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Abstract

We prove that the nonlocal gauge invariant mass dimension two operatorFµν(D2)−1Fµν can be
consistently added to the Gribov-Zwanziger action, which implements the restriction of the path
integral’s domain of integration to the first Gribov region when the Landau gauge is considered.
We identify a local polynomial action and prove the renormalizability to all orders of perturbation
theory by employing the algebraic renormalization formalism. Furthermore, we also pay attention
to the breaking of the BRST invariance, and to the consequences that this has for the Slavnov-
Taylor identity.
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1 Introduction

It is a well known fact that SU(N) Yang-Mills gauge theories,described by the Euclidean action

SYM =
1
4

Z

d4xFa
µνFa

µν , (1.1)

with Aµ the gauge potential and

Fa
µν = ∂µAa

ν −∂νAa
µ+g fabcAb

µAc
ν , (1.2)

the field strength, wherebyDab
µ is the covariant derivative in the adjoint representation,given by

Dab
µ = ∂µδab−g fabcAc

µ , (1.3)

are asymptotically free at very high energies [1, 2, 3, 4]. The coupling constant is sufficiently small
to allow for a perturbative description, with asymptotic degrees of freedom given by massless gauge
bosons. We shall not consider fermion matter in this paper, however the same conclusion holds for
quantum chromodynamics (QCD), written in terms of gluons and quarks. When we pass to lower
energies, the coupling constantg2 begins to grow, and perturbation theory starts to loose its valid-
ity. At still lower energies, the situation becomes dramatically different, as perturbation theory now
completely fails, and confinement sets in, meaning that the elementary field excitations are no longer
physical observables, but become confined into colorless states. The hadrons constitute the physical
states of QCD.

A satisfactory understanding of the behaviour of Yang-Mills theories in the low energy regime is yet
unavailable. Due to the large coupling constant, nonperturbative effects have to be taken into account.
The introduction of condensates, which are the (integrated) vacuum expectation value of certain local
operators, allows one to parametrize certain nonperturbative effects arising from the infrared sector
of e.g. the theory described by (1.1). Condensates give riseto power corrections, a phenomenon that
can be handled using the Operator Product Expansion. Clearly, these power corrections correspond to
nonperturbative information in addition to the perturbatively calculable results. If one wants to con-
sider the possible effects of condensates on physical quantities in a gauge theory, only gauge invariant
operators are relevant. The most famous example is the dimension 4 gluon condensate

〈
αsF2

µν
〉
, giving

rise to 1
q4 power corrections in QCD. The SVZ (Shifman-Vainshtein-Zakharov) sum rules [5] can then

be used to relate the condensates to observables, and hence one may obtain certain phenomenological
estimates for e.g.

〈
αsF2

µν
〉
. This approach allows for a study of at least some aspects of QCD in an

energy regime in between the confined and perturbative zone.One can still use perturbation theory
using the quarks and gluons as effective degrees of freedom due to the lack of explicit knowledge of
the correct physical degrees of freedom, but the results getadapted by nonperturbatively generated
condensates.

In this paper, we shall introduce an action that can serve as astarting point for investigating some
nonperturbative effects in gauge theories. These nonperturbative effects arise from 2 premises: the
Gribov problem in fixing the gauge freedom, and the possibility of a dynamical mass generation.

First of all, we shall be concerned about fixing the gauge. If we want to perform any kind of calcu-
lations, we must reduce the enormous gauge freedom of (1.1),encoded in the local gauge symmetry
generated by

δωAa
µ = −Dab

µ ωb , with ωb arbitrary, (1.4)
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to a global one by a suitable gauge fixing condition, sayF (Aµ) = 0. In principle, by imposing a
gauge condition one should select a single representativeA∗

µ from the gauge orbitAU
µ , whereU is a

genericSU(N) gauge transformation. Unfortunately, it was shown that is impossible to uniquely fix
the gauge, a problem related to the complicated topology of the space of gauge orbits [6].

Seminal work on the existence of gauge copies was done 3 decades ago by Gribov in [7]. This paper is
not the place to give a complete overview of the ambiguities arising when a gauge fixing is performed,
we therefore kindly refer to Gribov’s original paper or to the available literature, such as [8], which
contains many examples and references. In particular, in [7], it was pointed out that, in the Landau
and Coulomb gauges, the existence of zero modes in the Faddeev-Popov operator gives rise to gauge
copies. Using the Landau gauge,

∂µAµ = 0 , (1.5)

one finds that a gauge equivalent configurationA′
µ, connected toAµ via (1.4), also obeys∂µA′

µ = 0,
when

M abωb = 0 , (1.6)

whereM ab denotes the Faddeev-Popov operator

M ab = −∂µ(∂µδab−g fabcAc
µ) . (1.7)

The existence of the Gribov copies implies that the domain ofintegration in the path integral has to be
further restricted in a suitable way. Following Gribov, it seems logical to restrict to the regionΩ with
corresponding boundary∂Ω, which is the first Gribov horizon, where the first vanishing eigenvalue
of the Faddeev-Popov operator (1.7) appears [7]. Within theregionΩ the Faddeev-Popov operator
is positive definite, i.e.M ab > 0. Quite obviously, this restriction to the first Gribov region can be
motivated only if every gauge orbit passes through it. It wasshown by Gribov that this is certainly the
case for gauge potentials “sufficiently close” to the boundary ∂Ω [7], whereas the proof for general
configurations was presented in [9]. Nevertheless, we should also mention that the Gribov region
itself is also not free from gauge copies [9, 10, 11, 12]. To avoid the presence of these additional
copies, a further restriction to a smaller regionΛ, known as the fundamental modular region, should
be implemented. Nevertheless, the implementation of the restriction of the domain of integration toΛ
proves to be a quite difficult task which, to our knowledge, has not yet been accomplished. Recently,
it has been argued that the additional copies existing inside Ω might be irrelevant when computing
expectation values, meaning that averages calculated overΛ or Ω should give the same value [13].

Using a semiclassical argument [7], Gribov implemented therestriction to the regionΩ. Essentially,
his argument relied on the fact that the (Fourier transform of the) inverse of the Faddeev-Popov oper-
ator, which is nothing else than the ghost propagator, encounters no poles elsewhere than at the origin
k2 = 0. This amounts to say that the operatorM ab itself does not vanish, except at the horizon. By
using this “no pole condition”, we are assured that the considered gauge potentials remain inside the
first Gribov region1, and as a such at least the set of copies obtained via (1.6) is already excluded from
the game.

This restriction has many important consequences for the infrared behaviour of the propagators. The
gluon propagator turns out to be suppressed in the infrared,while the ghost propagator gets enhanced
[7]. Moreover, it can also be shown that the gluon propagatorexhibits a violation of positivity in
its spectral density representation, a sign that the gluon cannot be a physical observable anymore,

1Albeit that this restriction cannot be implemented exactly, but only in an order by order expansive way.
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see [14, 15, 16, 17] and references therein. It is interesting to mention that lattice simulations of the
Landau gauge propagators have revealed evidence for this suppression, respectively enhancement,
see e.g. [18, 19, 20, 21, 22, 23, 24, 25, 26]. Another consequence of the Gribov restriction is the
“infrared freezing” of the strong coupling constant, i.e.αs(p2) tends to a constant asp2 goes to zero,
see [14, 27] and references therein. Again, this behaviour is in qualitative agreement with lattice data
[22, 23, 24] as well as with the results obtained from the analysis of the Schwinger-Dyson equations
[28, 29, 30, 31, 32, 33, 34, 35, 36].

It might be clear that the restriction to the Gribov regionΩ could be of great relevance for a better
understanding of the infrared region of gauge theories. This belief is further supported by the Kugo-
Ojima confinement criterion [37] which, in the case of the Landau gauge, turns out to rely on a ghost
propagator diverging stronger than1p2 [38]. This feature is also present when the restriction to the

Gribov region is implemented, yielding in fact a ghost propagator developing a1
p4 singularity.

An important progress on the restriction to the Gribov region Ω was accomplished by Zwanziger in the
papers [39, 40]. The restriction toΩ was implemented through the introduction of a nonlocal horizon
function appearing in the Boltzmann weight defining the Euclidean Yang-Mills measure. According
to [39, 40], the starting Yang-Mills measure in the Landau gauge is given by

dµγ = DADcDcDbe−(S+γ4H) , (1.8)

where the starting action is
S= SYM +Sgf , (1.9)

with Sgf the gauge-fixing action given by

Sgf =
Z

d4x
(

ba∂µAa
µ+ca ∂µDab

µ cb
)

, (1.10)

where the auxiliary fieldba is a Lagrange multiplier enforcing the Landau gauge (1.5),(ca,ca) are the
Faddeev-Popov ghost fields, and

H =

Z

d4xh(x) = g2
Z

d4x fabcAb
µ

(
M −1)ad

f decAe
µ , (1.11)

is the so-called horizon function, which implements the restriction to the Gribov regionΩ. We recog-
nize thatH is nonlocal. The massive Gribov parameterγ is fixed by the horizon condition

〈h(x)〉 = 4
(
N2−1

)
, (1.12)

where the expectation value〈h(x)〉 has to be evaluated with the measure (1.8). To the first order,the
horizon condition (1.12) becomes, ind dimensions,

1 =
N(d−1)

4
g2

Z

ddq

(2π)d

1
q4 +2Ng2γ4 . (1.13)

This equation coincides with the original gap equation derived by Gribov for the parameterγ [7].

We shall rely on the path integral formalism, so that we can localize the horizon fuction (1.11) by

means of a pair of complex bosonic vector fields [40],(φab
µ ,φab

µ ), according to

e−SH =

Z

DφDφ (detM ) f exp

{
−

Z

d4x
[
φac

µ M
abφbc

µ + γ2g fabc(φac
µ −φac

µ )Ab
µ

]}
, (1.14)
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where the determinant,(detM ) f , takes into account the Jacobian arising from the integration over

(φab
µ ,φab

µ ), and

f = D(N2−1) = 4(N2−1) , (1.15)

with D = 4 the dimension of the Euclidean space time, andN the dimension of the gauge group.
This determinant can also be localized by means of suitable anticommuting complex vector fields
(ωab

µ ,ωab
µ ), namely

(detM ) f =

Z

DωDω exp

[
−

Z

d4x
(
−ωacM abωbc

µ

)]
. (1.16)

Henceforth, the nonlocal actionSH is transformed into a local one given by

SLocal
H = Sφω +Sγ , (1.17)

where
Sφω =

Z

d4x
(

φac
µ M

abφbc
µ −ωac

µ M
abωbc

µ

)
, (1.18)

and
Sγ = γ2

Z

d4xg fabc(φac
µ −φac

µ )Ab
µ . (1.19)

As it was shown in [14, 39, 40, 41], the resulting local actionturns out to be renormalizable to all
orders of perturbation theory. This is a point of great importance, as it allows for a consistent and
order by order improvable framework to calculate relevant quantities when the restriction to the Gribov
regionΩ is taken into account.

A second point that motivated this paper is the issue of the dynamical mass generation in gauge
theories, and related to it that of the1q2 power corrections. A few years ago, in a series of papers,

Zakharov et al. questioned the common wisdom that1
q2 power corrections cannot enter gauge invariant

observables, as local gauge invariant operators of mass dimension two do not exist. This is a reflection
of the fact that one cannot add a renormalizable mass operator for the gauge fields to the Yang-Mills
action, at least not when the Higgs mechanism and associatedsymmetry breaking are not considered.
However, by using QCD sum rules, it was advocated in [42] thatan effective gluon mass could account
for the 1

q2 corrections, leading to an acceptable phenomenology. The underlying condensate was
proposed to be the gauge invariant quantity [43, 44]

〈
A2

min

〉
≡ min

U∈SU(N)

1
VT

Z

d4x
〈(

AU
µ

)2〉
, (1.20)

which originates from a highly nonlocal operator, since [45, and references therein]

A2
min =

1
2

Z

d4x

[
Aa

µ

(
δµν −

∂µ∂ν

∂2

)
Aa

ν −g fabc
(

∂ν

∂2 ∂Aa
)(

1
∂2 ∂Ab

)
Ac

ν

]
+O(A4) ,

and therefore it falls beyond the OPE applicability. The interest was especially focused on the Landau
gauge, since then the operatorA2

min reduces to the local quantityA2
µ. An effective potential for〈A2

µ〉 was
calculated up to two loops in [46, 47], giving evidence for a nonvanishing condensate and consequent
effective gluon massm2 ∝ 〈A2

µ〉. Determining a sensible effective potential for a local composite
operator (LCO) is a nontrivial task, but nevertheless it wasdealt with in [46] based on the method
developed in [48]. The renormalizability of the so-called LCO method was proven in [49] to all
orders of perturbation theory in the case ofA2

µ in the Landau gauge.
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Unfortunately, the gauge invariance ofA2
min is, strictly speaking, only ensured when theabsolute

minimum ofA2
min along the gauge orbit has been reached, a highly difficult task due to the presence

of Gribov copies. Moreover, it is unclear what can be done with this operator beyond the Landau
gauge. In other gauges, other renormalizable and condensing dimension two operators exist, but
these are explicite gauge parameter or even ghost dependent, see [50] for an overview. In e.g. the
maximal Abelian gauge, an effective mass was found for the off-diagonal gluons only [51], which is
qualitatively consistent with the available lattice data [52, 53].

Let us also mention that effective gluon masses have been studied in the past from theoretical, phe-
nomenological and numerical viewpoint, see [20, 46, 54, 55,56, 57, 58, 59, 60, 61] for a far from
exhaustive list.

Taking all this into account, it seems to be a worthy task to look for other potential candidates which
could be at the origin of the dynamical mass generation and related 1

q2 power corrections. It would
also be favourable to start from a gauge invariant operator.The candidate we already investigated in
[45, 62] is the nonlocal operator

O = (VT)−1
Z

d4xFa
µν

[(
D2)−1

]ab
Fb

µν , (1.21)

which can be coupled to the Yang-Mills action via a nonlocal mass term

SO = −
m2

4

Z

d4xFa
µν

[(
D2)−1

]ab
Fb

µν , (1.22)

wherem is a mass parameter, and[(D2)−1]ab is the inverse of the covariant Laplacian

D2 ≡ Dac
µ Dcb

µ = ∂2δab−2g fabcAc
µ∂µ−g fabc∂µAc

µ+g2 f acd f cbeAd
µAe

µ . (1.23)

Analogously to what has been done in the case of the nonlocal horizon function (1.11), the gauge in-
variant mass operator (1.22) can be localized with the help of a pair of complex bosonic antisymmetric
tensor fields in the adjoint representation [45],(Ba

µν,B
a
µν),

e−SO =
Z

DBDB(detD2) f ′ exp

{
−

1
4

Z

d4x
[
B

a
µνDac

σ Dcb
σ Bb

µν + im(Ba
µν−B

a
µν)F

a
µν

]}
. (1.24)

Here we have

f ′ =
D(D−1)

2
= 6 , (1.25)

and, like in the case of the horizon function, the determinant, (detD2) f ′ , can be localized using a pair
of anticommuting antisymmetric complex tensor fields(Ga

µν,G
a
µν), according to

(detD2) f ′ =

Z

DGDGexp

[
−

1
4

Z

d4x
(

G
a
µνDac

σ Dcb
σ Gb

µν

)]
. (1.26)

Then, the actionSO gets replaced by its local version given by

SLocal
O = SBG+Sm , (1.27)

where,

SBG =
1
4

Z

d4x
(

B
a
µνDac

σ Dcb
σ Bb

µν −G
a
µνDac

σ Dcb
σ Gb

µν

)
, (1.28)
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and

Sm =
im
4

Z

d4x(Ba
µν −B

a
µν)F

a
µν . (1.29)

We underline the fact that an initially nonlocal operator can be cast into a local form [63]. In the case
of A2

min, this would not be possible, as it is a infinite series of different nonlocal operators. Once we
arrive at a local action, we can investigate e.g. the renormalizability to all orders by means of algebraic
methods, the canonical quantization, the explicit calculation of the renormalization factors, etc.

The goal of this paper is to study the massive action (1.22) when the restriction to the Gribov region
Ω is implemented à la Zwanziger. Since the extended actionSYM + SO is gauge invariant, we might
expect that the procedure of further restricting the domainof integration will have no influence on
the renormalizability. This will be explicitly confirmed. In a future stage of research, one can start
searching for the value of the Gribov parameterγ as well as the dynamically generated massm.
We remind here that the Gribov-Zwanziger action itself can also be used to mimic1

q2 corrections,
as explicitly discussed in [27]. As a future endeavour, it would be worthwhile to study physical
correlators with our action, and find whether the Gribov and/or mass parameterm are a potential
source of such power corrections.

Let us return to the content of this paper, which is organizedas follows. In section 2, we introduce
all the necessary sources in order to find a suitable startingaction. The set of Ward identities defining
this action is presented in section 3, while in section 4 we compute several useful (anti-)commutation
relations between the linearized symmetry operators. These are used in section 5 in order to construct
the most general allowed invariant counterterm. In section6, we confirm the renormalizability since
we shall be able to reabsorb all the allowed counterterms in the starting action by introducing suitable
bare quantities. In section 7 we discuss a few properties of the physical action, which is obtained
from the starting action by setting the sources equal to their physically relevant values. The process
of giving specific values to the sources breaks the BRST invariance. In section 8, we discuss the
associated breaking of the Slavnov-Taylor identity, and wecomment on the fact that in most cases
this breaking becomes harmless for the identities derivable between a large class of Green functions.
Finally, section 9 is devoted to the conclusions.

2 Identification of the complete classical actionΣ

We shall start with the following local action, as it was obtained in the introduction

SLocal = SYM +Sgf +SLocal
H +SLocal

O . (2.1)

As we wish to discuss the renormalizability, we should try toestablish as many symmetries as possible.
These symmetries can then be translated into Ward identities. As we are dealing with a gauge theory
which is to be gauge fixed, we expect to find a BRST invariance and consequent Slavnov-Taylor
identity. All these identities are a powerful tool in constructing the most general allowed counterterm
[64]. If this counterterm can be reabsorbed in the original action through the introduction of bare
quantities, we are able to conclude that the starting actionis renormalizable. If not, we could still try
to identify a more general starting action that is renormalizable. This has been discussed in extenso
already in [45, 62] when analyzing the nonlocal mass term (1.22).

7



2.1 BRST invariance

In order to find the BRST invariance of the resulting local theory, given by (2.1), we proceed as in
[40, 45] and consider at first the particular case whenγ = m= 0, i.e.,

Sγ=m=0
Local = SYM +Sgf +SLocal,γ=0

H +SLocal,m=0
O

= SYM +Sgf +Sφω +SBG . (2.2)

In this case, we have actually introduced nothing more than two unity factors, written as

1 =

Z

DφDφDωDω exp

[
−

Z

d4x
(

φac
µ M

abφbc
µ −ωac

µ M
abωbc

µ

)]
,

1 =

Z

DBDBDGDGexp

[
−

1
4

Z

d4x
(

B
a
µνDac

σ Dcb
σ Bb

µν −G
a
µνDac

σ Dcb
σ Gb

µν

)]
. (2.3)

Nevertheless, the action (2.2) may be written in a BRST invariant fashion. To see this, let us first
introduce the following nilpotent BRST transformation

sAa
µ = −Dab

µ cb ,

sca =
g
2

f abccbcc ,

sBa
µν = g fabccbBc

µν +Ga
µν ,

sGa
µν = g fabccbGc

µν ,

sG
a
µν = g fabccbG

c
µν +B

a
µν ,

sB
a
µν = g fabccbB

c
µν ,

sca = ba ,

sba = 0 ,

sφab
µ = ωab

µ ,

sωab
µ = 0 ,

sωab
µ = φab

µ ,

sφab
µ = 0 ,

s2 = 0 . (2.4)

Now, letS0 be the action defined by

S0 = SYM +s
Z

d4x(ca∂µAa
µ+ ωac

µ M
abφbc

µ +G
a
µνDac

σ Dcb
σ Bb

µν) , (2.5)

which satifies
sS0 = 0 . (2.6)

Applying the BRST transformations (2.4) and recalling thatthe Faddeev-Popov operator,M ab, is
given by (1.7), we obtain

S0 = Sγ=m=0
Local +

Z

d4xωac
µ ∂ν

(
g fabdφbc

µ Dde
ν ce

)
. (2.7)
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Following [40] one can show thatS0 andSγ=m=0
Local are equivalent. More precisely, one may transform

Sγ=m=0
Local into S0 by performing the following shift in the variableωac

µ ,

ωac
µ → ωac

µ −
(
M −1)ab∂ν

(
g fbedφec

µ Ddn
ν cn

)
, (2.8)

and keeping in mind that the corresponding Jacobian turns out to be field independent. Thus, the
following equivalence holds,

Z

DΦe−S0 =

Z

DΦe−Sγ=m=0
Local , (2.9)

whereΦ is a shorthand for all the fields. Now, let us reintroduce the termSγ, given by (1.19), while
Sm remains absent. It is easy to show, using the BRST transformations (2.4), thatSγ may be rewritten
as

Sγ = γ2
Z

d4x
[
g fabcφac

µ Ab
µ−s(g fabcωac

µ Ab
µ)+g fabcωac

µ Dbd
µ cd

]
. (2.10)

The last term can be eliminated by means of a change of variables

ωbc
µ → ωbc

µ + γ2(M −1)bd
g fdecDen

µ cn . (2.11)

Furthermore, we notice that, thanks to fact that the integral of a total derivative vanishes, the following
expression forSγ holds

Sγ = −γ2
Z

d4x
[
Dab

µ φba
µ −s(Dab

µ ωba
µ )
]

. (2.12)

Nevertheless, the action,
S0 +Sγ , (2.13)

is not yet BRST invariant. This point can be dealt with by means of the introduction of a pair of BRST
doublets of local external sources [40],(Mab

µν,N
ab
µν) and(M

ab
µν,N

ab
µν), which transform as

sMab
µν = −Nab

µν , sNab
µν = 0 ,

sN
ab
µν = −M

ab
µν , sM

ab
µν = 0 . (2.14)

As pointed out in [40], the introduction of these external sources allows us to promote expression
(2.13) to a BRST invariant action. In fact, letSsourcesbe the action

Ssources = s
Z

d4x(N
ac
µνDab

µ φbc
ν −Mac

µνDab
µ ωbc

ν )

=
Z

d4x[−M
ac
µνDab

µ φbc
ν −N

ac
µνs(Dab

µ φbc
ν )+Nac

µνDab
µ ωbc

ν −Mac
µνs(Dab

µ ωbc
ν )] , (2.15)

which obviously satisfies
sSsources= 0 . (2.16)

When the sources(Mab
µν,M

ab
µν,N

ab
µν ,N

ab
µν) attain their physical values [40], defined by

M
ab
µν

∣∣∣
phys

= −Mab
µν

∣∣∣
phys

= −γ2δabδµν ,

Nab
µν

∣∣∣
phys

= N
ab
µν

∣∣∣
phys

= 0 , (2.17)
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it immediately follows that

Ssources

∣∣∣
phys

= Sγ = −γ2
Z

d4x
[
Dab

µ φba
µ −s(Dab

µ ωba
µ )
]

. (2.18)

One sees thus that the use of the external sources(Mab
µν,M

ab
µν,N

ab
µν ,N

ab
µν) enables us to introduce an

extended actionΣ0, given by
Σ0 = S0 +Ssources, (2.19)

which enjoys the important property of being BRST invariant,

sΣ0 = 0 , (2.20)

while reducing to expression (2.13) when the sources attaintheir physical values, given by (2.17).
Recapitulating, we have rewritten

Z

DADcDcDbe−S+γ4H =
Z

DADcDcDbDφDφωDωDe−S0−Sγ . (2.21)

It is then easily shown, upon combination of (1.11),(1.12),(2.13) and (2.21) that the horizon condition
is implemented by requiring that

∂ΓGZ

∂γ2 = 0, with γ2 6= 0 , (2.22)

wherebyΓGZ is the Gribov-Zwanziger effective action defined by

e−ΓGZ =

Z

DADcDcDbDφDφDωDωe−S0−Sγ . (2.23)

To continue, let us analyze the termSm, given by (1.29). This term is, just asSLocal
O in (1.27), left

invariant by the gauge transformations [45]

δAa
µ = −Dab

µ θb ,

δBa
µν = g fabcθbBc

µν ,

δGa
µν = g fabcθbGc

µν ,

δG
a
µν = g fabcθbG

c
µν ,

δB
a
µν = g fabcθbB

c
µν , (2.24)

whereθa is the parameter of the gauge transformation, but it is not invariant by the BRST transfor-
mations (2.4). This problem can be solved in a way equivalentas done in the case ofSγ. This time
we will introduce a pair of BRST doublets of external sources, (Uαβµν,Vαβµν) and (Uαβµν,Vαβµν),
transforming as

sVαβµν = Uαβµν , sUαβµν = 0 ,

sUαβµν = Vαβµν , sVαβµν = 0 . (2.25)

Hence, by considering the following term

S′sources= s
Z

d4x(VαβµνG
a
αβ −UαβµνBa

αβ)F
a
µν ,

10



the termS′sourcesreduces toSm of (1.29) when the sources(Uαβµν,Uαβµν,Vαβµν,Vαβµν) attain the sub-
sequent physical values

Vαβµν

∣∣∣
phys

= Vαβµν

∣∣∣
phys

= −
im
2

(δαµδβν −δανδβµ) ,

Uαβµν

∣∣∣
phys

= Uαβµν

∣∣∣
phys

= 0 . (2.26)

These sources enable us to define an actionΣ1 as

Σ1 = Σ0 +S′sources, (2.27)

in such way that
sΣ1 = 0 . (2.28)

2.2 The globalU( f ) and U( f ′) symmetries

In addition to the BRST invariance the actionΣ1 displays global symmetriesU( f ), f = 4(N2−1) and
U( f ′), f ′ = 6, respectively expressed by

Q ab
µν (Σ1) ≡

Z

d4x

(
φca

µ
δΣ1

δφcb
ν
−φcb

ν
δΣ1

δφca
µ

+ ωca
µ

δΣ1

δωcb
ν
−ωcb

ν
δΣ1

δωca
ν

+Mca
σµ

δΣ1

δMcb
σν

−M
cb
σν

δΣ1

δM
ca
σµ

+Nca
σµ

δΣ1

δNcb
σν

−N
cb
σν

δΣ1

δN
ca
σµ

)
= 0 , (2.29)

and

Qαβµν(Σ1) ≡

Z

d4x

(
Ba

αβ
δΣ1

δBa
µν

−B
a
µν

δΣ1

δB
a
αβ

+Ga
αβ

δΣ1

δGa
µν

−G
a
µν

δΣ1

δG
a
αβ

+Uαβσρ
δΣ1

δUµνσρ

−Uµνσρ
δΣ1

δUαβσρ
+Vαβσρ

δΣ1

δVµνσρ
−Vµνσρ

δΣ1

δVαβσρ

)
= 0 , (2.30)

The presence of the global invariancesU( f ) andU( f ′) means that one can make use [40, 45] of the
composite indicesI ≡ (a,µ), I = 1, . . . , f , andi ≡ (µ,ν), i = 1, . . . , f ′. Specifically, setting

(φa
I ,φ

a
I ,ω

a
I ,ω

a
I ) ≡ (φab

µ ,φab
µ ,ωab

µ ,ωab
µ ) ,

(Ma
µI,M

a
µI,N

a
µI,N

a
µI) ≡ (Mab

µν,M
ab
µν,N

ab
µν ,N

ab
µν) , (2.31)

and

(Ba
i ,B

a
i ,G

a
i ,G

a
i ) ≡

1
2
(Ba

µν,B
a
µν,G

a
µν,G

a
µν) ,

(Uiµν,U iµν,Viµν,V iµν) ≡
1
2
(Uαβµν,Uαβµν,Vαβµν,Vαβµν) , (2.32)

we rewriteΣ1 as

Σ1 = SYM +

Z

d4x

{
ba ∂µAa

µ+ca∂µDab
µ cb + φa

IM
abφb

I −ωa
IM

abωb
I +g fabcωa

I ∂µ(φb
I Dcd

µ cd)

−M
a
µI D

ab
µ φb

I −N
a
µI

[
Dab

µ ωb
I +g fabcφb

I Dcd
µ cd

]
+Na

µI D
ab
µ ωb

I

−Ma
µI

[
Dab

µ φb
I −g fabcωb

I Dcd
µ cd

]
+B

a
i Dab

µ Dbc
µ Bc

i −G
a
i Dab

µ Dbc
µ Gc

i

+Fa
µν
(
U iµνGa

i +ViµνB
a
i −V iµνBa

i +UiµνG
a
i

)}
, (2.33)
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A b c c φ φ ω ω B B G G

dimension 1 2 2 0 1 1 1 1 1 1 1 1
ghost number 0 0 −1 1 0 0 1 −1 0 0 1 −1
Qf -charge 0 0 0 0 1 −1 1 −1 0 0 0 0
Qf ′-charge 0 0 0 0 0 0 0 0 1 −1 1 −1

Table 1: Quantum numbers of the fields

M M N N V V U U

dimension 2 2 2 2 1 1 1 1
ghost number 0 0 1 −1 0 0 1 −1
Qf -charge 1 −1 1 −1 0 0 0 0
Qf ′-charge 0 0 0 0 1 −1 1 −1

Table 2: Quantum numbers of the sources

For the symmetry generators, we have

Q IJ ≡

Z

d4x

(
φa

I
δ

δφa
J
−φa

J
δ

δφa
I

+ ωa
I

δ
δωa

J
−ωa

J
δ

δωa
I
+Ma

µI
δ

δMa
J

−M
a
J

δ
δM

a
I

+Na
µI

δ
δNa

µJ
−N

a
µJ

δ
δN

a
µI

)
, (2.34)

and

Q i j ≡

Z

d4x

(
Ba

i
δ

δBa
j
−B

a
j

δ
δB

a
i

+Ga
i

δ
δGa

j
−G

a
j

δ
δG

a
i

+Uiµν
δ

δU jµν
−U jµν

δ
δU iµν

+Viµν
δ

δVjµν
−V jµν

δ
δV iµν

)
. (2.35)

By means of the trace of these operators theI(i)-valued fields turn out to possess an additional quan-
tum number, displayed in Tables 1 and 2, together with the dimension and the ghost number.

2.3 The complete classical actionΣ

We proceed by establishing the complete set of Ward identities which will enable us to analyze the
renormalizability of the theory to all orders. Let us first identify the final complete action to start with.
For this purpose, we need to introduce additional external sources(Ωa

µ,L
a,Y

a
i ,Y

a
i ,X

a
i ,X

a
i ) in order to

define at quantum level the composite operators entering thenonlinear BRST transformations of the
fields(Aa

µ,L
a,Ba

i ,B
a
i ,G

a
i ,G

a
i ), eqs (2.4). In the present case this term reads

Sext = s
Z

d4x(−Ωa
µAa

µ+Laca−Y
a
i Ba

i −Ya
i B

a
i +X

a
i Ga

i +Xa
i G

a
i ) , (2.36)

with
sΩa

µ = sLa = 0 , (2.37)
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X X Y Y Ω L

dimension 3 3 3 3 3 4
ghost number 0 −2 −1 −1 −1 −2
Qf -charge 0 0 0 0 0 0
Qf ′-charge 1 −1 1 −1 0 0

Table 3: Quantum numbers of the external sources

and

sYa
i = Xa

i ,

sXa
i = 0 ,

sX
a
i = −Y

a
i ,

sY
a
i = 0 . (2.38)

The quantum numbers of the external sources(Ωa
µ,L

a,Y
a
i ,Y

a
i ,X

a
i ,X

a
i ) are displayed in Table 3.

Furthermore, we have to add the extra source termSextra for renormalization purposes, as it was
explained in [40, 45]

Sextra =
Z

d4x

{
M

a
µIM

a
µI −N

a
µIN

a
µI + λ1(B

a
i Ba

i −G
a
i Ga

i )(V jµνVjµν −U jµνU jµν)

+
λabcd

16
(B

a
i Bb

i −G
a
i Gb

i )(B
c
jB

d
j −G

c
jG

d
j )+ λ3

(
B

a
i Ga

jViµνU jµν +G
a
i Ga

jUiµνU jµν

+B
a
i Ba

jViµνV jµν −G
a
i Ba

jVjµνUiµν −Ga
i B

a
jU iµνV jµν +G

a
i B

a
jUiµνVjµν

−
1
2

Ba
i Ba

jV iµνV jµν +
1
2

Ga
i Ga

jU iµνU jµν −
1
2

B
a
i B

a
jViµνVjµν +

1
2

G
a
i G

a
jUiµνU jµν

)

+χ1(V iµν∂2Viµν −U iµν∂2Uiµν)+ χ2(V iµν∂µ∂αViνα −U iµν∂µ∂αUiνα)

−ζ(U iµνUiµνU jαβU jαβ +V iµνViµνV jαβVjαβ −2U iµνUiµνV jαβVjαβ)

}
, (2.39)

whereλ1,λ3,χ1,χ2,ζ are free parameters, and the gauge invariant rank 4 tensorλabcd has the following
symmetry properties

λabcd = λcdab= λbacd , (2.40)

and it obeys a generalized Jacobi identity

f manλmbcd+ f mbnλamcd+ f mcnλabmd+ f mdnλabcn= 0 . (2.41)

Thus, the complete action we are looking for is

Σ = Σ1 +Sext+Sextra

= SYM +

Z

d4x

{
ba ∂µAa

µ+ca∂µDab
µ cb + φa

IM
abφb

I −ωa
IM

abωb
I +g fabcωa

I ∂µ(φb
I Dcd

µ cd)

−M
a
µI D

ab
µ φb

I −N
a
µI

[
Dab

µ ωb
I +g fabcφb

I Dcd
µ cd

]
+Na

µI D
ab
µ ωb

I

−Ma
µI

[
Dab

µ φb
I −g fabcωb

I Dcd
µ cd

]
+M

a
µIM

a
µI −N

a
µIN

a
µI +B

a
i Dab

µ Dbc
µ Bc

i

−G
a
i Dab

µ Dbc
µ Gc

i +Fa
µν
(
U iµνGa

i +ViµνB
a
i −V iµνBa

i +UiµνG
a
i

)

+λ1(B
a
i Ba

i −G
a
i Ga

i )(V jµνVjµν −U jµνU jµν)
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+
λabcd

16
(B

a
i Bb

i −G
a
i Gb

i )(B
c
jB

d
j −G

c
jG

d
j )+ λ3

(
B

a
i Ga

jViµνU jµν +G
a
i Ga

jUiµνU jµν

+B
a
i Ba

jViµνV jµν −G
a
i Ba

jVjµνUiµν −Ga
i Ba

jU iµνV jµν +G
a
i B

a
jUiµνVjµν

−
1
2

Ba
i Ba

jV iµνV jµν +
1
2

Ga
i Ga

jU iµνU jµν −
1
2

B
a
i B

a
jViµνVjµν +

1
2

G
a
i G

a
jUiµνU jµν

)

+χ1(V iµν∂2Viµν −U iµν∂2Uiµν)+ χ2(V iµν∂µ∂αViνα −U iµν∂µ∂αUiνα)

−ζ(U iµνUiµνU jαβU jαβ +V iµνViµνV jαβVjαβ −2U iµνUiµνV jαβVjαβ)−Ωa
µD

ab
µ cb

+
g
2

f abcLacbcc +g fabcY
a
i cbBc

i +g fabcYa
i cbB

c
i +g fabcX

a
i cbGc

i +g fabcXa
i cbG

c
i

}
. (2.42)

3 The complete set of Ward identities

In this section, we have enlisted all known Ward identities,associated to the action (2.42).

• The Slavnov-Taylor identity

S (Σ) ≡
Z

d4x

[
δΣ

δΩa
µ

δΣ
δAa

µ
+

δΣ
δLa

δΣ
δca +ba δΣ

δca + ωa
I

δΣ
δφa

I
+ φa

I
δΣ

δωa
I
−M

a
µI

δΣ
δN

a
µI

−Na
µI

δΣ
δMa

µI

+

(
δΣ
δY

a
i

+Ga
i

)
δΣ
δBa

i
+

δΣ
δYa

i

δΣ
δB

a
i

+
δΣ

δX
a
i

δΣ
δGa

i
+

(
δΣ

δXa
i

+B
a
i

)
δΣ

δG
a
i

+V iµν
δΣ

δU iµν

+Uiµν
δΣ

δViµν
−Y

a
i

δΣ
δX

a
i

+Xa
i

δΣ
δYa

i

]
= 0 , (3.1)

• The Landau gauge fixing
δΣ
δba = ∂µAa

µ . (3.2)

• The antighost equation
δΣ
δca + ∂µ

δΣ
δΩa

µ
= 0 . (3.3)

• The ghost equation

G a(Σ) ≡

Z

d4x

[
δΣ
δca +g fabc

(
cb δΣ

δbc + φb
I

δΣ
δωc

I
+ ωb

I
δΣ
δφc

I

−N
b
µI

δΣ
δM

c
µI

−Mb
µI

δΣ
δNc

µI

)]

= ∆a
class

=

Z

d4xg fabc
(

Ωb
µAc

µ−Lbcc +Y
b
i Bc

i +Yb
i B

c
i −X

b
i Gc

i −Xb
i G

c
i

)
. (3.4)
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• The rigid group transformations

W a(Σ) ≡ g fabc
Z

d4x ∑
k

ψb
k

δΣ
δψc

k
= 0 ,

ψa
k ≡ (A,b,c,c,φ,φ,ω,ω,B,B,G,G,Ω,L,

M,M,N,N,X,X,Y,Y) . (3.5)

• TheSL(2,R) invariance2

D (Σ) ≡

Z

d4x

(
ca δΣ

δca +
δΣ
δba

δΣ
δLa

)
= 0 . (3.6)

• Theφ-equation
δΣ
δφa

I

−∂µ
δΣ

δM
a
µI

= (1+ χ)∂µMa
µI −g fabcMb

µIA
c
µ . (3.7)

• Theω-equation

δΣ
δωa

I
+ ∂µ

δΣ
δNa

µI
+g fabcωb

I
δΣ
δbc = −(1+ χ)∂µN

a
µI +g fabcN

b
µIA

c
µ . (3.8)

• Theφ-equation

δΣ
δφa

I
−∂µ

δΣ
δMa

µI
+g fabc

(
φb

I
δΣ
δbc + ωb

I
δΣ
δcc +N

b
µI

δΣ
δΩc

µ

)
= (1+ χ)∂µM

a
µI −g fabcM

b
µIA

c
µ . (3.9)

• Theω-equation

δΣ
δωa

I
+ ∂µ

δΣ
δN

a
µI

−g fabcMb
µI

δΣ
δΩc

µ
= (1+ χ)∂µNa

µI −g fabcNb
µIA

c
µ . (3.10)

• The globalU( f ) invariance,f = 4(N2−1),

Q IJ(Σ) ≡

Z

d4x

(
φa

I
δΣ
δφa

J
−φa

J
δΣ
δφa

I

+ ωa
I

δΣ
δωa

J
−ωa

J
δΣ

δωa
I
+Ma

µI
δΣ

δMa
J

−M
a
J

δΣ
δM

a
I

+Na
µI

δΣ
δNa

µJ
−N

a
µJ

δΣ
δN

a
µI

)
= 0 . (3.11)

2See also [65].
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• The rigid symmetry related to the horizon function

R IJ(Σ) ≡

Z

d4x

(
φa

I
δΣ

δωa
J
−ωa

J
δΣ
δφa

I

−Ma
µI

δΣ
δNa

µJ
+N

a
µJ

δΣ
δM

a
µI

)
= 0 .

• The symmetries relating the auxiliary fieldsφ,φ,ω,ω to the Faddeev-Popov ghost and antighost
c,c

W I(Σ) ≡
Z

d4x

(
ωa

I
δΣ
δca −ca δΣ

δωa
I
+N

a
µI

δΣ
δΩa

µ

)
= 0 , (3.12)

Q I (Σ) ≡
Z

d4x

(
φa

I
δΣ
δca +ca δΣ

δφa
I
−Ma

µI
δΣ

δΩa
µ
+

δΣ
δLa

δΣ
δωa

I

)
= 0 . (3.13)

• The globalU(6) invariance

Q i j (Σ) ≡
Z

d4x

(
Ba

i
δΣ
δBa

j
−B

a
j

δΣ
δB

a
i

+Ga
i

δΣ
δGa

j
−G

a
j

δΣ
δG

a
i

+Uiµν
δΣ

δU jµν
−U jµν

δΣ
δU iµν

+Viµν
δΣ

δVjµν
−V jµν

δΣ
δV iµν

+Ya
i

δΣ
δYa

j
−Y

a
j

δΣ
δY

a
i

+Xa
i

δΣ
δXa

j
−X

a
j

δΣ
δX

a
i

)
= 0 .

(3.14)

• The rigid symmetries related to the mass operator

R
(α)

i j (Σ) = 0,α ∈ {1,2,3,4}

with

R
(1)

i j (Σ) ≡

Z

d4x

(
Ba

i
δΣ

δGa
j
−G

a
j

δΣ
δB

a
i

+Viµν
δΣ

δU jµν
−U jµν

δΣ
δV iµν

+Ya
i

δΣ
δXa

j
+X

a
j

δΣ
δY

a
i

)
,

R
(2)

i j (Σ) ≡

Z

d4x

(
B

a
i

δΣ
δG

a
j

+Ga
j

δΣ
δBa

i
+V iµν

δΣ
δU jµν

+U jµν
δΣ

δViµν
−Y

a
i

δΣ
δX

a
j

−Xa
j

δΣ
δYa

i

)
,

R
(3)

i j (Σ) ≡

Z

d4x

(
B

a
i

δΣ
δGa

j
−G

a
j

δΣ
δBa

i
−V iµν

δΣ
δU jµν

+U jµν
δΣ

δViµν
+Y

a
i

δΣ
δXa

j
+X

a
j

δΣ
δYa

i

)
,

R
(4)

i j (Σ) ≡

Z

d4x

(
Ba

i
δΣ

δG
a
j

+Ga
j

δΣ
δB

a
i

−Viµν
δΣ

δU jµν
−U jµν

δΣ
δV iµν

−Ya
i

δΣ
δX

a
j

+Xa
j

δΣ
δY

a
i

)
.

(3.15)

4 The linearized operators and (anti-)commutation relations

In order to facilitate the upcoming vast amount of algebra required for the determination of the most
general counterterm, we shall give her some (anti-)commutation relations between several (linearized)
symmetry operators.
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The equations (3.1), (3.6) and (3.13) generate, respectively, the following linearized operators:

BΣ ≡
Z

d4x

[
δΣ

δΩa
µ

δ
δAa

µ
+

δΣ
δAa

µ

δ
δΩa

µ
+

δΣ
δLa

δ
δca +

δΣ
δca

δ
δLa +ba δ

δca + ωa
I

δ
δφa

I
+ φa

I
δ

δωa
I

−M
a
µI

δ
δN

a
µI

−Na
µI

δ
δMa

µI
+

(
δΣ
δY

a
i

+Ga
i

)
δ

δBa
i
+

δΣ
δBa

i

δ
δY

a
i

+
δΣ
δYa

i

δ
δB

a
i

+
δΣ
δB

a
i

δ
δYa

i

+
δΣ

δX
a
i

δ
δGa

i
+

δΣ
δGa

i

δ
δX

a
i

+

(
δΣ

δXa
i

+B
a
i

)
δ

δG
a
i

+
δΣ

δG
a
i

δ
δXa

i
+V iµν

δ
δU iµν

+Uiµν
δ

δViµν

−Y
a
i

δ
δX

a
i

+Xa
i

δ
δYa

i

]
, (4.1)

D Σ ≡
Z

d4x

(
ca δ

δca +
δΣ
δba

δ
δLa +

δΣ
δLa

δ
δba

)
, (4.2)

Q Σ
I ≡

Z

d4x

(
φa

I
δ

δca +ca δ
δφa

I
−Ma

µI
δ

δΩa
µ
+

δΣ
δLa

δ
δωa

I
+

δΣ
δωa

I

δ
δLa

)
= 0 . (4.3)

Consequently, we are able to derive some useful (anti-)commutations relations:
[

δ
δba

, BΣ

]
=

δ
δca + ∂µ

δ
δΩa

µ
,

{
G a , BΣ

}
= W a ,

[
D Σ , BΣ

]
= 0 ,

[
δ

δφa
I

−∂µ
δ

δM
a
µI

, BΣ

]
=

δ
δωa

I
+ ∂µ

δ
δN

a
µI

−g fabcMb
µI

δ
δΩc

µ
,

{
δ

δωa
I
+ ∂µ

δ
δNa

µI
+g fabcωb

I
δ

δbc , BΣ

}
=

δΣ
δφa

I
−∂µ

δΣ
δMa

µI

+ g fabc
(

φb
I

δΣ
δbc + ωb

I
δΣ
δcc +N

b
µI

δΣ
δΩc

µ

)
,

{
R IJ , BΣ

}
= Q IJ ,

[
W I , BΣ

]
= −Q Σ

I ,

{
R

(1)
i j , BΣ

}
= Q i j ,

{
R

(2)
i j , BΣ

}
= 0 ,

{
R

(3)
i j , BΣ

}
=

Z

d4x
(
δikδ jl −δil δ jk

)(
B

a
k

δ
δBa

l
−Vkµν

δ
δVlµν

+Y
a
k

δ
δYa

l

)
,

{
R

(4)
i j , BΣ

}
=

Z

d4x
(
δikδ jl + δil δ jk

)(
Ga

k
δ

δG
a
l

−Ukµν
δ

δU lµν
−Xa

k
δ

δX
a
l

)
,
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{
R

(1)
ik , R

(3)
k j

}
= −

Z

d4x
(
δikδ jl + δil δ jk

)(
G

a
k

δ
δGa

l
−Ukµν

δ
δUlµν

−X
a
k

δ
δXa

l

)
,

{
R

(1)
ik , R

(4)
k j

}
= −

Z

d4x
(
δikδ jl −δil δ jk

)(
Ba

k
δ

δB
a
l

−Vkµν
δ

δV lµν
+Ya

k
δ

δY
a
l

)
.

(4.4)

5 Characterization of the most general counterterm

In order to characterize the most general invariant counterterm which can be freely added to all or-
ders of perturbation theory, we perturb the classical action Σ by adding an arbitrary integrated local
polynomialΣCT in the fields and external sources of dimension bounded by four and with zero ghost
number, and we require that the perturbed action(Σ+ ηΣCT) satisfies the same Ward identities asΣ to
the first order in the perturbation parameterη. Making use of the BRST cohomological results [64],
we may write that

ΣCT = a0 SYM +BΣ∆(−1) , (5.1)

whereBΣ is the nilpotent linearized Slavnov-Taylor operator of eq.(4.1),

BΣBΣ = 0 . (5.2)

The expression∆(−1) is an integrated polynomial of ghost number−1, in the present case given by

∆(−1) =

Z

d4x

{
a1(Ωa

µ+ ∂µca)Aa
µ+a2Laca +a3

(
Y

a
i Ba

i −X
a
i Ga

i +Ya
i B

a
i −Xa

i Ga
i

)
+a4 N

a
µI ∂µφa

I

+a5 Ma
µI ∂µωa

I +a6U iµν(∂µAa
ν)B

a
i +a7U iµνAa

ν ∂µBa
i +a8Viµν(∂µAa

ν)G
a
i +a9ViµνAa

ν ∂µG
a
i

+a10ωa
I ∂2φa

I +a11G
a
i ∂2Ba

i +a12ζU iµνViµν
(
V jαβVjαβ −U jαβU jαβ

)
+a13χ1U iµν∂2Viµν

+a14χ2U iµν∂µ∂αViνα +a15ωa
I φa

I

(
V iµνViµν −U iµνUiµν

)
+a16λ1G

a
i Ba

i

(
V jµνVjµν −U jµνU jµν

)

+a17λ3

(
G

a
i Ga

jViµνU jµν +G
a
i Ba

jViµνV jµν −
1
2

Ba
i Ba

jU iµνV jµν +
1
2

Ba
i Ga

jU iµνU jµν

−
1
2

G
a
i B

a
jViµνVjµν +

1
2

G
a
i G

a
jViµνU jµν

)
+a18

λabcd+N abcd

16
G

a
i Bb

i

(
B

c
jB

d
j −G

c
jG

d
j

)

+a19χN
a
µIM

a
µI +a20g fabcN

a
µI φb

I Ac
µ+a21g fabcMa

µI ωb
I Ac

µ+a22g fabcωa
I Ac

µ∂µφb
I

+a23g fabcωa
I (∂µAc

µ)φ
b
I +a24g fabcG

a
i Ac

µ∂µBb
i +a25g fabcG

a
i (∂µAc

µ)B
b
i

+a26g fabcU iµνAb
µAc

νBa
i +a27g fabcViµνAb

µAc
νG

a
i + λ̃abcdG

a
i Bb

i Ac
µAd

µ

}
. (5.3)

Due to the Ward identities given in section 4, the counterterm ΣCT must obey the following constraints

BΣΣCT = 0 , D ΣΣCT = 0 , G aΣCT = 0 , W aΣCT = 0 ,
Q IJΣCT = 0 , R IJΣCT = 0 , W I ΣCT = 0 , Q Σ

I ΣCT = 0 ,

Q i j ΣCT = 0 , R
(1,2,3,4)

i j ΣCT = 0 , {R
(3,4)

i j ,BΣ}ΣCT = 0 , {R
(1)

ik ,R
(3,4)

k j }ΣCT = 0 ,

δΣCT

δba = 0 ,
δΣCT

δca + ∂µ
δΣCT

δΩa
µ

= 0 ,
δΣCT

δφa
I

−∂µ
δΣCT

δM
a
µI

= 0 ,
δΣCT

δωa
I

+ ∂µ
δΣCT

δNa
µI

= 0 ,
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δΣCT

δφa
I
−∂µ

δΣCT

δMa
µI

+g fabc
(

ωb
I

δΣCT

δcc +N
b
µI

δΣCT

δΩc
µ

)
= 0 ,

δΣCT

δωa
I

+ ∂µ
δΣCT

δN
a
µI

−g fabcMb
µI

δΣCT

δΩc
µ

= 0 . (5.4)

By applying the constraints (5.4), one can show that

λ̃abcd = a11g2 f acef edb , (5.5)

and

ΣCT = a0 SYM +

Z

d4x

{
a1

[
Aa

µ
δSYM

δAa
µ

+(Ωa
µ+ ∂µca)∂µca + φa

I ∂2φa
I −ωa

I ∂2ωa
I −g fabcωa

I ∂µ(φb
I ∂µcc)

+M
a
µI∂µφa

I +N
a
µI(∂µωa

I +g fabcφb
I ∂µcc)−Na

µI∂µωa
I +Ma

µI(∂µφa
I +g fabcωb

I ∂µcc)− (M
a
µMa

µ

−N
a
µNa

µ)

]
+(2a2 +a3)(B

a
i ∂2Ba

i −G
a
i ∂2Ga

i )− (a1 +2a2 +a3)g fabc[B
a
i (∂µAb

µ+2Ab
µ∂µ)B

c
i

−G
a
i (∂µAb

µ+2Ab
µ∂µ)G

c
i ]+ (2a1 +2a2 +a3)g

2 f abd f bce(B
a
i Bc

i −G
a
i Gc

i )A
d
µAe

µ

+[(a1 +a2 +a4)2∂µAa
ν +(2a1 +a2 +a4)g fabcAb

µAc
ν](U iµνGa

i +ViµνB
a
i +UiµνG

a
i −V iµνBa

i )

+(4a2 +a5)
λabcd+N abcd

16
(B

a
i Bb

i −G
a
i Gb

i )(B
c
jB

d
j −G

c
jG

d
j )+ (2a2 +a6)λ1(B

a
i Ba

i −G
a
i Ga

i )

×(V iµνViµν −U iµνUiµν)+ (2a2 +a7)λ3

(
B

a
i Ga

jViµνU jµν +G
a
i Ga

jUiµνU jµν +B
a
i Ba

jViµνV jµν

−G
a
i Ba

jVjµνUiµν −Ga
i B

a
jU iµνV jµν +G

a
i B

a
jUiµνVjµν −

1
2

Ba
i Ba

jV iµνV jµν +
1
2

Ga
i Ga

jU iµνU jµν

−
1
2

B
a
i B

a
jViµνVjµν +

1
2

G
a
i G

a
jUiµνU jµν

)
+a8ζ(U iµνUiµνU jαβU jαβ +V iµνViµνV jαβVjαβ

−2U iµνUiµνV jαβVjαβ)+a9χ1(V iµν∂2Viµν −U iµν∂2Uiµν)

+a10χ2(V iµν∂µ∂αViνα −U iµν∂µ∂αUiνα)

}
, (5.6)

where we renamed the coefficientsan as

a3 → a2, a18 → a5, a12 → a8,
a11 → a3, a16 → a6, a13 → a9,
a6 → −2a4, a17 → a7, a14 → a10.

(5.7)

6 Stability of the action at the quantum level and renormalization fac-
tors

As a final step, we must show that the most general countertermΣCT can be reabsorbed by means of
a multiplicative renormalization of the parameters, fields, and sources already present in the starting
actionΣ. Taking

ψ0 = Z1/2
ψ ψ ,

J0 = ZJ J ,

ξ0 = Zξ ξ ,

λabcd
0 = Zλ λabcd+Z abcd , (6.1)
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where

ψ = {A,b,c,c,φ,φ,ω,ω,B,B,G,G} ,

J = {Ω,L,M,M,N,N,U,U ,V,V ,X,X,Y,Y} ,

ξ = {g,χ,χ1,χ2,ζ,λ1,λ3} , (6.2)

we must show that
Σ(ψ0,J0,ξ0) = Σ(ψ,J,ξ)+ ηΣCT(ψ,J,ξ)+O(η2) . (6.3)

After some algebra, for the renormalization factors{Z} we obtain

Zb = Z−1
A , Zc = Zc = Z−1

g Z−1/2
A ,

Zφ = Zφ = Z−1
g Z−1/2

A , Zω = Z−2
g , Zω = Z−1

A ,

ZM = ZM = Z1/2
φ = Z−1/2

g Z−1/4
A ,

ZN = Z1/2
ω = Z−1

g , ZN = Z1/2
ω = Z−1/2

A ,

ZΩ = Z1/2
c = Z−1/2

g Z−1/4
A ,ZL = Z1/2

A ,

ZX = ZX = ZY = ZY = Z−1/2
g Z1/4

A Z−1/2
B ,

ZA = 1+ η(a0 +2a1) , Zg = 1−η
a0

2
,

ZB = ZB = ZG = ZG = 1+ η(2a2 +a3) ,

ZV = ZV = ZU = ZU = 1−η
(a0

2
+

a3

2
−a4

)
,

Zλ = 1+ η(a5−2a3) , Z abcd = η(4a2 +a5)N
abcd ,

Zλ1 = 1+ η(a0−2a4 +a6) , Zλ3 = 1+ η(a0−2a4 +a7) ,

Zζ = 1+ η(2a0 +2a3−4a4−a8) , Zχ1 = 1+ η(a0 +a3−2a4 +a9) ,

Zχ2 = 1+ η(a0 +a3−2a4 +a10) , (6.4)

hereby confirming the renormalizability to all orders of perturbation theory of the action (2.42). We
draw attention to the fact that the renormalization of the quartic tensor couplingλabcd involves an
additional additive part given byZ abcd [62]. As a consequence,λabcd = 0 is a not a fixed point of
the model. This originates from the fact that the interactions proportional to the other couplingg2

reintroduce by quantum effects the tensor coupling∝
(
B

a
µνBb

µν −G
a
µνGb

µν
)(

B
c
ρσBd

ρσ −G
c
ρσGd

ρσ

)
. This

is nicely reflected in the renormalization group function ofλabcd, that was calculated at one loop order
in [62] using dimensional regularization ind = 4−2ε dimensions and theMS scheme,

µ
∂

∂µ
λabcd = −2ελabcd+

[
1
4

(
λabpqλcpdq+ λapbqλcdpq+ λapcqλbpdq+ λapdqλbpcq

)

− 12CAλabcda + 8CA f abp f cdpa2 + 16CA f adp f bcpa2 + 96dabcd
A a2

]
, (6.5)

wherea= g2

16π2 anddabcd
A is the totally symmetric rank four tensor defined bydabcd

A = Tr
(

Ta
AT(b

A Tc
ATd)

A

)
.

Clearly, we have

µ
∂

∂µ
λabcd 6= 0 for λabcd = 0 . (6.6)
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6.1 The physical action and some of its properties

We have shown the renormalizability of the complete action (2.42). In particular, since the renormal-
izability holds for all possible values of the sources, we have also proven it in the case that the external
source part, (2.36), is zero, while the other sources attaintheir physical values dictated by (2.17) and
(2.26), yielding the complete physical action

Sphysical =

Z

d4x

(
1
4

Fa
µνFa

µν

)
+

Z

d4x
(

ba∂µAa
µ+ca∂µDab

µ cb
)

+

Z

d4x
(
−ϕac

µ ∂ν

(
∂νϕac

µ +g fabmAb
νϕmc

µ

)
+ ωac

µ ∂ν

(
∂νωac

µ +g fabmAb
νωmc

µ

)

+ ωac
µ ∂ν

(
g fabdφbc

µ Dde
ν ce

))

+

Z

d4x
[
γ2g fabcAb

µϕac
µ − γ2g fabcAb

µϕac
µ −4

(
N2−1

)
γ4
]

+

Z

d4x

(
im
4

(B−B)a
µνFa

µν +
1
4

(
B

a
µνDab

σ Dbc
σ Bc

µν −G
a
µνDab

σ Dbc
σ Gc

µν

))

+
Z

d4x

(
−

3
8

m2λ1
(
B

a
µνBa

µν −G
a
µνGa

µν
)
+m2 λ3

32

(
B

a
µν −Ba

µν
)2
)

+

Z

d4x

(
λabcd

16

(
B

a
µνBb

µν −G
a
µνGb

µν

)(
B

c
ρσBd

ρσ −G
c
ρσGd

ρσ

))
−

Z

d4x

(
9
4

ζm4
)

.

(6.7)

Apparently, the symmetry content of the action (2.42) givenin section 3 is sufficiently powerful to
avoid mixing between the Zwanziger fields/sources on one hand and the mass related fields/sources
on the other hand.

The term∝ ζm4 in the final action (6.7) is irrelevant for the renormalization of Green functions, but it
becomes important when one looks at the renormalization of the vacuum energyE(m). The parameter
ζ is the so-called LCO parameter, and its value ought to be fixedby requiring a homogenous linear
renormalization group equation forE(m), wherebyζ is made a function of the available couplings.
This point is however beyond the scope of this paper, the interested reader is kindly referred to e.g.
[48, 46, 51, 66] for more details. It is a remarkable feature of the Zwanziger action that there is no
need for such a LCO parameter in front of theγ4-term in the action (6.7) [40, 41, 14].

If we make abstract of the Gribov-Zwanziger part for the moment, we established a “supersymmetry”
for the actionSm=0,γ=0

physical , generated by [62]

δsB
a
µν = Ga

µν , δsG
a
µν = 0 ,

δsG
a
µν = B

a
µν , δsB

a
µν = 0 ,

δsΨ = 0 for all other fieldsΨ ,

δ2
s = 0 ,

δs

(
Sm=0,γ=0

physical

)
= 0 . (6.8)

We used this symmetry in [62] to show that the massless version of our gauge model is equivalent
with Yang-Mills ordinary gauge theories, despite the extra(quartic) interactions between the fields
Ba

µν, B
a
µν, Ga

µν andG
a
µν. A completely similarδs-cohomological argument as presented in [62] can
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be used here to actually prove that the actionSm=0
physical and the original Gribov-Zwanziger action give

rise to thesameGreen functions at any order of perturbation theory when we restricts ourselves to
those functionals built from fields in the original Gribov-Zwanziger action, meaning that the quartic
couplingλabcd cancels out from the final results.

The combination of the previous result and the already mentioned absence of mixing, also implies
that the already known renormalization group functions andrelations for the Gribov-Zwanziger action
[40, 14, 41] and massive gauge model [45, 62] remain valid when both are combined into one action,
at least whenever massless renormalization schemes like the MS one are employed.

When the sources are set equal to their physical values (2.17) and (2.26) in order to obtain the action
Sphysical, the BRST symmetry (2.4) is however broken. It is worth having a somewhat more detailed
look at this.

7 The breaking of the Slavnov-Taylor identity scrutinized

7.1 The case of the massive gauge model without the Gribov restriction

In order to avoid too lengthy expressions, we shall momentarily skip the Gribov restriction, and con-
centrate on the massive gauge model already studied in earlier papers [45, 62].

Let Σ̃ thus be the complete action given by

Σ̃ = SYM +

Z

d4x

{
ba ∂µAa

µ+ca∂µDab
µ cb +B

a
i Dab

µ Dbc
µ Bc

i −G
a
i Dab

µ Dbc
µ Gc

i

+Fa
µν
(
U iµνGa

i +ViµνB
a
i −V iµνBa

i +UiµνG
a
i

)
+ λ1(B

a
i Ba

i −G
a
i Ga

i )(V jµνVjµν −U jµνU jµν)

+
λabcd

16
(B

a
i Bb

i −G
a
i Gb

i )(B
c
jB

d
j −G

c
jG

d
j )+ λ3

(
B

a
i Ga

jViµνU jµν +G
a
i Ga

jUiµνU jµν

+B
a
i Ba

jViµνV jµν −G
a
i Ba

jVjµνUiµν −Ga
i B

a
jU iµνV jµν +G

a
i B

a
jUiµνVjµν −

1
2

Ba
i Ba

jV iµνV jµν

+
1
2

Ga
i Ga

jU iµνU jµν −
1
2

B
a
i B

a
jViµνVjµν +

1
2

G
a
i G

a
jUiµνU jµν

)

+χ1(V iµν∂2Viµν −U iµν∂2Uiµν)+ χ2(V iµν∂µ∂αViνα −U iµν∂µ∂αUiνα)

−ζ(U iµνUiµνU jαβU jαβ +V iµνViµνV jαβVjαβ −2U iµνUiµνV jαβVjαβ)−Ωa
µD

ab
µ cb

+
g
2

f abcLacbcc +g fabcY
a
i cbBc

i +g fabcYa
i cbB

c
i +g fabcX

a
i cbGc

i +g fabcXa
i cbG

c
i

}
. (7.1)

This actionΣ̃ obeys the Slavnov-Taylor identity

S̃ (Σ̃) = 0 , (7.2)

with

S̃ (Σ̃) =

Z

d4x

[
δΣ̃

δΩa
µ

δΣ̃
δAa

µ
+

δΣ̃
δLa

δΣ̃
δca +ba δΣ̃

δca +

(
δΣ̃
δY

a
i

+Ga
i

)
δΣ̃
δBa

i
+

δΣ̃
δYa

i

δΣ̃
δB

a
i

+
δΣ̃

δX
a
i

δΣ̃
δGa

i

+

(
δΣ̃

δXa
i

+B
a
i

)
δΣ̃

δG
a
i

+V iµν
δΣ̃

δU iµν
+Uiµν

δΣ̃
δViµν

−Y
a
i

δΣ̃
δX

a
i

+Xa
i

δΣ̃
δYa

i

]
. (7.3)
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Since the theory is stable and free from anomalies at the quantum level, we may write down a renor-
malized 1PI quantum vertex functional [64],

Γ̃ = Σ̃+~Γ̃ ,(1) +.... (7.4)

which fulfills the quantum version of the Slavnov-Taylor identity (7.2), i.e.

S̃ (Γ̃) = 0 , (7.5)

S̃ (Γ̃) =
Z

d4x

[
δΓ̃

δΩa
µ

δΓ̃
δAa

µ
+

δΓ̃
δLa

δΓ̃
δca

+ba δΓ̃
δca +

(
δΓ̃
δY

a
i

+Ga
i

)
δΓ̃
δBa

i
+

δΓ̃
δYa

i

δΓ̃
δB

a
i

+
δΓ̃

δX
a
i

δΓ̃
δGa

i

+

(
δΓ̃

δXa
i

+B
a
i

)
δΓ̃

δG
a
i

+V iµν
δΓ̃

δU iµν
+Uiµν

δΓ̃
δViµν

−Y
a
i

δΓ̃
δX

a
i

+Xa
i

δΓ̃
δYa

i

]
. (7.6)

Let us now analyse the quantum properties of the model when the sources attain their physical values
(2.26). First of all, let us give a look at the classical action Σ̃ph, obtained bỹΣ by setting the sources
to their physical values, namely

Σ̃ph = Σ̃
∣∣∣
physicalvalueof(Viµν,V iµν,Uiµν,U iµν)

, (7.7)

or explicitly

Σ̃ph =

Z

d4x

(
1
4

Fa
µνFa

µν

)
+

Z

d4x
(

ba∂µAa
µ+ca∂µDab

µ cb
)

+
Z

d4x

(
im
4

(B−B)a
µνFa

µν +
1
4

(
B

a
µνDab

σ Dbc
σ Bc

µν −G
a
µνDab

σ Dbc
σ Gc

µν

))

+
Z

d4x

(
−

3
8

m2λ1
(
B

a
µνBa

µν −G
a
µνGa

µν
)
+m2 λ3

32

(
B

a
µν −Ba

µν
)2
)

+
Z

d4x

(
λabcd

16

(
B

a
µνBb

µν −G
a
µνGb

µν

)(
B

c
ρσBd

ρσ −G
c
ρσGd

ρσ

))
−

Z

d4x

(
9
4

ζm4
)

. (7.8)

It is easy to check that̃Σph is not BRST invariant w.r.t. (2.4). In fact, it turns out that

s̃Σph =
im
4

Z

d4xGa
µνFa

µν −λ3
m2

16

Z

d4x
(
B

a
µν −Ba

µν
)

Ga
µν . (7.9)

This equation shows that the breaking of the BRST symmetry (2.4) is not linear in the quantum fields,
and hence the breaking terms have to be treated as composite operators [64]. Therefore, equation (7.9)
cannot be renormalized as it stands. The two breaking terms have to be taken into proper account.
This is precisely achieved by introducing the local sources

(
Viµν,V iµν,Uiµν,U iµν

)
. In other words,

these sources allow us to take into account e.g. the presenceof
R

d4xGa
µνFa

µν and its renormalization,
which is expressed by the renormalization factor of the sourceU iµν.

We would like to understand what happens to the BRST symmetryat the quantum level, when the
sources attain their physical values. It is instructive to study this limit by means of the Slavnov-Taylor
identity (7.5). Let̃Γph be the 1PI functional obtained from̃Γ when the sources

(
Viµν,V iµν,Uiµν,U iµν

)

attain their physical values

Γ̃ph = Γ̃
∣∣∣
physical value of(Viµν,V iµν,Uiµν,U iµν)

. (7.10)
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We can write

Z

d4xV iµν
δΓ̃

δU iµν

∣∣∣∣∣
physical value

= −
im
4

[
Z

d4xGa
µνFa

µν · Γ̃
]

physical value

+λ3
m2

16

[
Z

d4x
(
B

a
µν −Ba

µν
)

Ga
µν · Γ̃

]

physical value
, (7.11)

where e.g.
[(

R

d4xGa
µνFa

µν
)
· Γ̃
]

stands for the generator of the 1PI Green functions with the insertion

of the composite operator
(

R

d4xGa
µνFa

µν
)
. Of course, it holds that

[
. . . · Γ̃

]
physical value

=
[
. . . · Γ̃ph

]
. It

follows that the quantum actioñΓph obeys the broken Slavnov-Taylor identity

S̃ (Γ̃ph) =
im
4

[
Z

d4xGa
µνFa

µν · Γ̃
]

physical value
−λ3

m2

16

[
Z

d4x
(
B

a
µν −Ba

µν
)

Ga
µν · Γ̃

]

physical value
, (7.12)

where

S̃ (Γ̃ph) =

Z

d4x

[
δΓ̃ph

δΩa
µ

δΓ̃ph

δAa
µ

+
δΓ̃ph

δLa

δΓ̃ph

δca +baδΓ̃ph

δca +

(
δΓ̃ph

δY
a
i

+Ga
i

)
δΓ̃ph

δBa
i

+
δΓ̃ph

δYa
i

δΓ̃ph

δB
a
i

+
δΓ̃ph

δX
a
i

δΓ̃ph

δGa
i

+

(
δΓ̃ph

δXa
i

+B
a
i

)
δΓ̃ph

δG
a
i

−Y
a
i

δΓ̃ph

δX
a
i

+Xa
i

δΓ̃ph

δYa
i

]
. (7.13)

It is worth underlining here that the equation (7.12) is in fact nothing more than a direct consequence
of the Slavnov-Taylor identity (7.5), when the local sources

(
Viµν,V iµν,Uiµν,U iµν

)
attain their physical

values (2.26).

We conclude thatΓph does not obey an exact Slavnov-Taylor identity. Of course, (7.12) translates at
the quantum level the fact that the classical actionΣ̃ph, obtained fromΣ̃ by bringing the sources to
their physical values, is not BRST invariant, according to (7.9). However, even ifΓph does not obey an
exact Slavnov-Taylor identity, (7.12) has far reaching consequences on the behavior of the 1PI Green
functions obtained fromΓph, i.e. when the sources are set to their physical values.

Let us consider the breaking term
[(

R

d4xGa
µνFa

µν
)
·Γ
]
. Typically, Slavnov-Taylor identities at the level

of Green functions are obtained by acting with a test operator like δn

δϕ(x1)...δϕ(xn)
, with ϕ any generic

field, on expression (7.12), and setting all sources and fields equal to zero at the end. The condition to
be fulfilled so that the breaking would be harmless is quite easily found, since the breaking term will
vanish whenever

δn
[(

R

d4xGa
µνFa

µν
)
·Γ
]

δφ(x1) . . .δφ(xn)
=

〈(
Z

d4xGa
µν(x)F

a
µν(x)

)
ϕ(x1) . . .ϕ(xn)

〉

1PI
= 0 , (7.14)

meaning that the 1PI Green function with the insertion of theoperator
(

R

d4xGa
µνFa

µν
)

and with n
amputated externalφ-legs should vanish. Thus, if the condition (7.14) holds andan analogous one
for the other breaking term, the right hand side of (7.12) is harmless, so that everything goes as if the
theory would fulfill an unbroken Slavnov-Taylor identity, namely

S̃ (Γ̃ph) = 0 . (7.15)
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The set of identities for which this happens is quite large. Certainly, it contains all Slavnov-Taylor
identities which are obtained from (7.12) by acting only on the original Yang-Mills fields or even the
Ba

µν andB
a
µν fields. In this case, there is no way to obtain a nonvanishing contribution to the breaking

term because of the presence of theGa
µν-ghost field in the right hand side of (7.14). For example, the

Slavnov-Taylor identity for the 1PI gluon propagator can beobtained from (7.12) by acting on it with
the test operator δ2

δc(x)δAν(y)
and setting all fields and other external sources equal to zero. The breaking

terms will be irrelevant as the Green function
〈(

R

d4zGa
µν(z)F

a
µν(z)

)
c(x)Aν(y)

〉
as well as the other

one are trivially zero.

We conclude that most Green functions will behave as if the theory obeys the unbroken Slavnov-Taylor
identity (7.15). The same considerations outlined for the Slavnov-Taylor identity can be repeated for
the other Ward identities. The corresponding breaking terms will always contain the integrated ghost
fields Ga

µν and/orG
a
µν which, in most cases, will lead to vanishing contributions when inserted into

a Green function, thereby making the breaking harmless. Thebeauty in all this is exactly the fact
that the breaking of the Slavnov-Taylor and other Ward identities can be brought under control at the
quantum level by the introduction of a suitable set of local sources. All the renormalization results
of the action with arbitrary values of the sources are then preserved once the sources are put equal to
specific values.

Since the classical part of the action (7.8), obtained by skipping the gauge fixing term (1.10), is gauge
invariant w.r.t. the gauge transformations (2.24), we expect that there should be a nilpotent BRST
generator at the quantum level for the gauge fixed action (7.8). Nevertheless, we have just seen that
the BRST operator (2.4) no longer generates an exact symmetry of the action (7.8). As it was already
discussed in [62], the following nilpotent transformation

s′Aa
µ = −Dab

µ cb ,

s′ca =
g
2

f abccacb ,

s′Ba
µν = g fabccbBc

µν ,

s′B
a
µν = g fabccbB

c
µν ,

s′Ga
µν = g fabccbGc

µν ,

s′G
a
µν = g fabccbG

c
µν ,

s′ca = ba ,

s′ba = 0,

s′2 = 0. (7.16)

generates an invariance of (7.8). One shall easily recognize that there is an intimate connection be-
tween the transformationss (2.4),s′ (7.16) andδs (6.8), namely we have

s= s′ + δs . (7.17)

Then we can say that the breaking of the BRST symmetrysand its associated Slavnov-Taylor identity
is entirely due to the loss of the supersymmetryδs when the physical limit (2.26) is taken [62].

Evidently, the unbroken BRST symmetrys′ can be used to construct unbroken Slavnov-Taylor identi-
ties between the Green functions of the massive gauge model (7.8).
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7.2 The case of the massive gauge model with Gribov restriction

A very similar analysis can be made when we consider the full action (6.7). In this case, there are ad-
ditional breaking terms coming from the physical limit (2.17) of the Zwanziger sources. In particular,
applying the transformationssor s′ on (6.7), we find

sSphysical =
im
4

Z

d4xGa
µνFa

µν −λ3
m2

16

Z

d4x
(
B

a
µν −Ba

µν
)

Ga
µν

+ γ2
Z

d4x
(
−g fabcDbd

µ cdφac
µ +g fabcAb

µωac
µ +g fabcDbd

µ cdφac
µ

)
, (7.18)

or
s′Sphysical= γ2

Z

d4x
(
−g fabcDbd

µ cdφac
µ +g fabcAb

µωac
µ +g fabcDbd

µ cdφac
µ

)
.

Irrespective of the choice of BRST transformationsor s′, the physical Gribov-Zwanziger action is not
BRST invariant anymore. However, repeating the same argument given in the previous subsection,
it turns out that the breaking terms can be treated consistently at the quantum level, leading to a
renormalized broken Slavnov-Taylor identity. Furthermore, in most cases, everything will go as if the
theory obeys an unbroken Slavnov-Taylor identity, becausethe breaking terms are in fact harmless.

8 Conclusions

In this paper, we have shown that the nonlocal gauge invariant operator Tr
R

d4xFµν(D2)−1Fµν can be
coupled to the Gribov-Zwanziger action in a localized form.By embedding this model into a larger
class of models with local sources, we established a comprehensive set of Ward identities, which were
sufficient to prove the renormalizability to all orders of perturbation theory. Specializing thus to a
particular values of the local sources, we conclude that we have constructed a renormalizable action
(6.7) that allows us to study the gauge invariant massm in combination with the restriction to the first
Gribov horizon, obtained when the effective action is minimized w.r.t. the Gribov mass parameterγ2.
This restriction gives a first source of nonperturbative effects in gauge theories, as explained in the
introduction: the gluon/ghost propagator gets infrared suppressed/enhanced, while the Gribov mass
γ is fixed in terms of the QCD scaleΛQCD by means of the requirement that the effective action is
minimized with respect to it.

We also payed attention to the breaking of the BRST invariance when the sources are set equal to
their physical values. We have elaborated on the fact that inmost cases, the breaking terms in the
Slavnov-Taylor identity are harmless, since they usually induces zero contributions to the identities
between Green functions.

In the main body of this paper, we have extensively used and studied the BRST invariance in relation to
the renormalizability. However, there is another major reason why the BRST symmetry is so important
for perturbatively handled gauge theories. In a certain sense, the BRST invariance is the quantum
version of the gauge invariance, and as such it should play a major role in reducing the number of
relevant (physical) degrees of freedom, at least at the perturbative level. It is well known that a BRST
symmetry with corresponding nilpotent charge is a very powerful tool in establishing the unitarity of
gauge theories at the quantum level once a gauge has been chosen, see e.g. [37, 67, 68, 69, 70].

When we discard the Gribov restriction, we retrieve the gauge model studied in [45, 62, 70], enjoying
the BRST symmetry with nilpotent generator (7.16). Therefore, hope existed that the model might be
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unitary, i.e. that one would be able to define a physical subspaceHphys of the total Hilbert state space
H , such thatHphys is endowed with a positive norm. This optimism turned out to be flawed, as it was
shown in [70] that the massive gauge model is not unitary.

In addition to this, the restriction to the Gribov horizon only makes things worse. First of all, we have
lost the (nilpotent) BRST symmetry, so any potential discussion of the unitarity cannot be based on
BRST related tools. Further, we already mentioned in the introduction that the Gribov restriction gives
rise to an infrared suppressed gluon propagator, and this suppression is so that the gluon propagator
shows a violation of spectral positivity. Hence, the gluon is not expected to represent a physical
particle, implying that we should certainly not expect unitarity from the Gribov-Zwanziger action
when the gluons are treated as physical particles. We shouldrather expect the opposite. A hint
that the Gribov restriction destabilizes the gluon is also given when we take a look at the tree level
propagator, which in our conventions is given by [51]

〈
Aa

µAb
ν

〉
p
≡ δabD (p2)

p2

(
δµν −

pµpν

p2

)
,

with the gluon form factor

D (p2) =
p4

p4 +2g2Nγ4 , (8.1)

which can also be written in a “standard” propagator form

D (p2) =
1
2

p2

p2 + i
√

2g2Nγ2
+

1
2

p2

p2− i
√

2g2Nγ2
, (8.2)

i.e. as the sum of 2 propagators withimaginarymasses squared.

A similar reasoning can be applied when we do not implement the Gribov restriction. As we already
outlined in [70], we can see the massless version of our model(7.8) as an alternative to ordinary Yang-
Mills theory at high energies, based on their equivalence inthe perturbative region [62]. The benefit
of using our gauge model is that it is possible to couple mass terms∝ m to it without jeopardizing
the renormalizability. Then one can start looking for a sensible gap equation in order to generate a
nonperturbative mass scalem. Said otherwise, we could start looking for a gauge invariant dynamical
mass generation mechanism. The generation of such a mass parameter would break the unitarity at
the level of the gluons, but we must recall that unitarity is only a prerequisite for thephysicaldegrees
of freedom. We can depart our research from the massless (unitary) theory [70], but we are no longer
interested in describing the perturbative asymptotic highenergy regime of QCD, but instead we are
entering a phenomenologically interesting region where e.g. the gluons already loose their physical
meaning as observables. In this energy region, the gluons should be rather seen as a kind of quasi
particles with a finite lifetime, thus not entering the asymptotic physical spectrum, which we do not
know how to describe. We can continue to use the gluon propagator etc., albeit the versions corrected
by nonperturbative effects, like an effective gluon mass and/or Gribov restriction. At first instance,
we can concentrate on the case with only the massm to be fixed, but at a later stage, we can also study
the influence of the restriction to the Gribov regionΩ, since we have just proven the renormalizability
of this action to all orders.
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