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The Yang-Mills Schrédinger equation is variationally solved in Coulomb gauge for the vacuum
sector using a trial wave functional, which is strongly peaked at the Gribov horizon. We find the
absence of gluons in the infrared and also a confining quark potential.
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1. Introduction. Omne of the most challenging prob-
lem in particle physics is to explain the confinement of
quarks and gluons in QCD. Several confinement mecha-
nisms have been proposed in the past, the most promi-
nent of which are perhaps the condensation of magnetic
monopoles (dual Meissner effect) and center vortex con-
densation (for a recent review see ref.[ll]). Evidence for
both mechanisms has been found in lattice calculations.
However, the center vortex picture is perhaps more ad-
vantageous in the sense, that these vortices can, in prin-
ciple, be defined in a gauge invariant way [2], while mag-
netic monopoles arise as gauge artifacts after Abelian
projection and are merely manisfestations of topological
defects of the underlying gauge fields [3]. Yet another
confinement mechanism was proposed by Gribov 4] and
further elaborated in ref.}5]. This mechanism, which is
based on the infrared dominance of the field configura-
tions near the Gribov horizon in Coulomb gauge, is com-
patible with the magnetic monopole and center vortex
pictures of confinement, given the fact, that these field
configurations lie on the Gribov horizon [f].

In this letter we will explore Gribov’s confinement mecha-
nism by studying the vacuum sector of SU(2) Yang-Mills
theory in Coulomb gauge in the Hamilton approach us-
ing the variational principle. With an appropriate, phys-
ically motivated ansatz for the Yang-Mills wave func-
tional, which accounts for the dominance of the field con-
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figurations on the Gribov horizon, we will be able to de-
scribe simultanously quark and gluon confinement.

In previous studies of the Yang-Mills Schrodinger equa-
tion in Coulomb gauge [, |§], a different trial wave func-
tion was used and also the non-trivial metric of the orbit
space, induced by the Faddeev-Popov determinant was
not fully included. In ref.[d] the curvature of orbit space
was completely neglected, while in ref.[§] its contribution
to the gluon self-energy was partially omitted in the gap
equation. We will find, however, that the proper inclu-
sion of the Faddeev-Popov determinant is absolutely nec-
essary to produce simultaneously quark and gluon con-
finement.

2. Yang-Mills theory in Coulomb gauge. The Hamilton
approach to gauge theory is based on the Weyl gauge
Ap = 0, in which the dynamical degrees of freedom are
the spatial components of the gauge field, ff(x) This
gauge leaves still invariance under spatial gauge trans-
formations. The latter can be fixed by implementing the
Coulomb gauge A = 0. In the Coulomb gauge the un-
physical longitudinal degrees of freedom of A(z) can be
completely eliminated by explicitly resolving Gauf’ law
DII|U) = peyt| V), resulting in the following Hamilto-
nian of the physical transversal degrees of freedom A;-
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Here g is the Yang-Mills coupling constant, II%(x) =
15/5A;(z) is the canonical momentum operator conju-
gate to the transversal gauge field AL (2), D=0+ At
is the covariant derivative in the adjoint representa-
tion (A% = facbAc fabe heing the structure constant)

and J = Det(—dD) is the Faddeev-Popov determi-
nant. Given the fact, that the Faddeev-Popov kernel

(—=dD) represents the metric tensor in the color space
of transversal gauge connections A;- the first term in
the Hamiltonian is the corresponding Laplace-Beltrami



operator and gives the electric part of the Hamilto-
nian. The second term gives the magnetic energy with
Bi[A*Y] = 1e€ijx[Dj, Di] being the color magnetic field.
This term represents a potential for the transversal gauge
field. Finally the last term is the so-called Coulomb term,
where p® = Af‘abﬂé’—i— p.. is the non-Abelian color charge
density, which contains besides the gluonic part also a
contribution from external quarks pey¢.

In this letter we solve the Yang-Mills Schrodinger equa-
tion HV¥ = EV for the vacuum sector by the variational
principle using the following ansatz for the Yang-Mills
vacuum wave functional
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where A is a normalization constant and the kernel
w(z,2’) is determined by minimizing the energy. The
wave functional (@) is strongly peaked at the Gribov hori-
zon, where the Faddeev-Popov determinant vanishes and
thus reflects the fact, that the dominant infrared configu-
rations, like center vortices or magnetic monopoles, lie on
the Gribov horizon []. Furthermore, the wave functional
@), being divergent on the Gribov horizon, identifies all
configurations on the Gribov horizon, in particular those
which are gauge copies of the same orbit. This identi-
fication is absolutely necessary to preserve gauge invari-
ance. In addition it topologically compactifies the (first)
Gribov region. Thus the pre-exponential factor 7~z [A]
drastically changes the properties of the vacuum state
compared to those of a pure Gaussian, which was used
in refs.[7], |§]. In the case of QED, where the Faddeev-
Popov determinant becomes a constant eq.(@l) represents

the exact vacuum wave functional with w(k) = V k2 be-

ing the energy of a free photon with 3-momentum k.

3. Schwinger-Dyson  equations. In the eval-
uation of the vacuum energy (U|H|¥) =
[ DAL J[AL)U*[AL|HTU[AL] the following ingredi-

ents are required:
1. The ghost propagator in the vacuum, which is defined
by
57y —1 214
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where d denotes the ghost form factor, which measures
the deviations of the ghost from a free massless field.
Evaluating this expectation value in the so-called rain-
bow ladder approximation, where the self-energy of the
ghost is given by the diagram shown in fig[lh one obtains
the following integral equation for the ghost form factor
d in momentum space
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ng_ld(k)v (4)
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FIG. 1: (a) The ghost self-energy in the rainbow ladder ap-
proximation. The full (wavy) line represents the full ghost
(gluon) propagator. (b) Ghost loop contribution to the gluon

self-energy.
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FIG. 2: Diagrammatic illustration of the integral equation
for the Coulomb form factor f represented by the fat dot with
two entries for external legs.

2. The Coulomb form factor f defined by

(W|(=FD) (=AY (~FD) "L |W) = G(-A) G . (6)

The calculation of this form factor consistent with the
evaluation of the ghost form factor yields the following
integral equation

fR) =1+ 1I;(k), (7)
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which is diagrammatically illustrated in fig.2. In this
equation we will replace the full ghost form factor by its
bare value d(k) = 1, in order to carry out the calculations
consistently to 1-loop order.

3. The scalar “curvature” of color orbit space
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which is the ghost loop part of the gluon self-energy and
represents the ghost part of the color dielectric suscep-
tibility of the Yang-Mills vacuum. To 1-loop order this
curvature is given by the diagram shown in fig.1b and
equals

x(k) = L (k),
3 . _
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Evaluating the expectation value of the Hamiltonian ()
with the trial wave functional @) to 1-loop order varia-
tion of the energy leads to the following gap equation for
the kernel w(x,z’) in the wave function @)

WP (k) = K+ X2 (k) + 1 (k) + 2x(R) IV (k) + 15, (11)

x(x,y) = vy, 9)




where 19 is an irrelevant constant, which drops out after
renormalization, and
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Equations @), [@), () and () represent four coupled
Schwinger-Dyson type of equations for the ghost form

factor d(k), the Coulomb form factor f(k), the curva-
ture x(k) and the gluon energy w(k). These equations
contain divergent integrals and require thus regulariza-
tion and renormalization. Fortunately, the asymptotic
infrared and ultraviolet behaviour of the solutions does
not depend on the details of the renormalization proce-
dure used.

4. Asymptotic behaviour. One can solve the coupled
Schwinger-Dyson equations analytically in the ultraviolet
k — oo in the so-called angular approximation [10]. One
finds then the following asymptotic ultraviolet behaviour

iz Xk 1
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where g is an arbitrary parameter of dimension mass.
The first equation means, that the gluons behave asymp-
totically like free particles, while the second one implies
that the space of gauge connections becomes asymptoti-
cally flat. The ghost and Coulomb form factors, d(k) and
f(k), deviate asymptotically from that of a free massless
field by the anomalous dimension factor 1/4/Ink/p.

In the infrared one can rigorously show, that x(k — 0) =
w(k — 0) [11]. In addition, adopting the angular approx-
imation [10] one finds the asymptotic solution for k¥ — 0

1 1
wlk) = x(B) ~ 7 d(R) ~ 7, f(E—0)=1. (15)
The first relation implies, that in the infrared the gluon
energy diverges and equals its self-energy part generated

by the ghost loop, i.e. its free part \/E_Q has dropped out.
The infrared diverging gluon energy is a manifestation of
gluon confinement. It implies an infrared vanishing gluon
propagator, which violates positivity, and accordingly the
gluons do not occur as asymptotic particle states in S-
matrix [12] ,[14]. Furthermore, the infrared diverging
ghost form factor and the infrared finite Coulomb form
factor f(k — 0) = 1 is precisely the infrared behaviour
needed to produce a linearly rising confining potential.

5. Renormalization. To regularize and renormalize
the divergent Schwinger-Dyson equations we use a 3-
momentum cut-off and a momentum substraction scheme
similar to the one used in refs.[d, |§]. However, in the

present case new features arises in the renormalization
of the gap equation () due to the full inclusion of the
curvature ([@). The details will be given elsewhere [11].
After renormalization one obtains the following set of
Schwinger-Dyson equations

1 1
m = m—AId(k) (16)
x(k) = x(p) + AL (k) (17)
f(k) = f(uw)+ ALy (k) (18)

W k) = K = + (ALy(K))? + EAL (k) + AIP (k)
o) + AL AIDE) + (), (19)

where 1 is the renormalization scale and we have intro-
duced the abbreviations

Aly(k) = Jim (La(k, A) = La(u,A)) ete. (20)

Furthermore w(p),d(p), x(p), f(1) and & = 2[x(n) +

IS)(M)] are renormalization constants, which were de-
termined as follows: w(y) is used to fix the energy scale
and drops out from the Schwinger-Dyson equations by
rewriting the latter in terms of dimensionless quantities.
d(p) enters only the Schwinger-Dyson equation () for
the ghost form factor, which does not contain the re-
maining renormalization constants. The ultraviolet be-
haviour of d(k) found above in eq.([d) is independent
of d(p) but the infrared behaviour of d(k) depends cru-
cially on d(u). As long as d(u) is smaller than some
critical value d.,, d(k) approaches a (finite) constant for
k — 0. At the critical value d(u) = d. the ghost form
factor d(k) diverges for k — 0 and above the critical value
d(p) > der no solution for d(k) exists. This critical value
is the only value, which produces the infrared diverging
ghost form factor found above analytically ([[H). Fur-
thermore in D = 3 (which will be considered elsewhere)
a self-consistent solution to the coupled Schwinger-Dyson
equations exists only for this critical value. Therefore we
choose d(u) = d.r. Fortunately, the self-consistent solu-
tion is quite insensitive to the remaining renormalization
constants x(u) and &, which we have chosen for the defi-
niteness as x(u) =0, f(u) =1 and £ = 0.

6.  Numerical Results.  The renormalized coupled
Schwinger-Dyson equations eq. ([8), (), [[¥) and ([I3) are
solved by iteration (without resorting to the angular ap-
proximation) and the results are shown in figs.3 and 4.

All these numerical results are in full accord with the
ultraviolet and infrared behaviour extracted above ana-
lytically within the angular approximation. Finally, fig.5
shows the static quark potential which is obtained in the
present approach as the expectation value of the last
term in the Yang-Mills Hamiltionian, eq.(l), when the
color density p® is identified with that of a static quark-
antiquark pair. The obtained potential interpolates be-
tween a Coulomb potential at small distances and an (al-
most) linearly rising confinement potential at large dis-
tances. Numerically we find, that its Fourier transform
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FIG. 3: The ghost form factor d(k) (full line) and the
Coulomb form factor f(k) (dashed line).
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FIG. 4: The gluon energy w(k) (full line) and the curvature
x (k) (dashed line).

diverges for & — 0 as 1/k>7 instead of 1/k*, which is
required for a strictly linear rising potential [15]. Ap-
proximating the confining potential by a linear one we
can fix the energy scale by the string tension. In ref.[d] it
was found that the string tension in the Coulomb poten-

tial, ocoul, is by about a factor of three larger than the
asymptotic string tension o extracted from large Wil-
son loops. Using 0.y = 30 and the canonical value
o = (440MeV)? one finds that the minimum in the gluon
energy (see fig.4) occurs at kpn ~ 1.4GeV, which is of
the order of the glue ball mass. This corresponds to a
minimal single gluon energy w(kpin) = 3GeV.

To summarize, by approximately solving the Yang-Mills
Schrédinger equation in Coulomb gauge by means of the
variational principle using the trial wave functional (@),
which embodies the dominance of the field configurations
on the Gribov horizon, we have been able to describe
simultaneously quark and gluon confinement. A more
detailed presentation will be given elsewhere.
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FIG. 5: The static quark potential.
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