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Abstract. We present a brief account of the developments in the description of light meson res-
onances using unitarized extensions of the Chiral Perturbation Theory series, both in energy and
temperature. In particular, we describe how these methods have been recently shown to describe
simultaneously the low energy and resonance regions of meson-meson scattering. This approach
could be of relevance to understand the light scalar mesons since it provides a formalism that re-
spects chiral symmetry and unitarity and is able to generateresonant states without any a priori
theoretical bias toward their existence, classification orspectroscopic nature. We will also review
how this approach is also able to describe the thermal evolution of theρ andσ mesons. In addition
we review their extensions to higher orders, the most recentdetermination of the resonance pole
properties, as well as their behavior in the largeNc limit, which could be of relevance to understand
their spectroscopic nature.

I. INTRODUCTION

Although QCD has been established as the fundamental theoryof strong interactions
and its predictions have been thoroughly tested to great accuracy in the perturbative
regime (above 1-2 GeV), our understanding of the low energy regime is still rather
controversial, specially concerning scalar mesons, whichis the topic of this conference.
At high energies, QCD is a perturbative theory because a description in terms of quarks
and gluons is possible, however, at low energies, the usual perturbative expansion has
to be abandoned in favor of somewhat less systematic approaches in terms of mesons.
An exception is the formalism of Chiral Perturbation Theory(ChPT) [1, 2], built as
the most general derivative expansion of a Lagrangian containing only pions, kaons
and the eta. These particles are the Goldstone bosons associated to the spontaneous
chiral symmetry breaking of massless QCD. In practice, ChPTbecomes an expansion in
powers of energy, momenta or temperature, over the scale of the spontaneous breaking,
i.e.,4π f0 ≃ 1.2GeV. For the zero temperature processes we are going to review, and due
to Lorentz invariance, only even powers of energy and momenta occur in the expansion,
which are generically denoted asO(p2),O(p4), etc... For thermal expansions, there is

1 Invited talk to the workshop “Scalar Mesons: an InterestingPuzzle for QCD May 16 - 18, 2003, SUNY
Institute of Technology, Utica, New York



a breaking of Lorentz invariance due to the thermal bath and the expansion also has
terms ofO(T2),O(T4) and the powers of momenta should be separated in space and
time components. Of course, quarks are not massless, but since their mass is small
compared with typical hadronic scales, they are introducedas perturbations in the same
power counting, and give rise to the masses of theπ,K and η mesons, counted as
M = O(p2). The main advantage of ChPT is that it provides a Lagrangian that allows
for true Quantum Field Theory calculations, and a chiral power counting to organize
systematicallythe size of the corrections at low energies. In particular itis possible
to calculate meson loops, whose divergences are renormalized in a finite set of chiral
parameters at each order in the expansion. As a consequence,the parameters appearing
in the Lagrangian, after renormalization, depend on an arbitrary regularization scale
µ; however, the physical observables are scale independent,since theµ dependence is
canceled through the regularization of the loop integrals.In other words, all the relevant
physical scales are those given by parameters in the Lagrangian. As a consequence, at
each order we get finite results, and as long as we remain at lowenergies and only a few
orders are necessary, the theory is predictive in the sense that once the set of parameters
up to that order is fixed from some experiments, itshoulddescribe, to that order, any
other physical process involving mesons. For example, in the isospin limit, the leading
order Lagrangian is universal since it only depends onf0, which corresponds to the pion
decay constant in the chiral limit, and the leading order meson massesM0

π ,M0
K andM0

η .
The dependence on the QCD dynamics only comes through the oneloop SU(3) chiral
parametersLi , with i = 1...10, andH1,H2. In particular, meson-meson scattering to one
loop depends only onLi , with i = 1...8 [2].

Another salient feature of ChPT is its model independence and the fact that it has been
possible to obtain the behavior of the chiral parameters in the limit of a large number of
colorsNc [2, 3]. Also, these parameters contain information about other heavier meson
states that have not been included as degrees of freedom in ChPT [4].

As a matter of fact ChPT remains valid only at low energies, momenta or temperature.
At higher energies the number of independent terms allowed by symmetry increases
dramatically at each order, but also resonances appear rather soon in meson physics.
These states are associated to poles in the second Riemann sheet of the amplitudes and
such behavior cannot be accommodated by the series of ChPT. From the thermal point
of view, these more massive states are always present in the bath, and their contribution
becomes relevant if the temperature increases. Finally, a polynomial series (there are also
logarithmic terms, but are irrelevant for this discussion)will always violate the unitarity
constraint, more and more severely as the energy increases.

Thus, unitarization methods have emerged as a powerful toolto extend the ChPT
description with the aim of exploiting as much as possible the symmetry and dynamical
information contained in the ChPT Lagrangian [5, 6, 8, 9, 10]. The basic point is to
realize that the partial wave unitarity condition determines the imaginary part of the
inverse of the amplitude Im1/t. The dynamics enter the partial waves only through
Re1/t and the use of ChPT to calculate it has yielded remarkable results: In [10] we
have recently shown by unitarizing the one-loop ChPT amplitudes, that it was possible
to generate the resonant behavior of light meson resonances, respecting simultaneously
the ChPT expansion and using values of the chiral parameterscompatible with those
already present in the literature.



In what follows we will review all those results paying special attention to the light
scalar mesons. In section II we will briefly summarize the basics and the most recent
developments of ChPT unitarization: the complete one-loopmeson-meson scattering
unitarized within ChPT [10], the extension to two-loops inππ scattering and to channels
with vanishing leading order. In section III we will presentour recent determination [11]
of the pole positions of the generated resonances, which arerelated to their masses and
widths. In section IV we will introduce the thermal calculation of ππ to one loop, and
its unitarization that allows for a description of the thermal behavior of theρ and σ
resonances. Finally, in section V we will also present a study of the behavior of the
poles in the largeNc limit. This whole approach is of special interest for the meson
spectroscopy community, since these resonances are generated from the most general
Lagrangian consistent with QCD, and therefore without any bias toward its existence,
which is still subject of a strong debate. The fact that nine of these scalar poles seem to
appear together in chiral unitary approaches, suggests that they could form a multiplet.
Finally, even more controversial is their composition in terms of quarks and gluons,
which is properly defined only in terms of QCD. We thus hope that the well defined link
of our approach with QCD in the largeNc limit could help shedding some light on the
spectroscopic nature of light resonances.

II. UNITARIZED CHIRAL PERTURBATION THEORY FOR
MESON MESON SCATTERING

In order to compare with experiment it is customary to use partial wavestIJ of definite
isospinI and angular momentumJ. For simplicity we will omit theI ,J subindices in
what follows, so that the chiral expansion becomest ≃ t2 + t4 + ..., with t2 and t4 of
O(p2) andO(p4), respectively. The unitarity relation for the partial waves ti j , wherei, j
denote the different available states, is very simple: whentwo states, say "1" and “2”,
are accessible, it becomes

ImT = T ΣT∗ ⇒ ImT−1 = −Σ ⇒ T = (ReT−1− i Σ)−1 (1)

with T =

(

t11 t12
t12 t22

)

, Σ =

(

σ1 0
0 σ2

)

, (2)

whereσi = 2qi/
√

s and qi is the C.M. momentum of the statei. The generalization
to more than two accessible states is straightforward in this matrix notation. Let us
remark that, since ImT−1 is fixed by unitaritywe only need to know the real part of
the Inverse Amplitude. Note that Eq.(1) is non-linear and cannot be satisfied exactly
with a perturbative expansion like that of ChPT, although itholds perturbatively, i.e,

ImT2 = 0, ImT4 = T2ΣT∗
2 +O(p6). (3)

The use of the ChPT expansion ReT−1≃T−1
2 (1−(ReT4)T

−1
2 + ...) in eq.(1), guarantees

that we reobtain the ChPT low energy expansion and that we aretaking into account all
the information included in the chiral Lagrangians (both about Nc and about heavier
resonances). In practice, all the powers of 1/ f0 in the amplitudes are rewritten in terms



of physical constantsfπ or fK or fη . At leading order this difference is irrelevant, but
at one loop, we have three possible choices for each power off0 in the amplitudes, all
equivalent up toO(p6). It is however possible to substitute thef0’s by their expressions
in terms of fπ or fK or fη in such a way that they cancel theO(p6) and higher order
contributions in eq.(3), so that

ImT2 = 0, ImT4 = T2ΣT∗
2 . (4)

We will call these conditions “exact perturbative unitarity”. From eq.(4), we find

T ≃ T2(T2−T4)
−1T2, (5)

which is the coupled channel IAM that has been used to unitarize simultaneously all the
one-loop ChPT meson-meson scattering amplitudes [10]. It has the advantage that all the
pieces are analytic and it is thus straightforward to obtainanalytic continuations in the
complexsplane to look for poles associated to resonances. Although the justification of
the IAM we have presented is valid only for physical values ofs, where the unitarity con-
dition holds, the analytic continuation to the complexs plane has also been justified in
terms of dispersion relations in the elastic case [5, 6]. Oneof the main advantages of the
IAM is that it is extremely simple to implement, only involving algebraic manipulations
on the ChPT series. Alternative methods have been proposed and applied successfully to
the full ChPT series, for instance forππ scattering to one loop [7]. However, in this brief
review we concentrate on the IAM only due to its simplicity and remarkable success.

The IAM was applied first for partial waves in the elastic region, where a single
channel is enough to describe the data. This approach was able to generate theρ and
σ poles inππ scattering and that ofK∗ in πK → πK [6]. Only later it has been noticed
that theκ pole can also be obtained in the elastic single channel formalism. Concerning
coupled channels, since not all the meson-meson amplitudeswere known to one-loop,
only the leading order and the dominant s-channel loops wereconsidered in [8], thus
neglecting crossed and tadpole loop diagrams. Despite these approximations, it was
achieved a remarkable description of meson-meson scattering up to 1.2 GeV, generating
the poles associated to theρ, K∗, f0, a0, σ andκ. The price to pay was, first, that only
the leading order of the expansion was recovered at low energies. Second, apart from the
fact that loop divergences were regularized with a cutoff, thus introducing an spurious
parameter, they were not completely renormalized, since there were diagrams missing.
Therefore, it was not possible to compare theLi parameters, which are supposed to
encode the underlying QCD dynamics, with those already present in the literature.

As already explained the whole approach is rather interesting to study the existence
and properties of light scalar resonances and it is then veryrelevant to check that
these poles and their features are not just artifacts of the approximations, estimate the
uncertainties in their parameters, and check their compatibility with other experimental
information regarding ChPT. All in all, it is also hard to study within this approximation
the largeNc behavior that should be inherited by ChPT from QCD.

The above reasons triggered the interest in calculating andunitarizing the remaining
meson-meson amplitudes within one-loop ChPT. In [9] theKK̄ → KK̄ calculation was
completed, and together with previous works [12], they allowed for the unitarization of
theππ, KK̄ coupled system. There was a good agreement of the IAM description with



the existingLi , reproducing again the resonances in that system. Much morerecently, we
have completed the one-loop meson-meson scattering calculation [10], including three
new amplitudes:Kη → Kη, ηη → ηη andKπ → Kη, but recalculating the other five
amplitudes unifying the notation, ensuring “ exact perturbative unitarity”, Eq.(4), and
also correcting some errors in the literature. Next, we haveunitarized these amplitudes
with the coupled channel IAM thus allowing for a direct comparison with the standard
low-energy chiral parameters, in very good agreement with previous determinations. In
that work we presented the full calculation of all the one-loop amplitudes in dimensional
regularization, and a simultaneous description of the low energy and the resonance
regions. In addition we estimated the uncertainties from the data, which are rather large
due to the intrinsic difficulties in the meson-meson experiments.

Obviously, the first check was to use the standard ChPT parameters, that we have
given in Table 1 to see if the resonant features were still there, at least qualitatively, and
they are. Thus, they are not just an artifact of the approximations and of the values chosen
for the parameters. As already commented, this comparison can only be performed now
since we have all the amplitudes renormalized in the standard MS−1 scheme.

TABLE 1. Different sets of chiral parameters (×103). The first column comes from recent analysis of
Kl4 decays [13] (L4 andL6 are set to zero). In the ChPT columnL1,L2,L3 come from [14] and the rest
from [2]. The three last ones correspond to the values from the IAM including the uncertainty due to
different systematic error used on different fits. Sets II and III are obtained using amplitudes expressed
in terms of fπ , fK and fη , whereas the amplitudes in set I are expressed in terms offπ only.

Parameter Kl4 decays ChPT IAM I IAM II IAM III

Lr
1(Mρ) 0.46 0.4±0.3 0.56±0.10 0.59±0.08 0.60±0.09

Lr
2(Mρ) 1.49 1.35±0.3 1.21±0.10 1.18±0.10 1.22±0.08
L3 −3.18 −3.5±1.1 −2.79±0.14 −2.93±0.10 −3.02±0.06

Lr
4(Mρ) 0 (fixed) −0.3±0.5 −0.36±0.17 0.2±0.004 0 (fixed)

Lr
5(Mρ) 1.46 1.4±0.5 1.4±0.5 1.8±0.08 1.9±0.03

Lr
6(Mρ) 0 (fixed) −0.2±0.3 0.07±0.08 0±0.5 −0.07±0.20
L7 −0.49 −0.4±0.2 −0.44±0.15 −0.12±0.16 −0.25±0.18

Lr
8(Mρ) 1.00 0.9±0.3 0.78±0.18 0.78±0.7 0.84±0.23

After checking that we made an IAM fit. Systematic errors in the data are the largest
contribution to the error bands of the results as well as in the fit parameters in Table
1. These uncertainties are calculated from a MonteCarlo Gaussian sampling [10] (1000
points) of theLi sets within their error bars, assuming they are uncorrelated. Note that
in Table 1 we list three sets of parameters for the IAM fit, fairly compatible among
them and with those of standard ChPT. As explained before they correspond to different
choices when reexpressing thef0 parameter of the Lagrangian in terms of physical decay
constants. The IAM I fit was obtained using justfπ , which is simpler but unnatural when
dealing with kaons or etas. The plots and uncertainties of this fit are not shown here
because they can be found in [10]. There, it could be observedthat the f0(980) region
was not very well described yielding a too small width for theresonance.

That is the reason why Fig.1 shows the results of a second fit (IAM II) using ampli-
tudes written in terms offK and fη when dealing with processes involving kaons or etas
[11] . Let us remark that the data in thef0(980) region is well within the uncertainties.
In particular, we have rewritten ourO(p2) amplitudes replacing one factor of 1/ fπ by



1/ fK for each two kaons present between the initial or final state,or by 1/ fη for each
two etas appearing between the initial and final states. In the special caseKη → Kπ we
have changed 1/ f 2

π by 1/( fK fη). The difference between the two ways of writing the
leading order amplitudes isO(p4), and is therefore included in the next to leading order
contribution using the relations between the decay constants andf0 provided in [2, 10].
The 1/ f0 factors in each loop function atO(p4) (generically, theJ(s) given in the ap-
pendix of [10]) are changed to satisfy “exact perturbative unitarity”, eqs.(4). From the
point of view of the ChPT counting, the amplitudes are the same up toO(p4), but nu-
merically they are slightly different. From Table 1, we see that the only sizable change is
in the parameters related to the decay constants, i.e.,L4 andL5. For illustration we give
in Table 1 a third fit, IAM III, obtained as IAM II but fixingL4 = 0 as in the most recent
Kl4 O(p4) determinations. This is the value estimated from the largeNc limit, and since
our fits are not very sensitive to the variations inL4 thus we avoid that it could get an
unnatural value just from an insignificant improvement of the χ2.

TABLE 2. Scattering lengthsaI J and slope parametersbI J for different meson-meson scat-
tering channels. For experimental references see [10]. Letus remark that our one-loop IAM
results at threshold are very similar to those of two-loop ChPT.

Threshold Experiment IAM fit I ChPTO(p4) ChPTO(p6)
parameter [10] [6, 12] [15]

a00 0.26±0.05 0.231+0.003
−0.006 0.20 0.219±0.005

b00 0.25±0.03 0.30± 0.01 0.26 0.279±0.011
a20 -0.028±0.012 -0.0411+0.0009

−0.001 -0.042 -0.042±0.01
b20 -0.082±0.008 -0.074±0.001 -0.070 -0.0756±0.0021
a11 0.038±0.002 0.0377±0.0007 0.037 0.0378±0.0021

a1/20 0.13...0.24 0.11+0.06
−0.09 0.17

a3/20 -0.13...-0.05 -0.049+0.002
−0.003 -0.5

a1/21 0.017...0.018 0.016±0.002 0.014
a10 0.15+0.07

−0.11 0.0072

To conclude, we show in Table 2 the values of the scattering lengths and slopes, which
confirms that we have a simultaneous description of the low energy and resonant regions
of meson-meson scattering. As we have seen in Table 1, all this is achieved with chiral
parameters compatible with those from standard ChPT. Hence, since the expressions are
fully renormalized, we are not including any dependence on any spurious parameter.

Another result of relevance in the context of unitarized ChPT has been the consider-
ation of higher order effects. There is indeed a simple way toextend the IAM to higher
orders, already proposed in [6], and first applied to two loopππ scattering and the pion
form factor [17], also obtaining remarkable results. This study has been very recently ex-
tended in [18] with a careful analysis of the uncertainties.This amplitude depends on the
O(p4) andO(p6) parameters through six combinations only, calledbi . Despite the poor
knowledge about these two-loop parameters, listed in Table3, in [18] a good description
of the data is found, including theσ andρ regions, with parameters, again given in Table
3, compatible within errors with those already in the literature. The error analysis carried
out in [18] is also of relevance because unitarization methods in general, and the IAM
in particular, are mainly criticized for their violation ofcrossing symmetry. However, in
that work it was shown that the IAM crossing violations, “quantified in terms of Roskies



FIGURE 1. IAM fit to meson-meson scattering data, set II in Table 1. The uncertainties cover the
estimated systematic errors. The statistical errors from the fit would be much smaller. The data comes
from [16]

sum rules” , andtaking into account the present experimental uncertainties are “ not
very large in percentage terms”.

We finish this section about the unitarized description of meson-meson scattering
reviewing the recent generalization of the IAM [20] to channels where the leading order,
T2, vanishes. For instance, that is the case for all channels with J > 1, so that eq.(5)
cannot be applied. Note also that eq.(3) implies that the perturbative imaginary part
vanishes up toO(p8). However, despite these difficulties, and using again a dispersive
approach, it has been possible to generalize the IAM and unitarize the(2,0) channel,



using:

t IAM =
t4

1− t6/t4− t8/t4+ t2
6/t4

4

. (6)

Up to the moment not even theO(p8) SU(2) pion ChPT Lagrangian is known. Hence, we
have used the two-loopSU(2) calculation and we have estimated theO(p8) contribution
to ππ scattering in the chiral limit, since, as it is the only term surviving in themπ → 0
limit, we expect it to dominate at the energies

√
s >> mπ where the firstf2(1250)

resonance appears. In this way we are only introducing an additional parameter, whose
size, on dimensional grounds, should bec≃ (1/4π f0)8 ≃ 3×10−25MeV−8

TABLE 3. Estimates of theO(p6) parameters are given in row two. In the third row we give
values that, with the IAM up toO(p6), fit very well ππ scattering in the(I ,J) = (0,0),(1,1) and
(2,0) channels. Set I with eq.(8) describes remarkably well theI = 0,J = 2 data, but only agrees in
the order of magnitude with previous values. Set II is closerto [18], but yields a narrower resonance
(see Fig.2.a), due to other coupled states not present in ourapproach.

102b1 102b2 103b3 103b4 104b5 104b6

O(p6) ChPT [19] -9.2 ... -8.6 8.0 ... 8.9 -4.3 ... -2.6 4.8 ... 7.1 -0.4 ... 2.3 0.7 ... 1.5
O(p6) IAM [18] −7.7±1.3 7.3±0.7 −1.8±1.6 4.8±0.1 1.3±0.2 0.2±0.2

set I -3 4 3.8 7 8.7 1.6
set II -6.6 6.4 -3.6 6.7 4.0 1.5

Thus, in Fig.2.a (dashed line) we compare the(I ,J) = (0,2) phase shift data with
the results of applying eq.(6) to the ChPT amplitude just described, using the set I of
parameters given in Table 3. By fitting, it is possible to force a remarkable description
of the experiment, including thef2(1250) resonance. However that is not realistic since
the f2(1250) has an 85% decay toππ and should not be described withππ scattering
only. For that reason the set I, although with the correct order of magnitude, does not
compare well with the values given in the literature, listedin column two and three of
Table 3. For illustrative purposes, we also show, as a dottedline, the result using set II
in Table 3, which is obtained if we allow for a 15% narrower resonance. That is not a
fit, but the parameters are much closer to those given in the literature. Finally, we want
to remark that for any set of parameters that we have found yielding results like those in
Fig.2.a, the values needed for thec constant lie in thec≃ 10−25 to 10−24 MeV−8 range,
consistently with our expectations.

We have therefore checked that the IAM produces good resultsas soon as we provide
it with reasonable inputs, also in channels with higher angular momenta.

IV. POLES ASSOCIATED TO RESONANCES

In this section we will investigate whether the unitarized complete meson-meson ampli-
tudes obtain the same poles as obtained with previous approaches. This is of relevance
since, for instance, both theσ andκ scalar states are rather controversial even though
their poles have been found by several other groups using different techniques [21, 22].
The debate has become increasingly interesting when recentexperiments seem to require
such poles [23] to describe completely different processes.
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The most interesting features of the chiral unitary approaches is that the poles thus
generated are not included in the original ChPT Lagrangian and hence appear without
any theoretical prejudice toward their existence, classification in multiplets, or nature.
Of particular interest for this workshop is the simultaneous generation of the scalar
resonancesσ ,κ,a0(980) and f0(980) in a chiral context, so that it seems very natural to
interpret them as a nonet. Nevertheless, we should distinguish two different resonance
generation mechanisms: already in [24] it was noted that to generate the scalars just the
leading order and a cutoff was enough, whereas the vector mesons require the chiral
parameters, particularlyL1,L2 andL3 [8]. Of course, the chiral parameters are always
present , but it seems that their values arenot related to the hypothesized light scalar
nonet. Since the vectors are fairly well establishedqq̄ states, this difference suggests that
scalars like theσ , κ, etc may have a different nature. With the amplitudes described in
the previous sections we expect to reach a more conclusive statement, since they respect
the chiral expansion, and, being completely renormalized,have no spurious dependence
on any cutoff or dimensional regularization scale. In addition, the fact that we use
chiral parameters compatible with previous determinations ensures that our description
is consistent with other low energy processes.

Thus, in Table 4 we show the pole position for the resonances,including uncertainties,
for the different IAM parameter sets given in Table 1. For comparison we provide in the
first row those obtained in the “approximated” IAM [8], whereas we list in Table 5 the
poles listed presently in the PDG [25]. These results deserve some comments:

• The vectorsρ(770) andK∗(892), are very stable within chiral unitary approaches.
Their positions are almost the same irrespective of whetherone uses the single
channel [5, 6], the approximated coupled channel [8] or the complete IAM [10].

• The σ andκ pole positions are robust within these approaches. No matter what
version of the IAM is used. Note the small uncertainties in some of their parameters,
in very good agreement with recent experiments [23].

• The f0(980) has a sizable decay to two different channels and therefore it can only
be studied in a coupled channel formalism. In practice, boththe approximated and



complete IAM generate a pole associated to this state at approximately the same
mass. However, as already remarked the unitarized ChPT amplitudes using justfπ
[10], yield a too narrow width. The good news is that it can be well accommodated
using fπ , fK and fη [11].

• Thea0(980) also requires a coupled channel formalism, and the data on this region
is well described either by the approximated or the completeIAM. However, the
presence of a pole is strongly dependent on whether we write the ChPT amplitudes
only in terms of fπ , or using the threefπ , fK and fη . In the first case, as already
pointed out in [26], the use of the “approximated” IAM with just fπ , favored
a “cusp” interpretation of thea0(980) enhancement inπη production. With the
complete IAM we do not find a pole near thea0(980) enhancement and indeed the
πη phase-shift does not crossπ/2 and it neither has a fast phase movement. In
contrast, when expressingf0 in terms of fπ , fK and fη as described in the previous
section, we do find a pole and its associated fast phase movement throughπ/2,
either with the approximated or complete IAM. Thus, this pole is rather unstable
as can be noticed from its large uncertainties in Table 4. We are somewhat more
favorable toward the second interpretation because it is also able to describe better
the f0(980) width. But the two possibilities remain open.

TABLE 4. Pole positions (with errors) in meson-meson scattering. When close to the real axis
the mass and width of the associated resonance is

√
spole≃ M− iΓ/2.

√
spole(MeV) ρ K∗ σ f0 a0 κ

IAM Approx
(no errors) 759-i 71 892-i 21 442-i 227 994-i 14 1055-i 21 770-i 250

IAM I 760-i 82 886-i 21 443-i 217 988-i 4 cusp? 750-i 226
(errors) ± 52± i 25 ± 50± i 8 ± 17± i 12 ± 19± i 3 ±18±i 11

IAM II 754-i 74 889-i 24 440-i 212 973-i 11 1117-i 12 753-i 235
(errors) ± 18± i 10 ± 13± i 4 ± 8± i 15 +39

−127
+i 189
−i 11

+24
−320

+i 43
−i 12 ± 52± i 33

IAM III 748-i68 889-i23 440-i216 972-i8 1091-i52 754-i230
(errors) ± 31± i 29 ± 22± i 8 ± 7± i 18 +21

−56± i 7 +19
−45

+i 21
−i 40 ± 22± i 27

TABLE 5. Mass and widths or pole positions of the light resonances quoted in the PDG [25]. Recall
that for narrow resonances

√
spole≃ M− iΓ/2

PDG2002 ρ(770) K∗(892)± σ or f0(600) f0(980) a0(980) κ
Mass (MeV) 771±0.7 891.66±0.26 (400-1200)-i (300-500) 980±10 980±10 not
Width (MeV) 149±0.9 50.8±0.9 (we list the pole) 40-100 50-100 listed

Let us remark that thef0(980) and a0(980) resonances are very close to theKK̄
threshold, which can induce a considerable distortion in the resonance shape, whose
relation to the pole position could be far from that expectedfor narrow resonances.
In addition these states have a large mass and it is likely that their nature should be
understood from a mixture with heavier states.



IV. THERMAL EVOLUTION OF THE σ AND ρ MESONS.

In a recent paper we have calculated the temperature one-loop corrections to theππ
scattering amplitude [27]. These corrections are finite although they appear through the
pion loops and consequently, do not include any additional parameter in the expression
of the amplitude. A discussion on the rigorous meaning of such an amplitude in terms of
Thermal Field Theory, as well as the explicit expression of the thermal corrections can
be found in [27]. For our purposes here, it is enough to say that the thermal amplitude can
be projected into partial waves that satisfy a generalized perturbative unitary relation:

Im t2(s) = 0, Im t4(s;β ) = σT(S0) |t2(s)|2 , S0 > 2mπ ,β = 1/T (7)

where

σT(E) = σ(E2)

[

1+
2

exp(β |E|/2)−1

]

(8)

is the thermal two-particle phase space in the c.o.m. frame.It is nothing but the phase
spaceσ(s) defined above but corrected by the presence of two-pion states following a
Bose-Einstein distribution.

In the dilute gas approximation it is natural to assume that this unitarity relation should
be satisfied to all order, which thus leads to a straightforward thermal generalization of
the IAM [28]. In the elastic approximation it is again the IAMformula, but simply using
the thermal amplitudes,i.e., replacingt4(s) by t4(s,β ), calculated in [27]. Obviously,
we recover the zero temperature unitarized amplitude when we makeT → 0. We recall
again that the temperature dependence appears at this orderthrough finite contributions
to the loop functions, but not in the chiral parameters. Thus, once we have parameters
that generate theσ andρ at T = 0, we can follow their thermal evolution by changing
T. Nevertheless, although the unitarization allows to extend the ChPT applicability
range, the dilute approximation implies that we can only look at temperatures up to
T ≃ 200MeV. Thus, in Fig2.b [28] we can see the thermal evolutionof the σ and
ρ poles. Note that the width of both resonances is growing withthe temperature. For
the ρ this is in good agreement with observations of the dilepton spectra produced in
Heavy Ion Collisions. For theσ it could be interpreted as a signal of chiral symmetry
restoration.

V. UNITARIZED CHPT AND THE LARGE NC

QCD is not perturbative below 1 or 2 GeV. However, to understand many qualitative
features of QCD and also as a guiding line to organize calculations we can use the large
Nc expansion [29], even though the number of colors is actuallyNc = 3. The advantage
of the largeNc limit to study resonances is thatqq̄ states become bound states asNc →∞.
More quantitatively, their mass should remain almost constantM ≃ O(1), whereas their
decay width to two mesons should behave asΓ ≃ O(1/Nc). A similar behavior holds
for glueballs decaying to two mesons. In contrast, some multiquark states asqqq̄q̄ are
expected to become unbound, i.e., to be part of the meson-meson continuum [30].



The parameters in the ChPT Lagrangian inherit the largeNc dynamics of QCD. In
particular, the meson masses and decay constants behave asfπ , fK, fη = O(

√
Nc) and

Mπ ,MK,Mη = O(1). In Table 6, we list the largeNc behavior of the chiral parameters
[3], which is established in a model independent way. Note however that there is an
uncertainty on the renormalization scale that correspondsto Nc = 3, although generically
it should lie in theµ ≃ 0.5−1GeV range.

TABLE 6. Different sets of chiral parameters (×103). For illustration, the ChPT
and IAM I columns are repeated from Table 1. Other IAM sets give similar results.
The last column shows the leading largeNc behavior, calculated from QCD.

Parameter
×10−3

ChPT
µ = 770MeV

IAM I
µ = 770MeV

Large Nc
behavior

2L1−L2 −0.6±0.2 0.56±0.10 O(1)
L2 1.35±0.3 1.21±0.10 O(Nc)
L3 −3.5±1.1 −2.79±0.14 O(Nc)
L4 −0.3±0.5 −0.36±0.17 O(1)
L5 1.4±0.5 1.4±0.5 O(Nc)
L6 −0.2±0.3 0.07±0.08 O(1)
L7 −0.4±0.2 −0.44±0.15 O(1)
L8 0.9±0.3 0.78±0.18 O(Nc)

Since we have built our unitarized amplitudes using the completely renormalized
ChPT expressions, we can now study the largeNc behavior of the generated resonances
and get a hint on their nature. We will simply scale the ChPT parameters atµ = 770MeV
in the IAM amplitudes fitted to the data, which therefore correspond toNc = 3. As
already commented, fornarrow resonances the pole position

√
spole≃ M− iΓ/2 M and

Γ being the mass and width of the resonance. From the spectroscopic point of view,
a resonance could be a mixture of several states, but comparing its largeNc behavior
we could, in principle, elucidate the nature of the dominantcomponent. Indeed, already
in [22] it was shown, using unitarized meson-meson scattering from a chiral resonance
Lagrangian and only the s-loops unitarized with an N/D method, that the lightest scalar
resonances did not behave as one would expect for ¯qq states. We will next show the
results of our, still preliminary, study with the unitarized ChPT renormalized amplitudes.
Of course, if most of the states of the mixture disappears in the largeNc limit, a very
small portion of aqq̄ could become more patent if we increaseNc sufficiently. To avoid
these effects we will present results forNc up to about 20.

Thus, Fig.3 shows the largeNc behavior of the poles in several channels of meson
meson scattering. Each dot corresponds to a different valueof Nc. First of all, we want
to be sure that the method works for well establishedqq̄ states and so we turn to vector
resonances. Hence, on the top left, we represent the movement of the ρ(770) pole the
I ,J = 1,1 channel ofππ scattering. On the top right we display theK∗(982) movement
in the I ,J = 1,1/2 channel ofπK scattering. Remarkably, the IAM reproduces the
expectedqq̄ behavior since the mass of both vectors tends to a constant and their width
decreases as 1/Nc. If we did not know it already, this would be a strong hint thatboth
states are indeedqq̄ states. Let us remark that ChPT is built in terms of mesons, not of
quarks, but the QCD largeNc dynamics is correctly inherited in theLi values.

Let us then turn to the controversial scalar resonances, subject of this workshop.. On
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FIGURE 3. LargeNc dependence of the pole positions in the lower half of the second Riemann
√

s
sheet of the meson meson scattering amplitude, obtained from the unitarized one-loop Chiral Perturbation
Theory calculation. For each value ofNc the pole is represented by a dot, in different meson-meson
scattering channel. Note that theσ andκ behavior is opposite to that of well know vector states as theρ
andK∗.

the bottom left of Fig.3 we represent the movement of the polecommonly associated
to theσ and, on the right, that associated with theκ. Note that we keep the notation√

spole ≃ M − iΓ/2, although these poles are so far from the real axis (so wide)that
the interpretation in terms of mass and width is no longer straightforward. However,
it is very clear that their behavior is completely at variance with that expected forqq̄
states. We can see that in both cases, eitherM or ΓgrowasNc is increased. This behavior
does not correspond to aqq̄ or glueball nature. Other interpretations should be invoked,
although we want to remark that the one that is becoming more widely accepted, namely,
the four-quark state interpretation [30] (and also the two-meson molecules), is able
to accommodate the fact that these states become the meson-meson continuum asNc
grows.

CONCLUSION AND OUTLOOK

In this talk I have reviewed the most recent developments in the unitarization of the Chi-
ral Perturbation Theory amplitudes, paying particular attention to the Inverse Amplitude
Method. The outcome of this approach is of interest for mesonspectroscopy since it can
generate resonances, without including them in the ChPT Lagrangian, and respecting
simultaneously chiral symmetry and unitarity.



I have reviewed how unitarized meson-meson scattering ChPTamplitudes provide
a simultaneous description of the low energy and resonant regions below 1.2 GeV,
generating the poles associated to theρ,K∗,σ ,κ,a0 and f0 states. This description
respects the low energy chiral expansion up to next to leading order and the unitarized
fit leads to parameters compatible with those of standard ChPT. Remarkably, it yields
scattering lengths compatible with higher order calculations and the most recent low
energy data. The amplitudes are completely renormalized and scale independent, thus
avoiding any spurious dependence from artificial scales. Wehave also seen that some
of the drawbacks, as crossing symmetry, seem to be well undercontrol, given the
present experimental uncertainties. The IAM is very simpleto implement, and it can
be systematically extended to higher orders. The few unitarized calculation to two loops
indeed provide good descriptions ofππ scattering again with compatible parameters. It
has also been recently extended to channels with vanishing leading order providing a
satisfactory description of thef2(1250) resonance. The description in terms of poles is
robust, with the possible exception of thea0 (that could alternatively be interpreted as a
cusp), and these states seem to be an unavoidable requirement of chiral symmetryand
unitarity.

We have also shown how it can be generalized to thermal amplitudes, which allowed
us to study the temperature evolution of theσ andρ resonances.

Concerning the nature of these states, we have presented a preliminary study of
the largeNc behavior of the poles. We have seen that the vectors generated with the
IAM follow remarkably well the expectedqq̄ behavior. In contrast, theσ andκ states,
behave in a completely different way, ruling out aqq̄ or glueball interpretation. Aqqq̄q̄
interpretation seems at least qualitatively adequate largeNc evolution.

The largeNc study is still preliminary and we are finishing the analysis of the f0 and
a0 behavior, which have larger uncertainties and a complicated interpretation due to the
proximity of thresholds and possible mixings with more massive multiplets2. We are
also estimating the errors due to the uncertainty in the renormalization scale where the
largeNc scaling is imposed. Finally, we are presently looking directly at the largeNc to
avoid using poles whose interpretation for wide resonancesis delicate. Work is still in
progress in all these directions.
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