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Abstract

In a recent paper, Peláez and Ynduráin evaluate some of the low en-
ergy observables of ππ scattering and obtain flat disagreement with our
earlier results. The authors work with unsubtracted dispersion relations,
so that their results are very sensitive to the poorly known high energy
behaviour of the scattering amplitude. They claim that the asymptotic
representation we used is incorrect and propose an alternative one. We
repeat their calculations on the basis of the standard, subtracted fixed-t
dispersion relations, using their asymptotics. The outcome fully confirms
our earlier findings. Moreover, we show that the Regge parametrization
proposed by these authors for the region above 1.4 GeV violates crossing
symmetry: Their ansatz is not consistent with the behaviour observed at
low energies.



1 Introduction

We have demonstrated that the low energy properties of the ππ scattering ampli-
tude can be predicted to a remarkable degree of accuracy [1, 2] (in the following
these papers are referred to as ACGL and CGL, respectively). In our opinion, this
work represents a breakthrough in a field that hitherto was subject to consider-
able uncertainties. The low energy properties of the ππ scattering amplitude play
a central role in the analysis of many quantities of physical interest. As an exam-
ple, we mention the magnetic moment of the muon, where the Standard Model
prediction requires precise knowledge of the hadronic contributions to vacuum
polarization. As these are dominated by two-pion intermediate states of angular
momentum ℓ = 1, the P-wave ππ phase shift is needed to high accuracy in order
to analyze the data in a reliable manner [3, 4].

Our dispersive analysis, which is based on the Roy equations [5], was con-
firmed1 in ref. [6]. In a recent paper, however, Peláez and Ynduráin [8] claim
that this analysis is deficient, because the representation we are using to describe
the behaviour of the imaginary parts above 1.42 GeV is “irrealistic”. They pro-
pose an alternative representation, evaluate a few quantities of physical interest
on that basis and obtain flat disagreement with our results. They conclude that
our solution to the constraints imposed by analyticity, unitarity and chiral sym-
metry is “spurious”. In the following, we refer to this paper as PY and show that
this claim and others contained therein are incorrect.

As a first step, we briefly outline our framework. The fixed-t dispersion rela-
tions of Roy represent the real parts of the scattering amplitude in terms of the
s-channel imaginary parts and two subtraction constants, which can be identified
with the two S-wave scattering lengths, a0

0, a
2
0. The Roy equations represent the

partial wave projections of these dispersion relations. Since the partial wave ex-
pansion of the imaginary parts converges in the large Lehman-Martin ellipse, it
follows from first principles that the Roy equations hold for −4M2

π < s < 60M2
π ,

i.e. up to a centre of mass energy of 1.08 GeV. We use these equations to deter-
mine the phases of the S- and P-waves on the interval 2Mπ <

√
s < 0.8 GeV.

The calculation treats the imaginary parts above 0.8 GeV as well as the two
subtraction constants as external input.

As demonstrated in ACGL, the two subtraction constants play the key role
in the low energy analysis. The central observation in CGL is that the values of
these two constants can be predicted on the basis of chiral symmetry. Weinberg’s
low energy theorem [9] states that, to leading order in the expansion in powers
of mu and md, the scattering lengths a0

0 and a2
0 are determined by the pion decay

1This paper also compares our predictions for the values of the two subtraction constants
with some of the ππ phase shift analyses and with the new Ke4

data obtained by the E856
collaboration at Brookhaven. While the result obtained in ref. [6] for a0

0 is consistent with the
theoretical prediction, the one for the combination 2a0

0
− 5a2

0
deviates from the value predicted

in CGL by 1 σ. Further work on this issue is reported in ref. [7].
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constant. The corrections are known up to and including next-to-next-to-leading
order [10]. In CGL, we have performed a new determination of the relevant
effective coupling constants, thereby obtained sharp predictions for a0

0, a
2
0 and

then demonstrated that the Roy equations pin down the ππ scattering amplitude
throughout the low energy region, to within very small uncertainties.

The paper is organized as follows. We first discuss the difference between
PY and CGL concerning the input used for the imaginary parts in the region
above 1.42 GeV. In sections 3-5, we then repeat the calculations reported in
CGL for the input advocated by Peláez and Ynduráin, who did not perform such
an analysis, but claim that the results are sensitive to the input used in the
asymptotic region. As we will demonstrate explicitly, this is not the case. We
turn to the calculations they did perform only in the second part of the paper,
where we show that their Regge representation cannot be right because it violates
crossing symmetry. Section 10 contains a summary of the present article as well
as our conclusions.

2 Asymptotics

According to PY, the input used for the imaginary parts above 1.42 GeV plays
an important role in our analysis. This contradicts the findings in ACGL, where
we demonstrated explicitly that the behaviour at those energies is not essential,
because the integrals occurring in the Roy equations converge rapidly. In partic-
ular, our explicit estimates for the sensitivity of the threshold parameters to the
input used at and above 0.8 GeV (see table 4, column ∆1 in ACGL) imply that
the uncertainties from this source are very small. In view of this, it is difficult to
understand the claim of PY that our solutions are “distorted” because the input
used for

√
s > 1.42 GeV is “irrealistic”.

Admittedly, however, we did not perform a thorough study of the imaginary
parts for energies above 1.42 GeV – for brevity we refer to this range as the
asymptotic region. In the interval from 1.42 to 2 GeV, we relied on phenomenol-
ogy, while above 2 GeV, we used a Regge representation based on the work of
Pennington and Protopopescu [11, 12]. In particular, we used their results for
the residue of the Regge pole with the quantum numbers of the ρ meson, also
with regard to the uncertainties to be attached to this contribution, and invoked
a sum rule that follows from crossing symmetry to estimate the magnitude of the
Pomeron term.

According to Peláez and Ynduráin, phenomenology cannot be trusted up
to 2 GeV. The authors construct what they refer to as an “orthodox” Regge
fit and then assume that this fit adequately approximates the imaginary parts
down to a centre of mass energy of 1.42 GeV. For ease of comparison, the Regge
representation of PY is described in appendix A. It differs significantly from ours.
Moreover, in the region below 2 GeV, it differs from the phenomenological input
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we used. Although we attached considerable uncertainties to the input of our
calculation, these do not cover the asymptotic representation proposed in PY.

Unfortunately, the authors do not offer a critical discussion of their represen-
tation, which looks similar to the Regge fit proposed by Rarita et al. [13] in 1968,
but the parameters are assigned different values and a comparison is not made.
For a review of the current knowledge about the structure of the Pomeron, we
refer to [14]. Recent thorough analyses of different classes of parametrizations
of the asymptotic amplitudes and of the corresponding fits to the large body of
available data are described in [15, 16]. These indicate that the leading terms can
be determined rather well by applying factorization to the experimentally well
explored NN and πN scattering amplitudes, but the non-leading contributions
become more and more important as the energy is lowered (see, e.g., [16] for a
critical discussion of the range of applicability of different asymptotic formulae).
We do not consider it plausible that the asymptotic representation of PY can
be trusted to the precision claimed in that paper, where the uncertainties in the
contributions from the region above 1.42 GeV are estimated at 10 to 15 %.

In the following, however, we take the asymptotic representation proposed
in PY at face value. More precisely, we (i) replace our Regge parametrization
by this one and (ii) set s0 = (0.8 GeV)2, s2 = (1.42 GeV)2. All other elements
of the calculation are taken over from CGL without any change, so that we
can study the sensitivity of the result to the asymptotics. We solve the Roy
equations between threshold and s0, rely on phenomenological information about
the imaginary parts on the interval from s0 to s2 and use the Regge representation
of PY above that energy.

In PY, a further contribution is added, to account for the enhancement in the
I = 1 imaginary part associated with the ρ(1450). The corresponding contribu-
tions to the various observables considered in PY are explicitly listed there. In all
cases, these are smaller than our estimates for the uncertainties to be attached
to our results. In the following, we drop this term to simplify the calculations.
Note also that in PY, a parametrization for the D- and F-waves is used that is
somewhat different from those we rely on, which are taken from refs. [17, 18].

3 Low energy theorem for a
0
0 and a

2
0

The low energy structure is controlled by the two subtraction constants. The main
question to ask, therefore, is whether the change in the asymptotics proposed in
PY affects the predictions for these two constants. In principle, it does, because
some of the corrections to Weinberg’s low energy theorem [9] involve integrals
over the imaginary parts of the scattering amplitude that extend to infinity. As
documented in table 1 of CGL, the uncertainties in the result for the S-wave
scattering lengths are dominated by those in the effective coupling constants.
The noise in the input used at and above 0.8 GeV affects the values of a0

0 and a2
0
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CGL PY

a0
0 0.220 ± .005 0.221

a2
0 −0.0444 ± .0010 −0.0443

2 a0
0 − 5 a2

0 0.663 ± .007 0.663

Table 1: S-wave scattering lengths. The numbers in the first column are taken
from CGL. Those in the second column are obtained by replacing the asymptotics
used there with the one proposed in PY.

only at the level of half a percent.
As mentioned above, however, our estimates for the uncertainties in the

asymptotic part of the input do not cover the modification proposed in PY.
To remain on firm grounds, we have repeated the calculation described in CGL,
using as input above 1.42 GeV the parametrization proposed in PY. We have also
reexamined the dispersive evaluation of the scalar radius. According to ref. [19],
the behaviour of the T-matrix above 1.4 GeV does not significantly affect the
result. As discussed below, the solution of the Roy equation for the S-wave is not
sensitive to the asymptotics, either, so that the contribution from low energies,
which dominates the result for the scalar radius, practically stays put. In the
following, we use the estimate given in CGL, 〈r2〉s = 0.61± 0.04 fm2. Concerning
the predictions for the scattering lengths, the modification of the asymptotics
shifts the central values by

δa0
0 = 0.4 × 10−3 , δa2

0 = 0.1 × 10−3 , 2 δa0
0 − 5 δa2

0 = 0.2 × 10−3 . (1)

In table 1, the result is compared with the predictions of CGL.2 Despite the fact
that the error bars attached to these predictions are very small, the above shifts
amount to less than 15% of the quoted uncertainties. We conclude that the values
of the subtraction constants are not affected if our asymptotics is replaced by the
one of PY. This is of central importance, as it confirms the statement that an
accurate experimental determination of the S-wave scattering lengths allows a
crucial test of the theory.

4 Roy equations

In order to determine the effect of the change in the asymptotics on the solutions
of the Roy equations, we fix the scattering lengths as well as the phenomenolog-
ical input for 0.8 GeV < E < 1.42 GeV at our central values, so that the result

2We hope not to confuse the reader with the notation used in the tables: The numbers
quoted under PY are not taken from reference [8], but are calculated by us, using the asymptotic
representation for the imaginary parts given there.
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Figure 1: Isoscalar S-wave. The shaded band is taken from fig. 7 of CGL. The full
line in the middle of the band represents the solution of the Roy equations ob-
tained with the asymptotics of PY. For comparison, the representation proposed
in eq. (5.4a) of PY is indicated by the dashed lines.

can be compared with our central solution. Above 1.42 GeV, we evaluate the
imaginary parts with the Regge representation of PY. The essential elements of
the calculation are described in the appendices B and C. The result for δ0

0 is
shown in fig. 1, where we compare the solution in eq. (C.2) with the band of
solutions obtained in CGL. The graph shows that the low energy behaviour of δ0

0

is not sensitive to the input used in the region above 1.42 GeV – the distortion
claimed in PY does not take place.

In PY, the “possible cause of the distortion of the CGL solution” is discussed
in some detail and a low energy parametrization for the isoscalar S-wave is pro-
posed, in support of that discussion. The proposal is referred to as a “tentative
alternate solution” and is indicated by the dashed lines in fig. 1. As can be seen
from this plot, the proposal is inconsistent both with our asymptotics and with
the one of PY.

As a side remark, we note that on the interval on which we solve the Roy
equations, the various phase shift analyses are not consistent with one another
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Figure 2: P-wave. The shaded band is taken from fig. 8 of CGL. The full line is
the solution of the Roy equations obtained with the asymptotics of PY.

(see column 1 in table 2 of ACGL). For this reason, we did not make use of
the data on the S- and P-wave phase shifts below 0.8 GeV – any analysis that
relies on these is subject to large uncertainties. In contrast to the overall phase
of the scattering amplitude, which is notoriously difficult to measure, the phase
difference δ1

1 − δ0
0 shows up directly in the cross section and is therefore known

quite accurately. Indeed, the values obtained at 0.8 GeV from the seven different
phase shift analyses listed in ACGL (which are due to Ochs [20], Hyams et al.
[17], Estabrooks and Martin [21], Protopopescu et al. [22], Au et al. [23] and Bugg
et al. [18]) yield perfectly consistent results for this phase difference: δ1

1 − δ0
0 =

26.6◦ ± 2.8◦. While our Roy solutions agree with this experimental fact (no
wonder, we are using it in our input), the ”tentative alternate solution” and the
representation for the P-wave proposed in PY do not: These yield δ0

0 = 91.9◦±2.6◦

and δ1
1 = 109.0◦±0.6◦, respectively. The corresponding phase difference, δ1

1−δ0
0 =

17.1◦ ± 2.6◦, is in conflict with experiment at the level of 2.5 σ. The discrepancy
must be blamed on the ”tentative alternate solution” – the uncertainties in the
P-wave phase shift are small, because this phase is strongly constrained by the
data on the form factor (indeed the value in PY is in good agreement with our
estimate, δ1

1 = 108.9◦ ± 2◦).
Fig. 2 demonstrates that the P-wave phase shift is not sensitive to the asymp-
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Figure 3: Exotic S-wave. The shaded band is taken from fig. 9 of CGL. The full
line is the solution of the Roy equations obtained with the asymptotics of PY.

totics, either. In the exotic S-wave (isospin 2), however, an effect does become
visible. As can be seen in fig. 3, the modification of the asymptotic behaviour
reduces the value of δ2

0 . At 0.8 GeV, the displacement reaches 1.4◦. Although
this is small compared to the experimental uncertainties, it does imply that –
if the imaginary parts above 1.42 GeV are taken from PY – the phase δ2

0 runs
within our band of uncertainties only below 0.64 GeV.

5 Threshold parameters

Next, we evaluate the change occurring in the result for the scattering lengths and
effective ranges of the lowest few partial waves if our asymptotics is replaced by
the one of PY. The evaluation is based on sum rules due to Wanders [24], which
are particularly suitable here, because they are rapidly convergent and thus not
sensitive to the high energy behaviour of the imaginary parts. The representation
for a1

1, for instance, reads3

a1
1 =

2 a0
0 − 5 a2

0

18 M2
π

+
M2

π

36 π2

∫

∞

4M2
π

ds

s2(s − 4M2
π)2

{

3 (3 s − 4M2
π) Im T 1(s, 0) (2)

−(s − 4M2
π)(2 Im T 0(s, 0) − 5 ImT 2(s, 0))

}

.

3We use the normalization conventions of ref. [1]. ImT I(s, 0) denotes the imaginary part of
the forward scattering amplitude with s-channel isospin I.
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CGL PY units

b0
0 0.276 ± .006 0.278 M−2

π

b2
0 −0.803 ± .012 −0.800 10−1M−2

π

a1
1 0.379 ± .005 0.381 10−1M−2

π

b1
1 0.567 ± .013 0.579 10−2M−4

π

Table 2: Wanders sum rules. The numbers in the first column are taken from table
2 of CGL. Those in the second column are obtained by replacing the asymptotics
used there with the one proposed in PY.

The analogous sum rules for the effective ranges of the S- and P-waves are
listed in appendix D. The numerical results of CGL are quoted in the first column
of table 2, while those in the second column are obtained by repeating the calcu-
lation for the asymptotics proposed in PY. Note that the subtraction constants
play a crucial role here. In fact, a1

1 is totally dominated by the contribution from
the first term on the right hand side of eq. (2), which accounts for 97 % of the
numerical result. This is why the uncertainty in our prediction for a1

1 is so small.
The subtractions ensure that the integrals converge rapidly. For the asymptotics
of PY, for instance, the contributions from the region above 1.42 GeV amount to
less than 5% of the total, for all of the quantities listed in the table.

Wanders Froissart-Gribov
CGL PY CGL PY units

a0
2 0.175 ± 0.003 0.180 0.176 0.180 10−2M−4

π

b0
2 −0.355 ± 0.014 −0.347 −0.359 −0.353 10−3M−6

π

a2
2 0.170 ± 0.013 0.177 0.172 0.182 10−3M−4

π

b2
2 −0.326 ± 0.012 −0.327 −0.329 −0.319 10−3M−6

π

a1
3 0.560 ± 0.019 0.562 0.560 0.565 10−4M−6

π

b1
3 −0.402 ± 0.018 −0.409 −0.404 −0.407 10−4M−8

π

Table 3: Threshold parameters of the D- and F-waves. The left half of the
table lists the results found with the analog of the Wanders sum rules, while
the numbers on the right half are based on the Froissart-Gribov representation
discussed in section 9. The results obtained with the asymptotics of CGL and of
PY are listed separately. The first column is taken from table 2 of CGL.

Repeating the exercise for the D- and F-waves, we obtain the results listed
on the left half of table 3. These indicate that the change in the asymptotics
generates a somewhat larger effect, but the displacement stays below 5% also
here. In the case of a0

2, the shift corresponds to 1.5 σ, while for the other quantities
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the prediction is not that sharp, so that the shift is only a fraction of our error
bar. In summary, we note that for none of the quantities considered in PY, the
change in the asymptotics proposed in that paper generates a displacement by
more than 1.5 σ.

There is an alternative method for evaluating the quantities listed in the table:
Instead of working with the analog of the Wanders sum rules, we may invoke the
Froissart-Gribov representation for the scattering lengths and effective ranges.
The difference between the two is discussed in some detail in appendix D. If
the scattering amplitude were exactly crossing symmetric, the two methods of
calculation would yield identical results. The numerical results obtained with
the FG-representation for the P- and D-waves are discussed in sections 7 and 9,
respectively.

The entries in columns 1 and 3 show that, for our asymptotics, the two sets of
numbers indeed agree within a fraction of a percent, indicating that our represen-
tation of the scattering amplitude does pass this test of crossing symmetry. The
comparison of columns 2 and 4 indicates that the asymptotics of PY generates
a somewhat stronger violation of crossing symmetry, but the differences do not
stick out of the uncertainties that must be attached to the central values listed.
As will be discussed in section 9, however, these differences originate in the tiny
contributions from the asymptotic region and from the higher partial waves. In
fact, the slight mismatch seen in the comparison of columns 2 and 4 implies that
the asymptotics of PY is not consistent with crossing symmetry.

6 Olsson sum rule

We now turn to the calculations described in PY and start with the Olsson sum
rule,

2 a0
0 − 5 a2

0 = O , (3)

which relates a combination of S-wave scattering lengths to an integral over the
imaginary part of the forward scattering amplitude:

O =
M2

π

8π2

∫

∞

4M2
π

ds
2 ImT 0(s, 0) + 3 ImT 1(s, 0) − 5 ImT 2(s, 0)

s (s − 4M2
π)

. (4)

It is well known that this integral converges only slowly – in contrast to the
subtracted dispersion integrals that underly the Roy equations or the sum rule
for the P-wave scattering length considered above, the contributions from the
asymptotic region play a significant role here.

In ACGL, we evaluated the integral for arbitrary values of the S-wave scatter-
ing lengths. Inserting the predictions obtained on the basis of chiral symmetry in
eq. (11.2) of that paper and accounting for the correlation between a0

0 and a2
0 with
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table 4 of CGL, we obtain OCGL = 0.665 ± 0.022. Since this is in perfect agree-
ment with our prediction for the scattering lengths, 2a0

0 − 5a2
0 = 0.663 ± 0.007,

we conclude that, for our asymptotics, the Olsson sum rule is in equilibrium.
Peláez and Ynduráin point out that if our asymptotics is replaced by theirs,

while the behaviour below 0.82 GeV is left unchanged, the value of the integral
is reduced to OPY = 0.635 ± 0.014, so that the sum rule gets out of equilibrium.
The low energy part of their calculation is examined in appendix E, where we
essentially confirm their result. Using their numbers for the contributions from
the region above 0.82 GeV, we find that the difference ∆ = 2a0

0 − 5a2
0 − O

between the left and right hand sides of the sum rule becomes ∆ = 0.025±0.013,
a discrepancy of about 2 σ (see the detailed discussion in appendix E).

The result implies that the following three statements are incompatible: (i)
the behaviour of the phases below 0.8 GeV is correctly described by the figures
shown above, (ii) the contributions above 0.8 GeV are correctly estimated in PY,
(iii) the theoretical prediction for 2a0

0 − 5a2
0 is valid. In PY, the blame is put

on (i). The Roy equation analysis described in section 4, however, shows that
(i) can only fail if either (ii) or (iii) or both are incorrect as well. Since the
phenomenological information leaves little room for modifications in the interval
from 0.8 to 1.4 GeV, we conclude that the asymptotics proposed in PY is in
conflict with the theoretical predictions for the S-wave scattering lengths.

7 Froissart-Gribov formula for the P-wave

In this section, we consider the Froissart-Gribov formula

a1
1 =

1

144π2

∫

∞

4M2
π

ds

s2

{

2Im T 0(s, 4M2
π) + 3ImT 1(s, 4M2

π) − 5Im T 2(s, 4M2
π)
}

, (5)

which is used in PY to evaluate the P-wave scattering length. The main difference
to the Wanders representation in eq. (2) is that the FG formula does not contain
a subtraction term and therefore converges more slowly: While in the above
formula, the region above 1.42 GeV is responsible for more than 20% of the total,
only a fraction of a percent arises from there in the case of the Wanders sum rule.
The contrast is even more pronounced in the case of b1

1, where the low energy
contributions nearly cancel, so that the result obtained on the basis of the FG
formula is dominated by those from high energies: For the asymptotics of PY,
98% (78%) of the total come from the region above 1.42 GeV (2 GeV). For this
reason, the values found on the basis of the FG representation come with a large
uncertainty. A numerical evaluation is of interest because it offers a test of the
input used in the asymptotic region, but it does not add anything of significance
to our knowledge of the values of a1

1 and b1
1. This is why, in table 2, we did not

list the numerical values obtained in this way.
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As both representations for a1
1 are exact, the difference amounts to a sum rule,

which the imaginary parts of the scattering amplitude must obey. Indeed, the
integrand of the above representation is very similar to the one occurring in the
Olsson sum rule (4) and the dominating contribution to the difference between
the two representations is proportional to this sum rule. The remainder involves
the sum rule derived in appendix C of ACGL. As shown there, the absence of a
Pomeron contribution to the It = 1 amplitude and crossing symmetry imply that
the integral4

S(t) ≡
∫

∞

4M2
π

ds f(s, t)

(s + t − 4M2
π)

(6)

f(s, t) =
2 Im T̄ 0(s, t) + 3 Im T̄ 1(s, t) − 5 Im T̄ 2(s, t)

12 s
− (s − 2M2

π) ImT 1(s, 0)

s (s − 4M2
π) (s − t)

must vanish in the entire region where the fixed-t dispersion relations are valid.
Crossing symmetry does not impose a constraint on the imaginary parts of the
S-waves – indeed, these drop out on the right hand side of eq. (6). Hence the
sum rule S(t) = 0 relates a family of integrals over the imaginary part of the
P-wave to the higher partial waves. The difference between the Froissart-Gribov
and Wanders representations for a1

1 may be written as a linear combination of
the Olsson sum rule and the value of S(t) at t = 4M2

π :

a1
1

FG

− a1
1

W

= − 1

18M2
π

(2 a0
0 − 5 a2

0 − O) +
M2

π

3π2
S(4M2

π) . (7)

There is an analogous formula also for b1
1:

b1
1

FG

− b1
1

W

=
1

3π2

∂

∂t
{t S(t)}

t→4M2
π

. (8)

Note that this relation involves the derivative with respect to t, because the FG
representation for b1

1 contains the imaginary part as well as the first derivative
thereof (see appendix D).

The difference between the FG and W representations for a1
1 and b1

1 reflects
the fact that the former is derived from an unsubtracted dispersion relation, while
the latter is based on the standard, subtracted form. If we wish, we may just
as well apply the FG projection to the standard form of the fixed-t dispersion
relations. The procedure leads to a representation that also holds for the S-
waves. In fact, the resulting formulae for b0

0, b2
0, a1

1 and b1
1 coincide with the

4The barred quantities stand for Im T̄ I(s, t) = {ImT I(s, t) − Im T I(s, 0)}/t. For spacelike
values of t, the denominator s + t − 4M2

π develops a zero in the range of integration, but one
readily checks that the numerator f(s, t) vanishes there, on account of crossing symmetry with
respect to s ↔ u. The same remark applies to the apparent singularity generated by the
denominator s′ − u0, which occurs in the fixed-t dispersion relation (D.2).
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Wanders sum rules. In this sense, the difference between the Froissart-Gribov and
Wanders representations for the quantities considered above exclusively concerns
the manner in which the contributions from the subtractions are dealt with. For
the threshold parameters of the higher waves, on the other hand, the subtractions
do not make any difference.

In the units of table 2, the numerical evaluation of the integrals yields

a1
1

FG

≃ 0.37 b1
1

FG

≃ 0.37 (CGL) , (9)

a1
1

FG

≃ 0.36 b1
1

FG

≃ 0.56 (PY) .

The second line confirms the central values given in PY: a1
1

FG

= 0.371 ± 0.013,

b1
1

FG

= 0.599 ± 0.088 (the term “direct” used in that paper refers to the results

obtained on the basis of the Wanders sum rules).
The above numbers show that, irrespective of the asymptotic input used,

the estimates obtained for a1
1 on the basis of the FG formula are in reasonable

agreement with the much more precise result found with the Wanders sum rule
(see table 2). The number extracted from the FG representation for b1

1, however,
is reasonably close to the truth only for the asymptotics of PY.

As mentioned above, the FG integral for b1
1 is dominated by the contributions

from high energies. More precisely, the Regge term with the quantum numbers of
the ρ is relevant, for which we are using a parametrization of the form βρ(t)s

α0+α1t.
For the integrals discussed in CGL, the uncertainty in the contribution from this
term is governed by the one in the residue βρ(t), but this is not the case here: Since
the FG integral for b1

1 converges only very slowly, it is very sensitive also to the
parameters that describe the trajectory. While the values α0 = 1

2
−α1 M2

π ≃ 0.49,
α1 = 1

2
(M2

ρ − M2
π)−1 ≃ 0.87 GeV−2 used in CGL are determined by Mρ and Mπ,

those in PY, α0 = 0.52 ± 0.02, α1 = 1.01 GeV−2, are based on fits to cross
sections. In the case of the Wanders representation for b1

1, the change occurring
if the trajectory used in CGL is replaced by the one in PY is small compared to
the error in our result, b1

1 = 0.567±0.013, but in the case of the Froissart-Gribov
representation, the operation shifts the outcome from 0.37 to 0.45 (α0 = 0.50) or
0.53 (α0 = 0.54). Furthermore, the uncertainty attached to the Regge residue in
CGL affects the result at the level of ±0.06. Note also that the FG-representation
involves a derivative with respect to t, so that not only the slope α1 of the
trajectory enters, but also the slope of the residue βρ(t). Both of these quantities
are poorly known.

We conclude that the FG-value for b1
1 obtained with our asymptotics is sub-

ject to a large uncertainty, because it depends on minute details of the Regge
representation: The discrepancy with the value found in CGL is in the noise.
We repeat that the issue does not touch our prediction for b1

1, for two reasons:
(i) That prediction relies on the rapidly convergent representation of Wanders,
where the entire region above 2 GeV contributes less than 2% of the total. (ii)
The Wanders sum rule for b1

1 does not involve derivatives with respect to t.
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8 Values of a1
1 and b1

1 from e+e− and τ data

The data on the pion form factor can be used to arrive at an independent deter-
mination of the P-wave parameters. As pointed out in PY, the numbers for b1

1

obtained from fits based on the method of de Trocóniz and Ynduráin [25] disagree
with our prediction at the 4 σ level.

The partial wave parametrization used in ref. [25] is of inverse amplitude type:

t11(s) =







4
M2

ρ − s

s − 4M2
π

(B0 + B1 z) − i

√

1 − 4M2
π

s







−1

,

z =

√
s −√

s1 − s√
s +

√
s1 − s

. (10)

On the interval 4M2
π < s < s1, the square roots are real, so that the expression

obeys elastic unitarity. For B1 = 0, the formula reduces to ρ–meson dominance.
At s = s1, the term B1 z develops a branch cut that mimics contributions from
inelastic channels. In PY, the value of

√
s1 is fixed at 1.05 GeV, while Mρ, B0 and

B1 are treated as free parameters. Two of these specify the mass and the width of
the ρ, while the third describes the behaviour near threshold, which is governed
by the scattering length a1

1. The authors use the above representation to evaluate
the Omnès factor, which accounts for the branch cut singularity generated by the
final state interaction. The remaining singularities, in particular also the branch
cuts associated with inelastic channels, are parametrized in terms of a polynomial
in a conformal variable that is adapted to the analytic structure of the form factor.
The authors then make a fit to the e+e− and τ data for energies below 0.96 GeV
and come up with remarkably accurate values for the parameters Mρ, B0 and B1.
The corresponding result for the phase at 0.8 GeV is δ1

1 = 109.0◦ ± 0.6◦, while
for scattering length and effective range, the threshold expansion of the above
formula yields a1

1 = (38.6 ± 1.2) · 10−3 and b1
1 = (4.47± 0.29) · 10−3, respectively.

Table 2 shows that the result for a1
1 is consistent with our prediction, but the one

for b1
1 is not. It is evident from this table that the discrepancy cannot be blamed

on the input used in the asymptotic region.
The problem with the above determination of b1

1 is that it depends on the
specific form of the parametrization used for the phase. To explicitly demonstrate
this model–dependence, it suffices to allow for additional terms in the conformal
polynomial, replacing B0 + B1z by B0 + B1z + B2z

2 + B3z
3. For simplicity, let

us fix a1
1 as well as b1

1 at the central values obtained in CGL. We can choose the
remaining three parameters in such a way that the phase stays close to the one
specified in eq. (3.5) of PY. With Mρ = 773.6 GeV, B0 = 1.073, B1 = 0.214, B2 =
−0.039, B3 = −0.267, for instance, the scattering length as well as the effective
range agree with the central values in CGL and the phase stays well within
the uncertainty band that follows from the errors attached to the parameters
in PY (despite the fact that these cannot be taken literally – above 0.82 GeV,
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the corresponding uncertainty in the phase is less than half a degree). Since the
available experimental information does not strongly constrain the behaviour of
the form factor in the threshold region, it is not possible to distinguish the two
representations for the phase shift on phenomenological grounds.

Incidentally, one may also attempt to solve the Roy equations using the para-
metrization in eq. (10). The result is the same: Three parameters do not suffice to
obtain solutions that obey the Roy equation for the P-wave, but with the above
extension, the problem disappears. We conclude that the claimed 4 σ discrepancy
is a property of the model used to parametrize the P-wave phase shift and does
not occur if one allows for the number of degrees of freedom necessary to trust
the representation, not only for a1

1, but also for b1
1.

In connection with the contribution from hadronic vacuum polarization to the
magnetic moment of the muon, we are currently performing an analysis of the
form factor that is very similar to the one in ref. [25]. The main difference is that
we do not invoke a parametrization in terms of a modified Breit-Wigner formula
to describe the behaviour of the P-wave in the low energy region, but instead
rely on the CGL phase shift [4]. We obtain a perfect description of the available
experimental information about the form factor in this way, including the data
in the spacelike region and we have checked that this also holds if we restrict our
analysis to the data sets used in [25]. By construction, our parametrization of the
form factor keeps the low energy parameters a1

1 and b1
1 fixed at the CGL values.

This confirms the conclusion reached above: The experimental information on
the form factor does not allow a model–independent determination of a1

1 and b1
1

at the level of accuracy claimed in PY.

9 Froissart-Gribov formula for the D-waves

Finally, we comment on the estimates for the threshold parameters of the D-waves
given in PY. Using the Froissart–Gribov representation in eq. (D.8), the authors
arrive at values for the combinations a0+ = 2

3
(a0

2−a2
2) and a00 = 2

3
(a0

2 +2 a2
2) that

differ from those obtained with the results of CGL by about 4%. They then argue
that the two evaluations are correlated and come up with the conclusion that, if
the correlations are accounted for, this difference amounts to a discrepancy of 4
σ in the case of a0+ and 5 σ in the case of a00.

The main observation concerning the comparison is that it does not allow one
to draw any conclusions about the S- and P-waves, because the contributions
from these waves are identical in the two evaluations5. When the correlations
are accounted for, these contributions drop out in the comparison. For this

5An explicit expression for the difference ∆a0
2 = a0

2
FG

−a0
2

W
is given in appendix D. For all of

the quantities listed in table 3, the contributions from the S- and P-waves to the Froissart-Gribov
and Wanders representations are identical. This also holds for the ℓ = 4 scattering lengths, but
not for the corresponding effective ranges, nor for the threshold parameters belonging to ℓ > 4.
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reason, the differences discussed in PY between the “CGL–direct” and their own
calculation of the D-wave threshold parameters do not involve any of the results
of CGL. Even if the discrepancies obtained in PY could be taken at face value,
the only conclusion we could draw from these is that the Regge representation
proposed in PY differs from the one used in CGL – but this is evident ab initio.
The situation for the Olsson sum rule and the P-wave threshold parameters is
different: In those cases, the contributions from the S- and P-waves do not drop
out, so that the CGL analysis does enter the comparison.

Moreover, for the D-wave threshold parameters, PY do not refer to (and we
are not aware of) a determination that is independent of the sum rules. If this
were available, one could use it, together with the assumption that the asymp-
totics of PY is correct, to draw conclusions about the size of the contributions
from the low-energy region and decide whether the results obtained in CGL are
consistent with those conclusions. This is the logic the authors follow with the
Olsson sum rule, where they can use the low–energy theorem, and with the P-
wave threshold parameters, where PY claim that fits to the data on the form
factor allow one to determine a1

1 and b1
1 more reliably than with the sum rule (in

section 8 we explained why this is not the case). For the D-wave threshold pa-
rameters, however, an analogous claim is not made. Hence the comparison of the
results obtained by inserting the two different representations for the asymptotic
region and for the higher partial waves in the integrals for the threshold param-
eters cannot possibly lead to conclusions that go beyond the fact that those two
representations are different.

The FG integral converges almost as rapidly as the Wanders representation –
the region above 1.42 GeV only contributes a small fraction of the total. For this
reason, table 3 also lists the results obtained with the Froissart-Gribov represen-
tation. The requirement that the two different expressions for the D- and F-waves
must lead to the same result amounts to a set of sum rules, which exclusively
involve the imaginary parts of the higher partial waves. The prototype of this
category of sum rules is the one in eq. (B.7) of ACGL. Since a crossing symmetric
scattering amplitude automatically obeys these relations, they amount to a test
of crossing symmetry. The sum rules require the contributions from the region
below 1.42 GeV to be in balance with those from higher energies. Since the low
energy part is dominated by the experimentally well determined isoscalar D-wave,
the sum rules amount to a test of the representation for the imaginary parts used
in the asymptotic region (which contain It = 0 contributions from the Pomeron
and f poles, as well as poorly known terms with It = 2). In application to PY,
this test does not involve anything beyond the parametrizations proposed in that
reference for the partial waves with ℓ ≥ 2 and for the asymptotic region. For the
central values of the parameters, the difference between the results obtained from
the Froissart-Gribov and Wanders representations becomes (in the normalization
used for the D-waves in PY: scattering lengths in units of 10−4 M−4

π , effective
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ranges in units of 10−4 M−6
π ):

∆aPY
0+ = −0.11 , ∆aPY

00 = 0.03 , ∆bPY
0+ = −0.13 , ∆bPY

00 = 0.09 .

These numbers show that – for the parametrizations proposed in PY – the two
representations do not lead to the same result, so that there is an inherent un-
certainty in the values obtained for the D-wave threshold parameters. In fact,
with the exception of a00, the above numbers are all larger than the uncertainties
quoted in PY for the discrepancy between “CGL–direct” and their own evalu-
ation. Evidently, those uncertainties are underestimated. In terms of the error
attached to the comparison of the values obtained for b0+, for instance, their
asymptotics violates crossing symmetry at the level of 5 σ. In other words, their
Regge parametrization is not in equilibrium with the low energy structure: The
various terms from the asymptotic region roughly cancel, so that almost nothing
is left to compensate the contribution from the f2(1275), which dominates the
low energy part of the integral.

The problem does not occur with our asymptotics, for which the sum rules
hold to a remarkable degree of accuracy: with the central values of our parameters
we get

∆aCGL
0+ = −0.006 , ∆aCGL

00 = −0.009 , ∆bCGL
0+ = −0.007 , ∆bCGL

00 = −0.03 .

In PY, it is stated that the discrepancies obtained with the Froissart-Gribov
formula for the effective ranges cannot be taken as seriously as those for the
scattering lengths, because the result is sensitive to the t-dependence of the It = 2
exchange piece. The violation of crossing symmetry, however, also shows up in the
scattering lengths: For the parametrization proposed in PY, the net asymptotic
contribution to ∆a0+, for instance, is also much too small to keep the term from
the f2(1275) in balance, while for ∆a00, it is much too large.

Note that the sum rules receive contributions exclusively from (a) the Regge
representation and (b) the low energy parametrization used for the higher partial
waves. Both of these contributions are small in comparison to the net result for
the threshold parameters, because that result is dominated by the contributions
from the S- and P-waves. For the test of crossing symmetry, however, this com-
parison is of no significance, because the S- and P-waves do not contribute at all.
What counts is whether or not (a) is in equilibrium with (b).

We conclude that, while the asymptotics used in CGL is consistent with cross-
ing symmetry, the one proposed in PY is not. The violation is too large for the
comparison with CGL to be meaningful at the level of accuracy claimed in PY.

10 Summary and conclusions

The low energy analysis of the ππ scattering amplitude described in CGL relies
on input for the imaginary parts, which are partly taken from experiment, partly
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from Regge theory. In the present paper, we have investigated the sensitivity
of the results to the input used in the asymptotic region. The investigation is
motivated by a recent paper of Peláez and Ynduráin, who advise the reader not
to trust the results of CGL, because in their opinion, the input used for the
asymptotics is wrong.

The Regge representation of CGL is based on the work of Pennington and
Protopopescu [11] and is indeed quite different from the one proposed in PY. The
main result of the analysis described in the first part of the present article is that
– as far as the low energy behaviour of the scattering amplitude is concerned –
this difference does not matter. The input used for the imaginary parts above
1.42 GeV may be replaced by the one advocated in PY. The outcome for the
threshold parameters of the leading partial waves remains almost the same:

• The predictions for the S-wave scattering lengths are practically untouched.
Expressed in terms of the uncertainty estimates given in CGL, the changes
amount to less than 0.15 σ. This is of crucial importance, because the result
implies that the subtraction constants in the fixed-t dispersion relations
stay put – the subtraction constants are the essential parameters in the low
energy domain.

• Neither the effective ranges of the S-waves nor the threshold parameters of
the P-wave are sensitive to the input used in the asymptotic region. The
effects seen in the higher partial waves are somewhat larger, but the only
case where replacing the asymptotics of CGL by the one of PY produces a
change that exceeds our error estimates is the isoscalar D-wave scattering
length a0

2, where the displacement amounts to 1.5 σ.

• The Roy equations imply that the low energy behaviour of the isoscalar
S-wave and the P-wave remains practically unaffected by the change in
the asymptotics (see figs. 1 and 2). The exotic S-wave (isospin 2) is more
sensitive, but even in that case, we find that the phase shift at 0.8 GeV is
displaced by only 1.4◦ (see fig. 3). As witnessed by the fact that the changes
in a2

0 and b2
0 are minute, the behaviour in the threshold region essentially

stays put also for this partial wave.

The calculation confirms the stability of our results with respect to the uncer-
tainties in the asymptotic region. Even if the representation proposed in PY is
assumed to be closer to the truth than the one of Pennington and Protopopescu
that we rely on, the predictions for the threshold parameters remain essentially
the same. We conclude that the statements made by Peláez and Ynduráin about
the precision of chiral-dispersive calculations of ππ scattering are incorrect.

In the second part of the present article, we have examined the calculations
described in PY. The main points to notice here are: (i) these do not shed any
light on the values of the threshold parameters and (ii) the Regge parametrization

18



proposed in PY cannot be valid within the uncertainties quoted for the parame-
ters, because it violates crossing symmetry. Our asymptotic representation does
not have this problem.

• In the case of the Olsson sum rule or the Froissart-Gribov representation
for a1

1, the integrals only converge slowly, so that the result is sensitive to
the uncertainties in the imaginary parts above 1.4 GeV. In effect, the calcu-
lation yields a crude estimate for the combination 2 a0

0 − 5 a2
0 of subtraction

constants. The comparison with the very precise prediction obtained in
ref. [2] shows that the asymptotic representation proposed in PY brings the
Olsson sum rule out of equilibrium, while the one used in CGL passes the
test very well. We conclude that the Regge representation proposed in PY
is not consistent with the prediction of standard chiral perturbation theory
for 2 a0

0 − 5 a2
0.

• In the case of b1
1, the Froissart-Gribov formula converges only very slowly,

so that the result is sensitive to the behaviour of the imaginary parts at
very high energies, in marked contrast to the integrals considered in CGL,
where energies above 3 GeV barely contribute. For the central parameter
values of the asymptotic representation used in CGL, the FG integral for b1

1

comes out too small. The result, however, very strongly depends on details
of the parametrization used for the Regge term with the quantum numbers
of the ρ, so that there is no discrepancy to speak of.

• In PY, the method of ref. [25] is used to arrive at an independent determi-
nation of a1

1 and b1
1, based on the e+e− and τ data. While the result for a1

1

is in good agreement with our prediction, the value for b1
1 is not. We show

that the uncertainties attached to this method are underestimated. The
data on the form factor are perfectly consistent with our predictions, not
only for a1

1, but also for b1
1.

• The Froissart-Gribov representation for the threshold parameters of the D-
waves converges about equally well as the Wanders representation used in
CGL – in either case, the low energy region dominates. In PY, the difference
between these two types of representation is used to test our results for the
low energy region. Actually, however, the contributions from the S- and
P-waves are identical in the two cases: A change in these waves shifts our
results by exactly the same amount as theirs. Even if the discrepancies
obtained in PY could be taken at face value, the only conclusion we could
draw from the comparison of the numbers for the threshold parameters of
the D-waves is that the asymptotic representation proposed in PY differs
from the one used in CGL – but this is evident ab initio.

• The asymptotics proposed in PY violates crossing symmetry rather strongly,
while for the one used in CGL, the violations are in the noise. In the case
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of b0+, for instance, the representation of PY implies a violation of cross-
ing symmetry that is more than twice as large as the discrepancy with our
result that the authors are claiming. This shows that (i) their Regge repre-
sentation cannot be valid down to 1.42 GeV and (ii) the uncertainties are
underestimated, particularly those attached to the discrepancies obtained
when comparing their results with ours.

There is no doubt that the representation used in CGL for the asymptotic region,
as well as the one for the low energy contributions from the D- and F-waves
could be improved. In particular, the t-dependence of the imaginary parts is
poorly known at high energies. An improved representation could be found by
exploiting the various sum rules discussed in the present article and comparing
the result with what can be extracted from the experimental information about
the behaviour at high energies by invoking factorization. A better knowledge
of the imaginary parts in the region above 0.8 GeV is of interest, for instance,
in connection with the Standard Model prediction for the magnetic moment of
the muon: Our investigation of the pion form factor [4] relies on an extension
of the Roy equation analysis to higher energies, where the uncertainties in the
asymptotic region are not entirely negligible. Concerning the behaviour in the
threshold region, however, we do not expect this investigation to add much to
what is known already.
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A Asymptotic representation of PY

In the notation of ACGL, the Regge representation used in PY for the imaginary
parts above 1.42 GeV reads

Im T 0(s, t) = 1
3
f0(s, t) + f1(s, t) + 5

3
f2(s, t) + (t ↔ u) ,

Im T 1(s, t) = 1
3
f0(s, t) + 1

2
f1(s, t) − 5

6
f2(s, t) − (t ↔ u) , (A.1)

Im T 2(s, t) = 1
3
f0(s, t) − 1

2
f1(s, t) + 1

6
f2(s, t) + (t ↔ u) .

The functions occurring here are given by

f0(s, t) = n σP

{

1 + k1 (ŝ/s)1/2
}

eb t (s/ŝ)αP (t) ,
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f1(s, t) = n
{

1 + k2 (ŝ/s)1/2
}

f(s, t) ,

f2(s, t) = n k4 f(s, t)2 (ŝ/s) , (A.2)

f(s, t) = σρ
1 + αρ(t)

1 + αρ(0)

{

(1 + k3) eb t − k3)
}

(s/ŝ)αρ(t) ,

αP (t) = 1 + α1
P t , αρ(t) = α0

ρ + α1
ρ t .

The factor n = 4 π2 accounts for the difference in normalization. The scale is
fixed at ŝ = 1 GeV2 and the various parameters are assigned the values

α1
P = 0.11 ± 0.03 GeV−2 , α0

ρ = 0.52 ± 0.02 , α1
ρ = 1.01 GeV−2 ,

σP = 3.0 ± 0.3 , σρ = 0.85 ± 0.10 , b = 2.38 ± 0.20 GeV−2 , (A.3)

k1 = 0.24 , k2 = 0.4 ± 0.1 , k3 = 1.48 , k4 = 0.8 ± 0.2 .

The value of σP corresponds to an asymptotic cross section of nσP /3 ŝ ≃ 15 mb.

B Driving terms for asymptotics of PY

The contributions to the Roy equations that arise from the imaginary parts of
the higher partial waves (ℓ ≥ 2) and from the high energy end of the dispersion
integrals are referred to as driving terms. We evaluate the former as described in
detail in ACGL, except that the integrals are now cut off at 1.42 GeV. Concerning
the latter, we merely have to replace the Regge representation used in ACGL
by the one of PY and take the lower limit of the integral over the energy at
1.42 GeV instead of 2 GeV. The result is well approximated by polynomials in
q2 = 1

4
(s − 4M2

π):

d0
0(s)PY = 0.16 q2 + 5.5 q4 − 6.6 q6 + 7.5 q8 ,

d1
1(s)PY = 0.0011 q2 + 0.52 q4 + 0.13 q6 + 1.1 q8 , (B.1)

d2
0(s)PY = 0.074 q2 + 2.7 q4 − 7.0 q6 + 8.8 q8 ,

where q is taken in GeV units. The corresponding Roy equations are obtained
by inserting these expressions in eqs. (5.1), (5.2) of ACGL, with s0 = (0.8 GeV)2,
s2 = (1.42 GeV)2.

C Roy solution for asymptotics of PY

In order to study the effect of the change in the asymptotics on the solutions of
the Roy equations, we fix the subtraction constants at a0

0 = 0.22, a2
0 = −0.0444

and use our central values for the phenomenological input below 1.42 GeV, which
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are characterized by δ0
0(s0) = 82.0◦, δ1

1(s0) = 108.9◦. We describe the phases with
a parametrization of the form

tan δI
ℓ =

√

1 − 4M2
π

s
q2ℓ
{

AI
ℓ + BI

ℓ q
2 + CI

ℓ q4 + DI
ℓ q

6
}

(

4M2
π − sI

ℓ

s − sI
ℓ

)

. (C.1)

Using the driving terms in eq. (B.1), we then obtain the following solution of the
Roy equations (here, all quantities are given in units of Mπ):

A0
0 = .220 , A1

1 = .380 · 10−1 , A2
0 = −.0444 ,

B0
0 = .269 , B1

1 = .144 · 10−3 , B2
0 = −.936 · 10−1 ,

C0
0 = −.137 · 10−1 , C1

1 = −.719 · 10−4 , C2
0 = −.119 · 10−1 , (C.2)

D0
0 = −.146 · 10−2 , D1

1 = −.117 · 10−5 , D2
0 = .415 · 10−3 ,

s0
0 = 36.73 , s1

1 = 30.70 , s2
0 = −8.84 .

D Representations for the threshold parameters

Subtractions

As discussed in the text, the subtractions play a central role in the low energy
analysis. The fixed-t dispersion relations are needed in order to derive the various
representations for the threshold parameters used in the text. We first write these
relations down explicitly.

If the subtractions are ignored, the fixed-t dispersion relations are very simple:

~T (s, t) =
∫

∞

4M2
π

ds′







Im ~T (s′, t)

(s′ − s)
+

Csu · Im ~T (s′, t)

(s′ − u)







, (D.1)

where ~T (s, t) = {~T 0(s, t), ~T 1(s, t), ~T 2(s, t)} is the vector formed with the three s-
channel isospin components and Csu is the 3×3 crossing matrix relevant for s ↔ u.
The dispersion integral diverges, however. In order to remove the divergent piece,
a subtraction term of the form ~c0(t) + s~c1(t) is needed. As shown by Roy [5],
crossing symmetry implies that the subtraction functions ~c0(t) and ~c1(t) are fully
determined by the imaginary parts of the forward scattering amplitude, except
for two constants. The dispersion relations then take the form

~T (s, t) = (4M2
π)−1 (s 1 + t Cst + u Csu) · ~T (4M2

π , 0) (D.2)

+
∫

∞

4M2
π

ds′ g2(s, t, s
′) · Im ~T (s′, 0) +

∫

∞

4M2
π

ds′ g3(s, t, s
′) · Im ~T (s′, t) .

The first term is fixed by the S-wave scattering lengths:

~T (4M2
π , 0) = 32 π (a0

0, 0, a
2
0) .
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The quantities g2 and g3 are built with the crossing matrices Cst, Ctu and Csu:

g2(s, t, s
′) = − t

π s′ (s′ − 4M2
π)

(u Cst + s Cst Ctu)
(

1

s′ − t
+

Csu

s′ − u0

)

,

g3(s, t, s
′) = − s u

π s′(s′ − u0)

(

1

s′ − s
+

Csu

s′ − u

)

, (D.3)

with u = 4M2
π − s − t and u0 = 4M2

π − t. One readily checks that the difference
between the right hand sides of eqs. (D.1) and (D.2) is linear in s.

The scattering amplitude is invariant under the crossing operations s ↔ t,
s ↔ u and t ↔ u: ~T (s, t) = Ctu · ~T (s, u) = Cst · ~T (t, s) = Csu · ~T (u, t). These
relations impose constraints on the imaginary part of the amplitude, which can
be expressed in the form of sum rules [26, 27, 28]. In particular, inserting the
dispersion relation (D.2) on the two sides of the equation

~T (s, t) = Cst · ~T (t, s) , (D.4)

one obtains an entire family of such sum rules. Note that the relation S(t) = 0,
which we made use of in section 7, was considered long ago and was exploited
to study the t-dependence of the residue of the Regge pole with the quantum
numbers of the ρ [28]. For a detailed discussion, we refer to [12].

Wanders representation

The threshold parameters are the coefficients occurring in the expansion of the
scattering amplitude around the point s = 4M2

π , t = 0. Setting

s = 4 (M2
π + q2) , t = −2 q2 (1 − z) . (D.5)

and performing the expansion in powers of q in the integrands on the right hand
side of the dispersion relation (D.2), we arrive at the Wanders sum rules:

b0
0 =

1

3M2
π

(2a0
0 − 5a2

0) +
M2

π

6π2

∫

∞

4M2
π

ds B0
0(s)

s2(s − 4M2
π)2

− β (a0
0)

2

b2
0 = − 1

6M2
π

(2a0
0 − 5a2

0) +
M2

π

12π2

∫

∞

4M2
π

ds B2
0(s)

s2(s − 4M2
π)2

− β (a2
0)

2

a1
1 =

2 a0
0 − 5 a2

0

18 M2
π

+
M2

π

36 π2

∫

∞

4M2
π

ds A1
1(s)

s2(s − 4M2
π)2

(D.6)

b1
1 =

1

36π2

∫

∞

4M2
π

ds B1
1(s)

s3(s − 4M2
π)3

.

The integrands are given by

B0
0(s) = 4(s − M2

π)Im T 0(s, 0) + (s − 4M2
π){−3Im T 1(s, 0) + 5Im T 2(s, 0)} − β0(s) ,
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B2
0(s) = (s − 4M2

π){2Im T 0(s, 0) + 3ImT 1(s, 0)} + (7s − 4M2
π)Im T 2(s, 0)) − β2(s) ,

A1
1(s) = 3 (3 s− 4M2

π) Im T 1(s, 0) + (s − 4M2
π){−2 Im T 0(s, 0) + 5 Im T 2(s, 0)} ,

B1
1(s) = 3 (3 s3 − 12M2

πs2 + 48M4
πs − 64M6

π) Im T 1(s, 0)

+(s − 4M2
π)3{−2 ImT 0(s, 0) + 5 ImT 2(s, 0)} .

For the S-wave effective ranges, the expansion can be interchanged with the
integration only after removing the threshold singularity. This can be done by
supplementing the integrand with a total derivative, which gives rise to extra
terms in the expressions for b0

0 and b2
0:

β0(s) =
48 π

M2
π

(a0
0)

2 h(s) θ(sc − s) , β2(s) =
96 π

M2
π

(a2
0)

2 h(s) θ(sc − s) ,

β =
8

π

∫

∞

sc

ds

s2(s − 4M2
π)2

h(s) , h(s) = (s − 2M2
π)
√

s(s − 4M2
π) .

By construction, the result is independent of sc.
The corresponding representations for the threshold parameters of the higher

waves are obtained in the same manner – we are referring to all of these as
Wanders representations. The one for the D-wave scattering lengths, for instance,
takes the form

a0
2 =

1

90π2

∫

∞

4M2
π

ds A0
2(s)

s3(s − 4M2
π)2

+
M2

π

45π2

∫

4M2
π

ds Ȧ0
2(s)

s2(s − 4M2
π)2

(D.7)

a2
2 =

1

180π2

∫

∞

4M2
π

ds A2
2(s)

s3(s − 4M2
π)2

+
M2

π

90π2

∫

4M2
π

ds Ȧ2
2(s)

s2(s − 4M2
π)2

.

In this case, the integrands

A0
2(s) = 3 (s2 + 4M2

πs − 16M4
π) ImT 1(s, 0)

+(s − 4M2
π)2{Im T 0(s, 0) + 5 ImT 2(s, 0)} ,

Ȧ0
2(s) = 4(s − M2

π)Im Ṫ 0(s, 0) + (s − 4M2
π){−3 Im Ṫ 1(s, 0) + 5 ImṪ 2(s, 0)} ,

A2
2(s) = −3 (s2 + 4M2

πs − 16M4
π) Im T 1(s, 0)

+(s − 4M2
π)2{2 Im T 0(s, 0) + Im T 2(s, 0)} ,

Ȧ2
2(s) = (s − 4M2

π){2 Im Ṫ 0(s, 0) + 3 Im Ṫ 1(s, 0)}
+(7 s − 4M2

π) Im Ṫ 2(s, 0) ,

involve the first derivative of the scattering amplitude with respect to t,

Ṫ I
ℓ (s, t) ≡ ∂

∂t
T I

ℓ (s, t)

We do not list the analogous expressions for the D-wave effective ranges or for
the F-wave scattering length. These are obtained with the same algorithm and
involve up to two derivatives.
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Froissart-Gribov representation

The crossing relation (D.4) connects the properties of the amplitude in the vicinity
of threshold to those in the vicinity of the point s = 0, t = 4M2

π . The Froissart-
Gribov representation of the threshold parameters may be obtained by inserting
the unsubtracted dispersion relation (D.1) in eq. (D.4) and expanding the result
around s = 4M2

π , t = 0. Instead of the Wanders sum rules, we now obtain

aI
ℓ =

2ℓ ℓ!

16 π2 (2ℓ + 1)!!

∫

∞

4M2
π

ds
Im T (I)(s, 4M2

π)

s ℓ+1
, (D.8)

bI
ℓ =

2ℓ ℓ!

8 π2 (2ℓ + 1)!!

∫

∞

4M2
π

ds
2 s Im Ṫ (I)(s, 4M2

π) − (ℓ + 1)ImT (I)(s, 4M2
π)

s ℓ+2

The quantities T (0)(s, t), T (1)(s, t) and T (2)(s, t) represent the t-channel isospin
components of the scattering amplitude,

T (I)(s, t) =
∑

I′
CII′

st T I′(s, t) (D.9)

and Ṫ (I)(s, t) stands for the derivative of T (I)(s, t) with respect to t.
In view of the occurrence of subtractions, the representation holds in this

form only for ℓ ≥ 1. In order to arrive at a representation that also holds for
the S-waves, it suffices to insert in eq. (D.4) the subtracted version (D.2) of the
dispersion relation rather than the unsubtracted one. The subtractions are linear
in s. After crossing, they become linear in t and thus drop out in all waves
except S and P. So the expressions for the threshold parameters remain the same
for ℓ ≥ 2. On the other hand, the term containing the function g3(s, t, s

′) in
eq. (D.3) is proportional to s u. After crossing, this becomes t u = 4 q4(1 − z2).
So, the term does not contribute to the scattering lengths or effective ranges
of the S- and P-waves. Hence the resulting representation for these exclusively
contains the imaginary parts in the forward direction. In fact, the representation
for b0

0, b2
0, a1

1, b1
1 that obtains in this manner is identical with the Wanders sum

rules in eq. (D.6). The exercise shows that the lowest terms in the threshold
expansion of the subtracted fixed-t dispersion relations automatically respect
crossing symmetry.

Sum rule related to a0
2

As mentioned in the text, the contributions from the S- and P-waves to the FG
and W representations of the D- and F-wave threshold parameters are identical.
For ∆a0

2 = a0
2

FG

− a0
2

W

, for instance, the explicit expression reads

∆a0
2 =

16

45π

∑

ℓ

(2ℓ + 1)
∫

∞

4M2
π

ds

s3

{

P̄ℓ(zs)
{

Imt0ℓ(s) + 3 Imt1ℓ(s) + 5 Imt2ℓ(s)
}
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− 2M2
πs

(s − 4M2
π)3

{

κ0
ℓ(s) Imt0ℓ(s) + κ1

ℓ(s) Imt1ℓ(s) + κ2
ℓ(s) Imt2ℓ(s)

}

}

,

zs =
s + 4M2

π

s − 4M2
π

, P̄ℓ(z) =

{

Pℓ(z) − 1 ℓ even
Pℓ(z) − z ℓ odd

κ0
ℓ(s) = 4 ℓ(ℓ + 1)(s − M2

π) ,

κ1
ℓ(s) = −3(ℓ − 1)(ℓ + 2)(s − 4M2

π) ,

κ2
ℓ(s) = 5 ℓ(ℓ + 1)(s − 4M2

π) .

In the notation used here, the sum extends over all values of ℓ, but Imt0ℓ(s) and
Imt2ℓ(s) are different from zero only if ℓ is even, while Imt1ℓ(s) vanishes unless
ℓ is odd. The formula explicitly demonstrates that the S- and P-waves do not
contribute to the sum rule ∆a0

2 = 0: The coefficients P̄ℓ(z) and κI
ℓ(s) vanish for

ℓ = 0 and ℓ = 1.

E Numerics for the Olsson sum rule

In PY, the contributions to the Olsson integral arising from the imaginary parts
of the S-and P-waves below 0.82 GeV are estimated at 0.400±0.007. The central
value is in good agreement with what is obtained with the central solution in
eq. (17.2) of CGL: OSP(E < 0.82 GeV) = 0.401 (no wonder: it is calculated from
this solution, except that an extrapolation for the interval from 0.80 to 0.82 GeV
is made). If we instead use the Roy solution relevant for the asymptotics of
PY, which is specified in eq. (C.2), we obtain OSP(E < 0.82 GeV) = 0.404. The
comparison demonstrates that the low energy behaviour of the integrand in the
Olsson sum rule is not sensitive to the asymptotics. Concerning the error bar
to be attached to the central value, we note that the uncertainties in the low
energy theorems for the S-wave scattering lengths generate an error of ±0.005,
while those in the phases at the matching point affect the result by ±0.007. The
noise in the experimental input used in the region from 0.8 to 1.42 GeV also
generates some uncertainty in the Roy solutions. We investigate this effect by
comparing the results found for the different phase shift analyses shown in Fig. 3
of ACGL. The error from this source is small - we estimate it at ±0.002. Finally,
we take the difference between the central solutions belonging to the asymptotics
of ACGL and PY as an estimate of the uncertainties from the region above 1.42
GeV. The net result then reads

OSP(E < 0.82 GeV) = 0.404 ± 0.005 ± 0.007 ± 0.002 ± 0.003 . (E.1)

This adds up to 0.404 ± 0.009, in good agreement with the value 0.400 ± 0.007
obtained in PY. Adding the various terms listed in eq. (4.3) of PY, we obtain

OPY = 0.638 ± 0.015 . (E.2)
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So, the change in the asymptotics proposed in PY indeed pulls the Olsson integral
down, by about 0.029 and thus tends to bring the sum rule out of equilibrium.

The left hand side of the Olsson sum rule is determined by the S-wave scat-
tering lengths. These also enter the above calculation of the right hand side: The
first error in eq. (E.1) reflects the uncertainties due to this source. The remain-
ing terms on the right hand side of this equation as well as the contributions
from E > 0.82 GeV are independent of a0

0, a
2
0, so that the net uncertainty in the

difference between the two sides of the Olsson sum rule cannot be smaller than
the errors that remain if the uncertainty on the left as well as the first error in
eq. (E.1) are dropped. Indeed, the two terms mentioned nearly cancel: Vary-
ing the S-wave scattering lengths in the error ellipse given in CGL, the quantity
∆ ≡ 2a2

0 − 5a2
0 − O only varies by ±0.002. Adding the other sources of uncer-

tainty, we obtain ∆ = 0.025±0.013 and thus confirm the result ∆ = 0.027±0.011
quoted in PY.
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