking
pattern described above, as well as other usual constraintslike Lorentz invariance,
locality, etc... This is called Chiral Perturbation Theory[12], and it corresponds to an
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expansion in external momenta, the energy or the mass of the mesons, genericallyp,
over the chiral scaleΛ = 4π fπ ≃ 1.2GeV. The leading term,O(p2) is nothing but the
non-linear sigma model and only depends on the meson masses and the chiral scale
4π f , where f is the meson decay constant at leading order. Since there areno more
free parameters, it is universal, i.e., independent of the detailed mechanism of symmetry
breaking. It is enough to reproduce the current algebra results of the 60’s. At next to
leading orderO(p4), there are eight terms which now are multiplied by some arbitrary
low energy constantsLi(µ), also called chiral parameters. These parameters contain
information on the specific dynamics of the underlying theory, but are also needed for
the renormalization of the divergences that appear at one-loop when one uses vertices
from the lowest order Lagrangian. This renormalization procedure can be carried out to
more loops by adding higher order terms in the Lagrangian. Inthis way it is possible to
obtain finite calculations order by order, at the price of including an increasing number
of parameters. However, these new terms will all be suppressed by additional powers
of p2/Λ2 so that the lowest orders will be dominant at low energies. For our purposes
it will be enough to work at one-loop, that isO(p4), so that we still have amplitudes
with imaginary parts, as well as the eightLi parameters that contain information on the
specific QCD dynamics.

Therefore, the lowest order,O(p2), meson-meson scattering amplitudes (called “low
energy theorems” [15] because as we have just commented, they only depend on the
symmetry breaking scale) are obtained just from the tree level diagrams of the lowest
order Lagrangian. In contrast, the calculation of theO(p4) contribution involves the
evaluation of the following Feynman diagrams: First, the tree level graphs with the sec-
ond order Lagrangian, which depend on the chiral parametersLi . Second, the one-loop
diagrams in Fig.1, whose divergences will be absorbed in theLi through renormalization.

In particular, those graphs in Fig.1a provide an imaginary part to ensure perturbative
unitarity, whereas those graphs in Fig.1e, provide the wavefunction, mass anddecay
constant renormalizations. As we will see the renormalization of the decay constant will
play a subtle role in the determination of thef0(980) anda0(980) pole positions. Let us
then explain this somewhat technical point: Note that the meson decay constantsfπ ≃
94.4MeV, fK = 1.22fπ and fη = 1.3 fπ only differ atO(p4) [12, 2]. At leading order, all
of them are equal to the only scale in the Lagrangian,f , which, after renormalization,
is not directly the physical observable. As a consequence, if we want to write our
amplitudes in terms of observable quantities, we could substitute f by fπ or fK or fη , or
any combination of them. We could even make a different choice for each amplitudeas
long as we do not couple the amplitudes among them. However, if one wants to study a
coupled channel process, once a choice is made for one amplitude, the choices for the
coupled amplitudes have to be made consistently, if one wants to ensure perturbative
unitarity. The same argument would follow for the masses, but they already differ at
leading order, so that the numerical difference is irrelevant compared with the decay
constant case.

The one-loop amplitudes ofππ → ππ [12], πK → πK [16] and that ofπη → πη [16]
were calculated more than a decade ago, because the thresholds of these reactions is low
enough to apply the standard ChPT formalism. As explained inthe introduction, the
KK̄ → KK̄ one-loop amplitudes were calculated in [14], and those ofKη → Kη,ηη →
ηη andKη → Kπ in [2], much more recently since their thresholds are much higher
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and they only became interesting when the appropriate unitarization methods were
developed. In [2], the other five one-loop amplitudes were recalculated in order to
express all of them in terms offπ only, and ensure exact perturbative partial wave
unitarity, which we explain in the next section.

FIGURE 1. Generic one-loop Feynman diagrams that have to be evaluatedin meson-meson scattering.

As we have already commented in the introduction, meson-meson scattering data is
customarily presented using partial waves of definite isospin and angular momentum,
tIJ. In particular the data is given in terms of the complex phaseof the amplitude, or
phase shiftsδIJ According to our previous discussion, the meson-meson partial waves
within ChPT are thus obtained as series in the momenta, ( someterms are also multiplied
by chiral logarithms from the loops functions). Generically, in the chiral expansion we
will then find, omitting theI ,J subindices,t ≃ t2+ t4+ ..., wheret2 andt4 theO(p2) and
O(p4) contributions, respectively.

PARTIAL WAVE UNITARITY

TheSmatrix unitarity relationSS† = 1 translates into simple relations for the elements
of the T matrix tαβ if they are projected into partial waves, whereα,β , ... denote the
different states physically available. For instance, if there is only one possible state,α,
the partial wavetαα satisfies

Im tαα = σα | tαα |2 ⇒ Im
1

tαα = −σα ⇒ tαα =
1

Retαα − i σα
(3)

whereσα = 2qα/
√

s andqα is the C.M. momentum of the stateα. Written in this way
it can be readily noted thatwe only need to know the real part of the Inverse Amplitude.
The imaginary part is fixed by unitarity. As a matter of fact, this relationonly holds
above thresholdup to the energy where another state,β , is physically accessible. Above
that point, the unitarity relation for the partial waves canbe written as:

Im tαα = σα | tαα |2+σβ | tαβ |2, (4)

Im tαβ = σα tαα tβα ∗ +σβ tαβ tββ ∗,

Im tββ = σα | tαβ |2+σβ | tββ |2.

or, in matrix form (and only above the second threshold):

ImT = T ΣT∗ ⇒ ImT−1 = −Σ ⇒ T = (ReT − i Σ)−1 (5)
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with

T =

(

tαα tαβ

tαβ tββ

)

, Σ =

(

σα 0
0 σβ

)

, (6)

which allows for a straightforward generalization to the case ofn accessible states. Once
more, unitarity means that we would only need to calculate the real part of the inverse
amplitude matrix.

Coming back to ChPT, we can notice that the perturbative series of ChPT behave as
polynomials with a higher order termO(pN/ΛN). If we substitute them in the above
unitarity relations for the imaginary parts ofT, which are non-linear, we will have
O(pN/ΛN) on the left side, butO(p2N/Λ2N) on the right. Hence, ChPT amplitudes
will never satisfy unitarity exactly. Nevertheless, ChPT partial waves satisfy unitarity
perturbatively, that is, instead of eq.(3), they can satisfy:

Im tαα
2 = 0, Im tαα

4 = σα | tαα
2 |2 (7)

for the single channel case, and instead of eq.(5), they can satisfy

ImT2 = 0, ImT4 = T2ΣT∗
2 (8)

for the coupled channel case. Note that , as we did for a singlechannel, we are using
T2 andT4 for theO(p2) andO(p4) contributions to the scattering matrix. We say “can
satisfy” because, generically, the above expressions for the one-loop contributions do
not hold exactly, but only up toO(p6). However, when expressed in terms of physical
decay constants, the above relations can even be satisfied exactly if the substitution of
1/ f in terms of 1/ fπ or 1/ fK or 1/ fη is made to match their corresponding powers on
both sides of the above equations. In such case, theO(p6) can be made to vanish. (As
we already commented, the masses also suffer the same subtlety and the same care has
to be taken with them.)

Since in the literature the amplitudes had been calculated sometimes just in terms of
1/ fπ but some other times using or 1/ fK or 1/ fη independently, we recalculated all of
them in terms of justfπ in [2], the simplest choice. Nevertheless, we are also presenting
here results with the much more natural choice of using the decay constants associated
to each field in the process. From the formal point of view, thetwo choices are equivalent
up toO(p4), but in the second one the resummation of the decay constantsis implicitly
carried out to higher orders. In addition, it has the advantage of usingfK when dealing
with kaons orfη when dealing with etas. Numerically, the differences couldbe sizable
at high energies when using the unitarized amplitudes.

UNITARIZATION: THE INVERSE AMPLITUDE METHOD

Unitarity is a very important feature of scattering, and it is even more relevant when
dealing with resonances, which generically saturate the unitarity bounds. This can be
illustrated in the single channel case, where eq.(3) implies the following unitarity bound:
|tαα | ≤ 1/σα . Moreover, if we sit on top of a BW resonance, ats = M2

R, we see
from eq.(2), that the amplitude becomes purely imaginary, that is Imtαα = |tαα |, and

Light meson resonances from unitarized Chiral Perturbation Theory June 18, 2004 7



therefore, in this case eq.(3) implies|tαα | = 1/σα . The unitarity bound is saturated.
Once more, the ChPT amplitudes if extrapolated to high enough energies, will violate
also this bound, since they behave as polynomials ins.

In order to unitarize the ChPT amplitudes one of the simplestmethods is to introduce
the ReT in eq.(5), calculated as a ChPT expansion

T−1 ≃ T−1
2 (1−T4T−1

2 + ...), (9)

ReT−1 ≃ T−1
2 (1− (ReT4)T

−1
2 + ...). (10)

Taking into account the perturbative unitarity conditions, eq.(8), we thus find

T IAM ≃ T2(T2−T4)
−1T2, (11)

which is the coupled channel Inverse Amplitude Method, which we have indeed used
to unitarizesimultaneouslythe whole set of one-loop ChPT meson-meson scattering
amplitudes. Let us remark that if we reexpand eq.(11) at low energies, we recover the
vary same chiral expansion,T IAM = T2 +T4 + ..., which ensures that we are respecting
the QCD chiral symmetry breaking pattern at low energies. Inaddition, it can be easily
checked thatT IAM satisfies the partial wave unitarity conditions, eq.(5),exactly, above
the thresholds of all the physically accessible channels. Let us also mention that the IAM
can be also generalized to higher orders [13, 17], includingthe case when the leading
ordert2 vanishes [18].

Let us finally remark that the IAM violates crossing symmetry, since obviously we
are treating the right and the left cuts differently. The largest influence of the worse
left cut approximation is on the closest point to the left cut, that is, the thresholds. We
will see that the IAM threshold parameters are in good agreement both with data and
with standard ChPT (which certainly respects crossing symmetry), therefore the crossing
symmetry violation coming from the IAM itself seems to be small. However, as we have
already explained, the meson-meson data is obtained using strong extrapolations. Hence,
even the data carries its own amount of crossing violation iferrors are not taken into
account. When considering not only threshold data, but alsoexperimental information
in other regions,including their uncertaintiesit can be shown that the IAM yields indeed
just an small crossing symmetry violation [17].

THE INVERSE AMPLITUDE METHOD FIT TO THE
SCATTERING DATA

Once we had all the amplitudes calculated within the standard ChPT renormalization
scheme (dimensional regularization in theMS−1 scheme), we first looked at the results
using the IAM with previous determinations of the chiral parameters from other pro-
cesses (see the ChPT column in Table 1). Due to their large error bars, the uncertainties
thus obtained were rather large, but all the resonant behavior in meson-meson scattering
was clearly recovered. For the detailed plots, we refer the reader to [2], but this already
suggests that a description of the resonances is possible within the uncertainty limits of
the chiral parameters.
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TABLE 1. Different sets of chiral parameters (×103). The first column comes from recent
analysis ofKl4 decays [21] (L4 andL6 are set to zero). In the ChPT columnL1,L2,L3 come
from [22] and the rest from [15]. The three last ones correspond to the values from the IAM
including the uncertainty due to different systematic error used on different fits. Sets II and II
are obtained using amplitudes expressed in terms offπ , fK and fη , whereas the amplitudes
in set I are expressed in terms offπ only.

Parameter Kl4 decays ChPT IAM I IAM II IAM III

Lr
1(Mρ) 0.46 0.4±0.3 0.56±0.10 0.59±0.08 0.60±0.09

Lr
2(Mρ) 1.49 1.35±0.3 1.21±0.10 1.18±0.10 1.22±0.08
L3 −3.18 −3.5±1.1 −2.79±0.14 −2.93±0.10 −3.02±0.06

Lr
4(Mρ) 0 (fixed) −0.3±0.5 −0.36±0.17 0.2±0.004 0 (fixed)

Lr
5(Mρ) 1.46 1.4±0.5 1.4±0.5 1.8±0.08 1.9±0.03

Lr
6(Mρ) 0 (fixed) −0.2±0.3 0.07±0.08 0±0.5 −0.07±0.20
L7 −0.49 −0.4±0.2 −0.44±0.15 −0.12±0.16 −0.25±0.18

Lr
8(Mρ) 1.00 0.9±0.3 0.78±0.18 0.78±0.7 0.84±0.23

Of course, a much better description could be obtained with afit to the data. We there-
fore carried out a fit, using MINUIT [20], to the presently available data on meson-meson
scattering. Due to the already commented problems with the systematic uncertainties in
the data, which has not been quantified in the original articles, we performed fits adding a
1%, 3% or a 5% systematic error. The resulting curves are basically indistinguishable to
the naked eye. The errors quoted in Table 1 for the IAM sets of fitted chiral parameters,
correspond to those of MINUIT combined with a systematic error that covers the spread
of values obtained when adding that 1%, 3% or 5% systematic error. Note that the values
we obtain are compatible with previous determinations. In particular, we show in Table
2 the threshold parameters compared with existing data and plain ChPT determinations
to one and two loops.

TABLE 2. Scattering lengthsaI J and slope parametersbI J for different meson-
meson scattering channels. For experimental references see [2]. Let us remark that
our one-loop IAM results are very similar to those of two-loop ChPT.

Threshold Experiment IAM fit I ChPTO(p4) ChPTO(p6)
parameter [2] [4, 16] [23]

a00 0.26±0.05 0.231+0.003
−0.006 0.20 0.219±0.005

b00 0.25±0.03 0.30± 0.01 0.26 0.279±0.011
a20 -0.028±0.012 -0.0411+0.0009

−0.001 -0.042 -0.042±0.01
b20 -0.082±0.008 -0.074±0.001 -0.070 -0.0756±0.0021
a11 0.038±0.002 0.0377±0.0007 0.037 0.0378±0.0021

a1/20 0.13...0.24 0.11+0.06
−0.09 0.17

a3/20 -0.13...-0.05 -0.049+0.002
−0.003 -0.5

a1/21 0.017...0.018 0.016±0.002 0.014
a10 0.15+0.07

−0.11 0.0072

The IAM I fit was obtained expressing all the amplitudes in terms of just fπ , which,
as we have already explained is somewhat unnatural when dealing with kaons or etas.
The plots and the uncertainties of this fit were already givenin [2], and therefore we
have preferred to present here our first results using amplitudes written in terms offK
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and fη when dealing with processes involving kaons or etas. In particular, we have
rewritten ourO(p2) amplitudes changing one factor of 1/ fπ by 1/ fK for each two kaons
present between the initial or final state, or by 1/ fη for each two etas appearing between
the initial and final states. In the special caseKη → Kπ we have changed 1/ f 2

π by
1/( fK fη). Of course, these changes introduce some corrections atO(p4) which can
be easily obtained using the relations between the decay constants andf provided in
[12, 2]. The 1/ fπ factor in each loop function atO(p4) (generically, theJ(s) given in the
appendix of [2]) have to be changed according to eqs.(8). Theamplitudes thus obtained
are formally equivalent to the previous ones, up toO(p6) differences. However, at high
energies there can be some small numerical differences whendetermining the poles.
Obviously, theππ → ππ amplitude remains unchanged.

The fit results using these more naturally normalized amplitudes are given in Fig.2,
and the resulting new sets of parameters is also presented inTable 1 as the IAM set
II. Note that the only parameters that suffer a sizable change are those related to the
definition of decay constants:L4 andL5. As it happened in [2], the uncertainty bands
are calculated from a MonteCarlo Gaussian sampling (1000 points) of theLi sets within
their error bars, assuming they are uncorrelated (and therefore they are conservative
estimates).

We have even performed a third fit, the IAM III, by fixingL4 to zero as in the most
recentKl4 O(p4) determinations given also in Table 1.

Let us recall that in these proceedings we are still showing some preliminary results
whose calculation is still in progress [1]. In a forthcomingwork [1] we will provide the
final numbers (mostly for the errors) and the threshold parameters for these other fits.
Concerning the threshold parameters we do not expect relevant changes compared to
data since theππ → ππ amplitude has not changed and therefore the new numbers will
remain almost identical to those of IAM I.

As we can see in Fig.2, we obtain again a nice description of meson-meson data up to
1.2 GeV, including once more all the resonant behaviors. Onemay wonder what would
be the effect of applying the IAM to higher orders. Only theππ → ππ amplitude has
been calculated up toO(p6) and it has been unitarized in [17], using the higher order
form of IAM. The results regarding poles and resonances in the single channel case are
unchanged and the parameters are compatible with those of standard ChPT atO(p6).

Finally, let us remark that the IAM has also been applied toππ elastic scattering in
the (I ,J) = (0,2) wave [18], whose leading order vanishes. The amplitude has to be
considered up toO(p6) and add an approximation atO(p8), but the IAM is able to
generate a pole associated to thef2(1200) BW resonance. The mass and widths are in
fairly good agreement with data taking into account that that resonance has only an 80%
decay into pions.

POLES IN MESON-MESON SCATTERING

In Table 3 we present the position of poles in the second Riemann sheet of meson-meson
scattering calculated with the one-loop IAM. The names we provide refer to the most
similar states that we have found in the literature, but thatdoes not mean that from the
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FIGURE 2. IAM fit to meson-meson scattering data, set II. The uncertainties cover also the estimated
systematic errors. The statistical errors from the fit wouldbe much smaller.
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present approach we could drag any conclusion on their nature. In Table 4 we provide
either the mass and width of these resonances or their pole position as given in the PDG.

TABLE 3. Pole positions (with errors) in meson-meson scattering. When close to the real axis
the mass and width of the associated resonance is

√
spole≃ M− iΓ/2.

√
spole(MeV) ρ K∗ σ f0 a0 κ

IAM Approx
(no errors) 759-i 71 892-i 21 442-i 227 994-i 14 1055-i 21 770-i 250

IAM I 760-i 82 886-i 21 443-i 217 988-i 4 cusp? 750-i 226
(errors) ± 52± i 25 ± 50± i 8 ± 17± i 12 ± 19± i 3 ±18±i 11

IAM II 754-i 74 889-i 24 440-i 212 973-i 11 1117-i 12 753-i 235
(errors) ± 18± i 10 ± 13± i 4 ± 8± i 15 +39

−127
+i 189
−i 11

+24
−320

+i 43
−i 12 ± 52± i 33

IAM III 748-i68 889-i23 440-i216 972-i8 1091-i52 754-i230
(errors) ± 31± i 29 ± 22± i 8 ± 7± i 18 +21

−56± i 7 +19
−45

+i 21
−i 40 ± 22± i 27

TABLE 4. Mass and widths or pole positions of the light resonances quoted in the PDG. Recall that
for narrow resonances

√
spole≃ M− iΓ/2

PDG2002 ρ(770) K∗(892)± σ or f0(600) f0(980) a0(980) κ
Mass (MeV) 771±0.7 891.66±0.26 (400-1200)-i (300-500) 980±10 980±10 not
Width (MeV) 149±0.9 50.8±0.9 (we list the pole) 40-100 50-100 listed

Let us briefly comment Table 3. In the first line we are giving the results already
obtained in [7], with the approximated coupled channel IAM,using amplitudes with
fπ , fK and fη . It can be noticed that there were nine scalar poles, theσ , the f0(980),
the three states of thea0(980) as well as the four states of theκ . Since they were
generated simultaneously, they could be a good candidate for a nonet, although clearly
some mechanism should be producing the mass difference, very likely some kind of
mixing with higher order states [24].

Concerning the results of the IAM, we see that there are always poles associated
to the vector resonancesρ and K∗, in good agreement with the data and with the
approximated method. The uncertainties in the pole positions have been obtained again
using a MonteCarlo Gaussian sample (300 samples) of theLi parameters, within the
errors of each set. Let us note that the vector octet is complete, since we also obtain a
pole in the(I ,J) = (0,1) below theK̄K threshold, but it is only a crude approximation to
theΦ andω states (it is the octetΦ indeed). The problem here is that the other relevant
coupled channel that separates theΦ and theω is a three pion state, that we cannot
implement in the IAM. For details, we refer the reader to [19,7, 2].

Concerning scalar states, from Table 3 we see that the results concerning the most
controversial ones are consistent and in very good agreement between different IAM
sets and also with the approximated IAM. In other words, the results for theσ and
the κ poles are robust within this approach:there are always “light” poles in the
(I ,J) = (0,0),(1/2,0) channels, and their position is fairly well determined, in round
numbers, around 440− i 215 MeV for theσ and 750− i 230 MeV for theκ . The errors
are comparatively small as it can be seen in Table 3.

The situation concerningf0 is also rather stable for the mass, which is always around
975 MeV. In contrast, the uncertainty on the width is rather large. In particular, the
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central value is somewhat small when using set 1 (just onefπ ) but in a fairly good
agreement with data when considering sets 2 and 3 or the approximated IAM (all of
them usefπ , fK and fη ). As we argued before, it was natural to expect that the use offK
and fη when dealing with kaons or etas would provide better results.

Finally, the most sensible state seems to be thea0(980) resonance. It can be noticed
that it is present as a pole in the second Riemann sheet in sets2 and 3 as well as in the
approximated IAM. However, it is not found as a pole with set 1, using justfπ . The fact
that thea0(980) pole was absent if one uses only the tree level terms and the tadpoles
of the complete amplitudes in [2] (again using justfπ ) with the approximated IAM was
first noted in [25] and has been interpreted as a possible cuspeffect.

Given the uncertainty on thea0(980) it is hard to identify it conclusively as a pole
or a cusp. However, we think that there is a somewhat strongersupport for the pole
interpretation, although with a strong threshold distortion: On the one hand, the width
of the f0(980), which is closely related to thea0(980), is much better described by the
IAM when using several decay constants, which then give a pole for thea0(980). On
the other hand the existence of thea0(980) state seems much less controversial from
other sources apart from meson-scattering data [5]. We remark, anyway, that the two
possibilities can be accommodated within the IAM.

CONCLUSIONS

We have reported on our recent work where we have completed the meson-meson scat-
tering amplitudes to one-loop within Chiral Perturbation Theory (ChPT). In order to
extend the applicability of these amplitudes to the resonance region, we have unitarized
them with the Inverse Amplitude Method (IAM). In this way, wehave been able to
describe the meson-meson scattering data up to 1.2 GeV, generating the resonant behav-
iors, but simultaneously respecting the chiral low energy expansion. These new ampli-
tudes are unitarized in dimensional regularization in order to preserve chiral symmetry,
avoiding the use of a cutoff. Thus we have been able to check that the chiral parameters
obtained from the IAM description are compatible with previous determinations from
other processes within standard ChPT.

In this workshop we have also shown our progress in determining the position of the
poles that appear in the IAM amplitudes. When they are close to the real axis above
threshold, the position of these poles is related to the massand width of the associated
narrow BW resonances.

In this way, we have been able to establish more robustly our results for the controver-
sial σ andκ scalar states. They seem to be generated simultaneously with the f0(980)
and thea0(980), and are therefore good candidates for a possible light scalar nonet.
Nevertheless, thea0(980) is found to be very sensible to the choice on how to express
the amplitudes in terms of the physical meson decay constants.

We hope these results could be of interest in the field of mesonspectroscopy
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