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Application of ChPT to Nuclei 

Nuclear forces are usually based on phenomenology.

1π exchange + short range ansatz + NN data                      NN force model

                                                                        
The outcome is not unique !            
 
      -   the relation to QCD is lost! 
           How to relate the NN system to other strong  interaction processes ?

      -   3NF’s and MEC’s are important for a quantitative description of many observables
           How to define consistent 3NF’s and MEC’s? 

      -   Lattice QCD will be able to predict NN, 3N observables for high pion masses.
          How extrapolate to physical pion masses?
          How to make use of the results for more complex systems?

Find appropriate degrees of freedom and make an EFT for nuclear systems!



EFT of QCD

What properties of QCD do we want use to build the EFT?

                                                           quark mass matrix;  here only flavor SU(2) sector

                                                          projection of on left/right handed quarks

In this form chiral symmetry becomes apparent:   

mu and md (5 and 9 MeV for the usual renormalization scale of 1 GeV)
                   are very small compared to typical hadronic masses (approx. 1 GeV)

                                                QCD Lagragian becomes chirally symmetric 

LQCD = q̄L i /D qL + q̄R i /D qR −
1

2
Tr GµνGµν

− q̄R M qL − q̄L M qR

/D = /∂ − igs/G
a T a; T a = Gell-Mann matrices

M =

(
mu 0

0 md

)

qL,R =
1

2
(1 ± γ5)q

SUL(2) ⊗ SUR(2)
M ≈ 0



EFT of QCD

                                            is an approximate symmetry
 
mu and md are finite. 
But in the SU(2) sector chiral symmetry should be a good approximation.

Experimental observation is:

        -   There are isospin multiplets like  p,n  or  Σ+,Σ-,Σ0  

            This means that isospin symmetry (”vectorial subgroup” with L=R is realized)

        -   There are no opposite parity partners for these states with at least 
             approximately the same mass!

             
                   The “axial” part of chiral symmetry is spontaneously broken down!
 

SUL(2) ⊗ SUR(2)



EFT of QCD

                                            is spontaneously broken down to 
 
                                                           (the Lagragian is invariant, but the vacuum is not)

                      Goldstone’s theorem:  there are massless bosons (Goldstone bosons)

Experimentally, we find π+,π-,π0 !  

Since chiral symmetry is also explicitly broken, the pions are not strictly massless,
but at least approximately 

We again see that chiral symmetry is spontaneously broken.   

SUL(2) ⊗ SUR(2) SUV (2)

mπ ≈ 138 MeV " 1 GeV



Which degrees of freedom should we choose for an EFT for QCD?

        -  nucleons, if we want to use it for nuclear physics
        -  pions, since these are almost massless, 
           mass of the pions is of the order of a typical momentum in a nucleus

Chiral symmetry constrains the possibly interactions of pions, and pions and nucleons.

                 A predictive effective theory for strongly interacting systems 
                 can be formulated: Chiral Perturbation Theory (ChPT)

The explicit breaking of chiral symmetry can be taken into account by pion mass 
dependent terms that break chiral symmetry the same way as it is broken in QCD!

Since the pion mass is small, these terms are suppressed.

The inclusion of nucleons requires special care, because of its large mass:
      Heavy Baryon Chiral Perturbation Theory.

EFT of QCD



Being an EFT, one can formulate an infinite number of terms in the Lagragian.

The terms are ordered according to the number of derivatives and quark (pion) mass 
insertions  (power counting). 
This leads to an expansion in terms of a typical small momentum Q.

The leading order Lagrangians, e.g., read  (the part of interest for the NN forces)

Based on the order of the Lagrangian, one can the estimate the order of a diagram

                
The infinite number of diagrams can be ordered, so that only a finite number 
contributes at each order.
   

EFT of QCD

L
(0) =

1

2
∂µπ · ∂µπ −

1

2
mπ

2π2 + N†

[
i∂0 +

gA

2fπ
τ$σ · $∇π −

1

4fπ
2 τ · (π × π̇)

]
N

−
1

2
CS(N†N)(N†N) −

1

2
CT (N†$σN)(N†$σN) + . . . ,

L
(1) = N†

[
4c1mπ

2
−

2c1

fπ
2 mπ

2π2 +
c2

fπ
2 π̇2 +

c3

fπ
2 (∂µπ · ∂µπ) −

c4

2fπ
2 εijk εabc σiτa(∇j πb)(∇k πc)

]
N

−
D

4fπ
(N†N)(N†$στN) · $∇π −

1

2
E (N†N)(N†τN) · (N†τN) + . . .

v = −4 + 2N + 2L +
∑

i

(
di +

ni

2
− 2

)



The infinite number of diagrams can be ordered, so that only a finite number 
contributes at each order.

If this was strictly true, we would not have bound states within this framework.

Let’s look at one example and do the naive counting explicitly:

We naively find the one pion exchange in leading order, and the two pion exchange in 
subleading, etc.    

Chiral potential

v = −4 + 2N + 2L +
∑

i

(
di +

ni

2
− 2

)

∆i = di +
ni

2
− 2 = 0

N = 2, L = 0

ν = −4 + 2 · 2 + 2 · 0 + 2 · 0 = 0

N = 2, L = 1

ν = −4 + 2 · 2 + 2 · 1 + 2 · 0 = 2

vertices



Where is the pitfall?

Let’s do time-ordered perturbation theory for the same two diagrams

For all particles having a typically small momentum Q, we can estimate the energy 
denominators

                                   this diagram is irreducible in the sense that no two nucleon 
                                   intermediate state appears
              
                                   1/Q is in agreement with the power counting estimate 

Chiral potential

Tij = 〈i|HI |j〉 +
∑

k

〈i|HI |k〉〈k|HI |j〉

Ej + iε − Ek
+

∑

kl

〈i|HI |k〉〈k|HI |l〉〈l|HI |j〉

(Ej + iε − Ek)(Ej + iε − El)

+
∑

klm

〈i|HI |k〉〈k|HI |l〉〈l|HI |m〉〈m|HI |j〉

(Ej + iε − Ek)(Ej + iε − El)(Ej + iε − Em)
+ . . .

1

Ej + iε − Ek,l,m
∝

1

Q2

2m
+ mπ

∝

1

Q

k

l

m



The same estimate for a diagram with a two nucleon intermediate state is different!

                                   This diagram is reducible in the sense that purely nucleonic 
                                   intermediate states appear
              
There is an enhancement of order m/Q !

                           This enhancement is sufficient to make the theory non-perturbative.

Good news:  the irreducible diagrams give a potential, which can be summed 
                   numerically using a LS equation

This defines a chiral potential. 

Chiral potential

1

Ej + iε − Ek,m
∝

1

Q2

2m
+ mπ

∝

1

Q

k

l

m
1

Ej + iε − El
∝

1

Q2

2m

∝

1

Q

2m

Q



Leading order (LO) interaction  (in time-ordered perturbation theory):

Other schemes (e.g. Okubo transformation) exist to obtain the potential!

LO interaction

k k

VC = CS + CT !σ1 · !σ2

V1π(!q) =

(
ga

2fπ

)2

!τ1 · !τ2

1

2ωq

!σ1 · !q !σ2 · !q
p2

1

2m
+

p2

2

2m
−

p′

1

2

2m
−

p2

2

2m
− ωq

+

(
ga

2fπ

)2

!τ1 · !τ2

1

2ωq

!σ1 · !q !σ2 · !q
p2

1

2m
+

p2

2

2m
−

p1
2

2m
−

p′

2

2

2m
− ωq

= −

(
ga

2fπ

)2

!τ1 · !τ2

!σ1 · !q !σ2 · !q

!q2 + m2
π

gA

2fπ

τ"σ · "∇π

CT / CSvertex
vertex



LO interaction

V (!q) = −

(
ga

2fπ

)2

!τ1 · !τ2

!σ1 · !q !σ2 · !q

!q2 + m2
π

+ CS + CT !σ1 · !σ2

We need to solve the LS equation for 

Regularization is required !

This choices has the advantage that the counter terms only contribute in s-waves.

Higher partial waves are a prediction, 
   if there are no counter terms contributing to them.

V (!p ′, !p ) → e
−

(
p
′

Λ

)2n

V (!p ′, !p ) e−( p

Λ )2n

Vll′(p
′, p) =

∫
dp̂ dp̂ ′Y ∗

l (p̂ ′) C Yl′(p̂) = δl 0 δl′ 0 4π C



LO interaction

A short note on the relation to yesterday’s talk:

          - The RG equation for the vlowk potential made the observables 
             exactly cutoff independent.
             The numerical solution automatically put in an “infinite” number 
             of counter terms. 
             
           - Here, I will follow Peter Lepage’s approach:
             We only add a finite number of counter terms and will 
             retain a residual cutoff dependence. 
             These counter terms need to be fitted to data.
   
           -The question, I want to address is:
               How many counter terms do I have do add additionally to 
               the ones requires by naive power counting?
               How can I decide without knowing the experimental result?

I will show that studying the cutoff dependence for large cutoffs helps to decide on 
that.



It is instructive to look at the potential in configuration space!

The potential is singular!

QM of singular potentials:

We might need a counter term in 
every partial wave, where the tensor 
force is attractive!
Singlets are not affected.

LO interaction

V1π(!r ) =
m3

π

12π

(
gA

2fπ

)2

!τ1 · !τ2 [T (r) S12 + Y (r) !σ1 · !σ2]

S12 = 3(!σ1 · r̂)(!σ2 · r̂) − !σ1 · !σ2

3

where mπ is the pion mass. The strength of OPE is
completely determined by the axial-coupling constant
gA = 1.26 and the pion-decay constant fπ = 92.4 MeV.

In addition to pion exchanges, there exist in EFT
short-range interactions that represent high-energy de-
grees of freedom that have been integrated out. The
simplest are two contact interactions

Vc =
4π

(2π)3
(cs Ps + ct Pt) , (3)

where we used the projectors on spin-triplet and spin-
singlet states, Pt and Ps. The two strength parameters
cs and ct need to be determined from NN data. They
are related to the scattering lengths in their respective
channels. It is usual to write

cs = C0 + m2
πD2 + . . . , (4)

where both parameters C0 and D2 are independent of
the quark masses.

For the numerical solution of the LS equation, we need
to introduce a cutoff Λ. Low-energy physics should, of
course, be independent of the choice or regulator. It is
convenient for the partial-wave decomposition to perform
the regularization using momentum cutoff functions de-
pending on "p and "p ′ rather than on "q. Here we use

f(p′, p) = e−(p4+p′ 4)/Λ4

. (5)

Note that this leads to nonlocal interactions in configura-
tion space, but guarantees that contact interactions act
in specific partial waves, independent of Λ. The aim is to
study the dependence of observables on the chosen value
for Λ.

B. Configuration space

*** Here we could add a description of the configu-
ration space calculation incl regularization. Then the
following probably needs to be rewritten.

For the following discussion, it is useful to look also at
the configuration space expression for OPE,

V1π("r) =
m3

π

12π

(
gA

2fπ

)2

τ 1 · τ 2 [T (r) S12 + Y (r) "σ1 · "σ2] ,

(6)
where

T (r) =
e−mπr

mπr

[
1 +

3

mπr
+

3

(mπr)2

]
,

Y (r) =
e−mπr

mπr
, (7)

and the tensor spin operator is

S12 = 3("σ1 · r̂)("σ2 · r̂) − "σ1 · "σ2. (8)

In this form it is easy to identify the tensor compo-
nent T (r) as the part responsible for the singularity of
the interaction. The tensor force vanishes in spin s = 0
channels. Table ?? summarizes the matrix elements of
the S12 τ 1 · τ 2 operator in s = 1 channels.

t s = 1 l = j − 1 l = j l = j + 1

t = 1 l′ = j − 1 −2 j−1
2j+1 0 6

√
j(j+1)

2j+1

l′ = j 0 2 0

l′ = j + 1 6
√

j(j+1)

2j+1 0 −2 j+2
2j+1

t = 0 l′ = j − 1 6 j−1
2j+1 0 −18

√
j(j+1)

2j+1

l′ = j 0 −6 0

l′ = j + 1 −18
√

j(j+1)

2j+1 0 6 j+2
2j+1

TABLE I: Matrix element of the S12 τ 1 · τ 2 operator for spin
s = 1 channels with total angular momentum j. The ma-
trix elements depend on isospin t, and incoming and outgoing
angular momentum l and l′.

III. NUCLEON-NUCLEON PHASE SHIFTS

We have performed a partial-wave decomposition of
the interaction described in the previous section and then
solved the LS equation and extracted phase shifts. The
explicit expressions are summarized in the Appendix.

*** or given in any publication.
We study the cutoff dependence of the phase shifts

in leading order (LO) in Weinberg’s power counting. We
consider Λ in a wide range, between 2 fm−1 and 20 fm−1.

Because the regulator only depends on the magnitude
of the relative momenta, it does not influence the partial-
wave decomposition. In particular, this implies that Vc

only acts in S waves for any cutoff Λ. We fit cs and ct

using the 1S0 and 3S1 phase shifts at 10 MeV. We con-
firm the cutoff independence found in Refs. [? ? ], as
can been seen in Figs. ?? and ??. In Fig. ?? we show the
running of cs with the cutoff Λ, and the resulting cutoff
dependence of the 1S0 phase shifts at various laboratory
energies. In Fig. ?? we show the corresponding results for
ct, and the 3S1 and 3D1 phase shifts and the mixing an-
gle ε1. One sees that the cutoff dependence of the phase
shifts is small for Λ >∼ 5 fm−1, but it increases as the en-
ergy increases, as expected in an EFT. It is interesting
to note that ct(Λ) displays a nice limit-cycle behavior,
similar to the 3N force in the 3N problem in pionless
EFT [? ], which is solved using a regulator similar to
ours. Since the counterterm strength behaves differently
in Ref. [? ], where a coordinate-space regulator was
employed instead, we conclude that this behavior is reg-
ulator dependent. This is in line with a similar recent
finding for a purely-central potential [? ].

The resulting phase shifts as function of the labora-
tory energy are shown in Fig. ??. In the 1S0 channel, we
recover the known strong deviation from the Nijmegen
PSA. This is related to the relatively large effective-range
parameter in this partial wave, which is not reproduced
without a two-derivative contact interaction. This prob-
lem vanishes once the latter is included in subleading or-
der (see, e.g., [? ]). In the coupled 3S1-3D1 channels, we
find an encouraging agreement between theory and data.
Note that ε1 is underpredicted, if one goes to the limit of
large Λ. In this limit the agreement with the data has,
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We find the expected cutoff dependence for attractive triplet channels 

LO interaction

We confirm the limit cycle 
behavior for attractive singular 
interactions 

Size and slope within the cycles 
depends on the partial wave

The slope of the “plateau region” 
also depends on the energy

3P0 is the worst case, because the variation is strongest for small cutoffs 

       and the slope is the steepest one. 

What is the problem here?



LO interaction

• This cutoff dependence is induced by spurious bound states coming in from threshold.

• For  Λ ≤ 20 fm-1, we find bound states in 3P0

•

• The binding energies increase very rapidly to several hundred MeV
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LO interaction

How can it happen that we apparently do not have cutoff independence of the results?

This can partly be understood looking at perturbation theory:

                                              The 2π-exchange diagrams can not be renormalized     
                                              without additional counter terms!
                                              Doing perturbation theory, we find these counter terms 
                                              at second order!
                                              
But using the LS equation for the potential, we do include them. 

Then, based on perturbation theory, one finds that an infinite number of counter terms     
          is necessary!
  
     1) solution: KSW counting (treat pions perturbatively)                     fails!      

     2) solution: let us look carefully what happens if we do not use perturbation theory

         motivation:  QM of singular potentials can be made well defined.
                            Iteration of the potential (Weinberg counting) works very well.           
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The renormalization of singular interactions is possible with 
   1 counter term (boundary condition) per partial wave (which is still an infinite number) 

In LO, this requires the promotion of counter terms from naïvely higher orders.

We use                              in P-waves, which is supposedly suppressed by (Q/Λ)2
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FIG. 4: Cutoff dependence of the singlet phase shifts for various partial waves. Results are given for lab energies of 10 MeV
(solid line), 50 MeV (dashed line), 100 MeV (dotted line) and 190 MeV (dash-dotted line).

to remove the cutoff dependence.

It is interesting to note that in some cases we can iden-
tify cutoff regions where the results are stable and all
bound states are deep. There are some clear plateau re-
gions, especially at lower energies. At 50 MeV, we read
off that the 3D2 phase shift in the plateau region is ≈ 9◦,
which agrees very well with the Nijmegen PSA (8.97◦).
The corresponding 3D3 phase shift, however, is too small.
The situation is even worse in the P waves. At the same
energy, for both 3P0 and 3P2 phase shifts the dependence
on the cutoff remains visible in any region of Λs.

This cutoff dependence is related to the singularity of
the interaction. It is known that an attractive singular
central potential requires a boundary condition in each
partial wave [? ]. Therefore, we propose to add to each
of the problematic triplet channels a counterterm and fit
it to experiment, say the phase shift at a certain energy.
We then show that the cutoff dependence indeed van-
ishes also for other energies. In the following, we will
illustrate this explicitly for the 3P0, 3D2, and 3P2-3F2

channels, which we consider to be the most problematic
partial waves, because bound states exist or are close to
appearing in the cutoff range we examined. This extends
the work of Refs. [29? ] to channels beyond S waves
(and to our choice of regulator).

To this aim, we add contact interactions in the 3P0

(i = 1) and 3P2-3F2 channels (i = 2) of the form

Vi =
ci

(2π)3
p′p, (9)

which in Weinberg’s counting appear at next-to-leading
(NLO) order, or O(Q2). The first D wave counterterms
are supposed to be of even higher order: they appear in
N3LO, or O(Q4). In the 3D2 channel, we use

Vd =
cd

(2π)3
p′

2
p2. (10)

Fig. 10 shows our result for the 3P0 partial wave. c1

was determined by a fit of the phase shift for a laboratory
energy of 50 MeV. The strength of the counterterm is not
bound. We varied this constant by orders of magnitude,
but could not find any further solution that describes the
phase shifts equally well. c1 exhibits a nice limit-cycle
behavior, similar to that of ct. Fig. 10 also confirms
that the resulting phase shifts at other energies are Λ
independent for Λ >∼ 8 fm−1.

Figs. 11 and 12 summarize the analogous fit results
for the 3P2-3F2 and 3D2 channels, respectively. The fits
were performed using 3P2 the phase shift at 50 MeV and
the 3D2 phase shift at 100 MeV. We confirm the Λ in-
dependence (for large Λ) in all phase shifts and mixing
parameters.
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As expected, we obtain Λ independence for all energies.
We, however, see that the “bare” counter terms get infinite!



-2

0

2

4

6

8

10

12

!
 [

d
eg

]

" = 20 fm
-1

PSA

0

5

10

15

20

25

30

0 50 100 150 200

T
L
 [MeV]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

!
 [

d
eg

]

0 50 100 150 200

T
L
 [MeV]

-6

-5

-4

-3

-2

-1

0

3
P

0

3
P

2

3
F

2

#
2

0         50         100       150      200                 
TL [MeV]

LO interaction

4 8 12 16 20

! [fm
-1

]

10
0

10
1

10
2

10
3

10
4

10
5

E
b
 [

M
e
V

]

10
2

10
3

10
4

10
5

10
6

E
b
 [

M
e
V

]

10
2

10
3

10
4

10
5

E
b
 [

M
e
V

]

3
D

2

3
P

0

3
S

1
-
3
D

1

4 8 12 16 20

! [fm
-1

]

10
0

10
1

10
2

10
3

10
4

10
5

E
b
 [

M
e
V

]

10
2

10
3

10
4

10
5

10
6

E
b
 [

M
e
V

]

10
2

10
3

10
4

10
5

E
b
 [

M
e
V

]

3
D

2

3
P

0

3
S

1
-
3
D

1

Adding this single counter term leads to an astonishingly good description of the data!
Bound states come in from infinity!

But this leaves us with the problem that we “require” a counter term in all attractive 
tensor force channels!

Do we loose predictivity?
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3P0 is the “worst” case. The centrifugal barrier screens the short range part 
      in higher partial waves effectively.



LO potential

0

5

10

15

20

25

30
!

 [
d
eg

]
" = 20 fm

-1

PSA

" = 8 fm
-1

0

1

2

3

4

0 50 100 150 200

T
L
 [MeV]

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

!
 [

d
eg

]

0 50 100 150 200

T
L
 [MeV]

0

1

2

3

4

5

6

3
D

2
3
D

3

3
G

3

#
3

0           50          100          150         200                 
TL [MeV]

For low energy, the inclusion of a higher order counter term is not required!
But it does not hurt either!

We included counter terms in 3P0, 3P2-3F2 and 3D2, 
      but leave them out for all other channels. 
This is sensible, since we will not put the cutoff to infinity and find a plateau! 
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Numerically, one does not observe any cutoff dependence in singlets for large cutoffs. 

This indicates that no renormalization 
is necessary in these channels.

LO interaction

Again, up to 100 MeV, Λ = 3-4 fm-1 seems to be appropriate. 

Also Λ = 2.5 fm-1  leads to a reasonably independent result. 

For 190 MeV, Λ = 5-6 fm-1  insures almost converged results. 

Numerically, no inconsistency of the power counting is found in singlets. 
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The s-wave channels do not 
need additional counter terms!

The “bare” counter term in 3S1 
may be infinite, but the results 
stay cutoff independent.

This is a “bare” coupling 
constant.

We observe that the mixing
angle get cutoff independent 
for larger cutoffs as usual.  
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LO potential

The 1S0 prediction is poor!            ----       This will be resolved in higher orders! 
Small cutoffs improve the predictions, but the result will strongly dependent on the 
cutoff  ----    Higher order counter terms? 
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High partial waves remain predictions of the chiral potential.
E.g. some typical examples:



LO potential

So far, we have looked at the scattering observables:

The deuteron is interesting, because it should be described well, since it is very loosely 
bound.

However, do the spurious bound states interfere somehow? 

0 1 2 3 4 5
r [fm]

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

w
(r

) 
[f

m
-1

/2
]

! = 2 fm
-1

! = 4 fm
-1

! = 6 fm
-1

! = 8 fm
-1

! = 20 fm
-1

0 1 2
r [fm]

-1.0

-0.5

0.0

0.5

1.0

1.5

!
(r

) 
[f

m
-3

/2
]

212 A. Nogga, C. Hanhart / Physics Letters B 634 (2006) 210–213

and, therefore, these bound states should not affect any low en-

ergy physics.

For comparison we also prepared a series of wave functions

from only contact NN interactions (thus omitting diagram 2(a)

in the potential). These wave functions are denoted by Ψ noπ
Λ (p)

in what follows. Again we impose a regulator as given in Eq. (2)

in the Schrödinger equation.

For completeness, we summarize the binding energy results

and some wave function properties for both series of wave func-

tions in Tables 1 and 2.

3. Let us now turn to the calculation of the leading few-

body correction to the π–d scattering length. As stated in the

introduction we will exclusively focus on the static contribu-

tion. The corresponding expression reads

(3)astatic = −ξ

∫
d3p d3q Ψ κ

Λ( "p − "q)†
1

"q2Ψ
κ
Λ( "p),

where ξ = m2
π/(32π4f 4π (1 + mπ/(2MN))). Clearly, no phys-

ical quantity can be regulator-dependent. Naive dimensional

analysis does not require a two-body counter term in the same

order as this first three-body correction. Thus, studying the

Λ dependence of the given integral tells, whether a counter

term of naively higher orders is needed in conjunction with

this few-body correction. We evaluated numerically the inte-

gral in Eq. (3) using both, the wave functions from the full LO

NN potential (κ = π ) and those from only the point interaction

(κ = noπ ), as described in the previous section.

The results are shown in Fig. 3. Here the ‘×’ symbols
emerged from the calculation with the wave functions Ψ π

Λ—

where the non-perturbative pion exchange was included—

whereas the plus symbols stem from the calculation using

Ψ noπ
Λ —that does not have any pion exchange in the wave func-

tion. For the latter, our results clearly show the lnΛ behavior in

accordance with the findings of Refs. [3–5]. To show that ex-

plicitly, we fitted a logarithm to our results, which is also shown

in the figure. The perfect agreement shows that we can recover

the previous results numerically in our cut-off range. However,

the calculation using the full wave functions shows almost no

regulator dependence at all for cut-offs above Λχ .
2 Thus, as

soon as the pion exchange is included non-perturbatively in

the wave functions, no counter term is needed at the order of

the leading few-body corrections to absorb the regulator de-

pendence of the pion exchange contribution. For a numerical

comparison with previous work, we fitted a constant to our

results for Λ ! 6 fm−1. In this way, we obtain for the static
three-body contribution astatic = 2.12m−1

π , which is in good

agreement with the previous calculations [1].

We also checked that there is no unnatural enhancement of

the leading πNN→ πNN counter-term due to the wave func-

tion at small distances: the contribution of this term to the

scattering length—from an explicit evaluation of diagram (d)

in Fig. 1—was in line with the counting, when the transition

2 Note that we observe a mild regulator dependence of the integral for regu-

lators below Λχ , in line with the findings reported in Ref. [1].

Fig. 3. Results for the Λ dependence of the leading few-body correction from

Eq. (3). The ‘×’ symbols show the results of the numerical evaluation of the
integral using the full wave functions Ψ π

Λ , whereas the ‘+’ symbols shows the
result for wave functions with only point interactions Ψ noπ

Λ , downscaled by a

factor of 4. The dashed line is a fit to the latter of the form A + B ln(Λ), as

described in the text. The solid line shows the fit of a constant to the former for

values of the cut-off larger than 6 fm−1.

Fig. 4. The upper panel shows Ψ noπ
Λ and the lower one the s-wave of Ψ π

Λ for

various values of Λ. Note the different scales of the figures.

operator was assumed to be of natural strength [11]. The same

observation was also made in Ref. [4]. This shows that as soon

as non-perturbative pions are included in the construction of
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Λ[fm-1 ] E [MeV] T [MeV] PD[%] AS [fm-1/2 ] η r [fm] Qd [fm2 ] n 

2 2.225 28.91 5.24 0.839 0.030 1.889 0.3005 1 
3 2.225 38.45 8.09 0.855 0.028 1.913 0.2942 1 
4 2.225 45.48 8.23 0.866 0.027 1.933 0.2827 1 
5 2.225 53.53 7.49 0.867 0.025 1.935 0.2747 1 
6 2.224 62.33 6.94 0.866 0.025 1.932 0.2704 2 
7 2.225 70.16 6.73 0.865 0.025 1.928 0.2683 2 
8 2.225 75.95 6.76 0.864 0.026 1.926 0.2676 2 
10 2.227 81.99 7.00 0.864 0.026 1.925 0.2674 2 
12 2.227 85.80 7.14 0.864 0.026 1.925 0.2675 2 
14 2.224 91.94 7.14 0.863 0.026 1.926 0.2675 2 

Expt. 2.225 — — 0.8846 0.026 1.9671 0.2859 1 

What are the predictions for the deuteron?
The deuteron is very loosely bound                     high momentum components not important 
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LO potential

We find that the “bare” coupling constants maybe be infinite.
However, the expectation value of the contact terms remain finite.



3N system

For purely short range potentials, one finds that short 3NF’s are needed to get well 
defined results. 

Chiral Perturbation Theory does not predict a 3NF’s in LO!
and the LO chiral potential has got a finite range.

Does this really imply that no 3NF’s are necessary at LO?

We need to studying the cutoff dependence for the 3H bound state to find out,
whether we are missing some 3N counter terms (namely 3NF’s) ... 
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3N system

Indeed, the binding energy becomes cutoff independent!
We find approx. 4 MeV. The discrepancy to the experimental value is 4 MeV!
To we observe a breakdown of the theory?

Estimate the higher order effect should be based on potential energy
      

∆E ∝

(
Q

700 MeV

)2

〈V 〉 ≈

(
1

5

)2

50 MeV ≈ 2MeV



Summary

- The appropriate effective field theory of QCD at low energies is 
              Chiral Perturbation Theory.

- In NN systems, some kind of non-perturbativity is obvious, 
            because we find a bound deuteron!

   The EFT expressions show that iterated, irreducible diagrams are enhanced

                                         We define a chiral potential.   

- Naive counting cannot absorb all cutoff dependence, because 
  of the unphysical behavior of the LO potential.
  To define a reasonable cutoff is difficult, because no plateau regions are seen.
  Additional counter terms resolve the problem.

- Then spurious bound states do not interfere with low energy physics!

- The extension to the 3N system is predictive!


