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Abstract: We derive the evolution equation for hadronic scattering amplitude at high energy. Our

derivation includes the nonlinear effects of finite partonic density in the hadronic wave function as

well as the effect of multiple scatterings for scattering on dense hadronic target. It thus includes

Pomeron loops. It is based on the evolution of the hadronic wave function derived in [1]. The kernel

of the evolution equation defines the second quantized Hamiltonian of the QCD Reggeon Field

Theory, HRFT beyond the limits considered so far. The two previously known limits of the evolution:

dilute target (JIMWLK limit) and dilute projectile (KLWMIJ limit) are recovered directly from

our final result. The Hamiltonian HRFT is applicable for the evolution of scattering amplitude for

arbitrarily dense hadronic projectiles/targets - from ”dipole-dipole” to ”nucleus-nucleus” scattering

processes.
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1. Introduction

This paper continues our investigation of high energy evolution of hadronic cross sections and other

observables. The subject has a long history, starting with Gribov’s ideas of reggeon field theory [2]

and early work exploring Pomeron interactions [3], [4]. In the framework of QCD the perturbative

evolution equation - the BFKL equation was derived in [5]. It describes the evolution of forward and

non-forward scattering amplitudes as the energy of the collision becomes large. The BFKL equation

was clearly a crucial milestone in the study of high energy scattering. It has given an impetus to a

lot of theoretical and experimental work. However it has been realized very quickly that at very high

energies the BFKL equation violates unitarity and leads to cross sections which rise as a power of

energy. This violation is very severe, since it does not only violate the Froissart bound for the total
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cross section, but also violates unitarity of the scattering amplitude at fixed impact parameter. In

order to restore unitarity one has to include t-channel exchanges with more than just two reggeized

gluons. This idea has been developed by Bartels [6]. Within this framework the generalization of

the BFKL equation is the BKP equation, which governs (perturbative) high energy evolution of an

amplitude due to an exchange of an arbitrary but fixed number of reggeized gluons [7].

It was further realized that to achieve the s-channel unitarity one has to introduce transitions

between states with different number of reggeized gluons [8]. The ideas put forward in [8] have

been under intense investigation during the last decade or so [9, 10, 11, 12, 13, 14]. At present, this

approach provides elements of an effective theory in terms of t-channel gluon states and transition

vertices. These elements have been put together in [14] into an effective theory of BFKL Pomerons

interacting via triple pomeron vertex of [8]. This model is meant to describe nucleus-nucleus collisions

at high energies at LLA and large Nc. We also note that Lipatov and collaborators [15] have

derived an effective action with both real and reggeized gluons as effective degrees of freedom. This

action respects the unitarity of full QCD, but its complexity has so far precluded any progress in

understanding its physical consequences.

It is hoped that the end result of this direction of research will be a quantum theory of interacting

Reggeons derived entirely from QCD.

A parallel line of research originated by Gribov, Levin and Ryskin [16] has been vigorously

pursued in the last 15 years or so. It is based on the idea of gluon saturation. At high energy the

evolution of physical observables should slow down because of nonlinear effects due to large density of

gluons in the hadronic wave function. The GLR equation - the nonlinear evolution equation for gluon

density in the double logarithmic approximation was derived in [16] and put on firmer theoretical

grounds in [17]. The gluon saturation ideas have been further developed in a series of papers by

Mueller[18], who also introduced the notion of QCD dipoles as a convenient basis for the discussion

of high energy processes, and has related it to BFKL Pomeron and the triple Pomeron vertex [19].

It was noted in [20] that the problem of saturation can be also related to nonlinearities in the

classical Yang-Mills equations. Following this observation, the formal path integral approach to

the problem of evolution has been developed in [21]. This together with independent approaches

of [22] and [23], and a later work [24] resulted in the derivation of a functional evolution equation

for the correlators of the color charge density in the hadronic wave function, the so called JIMWLK

equation (also called sometimes the Balitsky hierarchy). The equations are more conveniently written

as evolution of the correlators of Wilson lines, introduced in [25] as effective degrees of freedom at high

energy. The JIMWLK equation takes into account the effects of nonlinearities in the wave function

of the projectile, but when applied to the scattering amplitude, it does not account for the bulk

of multiple scattering corrections. It is applicable in a situation when a dense object (”nucleus”)

scatters off a dilute perturbative object (”dipole”). The equation therefore does not include the

Pomeron loop effects [26, 27, 28, 29, 30]. The reverse situation - that of a perturbative ”dipole”

scattering off a dense ”nucleus” was considered in [31] and the evolution equation for this limit has

been derived. We will refer to this as the KLWMIJ equation [31]. Although it describes the same

physical process as JIMWLK, the KLWMIJ evolution acts on the wave function of a dilute object,

and thus does not include the effects of nonlinearities. It does, on the other hand, take into account

all important multiple scattering effects. The efforts to consistently include Pomeron loops into the
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evolution have continued since, yielding many interesting developments [32, 33, 34, 35, 36, 37, 38,

39, 40, 41, 42, 43, 44]. Also a statistical analogy of the Pomeron loop effects has been suggested in

[45, 46], although its validity has not been convincingly demonstrated.

Other recent interesting developments in this area include the calculation of the next to leading

order corrections to the JIMWLK kernel [47, 48] as well as the generalization of the approach to

calculate less inclusive observables than the scattering amplitude [49, 50, 51, 52].

The last years also have seen progress in relating the JIMWLK approach to the reggeon field

theory. This relation has been discussed in some detail in [53]. The functional JIMWLK equation

has direct interpretation as the Schroedinger equation of the Hamiltonian reggeon field theory. The

JIMWLK kernel in this view is simply the Hamiltonian of the RFT (Reggeon field theory). To

be precise, the theory which we dub RFT is the effective theory of QCD at high energies which

governs the high energy behavior of scattering amplitudes of hadrons. The degrees of freedom of

this effective theory are the Wilson lines (single gluon scattering amplitudes). These are not quite

the reggeized gluons of [6],[7] but are closely related to them. The mapping between the Wilson

lines and reggeized gluons of the standard formulation has been discussed in detail in [53]. Since

JIMWLK equation does not contain the Pomeron loop effects, the RFT Hamiltonian obtained in this

way is not complete. To obtain the complete RFT Hamiltonian one has to take into account both the

effects of the nonlinear corrections in the projectile wave function as well as contributions of multiple

scattering corrections to the scattering amplitude, in the same framework. Although the complete

RFT Hamiltonian has not been derived yet, some of its general properties have been discussed in

[54]. In particular, since HRFT generates the energy evolution of hadronic scattering amplitudes,

unitarity requires the spectrum of its eigenvalues to be positive.

An important step towards the derivation of the complete HRFT was made in [1]. This paper

derived the evolution of the hadronic wave function under boost. The one step that is still missing

in [1] is the derivation of HRFT itself. To derive HRFT one has to consider calculation of physical

observables, such as the scattering amplitude in the evolved wave function, rather than simply the

evolution of the wave function itself.

The main purpose of the present paper is precisely to make this additional step and complete

the derivation of HRFT . Our final result for the RFT Hamiltonian is given in eq.(4.28). This result

is valid to leading order in the coupling constant αs at any parametric value of the color charge

density of the colliding hadrons. It also accounts for all multiple scattering effects in the eikonal

approximation. The term eikonal is used here only in the sense that individual partons in the

hadronic wave function scatter eikonally. The hadron as a whole in this approximation does undergo

both elastic and inelastic scattering [55]. This approximation is the same as used in all the recent

papers on the subject quoted above.

The Hamiltonian HRFT effectively resums all perturbative diagrams in which every factor αs

is enhanced by a single logarithm of energy (leading log approximation). In all regimes explored

previously, in addition to the leading log approximation some assumption about partonic densities was

made. The density is either considered to be parametrically small (dilute regime - KLWMIJ evolution)

or parametrically large (dense regime - JIMWLK evolution). Although we will be frequently referring

to the dense regime in this paper, the Hamiltonian we derive is valid for arbitrary density and thus
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has only one resummation parameter αs Y ≃ 1. Corrections to our result are suppressed by a power

of αs at any partonic density. Although we have not studied these corrections in full generality, one

can easily see that in both the JIMWLK and the KLWMIJ limits the expansion is in integer powers

of αs and any correction to our result contributes at most at next-to-leading order in this expansion.

The result presented in eq.(4.28) generalizes all previously available limiting expressions for HRFT

[21, 24, 23, 22, 31, 34, 38, 42] to the most general situation. It reproduces the JIMWLK and the

KLWMIJ Hamiltonians in the appropriate limits, and is applicable also when both colliding objects

are either small (”dipole-dipole scattering”) or large (”nucleus-nucleus scattering”).

Similarly to previously known limits, the complete HRFT eq.(4.28) can be expressed in terms of

Wilson lines. Those are SU(N) unitary matrices which depend on the two dimensional transverse

coordinates. These are the basics quantum fields - the degrees of freedom of the effective Reggeon

Field Theory. We note that one can introduce two sets of Wilson lines (associated to the propagation

of projectile or target partons), which play the role of (almost) canonically conjugate variables. Either

set of the Wilson lines can be chosen as a complete set of variables on the Hilbert space of RFT.

The scattering amplitude is not the only physical observable whose evolution is governed by

HRFT . In the companion paper [56] we continue this line of investigation by deriving expressions for

more exclusive observables, which also resum effects of Pomeron loops. In particular we discuss in

[56] the single gluon inclusive spectrum and also the double and multi gluon exclusive spectra when

none of the observed gluons are separated by large rapidity, so that the effects of energy evolution

between the final state gluon rapidities are unimportant.

This paper is structured as follows. In Section 2 we recap the main results of [1] and outline the

steps for calculation of HRFT . Section 3 contains the calculations of main ingredients necessary for

the final push. In Section 4 we complete the calculation of the HRFT and derive our main result.

We discuss our results in Section 5. Appendices provide some details of calculation as well as discuss

some aspects of the perturbative expansion of our result.

2. The Summary and the Road Map.

In [1] we have analyzed the evolution of the hadronic wave function at high energy. Here we summarize

the results of [1].

The standard expansion of the field operator in terms of creation and annihilation operators of

free gluons is

Aa
i (x

−, x) =

∫ ∞

0

dk+

2π

d2k

4π2

1√
2k+

{

aa
i (k

+, k) e−ik+x− −ikx + aa†
i (k+, k) eik+x− +ikx

}

(2.1)

where

[aa
i (k

+, k), a†bj (p+, p)] = (2π)3δ(k+ − p+) δ2(k − p) . (2.2)

The operator Aa
i (x

−, x) is the vector potential operator in the light-cone gauge A+ = 0 with the

zero longitudinal momentum mode subtracted.1 Throughout the text we will be using upper Latin

1In [1] it was denoted as Ã.
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indices a, b . . . = 1, ..., N2 − 1 to denote color while lower indices i, j, . . . = 1, 2 to denote rotational

components. For further reference we note that the vector potential can also be decomposed in the

creation and annihilation operators in the frequency basis:

Aa
i (x

−, x) =

∫ ∞

0

dk−

2π

d2k

4π2

1√
2k−

{

aa
i (k

−, k) e−i k2

2k−
x− −ikx + aa†

i (k−, k) ei k2

2k−
x− +ikx

}

(2.3)

where

aa
i (k

−, k) =

√

k+

k−
aa

i (k
+, k) (2.4)

so that

[aa
i (k

−, k), a†bj (p−, p)] = (2π)3 δ(k− − p−) δ2(k − p) . (2.5)

We consider a hadronic projectile moving to the right with large energy. Suppose at initial

rapidity we know the hadronic wave function |Ψ〉. The bulk of gluons in this wave function are at

rapidities greater than some ”cut off” rapidity. The properties of this valence component of the wave

function are characterized by correlators of the color charge density operator ja(x). The gluons with

rapidity smaller than the cutoff are small in number and therefore do not contribute to observables

in the leading order in the coupling constant.

This ”soft” component of the wave function can be calculated perturbatively. It was shown in

[1] that the wave function, including its soft component has the form

|Ψ〉 = Ω[a, a†, j] |v〉 (2.6)

where a and a† are soft gluon creation and annihilation operators with rapidities below the cutoff.

The valence state |v〉 has no soft gluons and is therefore annihilated by the soft gluon annihilation

operators

a |v〉 = 0 .

The evolution operator Ω is a unitary operator of the Bogoliubov type

Ω = C B . (2.7)

Here C is a coherent operator that creates the ”classical” Weizsaker-Williams field

C = exp

{

2i

∫

d2x ba
i (x)Aa

i (x
− = 0, x)

}

. (2.8)

and B is a Bogoliubov type operator responsible for the leading quantum corrections (see below).

The color charge operators j(x) are operators on the valence Hilbert space and form a local

SU(N) algebra:

[ja(x), jb(y)] = i g fabc jc(x) δ2(x − y) . (2.9)

The Weizsaker-Williams field ba
i (x) created by the valence modes depends only on transverse coordi-

nates x and is a two dimensional pure gauge field. It can therefore be written in terms of a unitary

matrix U as

ba
i = −1

g
fabcU †bd ∂i U

dc (2.10)
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where fabc are the structure constants of the SU(N) and Uab is an SU(N) group element in the

adjoint representation. The Weizsaker-Williams field is related to the valence color charge density

by

∂i ba
i (x) = ja(x) (2.11)

The classical field b has a well known diagrammatic interpretation. It sums the tree level diagrams

to the one gluon component of the state created by the coherent operator C from the Fock vacuum

(see Fig. 1).

���
���
���
���

���
���
���
���

������ ��

b

Figure 1: Diagrammatics of the classical field ba

i
. The straight solid line represents the valence charges which

serve as sources of the classical field.

The explicit form of B has not been given in [1], however the action of B on the gluon fields was

calculated. Since we will use heavily this in the following, we give here the relevant expressions, even

though they are quite lengthy.

B† Aa
i (x)B = ca

i (x) + ǫ(x−)∆ab
ij (x, y)cb

j(y
− = 0, y) , (2.12)

where

ǫ(x) =
1

2
[θ(x) − θ(−x)] (2.13)

and

ca
i (x) =

∫ ∞

0

dp−

2π

∫

d2q

[

θ(−x−)e
i ∂2

2p−
x−

[t − l]ij(x, y)vaj
p−,q

(y)

+θ(x−)e
i D2

2p−
x−

[T − L]ab
ij (x, y)vbj

p−,q
(y)

]

ap−,q + h.c. , (2.14)

with

∆ab
ij (x, y) =

{

Di
1

∂D
Dj + Di

1

D∂
Dj − 2Di

1

∂D
∂j

}ab

(x, y) . (2.15)

The covariant derivative is Dbc
i = ∂iδ

bc − fa
bcb

a
i and the projectors T, L, t, l are defined as

Lab
ij =

[

Di
1

D2
Dj

]ab

, T ab
ij = δab

ij − Lab
ij ; lij = ∂i

1

∂2
∂j; tij = δij − lij . (2.16)

The integral over p− in eq.(2.14) strictly speaking excludes the point p− = 0 since soft gluon modes all

have non-vanishing light cone frequency. This subtlety however does not affect any of our calculations

and we will therefore not indicate this explicitly.

The transverse basis functions vp−q are the analogs of plane waves and are normalized according

to ∫

d2q v−i
p−q

(x) v∗−j
p−q

(y) = Wij
p−

(x, y) . (2.17)
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where

Wij
p−

(x, y) =

(

1

p−

)2
{

1
1

p− + iǫ
[δijδ2(x − y) +

1

2
Cij(x, y)] +

1
1

p− − iǫ
[δijδ2(x − y) − 1

2
Cij(x, y)]

}

.

(2.18)

with

Cab
ij (x, y) =

{

2∂i
1

D∂
Dj − 2Di

1

∂D
∂j

}ab

(x, y) . (2.19)

For all practical purposes this means that for any finite frequency p− the functions v can be taken

as plane waves (we suppress rotational and color indices in which v can be taken as a unit matrix)

vp−,q(x) =
1

√

p−
eiqx . (2.20)

For the mode at infinite frequency the normalization is different as is given by the operator Cab
ij (x).

Although the infinite frequency mode does not contribute directly to any quantity which is pro-

portional to rapidity, it does play an important role in insuring the completeness of the expansion

basis in eq.(2.12). We will not be working with this mode directly, but will simply use the fact that

including this mode, the operator B is indeed unitary, with all the ensuing consequences.

Since the color charge density is a quantum operator on the valence Hilbert space, it is also

transformed by the action of B. This transformation has been found explicitly in [1]. It turns out

that for our present purposes it is not necessary to know the exact form of this transformation apart

from the fact that it adds to j terms of relative order O(αs).

We now consider the energy evolution of the hadronic wave function. Increasing energy of a

hadron is equivalent to boosting it. Under the boost transformation, the longitudinal momenta of

the soft gluons in the wave function eq.(2.6) increase. As a result, soft gluons emerge from below the

”cutoff” and the number of gluons in the wave function which contribute to any physical observable,

such as a scattering amplitude increases (Fig. 2).

ψ
Boost

ψη η

η

{rapidity
cutoff

soft
modes

valence
modes

j

Y

Y

j

A

η + ∆

∆

Figure 2: The light cone wave function before and after boost. Here η stands for gluon‘s rapidity, j for the

color charge density of the valence gluons, and A for the soft gluon field.

Thus in the leading logarithmic approximation the soft part of the wave function determines

completely the evolution of physical observables with rapidity. However to find this evolution one

has to make an additional step, and consider directly some physical observable. The purpose of
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this paper is precisely to make this additional step from the soft gluon wave function to physical

observables.

The most basic and most inclusive observable is the forward scattering amplitude of our projectile

hadron on some hadronic target. This is the observable we are going to discuss in this paper. It

belongs to a broader class of observables which depend only on the correlators of the color charge

density operator ja(x) and not on other characteristics of the projectile wave function. Evolution

of observables of this type is governed by the functional evolution equation which generalizes the

JIMWLK [21, 24] and KLWMIJ [31] - the Schroedinger equation of RFT. The kernel of the evolution

equation can be viewed as the second quantized Hamiltonian of the QCD Reggeon Field Theory

(RFT) as discussed at length in [53]. By considering an arbitrarily dense hadron as a possible target

in the scattering process, we will derive the functional evolution equation which is applicable in the

full parameter range between the BFKL scattering of two small perturbative objects through to

nucleus-nucleus scattering. The result of the present paper is therefore the RFT Hamiltonian which

contains the effects of Pomeron loops.

Another example of observables of this type are the single inclusive, double inclusive and in

general multiple gluon production amplitudes, where all gluons are close to each other in rapidity.

In the companion paper [56] we derive the explicit expressions for these observables in terms of the

target and projectile fields, to be averaged over the corresponding wave functions, and discuss their

evolution.

We now briefly sketch what we have to do to derive HRFT . Consider the calculation of some

hadronic observable O which depends only on the color charge density operator ja(x) and not on

any other property of the wave function

Ō = 〈v| Ô[j] |v〉 =

∫

Dj W P [j]O[j] . (2.21)

The last expression is by now the standard way of representing the wavefunction average using

functional integral. The weight functional W P provides a probability distribution for the valence

charges j in the wavefunction.

An important (but not the only) example of an observable discussed above is the eikonal S -

matrix in the external field α

Ŝ = exp

{

i

∫

x
ja(x)αa(x)

}

. (2.22)

In the approach of [21] the expression of the scattering amplitude for a hadron-hadron scattering is

given by

S = 〈〈v| Ŝ |v〉〉α (2.23)

where the weight for the averaging over the fields α is determined by the wavefunction of the target.

The same procedure applies to any observable. The matrix element Ō is the expectation value

of the operator O in the projectile wavefunction. In order to obtain the final expression for the

observable measured in the collision, we also have to average Ō over the target wavefunction.

〈 Ō 〉 T =

∫

DαW T [α] Ō (2.24)
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where α represents all the target fields2.

We assume, as before that only valence degrees of freedom contribute to the average eq.(2.21)

at initial rapidity. When the system is boosted to rapidity Y , two important changes occur. First,

the relevant wave function changes from |v〉 to |Ψ〉, and second the color charge density of the soft

gluons has to be added to ja in the observable O[j]. Both changes are due to the fact that the soft

gluons after boost emerge with momenta above the cutoff rapidity, and now contribute to physical

observables (see Fig. 2). Thus eq.(2.21) at higher rapidity Y becomes

ŌY = 〈Ψ| O[ja(x) + ja
soft(x)] |Ψ〉 = 〈v| Ω† R̂a O[j] Ω |v〉 . (2.25)

Here the charge density shift operator

R̂a ≡ e
R

x
ja
soft(x) δ

δja(x) (2.26)

and

ja
soft(x) = g

∫

dk+

2π
a† b(k+, x) T a

bc ac(k+, x) (2.27)

is the color charge density of the soft gluons with the integral over k+ defined over the range of

momenta corresponding to the boost parameter ∆Y (Fig. 2).

Eq.(2.25) has a universal form, in the sense that it does not depend on the particular operator

O. Since the state |v〉 is the vacuum of the soft gluon degrees of freedom, it is possible in principle

to calculate the expectation value in eq.(2.25) over the soft gluon part of the Hilbert space without

the explicit knowledge of the operator O. This involves calculating the following matrix element

〈0|Ω†[j, a, a†] e
R

x
ja
soft(x) δ

δja(x) Ω[j, a, a†] |0〉 . (2.28)

The quantum averages in eq.(2.28) are performed only over the soft gluon Hilbert space. Here the

functional derivatives δ/δj are treated as c-numbers since according to eq.(2.25) they should only act

on j’s in the operator O. The valence color charges ja in this expression are ”almost” c-numbers, in

the sense that they are not quantum operators on the Hilbert space of the soft gluons. One should

however keep track of their ordering, since they do not commute with each other.

The expression in eq.(2.28) of course depends on the total rapidity ∆Y available to gluons in

the soft Hilbert space. Since we are interested in deriving a differential equation in this rapidity, we

have to treat this rapidity as small. To obtain the kernel of the high energy evolution equation we

simply have to calculate eq.(2.28) to first order in this total rapidity.

d

dY
Ō = lim

∆Y →0

〈v| Ω† R̂a Ô[j] Ω |v〉 − 〈v|O[j] |v〉
∆Y

≡ −HRFT

[

j,
δ

δj

]

〈v|O[j] |v〉 (2.29)

where HRFT is defined as

HRFT

[

j,
δ

δj

]

= − d

dY
〈0|Ω†[j, a, a†] R̂a Ω[j, a, a†]|0〉|Y =0 . (2.30)

2In most of our discussion below we will be focused on the evolution of the projectile and will not indicate target

averages explicitly. One should remember, however, that the averaging over the target (2.24) is always assumed in final

results.
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We see that the evolution of any observable Ō is given by

d

dY
Ō = −〈v| HRFT

[

j,
δ

δj

]

O[j] |v〉 = −
∫

Dj W P [j] HRFT

[

j,
δ

δj

]

O[j] . (2.31)

Conforming with literature, in the last line we have represented averaging over the valence state as

a functional integral over the color charge density with the weight functional W P [j]. The functional

derivatives can be integrated by parts to make them act on W P . Assuming that the Hamiltonian

HRFT is Hermitian (which we will find to be the case), we can rewrite this equation as an evolution

equation for the weight functional W P [j] as

d

dY
W P

Y [j] = −HRFT

[

j,
δ

δj

]

W P
Y [j] . (2.32)

Thus we conclude that in order to find the evolution of the scattering amplitude and other

observables which depend only on the color charge density, we need to calculate the matrix element

in eq.(2.28) and expand it to first order in Y . This is what we will do in the next section.

3. The Derivation

We start by deriving a more explicit expression for the wave function

|Ψ〉 = Ω[j, a, a†] |0〉 . (3.1)

We find it convenient to define the creation and annihilation operators in rapidity basis rather than in

the basis of longitudinal momentum k+ or frequency k− as described in the introduction. Defining the

rapidity variable as η = ln
p−0
p−

with an arbitrary constant p−0 , we rescale the creation and annihilation

operators as

aa
i (k

+, k) =

√

1

k+
aa

i (η, k) (3.2)

[aa
i (η, k), a†bj (ξ, p)] = (2π)3 δ(η − ξ) δ2(k − p) .

In terms of these operators we have

Aa
i (x

−, x) =
1√
2

∫ ∞

−∞

dη

2π

d2k

4π2

{

f (b,j,η,k)(a, i, x−, x)ab
j(η, k) + f∗(b,j,η,k)(a, i, x−, x)ab†

j (η, k)
}

(3.3)

with

f (a,i,η,k)(b, j, x−, x) = δab δij e
−i k2

2p
−
0

eηx− − ikx
. (3.4)

Strictly speaking the soft modes a(η) live only at rapidities below Y , which is given by the parameter

of the boost from |v〉 to |Ψ〉. We do not denote this cutoff explicitly in most of our formulae and

extend the rapidity integration over η to infinity for all quantities for which the integration converges.

We will indicate the Y dependence for divergent quantities and eventually this very dependence will

determine the evolution in rapidity.

The coherent state operator in rapidity basis is rather simple

C = exp

{

i
√

2

∫

d2k

(2π)2
ba
i (k)

∫

dη

2π
[aa

i (η, k) + a†ai (η,−k)]

}

. (3.5)
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3.1 The vacuum of β

Given that Ω is a product as in eq.(2.7), we first analyze the state

|0〉β ≡ B |0〉 . (3.6)

Clearly, the state |0〉β is annihilated by the operator βα = B aα B† . Here and in the following we

denote all the indices of operators a, a† etc by a single Greek letter α. This includes rotational and

color indices, as well as the transverse momentum and rapidity3. Since the operator B is of the

Bogoliubov type, the transformation between the operators a, a† and β, β† is linear homogeneous

and can be written quite generally as

βα = B aα B† = Θαβ aβ + Φαβ a†β , β†
α = Θ∗

αβ a†β + Φ∗
αβaβ . (3.7)

Since the transformation eq.(3.7) is canonical, the transformation matrices Θ and Φ satisfy

Θ ΦT − Φ ΘT = 0, Θ Θ† − Φ Φ† = 1 . (3.8)

The inverse transformation is given by

aα = Θ†
αβ ββ − ΦT

αβ β†
β, a†α = ΘT

αβ β†
β − Q†

αβ ββ . (3.9)

This leads to another set of relations

Θ† Θ − ΦT Φ∗ = 1 ; Θ† Φ − ΦT Θ∗ = 0 . (3.10)

The explicit form of the transformation matrices Θ and Φ can be found from the results of [1] and

we provide it later in eq.(3.37). For now however we keep the discussion general as the explicit form

of Θ and Φ is not important until late in the game.

To find the state |0〉β we write it in the form

|0〉β = F−1/2[Λ] e− 1
2

a†
α Λαβ a†

β |0〉 . (3.11)

Imposing the condition

β |0〉β = 0 (3.12)

gives

(Θ a + Φ a†) e− 1
2

a† Λ a† |0〉 = (−Θ Λ + Φ) a† e− 1
2

a† Λa† |0〉 = 0 . (3.13)

Thus we find

Λ = Θ−1 Φ . (3.14)

To find the normalization of the state we have to calculate

F [Λ] = 〈0| e− 1
2

a Λ† a e− 1
2

a† Λa† |0〉 . (3.15)

3Below we will be frequently suppressing this index and using the more compact matrix notations instead.
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For future use we calculate in Appendix A a slightly more general expression F [Λ, Λ̄]

F [Λ, Λ̄] ≡ 〈0| e− 1
2

a Λ̄† a e− 1
2

a† Λa† |0〉 = exp

{

−1

2
Tr ln(1 − Λ̄† Λ)

}

(3.16)

with an arbitrary matrix Λ̄. In the last expression the trace is over all the indices. Noting that

F [Λ] = F [Λ,Λ] we finally find

|0〉β = e
1
4

Tr ln(1−Λ† Λ) e− 1
2

a† Λ a† |0〉 (3.17)

with Λ given by eq. (3.14). Just like the classical field b, the matrix Λ has a diagrammatic represen-

tation. It represents the two gluon component of the wave function obtained by action of B on the

Fock vacuum, and can be represented by a two gluon vertex - Fig. 3.
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Figure 3: Diagrammatic representation of the two gluon vertex Λ.

3.2 The matrix element.

According to eq.(2.30) we need to calculate the matrix element of the operator R̂a. Thus we need to

multiply the state |0〉β by the coherent operator C, eq.(2.8) and then act on it with R̂a. The operator

R̂a was introduced as the operator that shifts the valence color charge density by the color charge

of the soft gluons. On the other hand when acting on the soft gluon operators it acts as the SU(N)

rotation, rotating the soft gluon creation and annihilation operators by the unitary phase

R̂†
a ab(x) R̂a = Rbc(x) ac(x), R̂†

a a† b(x) R̂a = Rbc(x) a†c(x) (3.18)

with

Rab(x) =

[

P exp{g
∫ 1

0
dt T c δ

δjc(x, t)

]ab

. (3.19)

As explained in [31] to properly keep track of the ordering of the non-commuting operators ja(x)

it is convenient to endow the valence color charge density j with the additional ”ordering” coordinate

t; j(x) → j(x, t). For the purpose of our present derivation however, the only thing that matters is

that Rab(x) is a unitary c - number matrix.

Rotation of a and a† is equivalent to rotation of both indices of the matrix Λ as well as rotation

of the classical field ba
i (x) by the same matrix R(x). Thus we will consider the following general

matrix element, which covers the particular case that interests us here

G[b − b̄] ≡ 〈0| e− 1
2

aα Λ̄†
αβ

aβ e−i b̄α (aα +Pαβ a†
β
) e−i bα (aα + Pαβ a†

β
) e− 1

2
a†

α Λαβ a†
β |0〉 =

= 〈0| e− 1
2

a Λ̄† a e−i (b−b̄) (a +P a†) e− 1
2

a† Λa† |0〉 . (3.20)
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So far both the matrix Λ̄ and field b̄ are arbitrary. They will be specified shortly. We have introduced

the matrix Pαβ to be able to reproduce eq.(3.5) in the transverse momentum representation. The

structure of the form
∫

k b(k)[a(k) + a†(−k)] is reproduced in eq.(3.20) by choosing the operator P to

be diagonal in rapidity, color and rotational indices and to satisfy P (k, p) a(p) = a(−k). The operator

P is clearly unitary and satisfies P 2 = 1. We will not need to know any additional properties of P

in the following.

The calculation is performed in the Appendix A with the result

G[b − b̄] = F [Λ, Λ̄] exp

{

−1

2
(b − b̄)(1 − ΛP )[1 − P Λ̄†ΛP ]−1(1 − P Λ̄†)P (b − b̄)

}

(3.21)

= F [Λ, Λ̄] exp

{

−1

2
(b − b̄)(1 − P Λ̄†)[1 − ΛΛ̄†]−1(1 − ΛP )P (b − b̄)

}

.

After these preliminaries we are almost ready to write down the answer for the matrix element

in eq.(2.30). The only additional element we have to take into account is the ordering of the color

charge density operators in the operators Ω† and Ω. When calculating any physical observable, as in

eq.(2.25) all the color charge density operators in the operator O are ordered such that they are to

the right of the operators j in Ω† but to the left of j’s in Ω. Thus when we introduce the ordering

coordinate t, all j’s in Ω† have to be assigned the value t = 0, while all j’s in the operator Ω must

have value t = 1. In our derivation the fields b̄ and Λ̄ are associated with the operator Ω† and they

depend on j(x, t = 0), while the fields b and Λ depend on j(x, t = 1). Also, as explained in [36], since

any physical weight functional W P depends only on powers of the matrix R(x) acting on δ[j], all the

operators j that appear in the RFT Hamiltonian should be understood as acting on the matrix R as

left or right rotations.

ja(x, t = 1) = gJa
R(x) = −gtr

{

R(x)T a δ

δR†(x)

}

; (3.22)

ja(x, t = 0) = gJa
L(x) = −gtr

{

T aR(x)
δ

δR†(x)

}

;

Ja
L(x) = [R(x)JR(x)]a .

Thus we define two classical fields, bR and bL:

ba
Ri = −1

g
fabcU †bd[JR] ∂i Udc[JR] ≡ −1

g
fabcU †bd

R ∂i U
dc
R ;

ba
Li = −1

g
fabcU †bd[JL] ∂i Udc[JL] ≡ −1

g
fabcU †bd

L ∂i U
dc
L (3.23)

and similarly two matrices Λ

ΛR ≡ Λ[JR] = Θ−1[JR] Φ[JR]; ΛL ≡ Λ[JL] = Θ−1[JL] Φ[JL] . (3.24)

In fact for the purpose of the calculation of the matrix element of R̂a in eq.(2.30) the proper ordering

of the factors of the charge density is equivalent to the substitution

Ω† → Ω†
L = B†

L C†
L; Ω → ΩR = CR BR (3.25)
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where the subscript L (R) indicates that the respective operator depends on JL (JR).

We are now ready to proceed with the computation of the matrix element (2.28). We have

〈0| Ω†
L R̂a ΩR |0〉 = 〈0| Ω̄†

L ΩR |0〉 , (3.26)

with

Ω̄L ≡ C̄L B̄L; B̄L ≡ R̂†
a BL , C̄L ≡ R̂†

a CL R̂a . (3.27)

The action of the operator Ω̄L on the soft gluon vacuum is the same as the action of ΩL with the

substitution

ba
L i → b̄a

L i ≡ R†ab bb
L i; ΛL → Λ̄L ≡ R† ΛL R . (3.28)

Using eq.(A.10) and remembering the factor
√

2 in eq.(3.5) we can finally write

〈0| Ω† R̂a Ω |0〉 = exp

{

−1

2
Tr ln(1 − Λ̄†Λ) +

1

4
Tr ln(1 − Λ̄†Λ̄) +

1

4
Tr ln(1 − Λ†Λ)

}

×

exp
{

−(b − b̄)(1 − ΛP )[1 − P Λ̄†ΛP ]−1(1 − P Λ̄†)P (b − b̄)
}

= exp

{

−1

2
Tr ln(1 − Λ̄†Λ) +

1

4
Tr ln(1 − Λ̄†Λ̄) +

1

4
Tr ln(1 − Λ†Λ)

}

×

exp
{

−(b − b̄)(1 − P Λ̄†)[1 − ΛΛ̄†]−1(1 − ΛP )P (b − b̄)
}

= exp

{

−1

2
Tr ln(1 − Λ̄†Λ) +

1

4
Tr ln(1 − Λ̄†Λ̄) +

1

4
Tr ln(1 − Λ†Λ)

}

×

exp
{

−(b − b̄)N̄ †[ΘΘ̄† − ΦΦ̄†]−1NP (b − b̄)
}

(3.29)

where we have defined

NR = ΘR − ΦR P ; NL = ΘL − ΦL P

Θ̄L ≡ ΘL R; Φ̄L ≡ ΦL R; N̄L ≡ NL R = Θ̄L − Φ̄L P .

In eq.(3.29) we have omitted the subscript L on barred quantities and R on unbarred ones. This will

be our practice also below whenever it cannot lead to confusion.

There is one point which we have glossed over, namely the ordering of the factors of the charge

density entering the classical field b relative to those entering Λ. It is obvious from our initial

expressions that all factors of Λ in eq.(3.29) have to be to the left of b, while all factors of Λ̄ to the

right of b̄; even though we did not indicate this explicitly in eq.(3.29). As we will discuss shortly,

however, this ordering is only important to subleading order in αs [1], and so we will not discuss it

any further in the present paper.

Eq.(3.29) is far from being the end of the road. We now have to find ΛR, etc explicitly in terms

of the matrix UR (or equivalently in terms of the current JR), and also expand the matrix element

eq.(3.29) to first order in the length of the rapidity interval Y . We will now address the first question.
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3.3 The matrix Λ

To calculate the matrix Λ consider expansion of the field Aa
i (x

−, x) in terms of two different sets of

creation and annihilation operators a†, a and β†, β.

Referring to eqs.(2.12,2.14) we can write expansion of A in terms of the operators

βa
i (η, k) = B aa

i (η, k)B† . (3.30)

This has the form

Aa
i (x

−, x) =
1√
2

∫ ∞

−∞

dη

2π

d2k

4π2

{

g(b,j,η,k)(a, i, x−, x)βb
j (η, k) + g∗(b,j,η,k)(a, i, x−, x)βb†

j (η, k)
}

(3.31)

with

gR ≡ g(b,j,η,k)(a, i, x−, x) = 〈x| θ(−x−) e i ∂2

2k−
x−

(1 − 2l)ij δab +

+ θ(x−) [e i
D2

R
2k−

x−

(1 − 2LR)]ab
ij + ǫ(x−) [∆R(1 − l − LR)]ab

ij |k〉 (3.32)

where as usual |k〉 is the eigenstate of transverse momentum and |x〉 is the eigenstate of transverse

coordinate. The subscript R in the above expressions indicates that the relevant quantity depends

on JR. Here Lab
ijR ≡ Dae

i (bR)
[

1
D2(bR)

]ed
Ddb

j (bR).

The two sets of functions (f, f∗) of eq.(3.4) and (g, g∗) of eq.(3.32) constitute complete bases on

the functional space. It is convenient to define a scalar product on this space as

〈g|f〉[(c,n,ξ,p);(b,j,η,k)] ≡ i
∑

a,i

∫

dx−d2x ∂+ g∗ (c,n,ξ,p)(a, i, x−, x) f (b,j,η,k)(a, i, x−, x) ;

〈g∗|f〉[(c,n,ξ,p);(b,j,η,k)] ≡ −i
∑

a,i

∫

dx−d2x ∂+ g(c,n,ξ,p)(a, i, x−, x) f (b,j,η,k)(a, i, x−, x) . (3.33)

With this scalar product the bases defined in eqs.(3.4,3.32) are orthonormal:

〈f (b,j,η,k)|f (c,l,ξ,p)〉 = δbcδjlδ(η − ξ)δ2(k − p); 〈g(b,j,η,k)|g(c,l,ξ,p)〉 = δbcδjlδ(η − ξ)δ2(k − p) . (3.34)

The resolution of identity in this space (completeness relation) is given by

i
∑

a,i

∫

dη

2π

d2k

4π2

[

f (a,i,η,k)(b, j, x−, x) ∂+ f∗(a,i,η,k)(c, l, y−, y) − (3.35)

− f∗(a,i,η,k)(b, j, x−, x) ∂+ f (a,i,η,k)(c, l, y−, y)
]

= δbc δjl δ(x
− − y−) δ2(x − y)

similarly for the basis (g, g∗).

We can now calculate the matrices Θ and Φ defined in eq.(3.7).

Θ = 〈g|f〉 ; Φ = 〈g|f∗〉 . (3.36)
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Performing the integration we find explicitly (see Appendix B)

Θ(p, η; k, ξ) = i〈p|2(l − LR) + (1 − l − LR)∆†
R|k〉 +

+
i

1 − eξ−η − iǫ
〈p|(1 − 2l)|k〉 − i〈p|(1 − 2LR)

1

1 − ∂2

D2
R

eξ−η + iǫ
|k〉

Φ(p, η;−k, ξ) = i〈p|2(l − LR) + (1 − l − LR)∆†
R|k〉 +

+
i

1 + eξ−η − iǫ
〈p|(1 − 2l)|k〉 − i〈p|(1 − 2LR)

1

1 + ∂2

D2
R

eξ−η + iǫ
|k〉

N(p, η; k, ξ) = Θ(p, η; k, ξ) − Φ(p, η;−k, ξ)

=
2i

e−(ξ−η) − eξ−η − iǫ
〈p|(1 − 2l)|k〉 − 〈p|(1 − 2LR)

2i
D2

R

∂2 e−(ξ−η) − ∂2

D2
R

eξ−η + iǫ
|k〉 .

(3.37)

In the last terms in all three expression the ordering of the factors is such that all ∂2 are to the

right of all D2
R. We have also not indicated explicitly the color and rotational indices on Θ and Φ.

Since the basis function g in (3.32) depends on JR, all the function Θ, Φ and N computed above are

“Right” quantities and should be understood as ΘR, ΦR and NR. Substituting JL for JR generates

the analogous “Left” quantities.

Mindful of the derivations in the previous subsection we find it convenient to define yet another

set of creation and annihilation operator β̄ and β̄† by

β̄α ≡ B̄ aα B̄† = Θ̄αβ aβ + Φ̄αβ a†β , β̄†
α = Θ̄∗

αβ aβ + Φ̄∗
αβ a†β . (3.38)

Using eq.(3.7) we find that the set β, β† is related to β̄, β̄† by

βα = (ΘΘ̄† − ΦΦ̄†)αβ β̄β + (ΦΘ̄T − ΘΦ̄T )αβ β̄†
β (3.39)

β†
α = (Φ∗Θ̄† − Θ∗Φ̄†)αβ β̄β + (Θ∗Θ̄T − Φ∗Φ̄T )αβ β̄†

β .

We thus see that the basic matrix that enters the last line of eq.(3.29) K = ΘΘ̄† − ΦΦ̄† is the

transformation matrix between the operators βα and β̄α. We can obtain it by calculating the overlap

matrix between the appropriate basis functions

Kαβ = (ΘΘ̄† − ΦΦ̄†)αβ = 〈gα|ḡβ〉
Eαβ = (ΦΘ̄T − ΘΦ̄T )αβ = 〈gα|ḡ∗β〉 . (3.40)

Although we do not have the explicit form of ḡ, we can still use eq.(3.40) to calculate the matrices K

and E using the following argument. We do have the explicit form of the basis functions gL, which

are the same as gR except for the substitution JR → JL. We can thus calculate explicitly the overlap

matrices between gR and gL (the analogs of K and E). We then notice that the operator β̄ is related

to the operator βL by β̄ = R†βL, and thus Θ̄L = ΘLR; Φ̄L = ΦLR. Then referring to eqs.(3.40)

we see that to calculate K and E from the overlap matrices of gR and gL we must rotate all terms
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involving bL by the operator R† on the left. Performing this calculation explicitly we find

K(p, η; k, ξ) = i〈p|2(1 − l − LR)R†(l − LL) + (1 − l − LR)(∆̄ − ∆†
R)R†(1 − l − LL)|k〉

+
i

1 − eξ−η + iǫ
〈p|(1 − 2l)R†(1 − 2l)|k〉 − i〈p|(1 − 2LR)

1

1 − D2
R

D̄2 eξ−η − iǫ
R†(1 − 2LL)|k〉

E(p, η;−k, ξ) = i〈p|2(1 − l − LR)R†(l − LL) + (1 − l − LR)(∆̄ − ∆†
R)R†(1 − l − LL)|k〉

+
i

1 + eξ−η
〈p|(1 − 2l)R†(1 − 2l)|k〉 − i〈p|(1 − 2LR)

1

1 +
D2

R

D̄2 eξ−η
R†(1 − 2LL)|k〉 (3.41)

with

D̄ ≡ R† DL R; ∆̄ = R† ∆L R . (3.42)

In eq. (3.41) all DR are ordered to the left of all DL.

Note that similarly to Θ and Φ, the matrices K and E satisfy

KET −EKT = 0, KK†−EE† = 1; K†K −ET E∗ = 1; K†E−ET K∗ = 0 . (3.43)

For future convenience we also define the analog of the matrix Λ:

Ξ = K−1 E . (3.44)

Using the identities eq.(3.8,3.10,3.43) it is straightforward to show that

1

1 − ΞΞ†
= K† K ;

1

1 − Ξ†Ξ
= KT K∗ . (3.45)

4. HRFT

Now that we have all the ingredients, we are ready to put them all together and to derive the RFT

Hamiltonian. Before continuing with this calculation we want to clarify the counting of powers of αs.

4.1 Counting powers of αs

First, using eq.(3.45) we have

− 1

2
Tr ln(1− Λ̄†Λ)+

1

4
Tr ln(1− Λ̄†Λ̄)+

1

4
Tr ln(1−Λ†Λ) =

1

4
Tr ln(1−Ξ†Ξ) = −1

4
Tr ln(KK†) . (4.1)

Now, recalling the definition (2.30) and referring to eq.(3.29) and eq.(4.1) we can write

HRFT =
d

dY

[

(b − b̄) N̄ † K−1 N P (b − b̄) +
1

4
Tr lnK K†

]

|Y =0 . (4.2)

The two terms in this expression are not the same order in αs. We remind the reader that this

expression was derived starting with the evolution of the wave function of [1]. This evolution kept
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the leading in αs term for arbitrary parametric value of j and also terms which can be O(1) at large

j. The former terms in the evolution of the wave function give rise to the first term in HRFT eq.(4.2),

while the latter leads to the last term in eq.(4.2). This can be seen directly from eq.(4.2). As long

as j ≪ 1/g, the classical fields b and b̄, as well as the operators Λ and Λ̄ can be expanded in powers

of gj. To count powers of αs we have to decide how to treat R. We know that when we calculate

the forward scattering amplitude, after averaging over the projectile wave function, R turns into S -

the S-matrix of scattering of a single projectile gluon on the target[31],[44]. Therefore if the target

is dense we should count R as being of order one but not parametrically close to the unit matrix. In

this case we see that

(b − b̄)2 ∼ O(j2); KK† = 1 + O(g2j2) . (4.3)

Thus indeed the first term in eq.(4.2) is leading, while the second is suppressed by αs.

When j ∼ O(1/g) the matrix Λ can not be expanded. Still Λ ∼ O(1) while b− b̄ ∼ O(1/αs), and

the first term is leading.

If the target is not dense, the matrix R is close to unity R = 1 − δR. Then b̄ is perturbatively

close to b; that is (b − b̄) ∼ δRb, and also K ∼ 1 + O(δR). The first term in (4.2) is (δRb)2, and

dominates over the second term, which is (δR)2.

Thus we conclude that in all parametric regimes of the projectile and target fields, the second

term in eq.(4.2) is suppressed by αs relative to the first term. In most of this paper we will therefore

neglect the last term and will only consider the leading order piece

HRFT =
d

dY

[

(b − b̄) N̄ † K−1 N P (b − b̄)

]

|Y =0 . (4.4)

At this point we are ready to comment to the question of ordering of the factors of b and Λ briefly

mentioned in the subsection 3.2. Once we restrict ourselves to eq.(4.4), this ordering becomes irrel-

evant. As we have noted above, in principle all factors of Λ have to be ordered to the left of b, etc.

However, changing the order of Λ and b brings a term proportional to the commutator

[Λ, b] =
δΛ

δ(gb)
[gb, b] ∼ δΛ

δ(gb)
O(g2b) . (4.5)

The additional terms this procedure generates are of the same order as the last term in eq.(4.2) which

we have neglected. Thus the ordering question is irrelevant as long as we are interested in the leading

order term.

The last term in eq.(4.2) originates directly from the Bogoliubov part of the transformation

Ω. However, even though this term itself in eq.(4.2) is suppressed by αs, it is important to realize

that the Bogoliubov operator contributes in an essential way to HRFT and to other observables at

high energy. For example the factors of N , K−1 and N̄ in eq.(4.4) are direct manifestations of the

Bogoliubov part of the transformation Ω. The presence of the Bogoliubov operator B also leads

to interesting effects in other observables. For example, as shown in the companion paper [56], it

is responsible for the appearance of short range rapidity correlations in multi-gluon spectrum. For

these particular correlations B gives the leading effect, as these correlations would be absent if the

transformation Ω had only the classical piece of the type of C. We discuss this in more depth in [56].
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4.2 JIMWLK for the umpteenth time

At this point to keep our finger on the pulse it is a good idea to perform a consistency check of our

calculation so far by reproducing the JIMWLK equation. The JIMWLK equation is obtained by

expanding eq. (4.4) to second order in δ/δj. Consider the expression

(b − b̄) N̄ † K−1 N P (b − b̄) . (4.6)

Since b − b̄ is already first order in the derivative, in this approximation we have to take Λ̄ = Λ and

N̄ = N . This simplifies things dramatically, since in this case K = 1. Thus in this limit we only

need to calculate

(b − b̄)

∫

η,ξ,ζ
N †(η, ξ)N(ξ, ζ)P (b − b̄) (4.7)

where for simplicity we do not indicate the transverse coordinate dependences. Note that here and

in the following the measure of the rapidity integration is defined as dη/2π, so that
∫

η ≡
∫ dη

2π .

Since N(η, ξ) = N(η−ξ) (see (3.37)) is the function of rapidity difference only, one of the rapidity

integrals in eq.(4.7) gives the factor of Y , and the RFT Hamiltonian becomes

HRFT =
1

2π
(b − b̄)N †

⊥ N⊥ P (b − b̄) (4.8)

with

N⊥ ≡
∫

η
N(η) . (4.9)

We remind the reader that b is independent of rapidity. The integral over the rapidity in both terms

of N in eq.(3.37) is the same (after the appropriate shift of the integration variable)
∫

dη
2

eη − e−η − iǫ
= P

[
∫

dη
2

eη − e−η

]

+ 2iπ

∫

dηδ(eη − e−η) = i π . (4.10)

Thus we obtain

N⊥ = [1 − l − L] . (4.11)

With this result, expanding b − b̄ to first order in δ/δj in eq.(4.8) it is straightforward to see that

eq.(4.8) reproduces the JIMWLK Hamiltonian in the form obtained in [1]. Having established this,

we now turn to the calculation of the Holy Grail - the complete HRFT .

4.3 The Holy Grail: the RFT Hamiltonian.

We have to evaluate

[b − b̄] N̄ † K−1 NP [b − b̄] =

=

∫

x,y,z,u

[

b(x) − b̄(x)
]

∫

η,ξ,λζ
N̄ †(η, x; ξ, y)K−1(ξ, y;λ, z)N(λ, z; ζ, u)

[

b(u) − b̄(u)
]

.(4.12)

Note that all the operators in question (N̄ , N and K) depend only on rapidity differences. Thus the

integration over rapidities yields

1

2π

∫

x,y,z,u
[b(x) − b̄(x)] N̄ †

⊥(x, y)K−1
⊥ (y, z)N⊥(z, u) [b(u) − b̄(u)]Y . (4.13)
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Here Y is the total rapidity interval and we have defined

K⊥(z, u) ≡
∫

dη

2π
K(η, z; ξ, u) . (4.14)

Note that since the operator K depends only on rapidity difference, the integral of the inverse is the

same as the inverse of the integral

∫

η
K−1(η − ξ) =

[
∫

η
K(η − ξ)

]−1

. (4.15)

If all rapidity integrals were finite, the expression in eq.(4.13) would be proportional to the total length

of rapidity interval opened by the boost, or ”created” by the action of the operator Ω. Eq.(2.30)

then would imply

HRFT =
1

2π

∫

x,y,z,u
[b(x) − b̄(x)] N̄ †

⊥(x, y)K−1
⊥ (y, z)N⊥(z, u) [b(u) − b̄(u)] . (4.16)

Using eqs.(4.10,4.11) we have

N⊥(x, y) = 1 − l − LR; N̄⊥(x, y) = (1 − l − LL) R . (4.17)

The integration of K−1 however gives a puzzling result. If expression eq.(3.41) is taken literally, we

find that at large Y
∫

η
K(η, ξ) ∝ Y ;

∫

η
K−1(η, ξ) ∝ 1

Y
(4.18)

It then seems that eq.(4.13) does not have the overall factor Y and thus does not yield a logarithmic

evolution. The resolution of this puzzle is the following. Since HRFT is obtained by differentiation

with respect to Y , at this stage of the calculation we really should consider Y to be small rather than

large. In writing eq.(4.13) we have assumed that it does not contain higher powers of Y . On the other

hand our expressions when expanded in powers of αs at small j contain higher order perturbative

contributions. The standard perturbative expansion at any fixed order (beyond the leading one)

contains higher powers of Y . The simplest source of higher powers of rapidity is the ”iteration” of

the leading order kernel. Such terms have been identified and removed in the NLO computation

of the JIMWLK kernel [47]. Obviously in our case also these higher powers of logarithms have to

be subtracted in order to extract the evolution kernel. This of course is the same as treating Y as

infinitesimal while extracting HRFT from the fixed order perturbative calculation. Clearly in the

present case we should do the same - we should learn how to subtract the higher powers of Y in

eq.(4.13). That such higher powers exist is quite obvious. If we think of Y as of finite range of

integration of the rapidity integrals, eq.(4.18) reads schematically as

∫

η
K(η, ξ) = κ1 + κ2 Y ;

∫

η
K−1(η, ξ) = κ−1

1

∞
∑

n=0

(−1)n(κ−1
1 κ2 Y )n (4.19)

with κ1 and κ2 some operators in the transverse space. This structure is demonstrated explicitly in

the Appendix C, where we perform the perturbative expansion of eq.(4.13). We show there that the

next to leading term contains a term proportional to Y 2, as in [47].
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In view of this it is clear that our task is to extract the n = 0 term in the sum in eq.(4.19).

This is actually not difficult. Examining the expression eq.(3.41) it becomes clear that the κ2 Y term

in eq.(4.19) comes from the integral over rapidity of the rapidity independent terms in K. Let us

rewrite K as follows

K(η − ξ) = K̃(η − ξ) + KA(η − ξ) + KC (4.20)

where K̃ is a symmetric (K̃(η − ξ) = K̃(ξ − η)), bounded operator whose matrix elements vanish as

|η − ξ| → ∞; while KA is antisymmetric (KA(η − ξ) = −KA(ξ − η)) and KC does not depend on

rapidity. We can then write
∫

η
K(η − ξ) =

∫

η
K̃(η − ξ) + KC Y . (4.21)

Thus expansion of
∫

η K−1 in powers of Y is the same as expansion in powers of KC . Since we are

interested only in the leading term in this expansion, we need to drop KA + KC from the expression

for K in eq.(3.41) and retain K̃. Eq.(4.4) now reads

HRFT =
1

2π

∫

x,y,z,u
[b(x) − b̄(x)] N̄ †

⊥(x, y) K̃−1
⊥ (y, z)N⊥(z, u) [b(u) − b̄(u)] . (4.22)

A quick calculation gives

K̃(η, ξ) =
i

2
(1 − 2l)R† (1 − 2l)

[

1

1 − eξ−η + iǫ
+

1

1 − e−(ξ−η) + iǫ
− 1

]

− i

2
(1 − 2LR)





1

1 − D2
R

D̄2 eξ−η − iǫ
+

1

1 − D2
R

D̄2 e−(ξ−η) − iǫ
− 1



 R†(1 − 2LL) (4.23)

To calculate the integral over rapidity, consider an integral
∫

dx

[

1

1 − aex − iǫ
+

1

1 − ae−x − iǫ
− 1

]

=

∫

dx
1 − a2

(1 − aex − iǫ)(1 − ae−x − iǫ)
. (4.24)

To integrate we can close the contour in the complex plane. The integrand decays exponentially

at infinity everywhere except close to the imaginary axis. Nevertheless the contour can be closed.

To see this note that the integrand has an infinite number of poles at x−
n = − ln a + 2πin − iǫ and

x+
n = ln a + 2πin + iǫ. The residue of the pole x−

n is the negative of the residue of the pole x+
n . Thus

the contribution of a pair of poles vanishes, and the result of the integral does not depend on how

many pairs of poles the contour encloses. Closing the contour above the real axis we see that the

only uncanceled pole is x+
0 , it’s residue is unity, and the result of the integration is

∫

dx

[

1

1 − aex − iǫ
+

1

1 − ae−x − iǫ
− 1

]

= 2πi . (4.25)

Analogously
∫

dx

[

1

1 − aex + iǫ
+

1

1 − ae−x + iǫ
− 1

]

= −2πi . (4.26)

Putting it all together we find

K̃⊥ =
1

2

[

(1 − 2l)R† (1 − 2l) + (1 − 2LR)R† (1 − 2LL)
]

. (4.27)
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Thus the complete RFT Hamiltonian is given by

HRFT =
1

π
[bRR† − bL ] (1 − l − LL)

×
[

(1 − 2l)R† (1 − 2l) + (1 − 2LR)R† (1 − 2LL)
]−1

(1 − l − LR) [bR − R† bL] .(4.28)

This is the main result of the present paper. Note, that HRFT can be written entirely in terms of

three unitary matrices R(x), UR(x) and UL(x). Restoring all the indices and transverse coordinate

dependences we have

HRFT =
1

8π3

∫

x,y,z,z̄
[bb

Ri(x)R†ba(x) − ba
Li(x)]

[

δij
1

(x − z)2
− 2

(x − z)i (x − z)j
(x − z)4

]

×
[

δac + [U †
L(x)UL(z)]ac

]

K̃−1 cd
⊥jk (z, z̄)

[

δkl
1

(y − z̄)2
− 2

(y − z̄)k (y − z̄)l
(y − z̄)4

]

×
[

δde + [U †
R(z̄)UR(y)]de

]

[be
Rl(y) − R†ef (y) bf

Lk(y)] (4.29)

with

K̃ ab
⊥ij(x, y) =

1

2π2

∫

z

[

δik
1

(x − z)2
− 2

(x − z)i (x − z)k
(x − z)4

] [

δkj
1

(z − y)2
− 2

(z − y)k (z − y)j
(z − y)4

]

×
{

R†ab(z) +
[

U †
R(x)UR(z)R†(z)U †

L(z)UL(y)
]ab

}

(4.30)

and

ba
L(R)i = −1

g
fabcU †bd

L(R) ∂i Udc
L(R) . (4.31)

We note that in appropriate limits eq.(4.28) reduces to the known results. We have already

discussed the JIMWLK limit, and it also directly follows from the above formula. The leading order

expansion of R in powers of δ/δj requires that we set R = 1 everywhere except in bLR, which has

to be expanded to first order. In this limit eq.(4.28) reduces to HJIMWLK. In the limit of the low

charged density on the other hand, we have to expand in j. To lowest order in j we have LR = LL = l.

The denominator in eq.(4.28) cancels the two adjacent factors (1 − 2l) in the numerator leaving the

factor 1/2. Additionally we have to expand b to first order in j, that is bi = ∂i

∂2 j. We thus obtain the

KLWMIJ limit [31]

HRFT → HKLWMIJ =
1

2π

[

j
∂i

∂2
− j R† ∂i

∂2
R

] [

∂i

∂2
j − R† ∂i

∂2
R j

]

. (4.32)

Note that if we do not expand b to first order on j but still set LR = LL = l in the rest of the

expression, we obtain the form dubbed in [31] ”KLWMIJ+”

HKLWMIJ+ =
1

2π
[bR − R†bL]2 . (4.33)

Although this looks simple and rather appealing, it is not a leading term in HRFT in any well defined

limit. This expression was also derived in [38, 42]. It has been suggested in [38] that it might in fact
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be the complete expression for HRFT , including the Pomeron loop effects. Our present derivation

makes it clear that this is not the case, as in general the terms kept in HKLWMIJ+ are as important

as the terms omitted. In particular none of the effects coming from the Bogoliubov part of the

operator Ω is taken into account in eq.(4.33) and thus the JIMWLK limit is not reproduced4.

5. Discussion.

First, let us summarize the main results of this paper. We have calculated the Hamiltonian of the

Reggeon field theory in the eikonal approximation.

HRFT =
1

π
[bR − bL R]R† (1 − l − LL) (5.1)

×
[

(1 − 2l)R† (1 − 2l) + (1 − 2LR)R† (1 − 2LL)
]−1

(1 − l − LR) [bR − R† bL] .

This Hamiltonian governs the evolution of hadronic observables with energy. It reproduces the

JIMWLK and KLWMIJ limits discussed in the literature earlier, as well as the ”intermediate” form

- KLWMIJ+. The evolution generated by this Hamiltonian is valid for all interesting values of the

color charge density g < j < 1
g . This covers the hadronic targets from a dilute perturbative object

(a ”dipole”) to a dense non-perturbative object with large gluon density (a ”nucleus”). Importantly

it also describes the evolution of a nuclear projectile at all momentum scales. This is important

since at high transverse momentum - larger than the saturation momentum Qs, a nucleus is also

transparent, and thus the color charge density at these momenta is small. Thus if one is indeed

interested to follow evolution at large momentum scales, the JIMWLK equation is not adequate even

if the projectile is a nucleus. Another regime where JIMWLK is not adequate for a nuclear target

is in description of nuclear periphery where the color charge density is also small. Again, in this

regime HRFT supercedes HJIMWLK, although here the situation is complicated by non-perturbative

soft effects related to confinement physics.

We note that the Hamiltonian eq.(5.1) is invariant under the Gribov‘s signature symmetry, which

in [53] was identified as the symmetry under the transformation R → R†, JL → JR.

An attempt to derive the complete Reggeon Field Theory Hamiltonian was made in [38]. As

we mentioned earlier, the result presented in [38] is the KLWMIJ+ Hamiltonian, while the correc-

tions due to the Bogoliubov part of the operator Ω were missing. Since the derivation of [38] is in

the Lagrangian formalism, it also leaves unanswered the question about the canonical structure of

the operators entering the RFT Hamiltonian. Our derivation clarifies this question along the lines

discussed in [54]. The Hilbert space of the Reggeon field theory is the space of the functionals of

the unitary matrix R: Ψ[R(x)]. The unitary matrix R is therefore the only independent quantum

degree of freedom in this theory. The operators JL(x) and JR(x) act on this space as the generators

4Ref.[38] asserts that eq.(4.33) does reproduce the JIMWLK limit. The argument of [38] however is not direct but

is rather based on an application of the Dense-Dilute Duality transformation [35] UR → R. To be able to apply this

transformation to HRF T however one has to know the transformation properties of UL. A certain transformation of UL

was postulated in [38]. Unfortunately this did not take into account the fact that UL is not independent of UR and R,

but rather is unambiguously determined once UR and R are known. The transformation postulated in [38] turns out to

be inconsistent with this dependence, and thus the argument about reproducing the JIMWLK limit given in [38] fails.
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of local left and right SU(N) transformation group. Consequently the operators UL and UR do not

commute with R, but have rather complicated commutation relations determined by the dependence

of UR on JR and of UL on JL. On the other hand UR commutes with UL, since JR and JL commute

with each other.

There is a question, which we have not touched upon so far, but which is important for under-

standing the consistency of the whole approach. The issue is when can we consistently treat the

length of the rapidity interval Y as large, and when can we treat it as small. In our derivation we do

both. First, when deriving the evolution of the hadronic wave function in [1], we have approximated

the interaction between the soft modes and the valence modes of the gluon field by the eikonal ver-

tex5. This is valid as long as the main contribution to physical quantities comes from the soft gluons

with rapidities much smaller than the rapidities of the valence ones. The borderline region, where the

rapidities of the ”soft” and ”valence” gluons are comparable, is of order δY ∼ 1. Thus consistency

of the eikonal approximation requires Y ≫ 1. As long as the eikonal approximation is valid, we can

ignore finiteness of Y and treat the phase space available to soft gluons as infinite, which is what was

done in [1].

On the other hand when calculating HRFT itself we have differentiated the matrix element with

respect to Y at Y = 0. Thus at this point we have treated Y as small. Even though it may seem

odd, in principle the two approximations are not necessarily incompatible. The question is how fast

is the evolution of a given physical quantity. For example, in the BFKL calculation to get significant

change in the cross section due to the contribution of soft gluons, one needs to increase the rapidity of

a process by Y ∼ 1
αs

. This means, that when taking the derivative to derive the BFKL Hamiltonian

the smallness of the step in Y means simply ∆Y ≪ 1
αs

. At small coupling constant this is still

compatible with the condition for validity of the eikonal approximation ∆Y ≫ 1. We can thus use

the eikonal approximation (”large” Y approximation) to calculate the evolution even on a ”small”

rapidity interval. One can have one’s cake and eat it!

The same exact argument holds for the KLWMIJ and JIMWLK Hamiltonians. Formally the

evolution eigenvalues in both cases are of order αs. To see this remember that rescaling j, the

KLWMIJ Hamiltonian can be written as

HKLWMIJ = αs H̄KLWMIJ [
1

g
j,R] . (5.2)

We use this Hamiltonian when j ∼ g and R ∼ 1, thus parametrically the eigenvalues are ωKLWMIJ ∼
O(αs). Likewise for JIMWLK

HJIMWLK = αs H̄JIMWLK[U,
δ

δ(gj)
] (5.3)

where U ∼ 1 and gj ∼ 1 so that ωJIMWLK ∼ O(αs)
6. Thus for the evolution of the forward scattering

amplitude in either KLWMIJ or JIMWLK limits, we have

S(Y ) ∼ eαs κ Y S(0) (5.4)

5This is technically not the same as the eikonal approximation for scattering on the target, although the consistency

of the whole approach likely requires both.
6In fact we know that due to the dense-dilute symmetry [35] the two sets of eigenvalues are equal.
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where κ is of order one. Thus again we see that the S-matrix changes significantly only if the

rapidity is large Y ∼ 1
αs

. So in the KLWMIJ and JIMWLK limits one can have large rapidity

interval to accommodate the eikonal approximation, but still small enough steps in rapidity to be

able to calculate the derivative.

This argument cannot be straightforwardly extended for HRFT of eq.(5.1). Assuming b − b̄ ∼
O(1/g) and R ∼ 1 we expect HRFT ∼ O(1/αs), and thus ωRFT ∼ 1

αs
. This suggests that the evolution

with HRFT is very fast and observables change significantly over the rapidity range Y ∼ O(αs). If this

were indeed the case, the whole approach beyond the KLWMIJ/JIMWLK limits would be in question.

However, the situation is not really so bad. Although we do not know the spectrum of HRFT it is very

likely that just like in the JIMWLK/KLWMIJ case the spectrum is continuous with lowest eigenvalue

being zero. In fact the existence of eigenstates with zero eigenvalue is straightforward to establish.

Just like for JIMWLK/KLWMIJ the state (in the RFT Hilbert space) with zero charge density

j|Yang〉 = 0 and the state with wave function independent of j: R|Yin〉 = |Yin〉 are both eigenstates

of HRFT with zero eigenvalues [54]. Physically those are the totally white (vacuum) and the totally

black (black disk) states. If indeed the spectrum of HRFT is continuous then the spectrum also has

eigenvalues of O(αs). Evolution of observables which have significant overlap with eigenstates that

correspond to these eigenvalues then has the same speed as for the JIMWLK/KLWMIJ evolution.

More formally we can represent any observable and its evolution as

〈O〉 =

∫

[dj]W P [j] O[j] = 〈W P |O〉 (5.5)

with O[j] is itself a target average of the original observable operator

O[j] =

∫

[dS]O[j, S]W T [S] . (5.6)

and bra and ket referring to states in the Hilbert space of RFT. Then

d

dY
〈O〉 = −

∫

[dj]W P [j]HRFT O[j] = −
∑

n

ωn〈W P |n〉〈n|O〉; 〈O〉Y =
∑

n

e−ωnY 〈W P |n〉〈n|O〉 .

(5.7)

Thus if at the initial rapidity both |W P 〉 and |O〉 have overlap with eigenstates n such that ωn ∼
O(αs), the evolution of such observables with HRFT is slow. In the companion paper [56] we discuss

an argument purporting to establish that inclusive multi-gluon amplitudes evolve with the JIMWLK

Hamiltonian. If true, this would then suggest that the multi-gluon amplitudes are indeed observables

of this sort.

An interesting question is whether the forward scattering amplitude in the nucleus-nucleus col-

lision is also such an observable. As we have discussed above, the forward amplitude is not evolved

with JIMWLK Hamiltonian, but with complete HRFT . Also if we consider scattering on a fixed

configuration of the target field α, the evolution is certainly fast. The counting which gives HRFT as

O(1/αs) clearly holds for a generic configuration of α ∼ 1/g. A small change of the projectile charge

density δj ∼ O(1) leads to a large change of the phase since α is very large. Another way of putting

it, is that the observable exp{ijα} is orthogonal to |Yin〉 and probably also almost orthogonal to

other Yin -like states, while W P [j] being the weight function of a nucleus, has a very small overlap
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with |Yang〉 and Yang -like states. Thus the overlap of W P with exp{ijα} is dominated by the states

n with large eigenvalues ωn.

The interesting quantity is however not the scattering amplitude on a fixed configuration of the

field α, but rather the target-averaged observable like in eq.(5.6). Averaging over the target fields

has the effect of averaging the phase exp{ijα} to an extremely small value. Thus it could well be

that the contribution of the states with large ωn is erased by the averaging procedure. If this is

the case we are back to the situation where the states with small ωn dominate both the value of

the observable and its evolution. In this case the eikonally derived HRFT is applicable also for the

forward scattering amplitude. We have not studied this question any further and at the moment

cannot make a definitive statement.

Finally we want to mention several possible lines for further research. There are two questions

that can be addressed immediately. First is extending our calculation [56] of multi-gluon spectrum

to the situation when the rapidities of the observed gluons are far from each other in rapidity. This

should follow very closely the derivation of [51] and should not pose any major complications.

Secondly, we have not studied here the effects of the Tr ln term in HRFT , since it is a subleading

in the coupling constant effect. At j < 1/g this term collects some of the subleading corrections, but

may not be complete (we have not analyzed this question). However, as follows from [1], at j ∼ 1/g

this term contains all the NLO corrections to HJIMWLK. Thus for large projectile fields it is very

interesting to calculate this term explicitly, as it is the generalization of purely gluonic terms in the

calculation of [47] for the case when the projectile is dense (and the target, in principle is arbitrary).

A more formal question is that about the selfduality of HRFT . It was shown in [35] that the

RFT Hamiltonian must be selfdual under the Dense Dilute Duality transformation UR ↔ R. We

have not addressed this question in the present paper. The selfduality is not an entirely trivial issue,

since to verify it we need to understand the duality transformation properties of UL. We are hopeful

that this can be done and plan to address this question in the future.

Finally, of course it is imperative to understand what physical consequences has the inclusion of

Pomeron loops in the evolution. We hope that it will be possible to analyze the dynamics generated

by HRFT at least numerically. It appears to be a much more complicated problem than, for example

JIMWLK evolution successfully studied in the Langevin formulation in [57], as the kernel now has

an infinite number of derivatives and does not allow Langevin formulation. Still we are hopeful that

some quantitative analysis will be possible. It is generally true, that it is one matter to find the Holy

Grail, and quite another to learn to drink from it.
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A. Appendix - The calculation of matrix elements.

In this appendix we give the details of the calculations in Section 3. We have to calculate the matrix
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element

F [Λ, Λ̄] = 〈0|e− 1
2

a Λ̄† a e−
1
2

a† Λ a† |0〉 . (A.1)

Differentiating this with respect to Λ we obtain

∂F

∂Λαβ
= 〈0|e− 1

2
a Λ̄ a

[

−1

2
a†α a†β

]

e−
1
2
a† Λ a† |0〉

= 〈0| ∂

∂aα

∂

∂aβ
e−

1
2

a Λ̄ a e−
1
2

a† Λ a† |0〉

= 〈0|e− 1
2

a Λ̄ a [−Λ̄αβ + Λ̄αγΛ̄βδaγaδ] e
− 1

2
a† Λ a† |0〉

=
1

2
Λ̄†

αβF + [Λ̄† ∂F

∂Λ̄†
Λ̄†]αβ . (A.2)

The resulting differential equation:

∂F

∂Λαβ
=

1

2
Λ̄†

αβF + [Λ̄† ∂F

∂Λ̄†
Λ̄†]αβ (A.3)

is solved by

F [Λ, Λ̄] = exp

{

−1

2
Tr ln(1 − Λ̄†Λ)

}

. (A.4)

We now turn to the matrix element

G[γα] = 〈0|e− 1
2

a Λ̄† a e−ib̄ (a+P a†) e−ib (a+P a†) e−
1
2

a† Λ a† |0〉 = 〈0|e− 1
2

a Λ̄†a e−iγ (a+P a†) e−
1
2

a† Λ a† |0〉
(A.5)

where we have introduced notation

γα = bα − b̄α . (A.6)

To calculate this matrix element we differentiate with respect to γα.

∂G

∂γα
= i〈0|e− 1

2
a Λ̄† a (aα + Pαβa†β) e−iγ(a+Pa†) e−

1
2

a† Λa† |0〉

= i〈0|
[

Pαβ
∂

∂aβ

[

e−
1
2
Λ̄†aa

]

+ e−
1
2
Λ̄†aaaα

]

e−iγ(a+Pa†)e−
1
2
Λa†a† |0〉

= i
(

δαβ − (P Λ̄†)αβ

)

〈0|e− 1
2

a Λ̄† a aβ e−iγ(a+Pa†) e−
1
2

a† Λa† |0〉

= i
(

δαβ − (P Λ̄†)αβ

) [

i(γP )βG + 〈0|e− 1
2

a Λ̄† a e−iγ(a+Pa†) (−Λβγa†γ) e−
1
2

a† Λ a† |0〉
]

. (A.7)

The last term can be expressed in terms of ∂G
∂γα

if in the very first line instead of commuting a† to

the left, we commute a to the right

∂G

∂γα
= i〈0|e− 1

2
a Λ̄† a (aα + Pαβa†β) e−iγ(a+Pa†)e−

1
2

a† Λa† |0〉

= i
(

δαβ − (ΛP )αβ

)

〈0|e− 1
2

a Λ̄† ae−iγ(a+Pa†)(Pa†)β e−
1
2

a† Λ a† |0〉 (A.8)

So that

〈0|e− 1
2

a Λ̄† ae−iγ(a+Pa†)a†αe−
1
2

a† Λa† |0〉 = −i
[

P
1

1 − ΛP

]

αβ

∂G

∂γβ
. (A.9)
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Together with eq.(A.7) this gives equation

∂G

∂γα
= −(1 − P Λ̄†)αβPβωγωG − (1 − P Λ̄†)αβ [ΛP ]βǫ(1 − ΛP )−1

ǫω

∂G

∂γω
. (A.10)

This is solved by

G[γ] = G[0] exp{−1

2
γ(1 − ΛP )[1 − P Λ̄†ΛP ]−1(1 − P Λ̄†)Pγ} (A.11)

= G[0] exp{−1

2
γ(1 − P Λ̄†)[1 − ΛΛ̄†]−1(1 − ΛP )Pγ}

where G[0] = F [Λ, Λ̄] of eq.(3.16).

B. Appendix - The overlap matrices.

In this Appendix we calculate the overlap matrices Θ and Φ used in the text. Here we will use

frequency p− rather than rapidity to label the basis functions. However the normalization is still

taken to be consistent with expanding the field A in terms of creation and annihilation operators

aη, a†η. We start from the expression for the basis functions

f (b,j,η,k)(a, i, x−, x) = δab
ij 〈x|ei ∂2

2k−
x− |k〉 (B.1)

g(b,j,η,k)(a, i, x−, x) =

〈x|θ(−x−)ei ∂2

2k−
x−

(1 − 2l)ijδ
ab + θ(x−)[ei D2

2k−
x−

(1 − 2L)]ab
ij + ǫ(x−)[∆(1 − l − L)]ab

ij |k〉 .

Thus

∂+g∗ p
x = δ(x−)〈p|2l − 2L + (1 − l − L)∆†|x〉 (B.2)

− i

2p−
〈p|θ(−x−)e

−i ∂2

2p−
x−

∂2(1 − 2l) + θ(x−)[e
−i D2

2p−
x−

D2(1 − 2L)]|x〉 .

In the expression above we have not written all the indices explicitly. We first check the orthonor-

mality of the basis functions g:

∫

x
g∗(p)∂+g(k) =

1

2
〈p|(1 − 2l)(1 − 2L) − (1 − 2L)(1 − 2l) +

1

2
(2 − 2l − 2L)∆(2 − 2l − 2L)|k〉

+ 〈p|
∫

x−<0

[

e
−ix−[ ∂2

2p−
− ∂2

2k−
] i∂2

2k−
− i

8k−
(2 − 2l − 2L)∆†(1 − 2l)∂2eix− ∂2

2k−

]

|k〉

+ 〈p|
∫

x−>0

[

e
−ix−[ D2

2p−
− D2

2k−
] iD2

2k−
− i

8k−
(2 − 2l − 2L)∆†(1 − 2L)D2eix− D2

2k−

]

|k〉

= 〈p|
[ 1

1 − k−

p− + iǫ
− 1

1 − k−

p− − iǫ

]

|k〉

+
1

2
〈p|(1 − 2l)(1 − 2L) − (1 − 2L)(1 − 2l) +

1

2
(2 − 2l − 2L)(∆ − ∆†)(2 − 2l − 2L)|k〉

= −i2πδ(
k−

p−
− 1) = −i2πδ(η − ξ) .
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Now for the calculation of the overlap matrices

Θ(p, p−, k, k−) = i

∫

x−,x
∂+g∗(p)f(k) = i〈p|2l − 2L + (1 − l − L)∆†|k〉 (B.3)

+

∫

x−<0

1

2π−
〈p|∂2e

−ix−[ ∂2

2p−
− ∂2

2k−
]
(1 − 2l)|k〉

+

∫

x−>0

1

2π−
〈p|D2(1 − 2L)e

−ix−[ D2

2p−
− ∂2

2k−
]|k〉

= i〈p|2l − 2L + (1 − l − L)∆†|k〉

+
i

1 − p−

k− − iǫ
〈p|(1 − 2l)|k〉 − i〈p|(1 − 2L)

1

1 − ∂2

D2
p−

k− − iǫ
|k〉 .

By inspection we see that to get the matrix Φ we need to substitute k− → −k− and also k → −k.

Thus we have

Φ(p, p−;−k, k−) = i〈p|2l − 2L + (1 − l − L)∆†|k〉

+
i

1 + p−

k− − iǫ
〈p|(1 − 2l)|k〉 − i〈p|(1 − 2L)

1

1 + ∂2

D2
p−

k− − iǫ
|k〉 .

We have been a little cavalier about the non-commuting factors D and ∂ in the above expressions.

It is clear by construction that all factors of D come from the function g∗. Thus all the above

expressions should be understood as ordered such that all factors D are to the left of factors ∂.

C. Appendix - Perturbative expansion.

Our aim in this appendix is to show explicitly that the O(Y 2) terms discussed in Section 3 have

their exact counterpart in perturbative calculation. To do this we have to expand our expression for

the matrix K to first order in j. Our discussion will be for the wave function rather than for the S-

matrix, but the extension is straightforward.

We thus consider the expansion of the operator Λ to O(j). This is straightforward and we give

some details below. In all the expressions below the field b has to be understood as ba
i = ∂i

∂2 ja. We

start by expanding the matrix Φ

Φ(p, η;−k, ξ) = i〈p|2(l −L) + (1− l−L)∆†|k〉+
i

1 + eξ−η
〈p|(1− 2l)|k〉 − i〈p|(1− 2L)

1

1 + ∂2

D2 eξ−η
|k〉 .

(C.1)

We have neglected the iǫ terms in this expressions since the poles are never reached for physical

values of rapidity.

2(l − L)ab
ij = 2f cab

(

∂i
1

∂2
bc
j + bc

i

1

∂2
∂j − ∂i

1

∂2
{∂k, b

c
k}

1

∂2
∂j

)

. (C.2)

Further

∆†ab
kj = f cab∂k

1

∂2
[∂l, b

c
l ]

1

∂2
∂j − 2f cabbc

k

1

∂2
∂j . (C.3)
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And

(1 − l − L)ad
ij ∆†db

kj = f cab

{

−2bc
i

1

∂2
∂j + ∂i

1

∂2
bc
k∂k

1

∂2
∂j + 3∂i

1

∂2
∂kb

c
k

1

∂
∂j

}

. (C.4)

Thus the first term in Φ is

2(l − L)ab
ij + (1 − l − L)ad

ij ∆†db
kj = f cab

(

2∂i
1

∂2
bc
j + ∂i

1

∂2
[∂k, b

c
k]

1

∂2
∂j

)

. (C.5)

The second term in Φ is of order one, while for the third term we need

(1 − 2L)ad
ij

[

1

1 + ∂2

D2 eξ−η

]db

=
1

1 + eξ−η

(

δij − 2∂i
1

∂2
∂jδ

ab

)

− f cab

1 + eξ−η

(

δij − 2∂i
1

∂2
∂j

)

{∂k, b
c
k}

1

∂2

eξ−η

1 + eξ−η

−f cab

(

∂i
1

∂2
{∂k, b

c
k}

1

∂2
∂j − ∂i

1

∂2
bc
j − bc

i

1

∂2
∂j

)

. (C.6)

Thus finally

Φab
ij = if cab

{

2∂i
1

∂2
bc
j + ∂i

1

∂2
[∂k, b

c
k]

1

∂2
∂j

}

+if cab

(

∂i
1

∂2
{∂k, b

c
k}

1

∂2
∂j − ∂i

1

∂2
bc
j − bc

i

1

∂2
∂j

)

+if cab 1

1 + eξ−η

(

δij − 2∂i
1

∂2
∂j

)

{∂k, b
c
k}

1

∂2

eξ−η

1 + eξ−η
.

(C.7)

The expansion of matrix Θ is trivial, since we only need its leading order term

Θab
ij =

(

δab
ij − 2∂i

1

∂2
∂jδ

ab

)(

i

1 − eξ−η − iǫ
− i

1 − eξ−η + iǫ

)

= −
(

δab
ij − 2∂i

1

∂2
∂jδ

ab

)

δ(ξ − η) .

(C.8)

This yields

Λab
ij (x, η; y, ξ) =

∫

ζ
Θ−1ad

ik (x, η, z, ζ)Φdb
kj(z, ζ, y, ξ)

= if cab〈x|
{

−∂i
1

∂2
bc
j − bc

i

1

∂2
∂j

}

|y〉

+ if cab eξ−η

(1 + eξ−η)2
δij〈x| {∂l, b

c
l }

1

∂2
|y〉 .

(C.9)

In this calculation we are only interested in terms which contribute O(Y 2) when Λ is integrated over

both rapidities. The second term in eq.(C.9) exponentially decreases for ξ − η → ±∞ and thus does

not contribute. We can then limit ourselves to

Λab
ij (x, η; y, ξ) ≈ λab

ij (x, y) ≡ −igf cab

{

∂i(x)
1

∂2
(x, y)bc

j(y) + bc
i(x)

1

∂2
(x, y)∂j(y)

}

(C.10)
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where we have also restored the coupling constant, omitted from the previous formulae for simplicity.

We now concentrate on the expansion of the evolved wave function

|Ψ〉 = e
i

R

z,ǫ
ba
i (z)

“

aa
i (z,ζ)+a†a

i (z,ζ)
”

e−
1
2

R

x,y,η,ξ
a†b

k (x,η) Λbc
kj(x,y,η,ξ) a†c

j (y,ξ)|0〉 . (C.11)

Expanding in the Fock basis we find

|Ψ〉 =

[

1 − Y
1

2

∫

x,y
ba
i (x)ba

i (y)

]

|0〉

+

[

i

∫

x,η
ba
i (x)a†ai (x, η) − ig

Y

2π

∫

x,y,η
ba
i (x)λad

ij (x, y)a†dj (y, η)

]

|0〉

+

[

−g

2

∫

x,y,η,ξ
λuv

ij (x, y)a†ui (x, η)a†vj (y, ξ) − 1

2

∫

x,y,η,ξ
ba
i (x)bb

j(y)a†ai (x, η)a†bj (y, ξ)

]

|0〉

Hence the one gluon component is can be written as

〈a, i, x, η|Ψ〉 = iba
i (x)+g

Y

2π
fabcbb

i(x)

∫

y

∂i

∂2
(x, y)bc

j(y) = ig
∂i

∂2
ja +g3 Y

2π
fabc ∂i

∂2
(x, z)jb(z)

1

∂2
(x, y)jc(y)

(C.12)

where now the charge j is normalized so that the charge of a single gluon is of order unity. The two

gluon component of the wave function is

〈a, i, x, η; b, y, j, ξ|Ψ〉 = −g2

∫

u
∂i

1

∂2
(x, u)ja(u)∂j

1

∂2
(y, v)jb(v)

+ ig2fabc

∫

u

{

∂i
1

∂2
(x, y)∂j

1

∂2
(y, u)jc(u) − ∂j

1

∂2
(y, x)∂i

1

∂2
(x, u)jc(u)

}

. (C.13)

These expressions have a very simple diagrammatic interpretation.

The diagrams contributing to the one gluon state components are depicted in Fig.4 while to

the two gluon components in Fig. 5. Clearly the first diagram on Fig.4 represents the first term in

eq.(C.12) and the second diagram - the second term in eq.(C.12). The second term has an extra

power of Y due to the additional loop integral. Thus when calculating the S-matrix, the square of

the first term is of order O(Y ), while the cross term is of order O(Y 2). This is precisely the term we

have encountered in our calculation in the body of the paper.

Figure 4: Diagrams contributing to the one gluon component of the wave function in perturbation theory.

Similarly Fig.5 represents the two terms in eq.(C.13). Both terms here when squared, give

contribution of O(Y 2) to the S matrix.
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Figure 5: Diagrams contributing to the two gluon component of the wave function in perturbation theory.
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