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A spate of remarkable new hadrons reported in 2003 may lead to unequivocal proof of
states beyond conventional qq̄ and qqq structure. Claimed baryonic states Θ+, Φ, and
Θ0
c would consist of five quarks, and new D+

sJ -states and/or X(3872) might contain four
quarks. I review efforts to search for and study this “new” spectroscopy in p̄p-collisions
with the CDF II detector. Pentaquark searches are negative, and no evidence for exotic
analogs of DsJ -states was found. CDF has confirmed the X(3872). My main focus is the
production and decay properties of the X(3872), and its possible interpretations.
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1. 2003: Annus Mirabilis?

After decades of relatively mundane additions to the hadron spectrum, 2003 may

one day be recounted as the dawn of a new era in spectroscopy. This year witnessed

reports that may lead to the first unequivocal proof that Nature is not limited to

simple qq̄ and qqq constructions. But these claims are dogged by controversy, and

may instead be recalled as an ignominious tale told to future graduate students.

The idea of unconventional quark structures is quite old. If one glosses over

delicate distinctions between 2-baryon nuclei and 6-quark particles—and pardons

the anachronism—“exotic” hadrons pre-date the quark model. Far back in antiquity

Fermi and Yang considered NN bound states as a model of the pion.1 Later the

SU(3) symmetry of the Eightfold Way2 was used to put the deuteron in a dibaryon

multiplet3—with some evidence for a Λp-state.4 In the 1964 birth of the quark

model Gell-Mann5 actually mentions qqq̄q̄ and qqqqq̄ as mesons and baryons—but

only their lighter qq̄ and qqq siblings were considered relevant at the time.

In the mid-1960s enhancements in KN scattering6 pointed to +1 strangeness

baryon resonances, implying minimal qqqqs̄ content. These very broad structures re-

quired careful partial wave analysis to justify them as resonances, called Z∗’s. About

the same time KK bound states were suggested to explain a low mass I=1 enhance-
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2 G. Bauer

ment in p̄p →KKπ.7 And theoretically, duality arguments for baryon-antibaryon

scattering via meson exchanges implied, in quark language, qqq̄q̄ systems.8

With the advent of QCD in the early 1970s the qq̄/qqq-pattern was explained

by SU(3)c. It was soon realized that not only were more complex quark structures

allowed, but also new types exploiting gluons: “hybrids” with valence gluons added

to quarks, and “glueballs” without any quarks at all.9 It is, however, a dynamical

issue whether any exotics are manifest in an observationally meaningful way. Using

a bag model Jaffe and Johnson not only answered positively, but argued that some

known 0++ mesons (f0, a0. . . ) were better viewed as qqq̄q̄ than as a 3P0 nonet of qq̄.

Later, a KK state was invoked to explain ππ→f0(980)→KK data.10 Based on a

potential model, both f0(980) and a0(980) made good KK “molecules”—and likely

the only ones.11 The s-quark mass seemed to strike the right balance for binding.

Today exotics remain a dynamic topic.12 The f0(980) and a0(980) are still pro-

moted asKK-molecules, and hybrid and glueball candidates are bandied about. For

a full list of suspects see the PDG’s Non-qq̄ Candidates review.13 Despite decades

of progress, no exotic meson has been conclusively identified. Many are claimed as

“probably exotic,” but proof is difficult. Candidates are very wide, and thus hard

to study; and those with qq̄ quantum numbers (“cryptoexotics”) mix with ordinary

mesons and are thus hard to understand. More mesons are known than needed as qq̄-

states, hinting of something exotic. But resonances can arise dynamically, opening

another loophole. The ultimate smoking gun, a state with non-qq̄ quantum num-

bers (e.g. 1−+), has yet to be acclaimed.14 This messy soup demands a painfully

detailed understanding of data and theory before there is consensus on non-qq̄ light

mesons.

For baryons the situation was worse. After great hope for Z∗ pentaquarks and di-

baryons in the late 1960s and 70s, a grim reality set in in the early 80s.15 Claims were

either ruled out, or were simply unconvincing. The PDG became so disillusioned

that they last listed Z∗’s in 1986,16 and dibaryons in 1988.17 In spite of this dismal

verdict, theoretical and experimental work continued out of the spotlight.

In summary, despite the valiant effort of experimentalists and theorists for nearly

forty years, the question of whether Nature elects to form systems beyond qq̄ and

qqq remains open. But events in 2003 were to begin a new chapter in this saga.

2. The Tevatron and the CDF II Detector

CDF II is a general purpose detector at Fermilab’s p̄p collider18 (
√
s ∼ 2 TeV).

Originally designed in the late 1970s for high-pT physics (W , Z, top.. . . ), CDF be-

came an important venue for bottom/charm physics19 as luminosities increased and

the detector enhanced. The Tevatron produces hadrons with very large cross sec-

tions, as seen in Fig. 1, where b-production is compared to e+e−→Υ(4S)→BB. At

the same time, CDF has excellent tracking for spectroscopy, illustrated in Fig. 1 by a

B0
s -mass measurement to sub-MeV precision. The challenge is to exploit this bounty:

just as b-production is very large, the total inelastic cross section (Fig. 1) is huge!
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Fig. 1. LEFT: Comparison of the b-quark cross section at the Tevatron,20 integrated above a
minimum pT , pT,min, to the total inelastic cross section21 on a log-scale. Overlayed at the bottom

is the e+e− cross-section22 on linear scale aligned to match the log-scale at 4 nb, i.e. at the Υ(4S)
where B-factories operate. TOP: The CDF II J/ψφ mass distribution (∼ 8 MeV/c2 resolution)
used for a B0

s mass measurement. Bottom: Compilation of world B0
s mass measurements.13,23

One lives or dies at a hadron collider by being able to selectively trigger on events.

CDF II is the product of a major upgrade24 for Run II. Only a cursory descrip-

tion of the detector, sketched in Fig. 2, is given here. The tracking system consists

of a Si-strip vertex detector (SVX)25 comprising 5 layers of double-sided sensors

(axial and stereo coordinates), that span radii from 2.5-10.6 cm from the beamline.

This is surrounded by the Central Outer Tracker (COT),26 a 3.1 m long open-cell

drift chamber spanning radii of 43-132 cm. Both trackers are immersed in a 1.4 T

solenoidal magnetic field, enabling measurement of the transverse momenta, pT ,

of charged particles. The SVX is able to resolve the displacement of decay vertices

(~xdecay) of long-lived c/b-hadrons from the collision point (~xprim), and expressed as:

Lxy ≡ (~xdecay − ~xprim) · ~pT /|~pT |. (1)

Between the COT and solenoid is a TOF27 system for particle ID, supplementing

that from dE/dx-measurements of the COT. Outside the solenoid are scintillator-

based EM (Pb) and then hadronic (Fe) sampling calorimeters,28 with a tower ge-

ometry 0.1 wide in pseudorapidity η, and 15◦ in azimuth φ (5◦ for |η|>1.2). Towers

with energy depositions are clustered together in ∆R≡
√

(∆φ)2 + (∆η)2 to form
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Fig. 2. LEFT: CDF II detector. Right: Online impact parameter measured by the SVT.

“jets.” The calorimeter design was aimed at W -physics, and is not well suited for

low-energy γ-related spectroscopy. Beyond the calorimeters are a series of multi-

layer muon chambers.29 The central muon system (CMU) covers |η| ≤ 0.6, and

additional chambers (CMX) extend the coverage up to |η|≤1.0.

The trigger has three Levels. Important here at L-1 is the track trigger (XFT),30

which uses COT hits to trigger on tracks above a pT -cut, typically 1.5 or 2.0 GeV/c.

At L-1, XFT tracks are matched to hits in triggered µ-chambers. XFT tracks are

also fed to the Si-vertex trigger (SVT)31 for a L-2 decision on tracks displaced from

the collision vertex. L-3 is a farm of PC’s32 running offline code using the full event.

Distinctive features of heavy quarks make triggering practical. Traditionally lep-

ton (e, µ) triggers were the backbone of heavy flavor physics at hadron colliders,

either through semileptonic decays or J/ψ→µ+µ−. Lepton triggers are well estab-

lished, and we gloss over them other than to note that the CDF J/ψ→µ+µ− trig-

ger requires:20 two opposite-sign XFT tracks with pT ≥ 1.5 (2.0) GeV/c which are

matched to CMU (CMX) tracks, and lie in the mass range from 2.7 to 4.0 GeV/c2.

A dramatic new capability in Run II is a displaced track trigger, thereby keying-

in on the long lifetime of weak c/b decays. Originally driven by B→ππ physics,33

this trigger is a tremendous advantage over leptons for accessing fully reconstructed

decays. For our purposes the “SVT trigger” is: a L-1 demand for two opposite-sign

XFT tracks with pT ≥ 2.0 GeV/c, and scalar sum pT1 +pT2 ≥ 5.5 GeV/c. At L-2

this seed is used by the SVT to assign r-φ SVX measurements and find the impact

parameter of the tracks, d0, with respect to the beamline. An affirmative decision

requires that both tracks have 120µm≤d0≤1.0 mm, a transverse opening angle of

2◦≤|∆φ|≤90◦, and Lxy>200µm. The impact parameter distribution is shown in

Fig. 2. The d0-resolution is 50µm, which includes ∼30µm from the beam profile.

CDF and the Tevatron are not a universal forum for spectroscopy, but the

strengths brought to bear nevertheless present important opportunities. I review
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Fig. 3. LEFT: The ‘plot that launched a thousand preprints,’ the LEPS Θ+ signal in the nK+

mass [missing mass recoiling against γK−] spectra (solid line), and a pK+ control distribution
(dotted line). [Figure reprinted with permission from T. Nakano et al., Phys. Rev. Lett. 91, 012002
(2003). Copyright 2003 by the American Physical Society.] RIGHT: The baryon anti-decuplet
of Diakonov et al.35 Note that only the corner states are manifestly exotic.

searches for possible exotic hadrons in CDF II data that were recorded from Febru-

ary 2002 until as recently as August 2004.

3. The Pentaquark Revolution

After decades of disappointments, triumph seemed to be at hand in January 2003:

the LEPS Collaboration reported a resonance, now called Θ+, decaying to nK+ at

1540±10MeV/c2 (Fig. 3) in photoproduction (Eγ∼1.5-2.4 GeV) off of neutrons.34

With strangeness +1 the Θ+ is manifestly exotic for a baryon. The minimal quark

content is uudds̄, like the old Z-states, but dramatically narrower: ΓΘ<25 MeV/c2.

The LEPS search was prompted by the 1997 predictions of Diakonov, Petrov,

and Polyakov35 for a light, ∼ 1530 MeV/c2, and remarkably narrow, . 15 MeV,

member of an exotic baryon anti-decuplet anchored by the N(1710) resonance

(Fig. 3). The authors motivated the LEPS and DIANA collaborations to conduct

a search.36 After a couple of years both groups independently isolated a signal,

although DIANA37 reported some months after LEPS. DIANA’s signal was in the

isospin analog pK0
S at 1539±2 MeV/c2 in K+Xe data (pK<750 MeV/c). While pK0

S

has indefinite s/s̄ content, the incident K+ is strong evidence for +1 strangeness.

An avalanche of confirmations ensued (Fig. 4), although individually results are

only low to moderate significance. Many are pK0
S signals, and thus are evidence for

an exotic baryon only by virtue of their consistency in mass with nK+ observations.

Placing the Θ+ in an anti-decuplet is not the only option,41 but failure to find

a Θ++ partner42−46 supports Θ+ as an isosinglet. Finding related states is key,

such as excited states47, but perhaps more telling: other members of the multiplet,

e.g. the exotic ddssū (Fig. 3).48 In the fall of 2003 NA49 (pp at
√
s= 17.2 GeV)

reported -2 strangeness baryons at 1862±2 MeV/c2 in Ξ−π−, as well as indications of
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Fig. 4. Time-line of Θ+ re-
ports. Dates are from the listed
hep-ex postings for published
results, and conference dates
for unpublished38−40 sightings.
Vertical bands show the separate
pK0

S and nK+ mass averages and
error bands. GRAAL quoted no
error, and is excluded from the
average. The DIANA result is
grouped with “nK+” because it
is flavor specific even though they
observe a K0

S in the final state.

a partner in Ξ−π+.49 The Ξ−π− is necessarily exotic and is interpreted as ddssū,

the Φ−−(1860) [formerly Ξ−−

3/2 ]; and the other as udssd̄, the Φ0(1860) [or Ξ0
3/2].

To set the scale of the signal, 2191 charged Ξ’s were used to obtain 67.5 Φ−−,0

candidates—quite a plentiful yield of ∼ 3% of Ξ’s—over a background of 76.5.

NA49’s observation would be an important first step in filling in the anti-deculplet,

although the chiral model predicted a heavier mass, around 2070 MeV/c2.35

Pentaquark sightings advanced to the charm sector50 in March 2004. At a DESY

seminar H1 reported51 a narrow (σ∼12 MeV/c2) structure at 3099±3±5MeV/c2 in

pD∗− and interpreted it as the charm analog of the Θ+, i.e. uuddc̄. With 75 pb−1

of Deep Inelastic data (ep collisions), they selected 3400 D∗−’s after dE/dx particle

ID, yielding 50.6±11.2 Θ0
c ’s. Another analysis with 4900 D∗−’s from photoproduc-

tion reproduced the signal—albeit with higher backgrounds—for 43±14 Θ0
c ’s. At

the same seminar, however, ZEUS reported52 no signal in 126 pb−1 with almost

43k inclusive D∗−’s, or ∼10k in DIS data. ZEUS expects a distinct signal if the Θ0
c

is a few tenths of a percent of D∗−’s, whereas the raw H1 yield per D∗− was ∼1%.

Doubt is not limited to the Θ0
c . The Φ was quickly challenged by old WA89

data, a high-statistics hyperon experiment.53 A broader survey concluded that the

Φ was “at least partially inconsistent”54 with a large amount of earlier Ξ data.

And, despite many Θ+ claims, skepticism surfaced here too, including the spectre

of kinematic reflections.55 As widely noted, the nK+ and pK0
S claims do not share

a consistent mass (Fig. 4). Also, the absence of Θ+ in prior KN data limit ΓΘ .

1MeV/c2,56 too narrow to easily explain.57 Then, in early 2004, null Θ+ searches

started surfacing.

The Tevatron is an important venue for pentaquark searches by virtue of large

hadronic rates and access to all flavors. Conceivably the Tevatron might not be con-

ducive to the manufacture of complex and fragile quark systems, but if so, this too

would be interesting. Preliminary results of CDF searches are, so far, all negative.
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Fig. 5. LEFT: The Jet-20 K0
s sample used for a Θ+ search. Center: The pK− spectrum showing

the Λ(1520) reference signal (upper curve), and same-sign Kp (lower curve). RIGHT: The pK0
s

mass distribution from the Jet-20 sample. Vertical lines mark the Θ+ search window.

3.1. The Θ+(1540) at CDF58

As in many detectors, neutron detection is not viable in CDF, and Θ+(1540)→pK0
S

is searched for. No CDF trigger preferentially selects these decays. Because Θ+ pro-

duction is not understood, two contrasting types of events are used: soft inelastic

collisions with minimal trigger requirements, a.k.a. “Min-Bias” events; and hard-

scatters which produce jets—at least one that passes a 20 GeV calorimeter jet trig-

ger. The two samples respectively consist of 22.2M and 14.2M events, but as these

are very large cross-section triggers the integrated luminosities are only 0.37 nb−1

and 0.36 pb−1. Even so, a large sample of 0.67M and 1.6M K0
S’s are available in

these respective samples. The K0
S ’s from the Jet-20 sample are shown in Fig. 5.

Θ+ candidates are formed by adding to K0
S ’s a charged track, which must be

identified by TOF within at least 2σ of a proton. This effectively restricts the

protons to momenta from 0.5-2.1 GeV/c. The selection, as well as the use of the

TOF, are monitored by reference signals: φ→K+K−, Λ(1520)→K−p (Fig. 5), and

K∗+→K0
Sπ

+. The pK0
S mass distribution for Jet-20 data is shown in Fig. 5, the

Min-Bias distribution is similar but with about 1/3 the statistics. In both cases no

signal is apparent around 1540 MeV/c2. Counting events in the signal region of 1510

to 1570 MeV/c2 (vertical bars on the plot) and using K0
S sidebands to subtract back-

ground, the fitted Θ+ “excess” is 18± 56 Jet-20 candidates and −56± 103 for Min-

Bias, or: not more than 76 (89) Θ+ candidates for Jet-20 (Min-Bias) at 90% CL.

Incisive comparisons across the diverse Θ+ reports are problematic as we lack

theoretical bridges to connect them. The only signal in a environment analogous to

CDF’s comes from HERA, a high-energy ep-collider. There, based on 0.87M K0
S’s,

ZEUS sees 221±48 Θ+’s.59 In terms of raw K0
S’s, CDF should have a fair signal.
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3.2. The Φ(1860) at CDF60

As in the Θ+ search, no CDF trigger explicitly keys on Φ(1860)→Ξπ. Two comple-

mentary triggers are used: Jet-20 again, and 220 pb−1 of SVT triggers. Displaced

tracks are produced in Ξ decays, but these are too far away for the SVT to trigger.

Reconstructing Λ0→pπ− is straightforward. More subtle is Ξ−→Λ0π−. The Ξ

is charged, with almost half the Λ0 lifetime, and will often leave hits in the SVX.

A specialized reconstruction is used whereby displaced pions are added to Λ0’s to

form Ξ− candidates, and potential Ξ− SVX-hits are sought for a full Ξ− track fit.

In the SVT data ∼36k Ξ−’s are cleanly reconstructed (Fig. 6), and ∼5k in Jet-20.

A Φ→Ξπ search has a good control signal in Ξ0(1530)→Ξ−π+, of which there

are 2, 200±100 in the SVT data, and 390±30 in Jet-20. The Ξ0(1530) is prominent

in the Ξ−π+ distribution of Fig. 6, but no other structures are seen there, or, in

the Ξ−π− masses. The limit on the number of Φ candidates is expressed relative

to the raw number of observed Ξ0(1530)’s. Imposing an 1860-resonance fit in the

Ξ−π− SVT data yields −54±47 candidates, or a 90% CL limit of 51 Φ−−(1860)’s.

This translates into the limit R−−≡N(Φ−−)/N(1530)<0.03 at 90% CL. Similarly,

R0 < 0.06, or combining both channels RTot < 0.07 at 90% CL. The limit on the

ratio is not corrected for acceptance, but this is not expected to be a large effect.

For the Jet-20 samples the limits are R−−

20 < 0.07, R0
20 < 0.06, and RTot20 < 0.09.

CDF’s raw sensitivity compares well with NA49’s. CDF’s Ξ− sample is more

than 10× the ∼2000 Ξ−’s of NA49. With a looser selection61 that is more sensitive

to the Ξ(1530), the NA49 Φ yield appears to be ∼50% of Ξ(1530), well above CDF’s

<10% limits. Note that the Ξ(1530)/Ξ ratio is similar for both experiments.

3.3. Charm Pentaquarks at CDF58,62

An important distinction for a Θ0
c(3100)→pD∗− search in CDF,58 versus those for

Θ+ and Φ, is that the SVT trigger is aimed at D decays. In 240 pb−1 of data CDF
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Fig. 7. TOP-LEFT: prompt D∗+π− mass spectrum, where overlapping D0
1(2420) and D0

2(2460)
are clearly visible. TOP-RIGHT: pD∗− masses for the prompt sample (no PID). BOTTOM-

LEFT: pD∗− masses for the long-lived sample (no PID). BOTTOM-RIGHT: 90% upper limit
as a function of mass in the long-lived sample for two Θc widths. The arrows mark H1’s Θ0

c mass.
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Fig. 8. The pD∗− mass spectra for prompt (left) and long-lived (right) selections with p-ID.

has ∼3M D0→K−π+ decays. Adding a pT >400 MeV/c pion yields ∼0.5M D∗+.

Adding another such pion leads to reference states D0
1(2420) or D0

2(2460). These are

clearly seen in Fig. 7, even though partially overlapping due to their large natural

widths. Alternatively, assigning a proton to the latter track produces Θ0
c candidates.

Since Θ0
c ’s might arise via long-lived b-decays, or prompt production, CDF dis-

tinguishes prompt (|Lxy|<400µm & |Lxy|/σLxy <3) and long-lived (Lxy>400µm

& Lxy/σLxy >3) samples. No D∗−p excess is seen at ∼3099 MeV/c2 in either case

(Fig. 7). Mass dependent 90% CL limits are shown in Fig. 7 for the “b-sample.” In
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Fig. 9. The prompt (left) and long-lived (right) pD− mass spectra (arrows mark H1 mass).
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Fig. 10. The prompt (left) and long-lived (right) pD0 mass spectra (arrows mark H1 mass).

the signal region, 3100±18MeV/c2, the maximum limit is 43 Θ0
c’s (ΓΘ =12 MeV/c2),

or 71 for prompt. Sensitivity is improved by particle ID. Protons were identified us-

ing a likelihood ratio (e, µ, π, K, and p hypotheses) combining dE/dx and TOF

measurements, with the cut optimized on 2.5k Λc→pK−π+ decays. The new pD∗−

plots are in Fig. 8. The maximum yields become 32 prompt and 15 long-lived Θ0
c ’s,

although part of this reduction is due to the efficiency (∼70%) of the proton cut.

CDF extended their search62 to various analog channels: Θ0
c→pD−, and Θ+

c →
pD0 (uuudc̄), and even pD0 (uudcū). Figure 9 shows the results for pD− after

proton ID for prompt and long-lived samples. The pD0 results are in Fig. 10. The

pD0 plots are not shown here, but are similar to Fig. 10. No signals are apparent,

and the upper limits (ΓΘ =12 MeV/c2) on candidates may be summarized as:

Mode Content Prmt & L-L 90% CL Reference Mode & Yield

pD∗− uuddc̄ < 32 < 15 D∗0
1 (2420) → D∗+π− 3.7 ± 0.9 k

D∗0
2 (2460) → D∗+π− 6.2 ± 1.7 k

pD− uuddc̄ < 84 < 118 D∗0
2 (2460) → D+π− 31.7 ± 1.3 k

pD0 uuudc̄ < 122 < 214 D∗−

2 (2460) → D0π− 15.3 ± 1.6 k

pD0 uudcū < 245 < 174 “ “
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Fig. 11. LEFT: The pJ/ψ mass distribution without particle ID (top histogram) and with proton
ID cuts (bottom). CENTER: The pJ/ψ masses with proton ID (enlargement of lower histogram

in the left plot), with a linear background fit. RIGHT: The pJ/ψ masses with proton ID and
Lxy>100µm cut for a long-lived pentaquark search.

CDF’s Θ+
c (3100) limits are below H1’s report, yet their precursor D∗− sample

dwarfs that of H1 by two orders of magnitude, and all other null searches52,63−65 by

more than ten times. If the Θ+
c exists, it is remarkably suppressed at the Tevatron!

3.4. Bottom Pentaquarks at CDF66

The Tevatron offers potentially exclusive access to b-pentaquarks. CDF has made

one such search: R+
s (uudsb̄), predicted at ∼5920 MeV/c2,67 decaying weakly to

pJ/ψ. Candidates are made by combining J/ψ’s (280 pb−1) with a charged track.

The reference mode is 2.4k of B+ → J/ψK+. Proton ID again uses the combined

likelihood. The pJ/ψ spectrum both before and after the ID is shown in Fig. 11.

With proton ID the maximum 90% CL over 5800-6305 MeV/c2 is 76 R+
s ’s. As a

weak decay, R+
s could be long-lived: for Lxy>100µm (Fig. 11) the limit is 21 R+

s ’s.

3.5. Pentaquark Reprise

All CDF searches lack any hint of pentaquarks, even though the size of precursor

samples exceeds the most comparable positive experiment. But in this, CDF is not

unique. A wide range of experiments now report null results (Table 1). Many also

have larger reference signals than do claimants. The Φ and Θ0
c have a single sighting

in contrast to a mounting number of non-observations. The Θ+ has about a dozen

confirmations to its credit, but they are now outnumbered by null searches.

The primary refuge for reconciling null searches with sightings lies in the possible

peculiarities of production. Most sightings are at low energies, often in exclusive

reactions. Production at higher energies is predominantly through fragmentation, or

via B-decay, which are quite different from low-energy processes. Models of inclusive

pentaquark production are rudimentary, but several have been proffered.

In one, the fragmentation probability, f(c̄→Θ0
c), is estimated from that of D

and Λ+
c .84 That author finds f(c̄→Θ0

c)≃(2-7)×10−3, consistent with H1’s raw D∗−
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Table 1. Summary of experiments reporting negative pentaquark searches since LEPS reported the
Θ+. Entries are the citation number in this review. Instances where one of these experiments has
also reported a signal are indicated by a “

√
.” For the production modes “A” represents a nucleus,

and “h” some set of hadron projectiles (e.g. p, π,. . . ).

Negative Pentaquark Search Exps.
Fixed Target Low−E e+e− High-E Collider

Pentaquark
Channel
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γp γD pA γA µA hA hA ΣA pA pA ψ(S) Υ(4S) –AA– –Z0 – ep p̄p

Θ+ → NK LEPS34 √ √ 68 69 — 70 71 — 72 73 74 75 65 76 77 63 44 78 √ 58

Θ++ → pK+ — 42 43 — — — — — — — — — 46 65 ——— 44— 45 —

N5/Ξ5 → ΛK STAR48 — — — — — — — — — — — 79 — —√— —— — —

→ Σ0K — — — — — — — — — — — — 80 — ——— —— — —

Φ→Ξ−π± NA4949 — 81 — 69 82 — — 53 72 73 — 79 83 ——63 —— 45 60

Θ0
c → pD∗− H151 — — — 64 — — — — — — — — 65 ——63 —— 52 58
→ pD− — — — — 64 — — — — — — — — 65 ——63 —— — 62

Θ+
c → pD

0
— — — — — — — — — — — — — 65 ——63 —— — 62

→ pD0 — — — — — — — — — — — — — — ——— —— — 62

R+
s → pJ/ψ — — — — — — — — — — — — — — ——— —— — 66

and Θ0
c rates. Translating to the Tevatron for 200 pb−1: 8-28 M Θ0

c ’s are produced!

Alternatively, a “coalescence” model85 scales the joint p and D∗− production rates

to a regime where the p and D∗− form a Θ0
c . Using H1’s rate to set the absolute

scale, there are ∼ 50M Θ0
c ’s for 200 pb−1. CDF efficiencies have not been applied,

but it is surprising that a signal should elude CDF with H1-like Θ0
c-rates.

Another approach is a statistical (“microcanonical”) model for pp interactions.86

This does favor low-energy Θ+ production due to the importance of p+p→Θ++Σ+.

But even so, the model predicts a fairly flat high-energy limit of ∼1% Θ+’s/event—

a huge rate for CDF, even if low-pT is favored. The prediction for the Φ−−/Ξ− ratio

is ∼2% at the SPS—in line with NA49. But the ratio increases with energy by ∼3×
at the Tevatron, exacerbating the inconsistency posed by CDF’s null result.

If the key to Θ+ and Φ production at low energies is the incorporation of quarks

from an initial baryon, then it is difficult to translate lessons from low-energy exper-

iments to the central rapidities studied by CDF. One such model87 predicts high

rates (&10−3 Θ+/event for pp→Θ+ . . . )—but at high-rapidities/low-pT ’s—making

these Θ+’s invisible to CDF. Similarly, it has been argued88 that the apparent pro-

duction discrepancies may be due to the kinematic and combinatoric advantages

of low-energy, or particularly, exclusive reactions, where most claims arise. This is

based, in part, on an analysis which concludes that Θ+ production in a range of

processes falls more rapidly with energy (pT ) than normal hyperons,89 undermining

high-energy searches. But as these authors89 note: the processes considered, includ-

ing a target fragmentation model, are kinematically linked to the initial baryons and

are not relevant to the central production of CDF. While this particular suppression
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is not in play, what suppression lurks in the parton fragmentation is another matter.

One may hesitate relying on these production models for pentaquarks, particu-

larly when “data points” used to normalize some models are themselves uncertain.

A simple empirical foil to consider is deuteron production as a stand-in for pen-

taquarks. The ratio of anti-deuteron to anti-proton production scales well across

many high-energy processes (expected in coalescence models). For example, the ra-

tio is very similar in pp collisions at the ISR and photoproduction at HERA. The d̄/p̄

ratio is ∼10−3 at pT /M=0.2, and falls by half at pT /M∼0.5.90 If one takes Φ/Ξ−

ratio as the appropriate analog to d̄/p̄, the NA49 ratio of ∼3% is at least an order

of magnitude more plentiful than implied by the deuteron analogy. Similar scaling

of Θ+ reports gives ratios spanning several factors of ten. Scaling91 CDF limits

gives Θ+/Λ0 .0.02%—below the deuteron-inspired rates—while the Zeus59 signal

gives Θ+/Λ0∼0.1%. The above comparisons cavalierly ignore detection efficiencies,

which maybe quite important as the d̄/p̄-ratio falls with pT . As noted by critics, this

is an important weakness of fragmentation dominated experiments compared to the

low-energy Θ+ sightings. However, the suppression suggested by d̄/p̄ is no where as

extreme as sometimes claimed for pentaquarks (e.g. Θ+/Λ(1520)<10−3)92

The contrast between high-energy fragmentation à la CDF and low-energy, espe-

cially exclusive, Θ+ production is sufficient that little inference can be drawn from

one to the other without a robust theoretical link. Low-energy Θ+ proponents can

justifiably raise production arguments to explain away high-energy null searches—

but only at the risk of abandoning their high-energy compatriots: such as Θ+ by

ZEUS. Indeed, the quantity and quality of negative searches present an impressive

challenge, and it seems likely that at least some claims will fall. The strongest case

rests with the Θ+, where production advantages may truly favor some observations.

Of critical importance are high-statistics studies from experiments claiming signals.

These have been advertised as imminent,88 and the first preliminary result has just

appeared from from CLAS: a search for γp→Θ+K0 has failed to observe a signal

with 95%CL limit of Θ+/Λ(1520)< 0.2%!93 If any pentaquark claims are yet vin-

dicated, it will be interesting to learn why they are so suppressed at the Tevatron.

4. “Anomalous” D
+

sJ States

Pentaquarks were only the start of spectroscopic excitement in 2003. BaBar an-

nounced a narrow state ∼ 2317 MeV/c2 decaying to D+
s π

0 in April.94 Based on a

hint from BaBar,94 CLEO quickly claimed another at ∼2460 MeV/c2 in D∗+
s π0.95

The benign interpretation is that these are the missing 0++ and 1++ D∗∗
s states,

which would complete the L=1 family along with D+
s1(2536) (1+−) and D+

s2(2573)

(2++). But as such, these new states were much lighter and narrower (< 10 MeV)

than expected. The D∗∗
s were thought to follow the non-strange D∗∗’s: very broad

0++ and 1++ states which recent measurements put Γ ∼ 240-400 MeV.96 The

D+
sJ(2317) did not look as the D+

s0(0
+) should. BaBar suggested it might be a

qq̄cs̄ state.97
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Fig. 12. LEFT: Mass distributions of D+
s π

− and D±
s π

± for pions with pT > 500 MeV/c.

RIGHT: Mass distributions of D+
s π

+π− and D+
s π

±π± for pions with pT >350 MeV/c.

CDF is ill-suited for low-energy γ-detection, and thus for D
(∗)+
s π0. If, however,

these new states were 4-quark systems, or more generally had isospin partners, there

could be D+
s π

− or D+
s π

+π− resonances. The latter decay is also allowed if the

D+
sJ(2460) is a 1++, but forbidden for 0++. CDF searched for these using 80 pb−1

(24.6kD+
s ’s), resulting in the spectra of Fig. 12—no signals are seen.98 To gauge the

sensitivity, BaBar’s ∼ 1300 D+
sJ (2317)’s were based on ∼ 80k D+

s ’s, or ∼ 3× that

of CDF. While the origin of D+
s ’s can be different for the two experiments, CDF is

in the ball-park to see a D+
s π

− analog given the large BaBar signal.99 For a 1++,

D+
s π

+π− would be suppressed relative to D∗+
s π0. Belle later found a small signal

[59.7±11.5 D+
sJ(2460)’s] and found the ratio of D+

sJ (2460)→D+
s π

+π− to D∗+
s π0 to

be 14±4±2 %.100 By näıve scaling, this is below CDF sensitivity with 80 pb−1.

The new D+
sJ ’s excited spectroscopists, but radical explanations now seem pre-

mature. Neither state is mysterious once their masses are understood. Small widths

arise naturally for the DsJ(2317) and D∗
sJ (2460) as 0+ and 1+ if they are below the

DK and D∗K thresholds respectively. As such, the preferred decay is excluded, and

the isospin violating D
(∗)
s π0 is the main hadronic mode. It was soon noted101 that

potential models are free to move D∗∗
s masses more than usually appreciated. It was

also argued,102 light masses follow from chiral symmetry in QCD: the ground state

parity doublet, D+
s and D∗+

s (0−, 1−), is paired with 0+ and 1+ excited states, and

chiral symmetry breaking raises the (0+, 1+) doublet close to that of the DsJ ’s.

Studies of decay modes and angular analyses support D∗
s0(2317) and D′

s1(2460)

assignments.103 But there is not unanimity, and exotic proposals persist.104,105

Lest the dust seem settled, SELEX recently kicked up a new cloud with a

narrow state D+
sJ (2632) → D+

s η, and a weaker D0K+ signal.106 New puzzles

arise:107 Why so narrow? Why is the D+
s η rate ∼ 6× larger than D0K+?

The mystery is heightened by BaBar’s failure to see D+
sJ(2632) → D0K+ while

having a much larger D+
s2(2573) → D0K+ yield.108 SELEX counters106 that

their production is distinctive by virtue of their Σ− beam. CDF has a large

D+
s2(2573)→D0K+ sample—it will be interesting to see them search. But so far,
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the odds favor the DsJ ’s as just D∗∗
s ’s.

5. The X -Files

After a series of null results we close with a state CDF has confirmed, but whose

nature is a mystery: the X(3872). It is a tale we begin by recounting a bit of history.

5.1. A Little Charmonium History

Our understanding of hadrons was revolutionized by studying cc̄-states, starting

with the J/ψ in 1974.109 Mapping cc̄-states was largely done in the 70s in e+e− an-

nihilation. A limitation of e+e− is that only systems with photon quantum-numbers

are formed—i.e., only J/ψ, ψ(2S), ψ(3770), . . . are directly accessed. Almost all cc̄-

states below the ψ(2S) (i.e. ηc [1S0] and χc [3P0,1,2]) were reached via radiative

ψ(2S) decays. Once these were found, e+e− colliders were at a dead-end. Heavier

1−− states, e.g. ψ(3770), are useless as they are above the DD threshold and are

broad, with tiny decay rates to lighter cc̄-states. The hunt shifted to other venues.

The hc (1P1) is the lone state inaccessible 110 via γ-decays of the ψ(2S). Searches

for this state shifted to hadronic production, notably p̄p annihilation. From the mid-

1980s a few hc claims surfaced.111,112 These were consistent, but individually weak

observations, leading the PDG to classify the hc as “needing confirmation.”

By the early 1990s all cc̄-states below the ψ(2S) were ostensibly113 seen—only

those above DD remained. But such states rapidly decay to open charm, making

them broad and difficult to find. For example, the ψ(3770) (3D1) is just above DD,

and yet Γ∼ 20 MeV/c2. Heavier states grow ever fatter. The 3D2 is an exception,

its spin-parity (2−−) prohibits DD decay. The 3D2 is prime quarry for charmonium

hunters: a narrow state which might be seen in the distinctive J/ψπ+π− mode.

In 1994 E705 (300 GeV/c π/p-Li) published, along with a hint of the hc, a 2.8σ

excess in J/ψπ+π− at ∼3836 MeV/c2.112 The 3D2 was the obvious interpretation,

but the cc̄qq̄ option114 was noted. The 58±21 excess was a large fraction of their raw

77±21 ψ(2S) yield; but no excess was seen by E672/E706115 (515 GeV/c π−-Be)—a

higher statistics [224±48 ψ(2S)] result with better resolution. A signal might also

be expected in CDF Run I data given their much larger ψ(2S) sample [∼ 2k] and

superior resolution. Nothing was noticed there at ∼3836 MeV/c2,116 nor by BES in

e+e−→J/ψπ+π−+anything.117 But it is unclear how the latter translates to E705.

5.2. Discovery of the X(3872)

In the early days of b-physics it was realized that b-hadrons often decay to cc̄ since

a favored chain is b→ cW−, W−→ sc̄.118 Indeed, CLEO found B→J/ψ+anything

to be ∼1%.119 In the early 1980’s, this was viewed as a tool for studying b-physics.

Decades later, some in Belle appreciated that this could be “inverted” to exploit B’s

for studying charmonium. The cc̄ dead-end for e+e− colliders could be evaded by

using feeddown from B’s instead of ψ(2S)’s. Belle demonstrated this by observing
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Fig. 13. LEFT: The J/ψπ+π− mass spectrum from Belle125 showing the X(3872). RIGHT:

The corresponding dipion masses. The hatched histogram are sidebands normalized to signal area.

B+ → ψ(3770)K+,120 and more significantly, used B→KKsK
±π± to rediscover

the ηc(2S).121 Crystal Ball claimed122 the ηc(2S) at ∼ 3594 MeV/c2 over twenty

years ago; but Belle now found it at ∼3654 MeV/c2, and was so confirmed.123

In Belle’s ηc(2S) studies a stray bump was spotted that turned out to be a re-

flection of a new J/ψπ+π− resonance at 3872.0±0.6±0.5 MeV/c2 (Fig. 13),124 later

dubbed X(3872). The impulse was to take this as the long-sought 3D2, but that was

expected at ∼3820 MeV/c2.126 It should also have a prominent χc1γ decay, which

was not seen. Being virtually at theD0D∗0 mass, Belle speculated theX(3872) could

be a D0D∗0 “molecule.”114 The exotic prospects105,127−131 provoked great inter-

est, and it is questionable whether standard cc̄132,133 can accommodate this state.

5.3. The X(3872) at CDF

5.3.1. Observation and Mass Measurement 134

Belle announced their discovery of B+→X(3872)K+ in August 2003 at the Lepton-

Photon Symposium.125 Coincidently, a continuation of a Run I search for the 3D2

was being prepared in CDF. Once Belle’s preprint appeared, the search was expe-

dited and X→J/ψπ+π− was sighted eight days later. CDF publicly confirmed the

X(3872) at a Quarkonium Workshop held at Fermilab in September.135

The CDF search began with 220 pb−1 of J/ψ→µ+µ− triggers. The challenge at

the Tevatron is background, and due to large particle multiplicities per event this

can be fierce when combining two charged particles to a J/ψ. Because of fluctuations

in multiplicity, some events have many background candidates with little prospect

of signal. A loose preselection was made, and events with more than 12 J/ψππ

candidates with masses below 4.5 GeV/c2 were rejected. The preselection was mainly

based on track quality cuts and fitting the J/ψππ system to a common vertex.

The selection was tightened by demanding: smaller µ+µ−π+π−-vertex fit χ2’s;

M(µ+µ−) be within 60 MeV/c2 (∼ 4σ) of the J/ψ; pT (J/ψ) > 4 GeV/c; pT (π) >
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400 MeV/c; and ∆R(π)<0.7 for both pions, where ∆R(π) is relative to the J/ψππ

system. The resulting mass distributions are shown in Fig. 14. A large ψ(2S) peak

is seen, as well as a smaller bump at ∼ 3872 MeV/c2. No structure is apparent in

J/ψπ±π±. Gaussian fits to the peaks yield 5790±140 ψ(2S) and 580±100 X(3872).

Belle noted (Fig. 13) that the X strongly favored high M(ππ). CDF confirmed

this by splitting the sample into M(ππ) above, and below, 500 MeV/c2 (Fig. 14).

No X-signal is discernible in the low-mass sample. For high-M(ππ) the X-mass is

3871.3±0.7±0.4 MeV/c2, with a resolution dominated σ of 4.9±0.7 (stat) MeV/c2.

This mass is in good agreement with, and similar precision to Belle’s (Fig. 15). The

remarkable proximity of the X to the D0D∗0 threshold fuels molecular speculations.

5.3.2. X(3872) Production at CDF138

Properties ofX production present an opportunity to garner insights into its nature.

Given Belle’s discovery, B’s are clearly an important source of the X , but is this

how CDF’s signal arises? If not, can direct X production in p̄p collisions shed light

into its nature? Specifically, does X production in CDF differ from charmonia?

Charmonia production has been extensively studied in p̄p,139−144 and provided

the experimental impetus139 for the so-called ”NRQCD factorization model.”142

At the Tevatron, charmonia arise as a mixture of “direct” production from fragmen-

tation plus feeddown from higher-mass states. An important source of feeddown is

b-hadrons: they produce ∼ 10 − 20% of J/ψ, χc, and ψ(2S). The actual fractions

depend upon species and pT . If the X is not simple cc̄, it may have a very different

production rate, particularly if it is a fragile molecule bound by only an MeV or so.

A standard method139 to separate b sources from “prompt,” i.e. either directly
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Fig. 15. Summary of X-mass measure-
ments for all observations124,134,136,137

compared to the D0D∗0 and D+D∗− thresh-
olds. Vertical lines indicate central values,
and bands the range of uncertainty in mea-
sured masses—the dark solid band is for the
X(3872).

produced or from decays of short-lived particles, is to measure a particle’s apparent

“lifetime.” Since the X does not decay weakly, its true lifetime is far too short

for it to travel a discernible distance. Any observed displacement, Lxy (Eq. 1),

is ascribed to “b→ X . . .” decays. In the X selection pT (J/ψ) is above 4 GeV/c,

ensuring sufficient boost such that b decays can not mimic prompt production. The

displacement is converted into “uncorrected proper-time” by ct≡M ·Lxy/pT . This

is “uncorrected” because the mass and pT of the J/ψπ+π− are only part of the

b-decay, and so ct is not the true proper decay-time. The ct distribution will not

give the correct b lifetime, but it still quantifies the fraction of b→X . . . decays.

DØ took a step in this direction when they compared the fractions of signal that

had ct > 100µm, and found 30.0±1.8 (stat)% for ψ(2S) and 31.8±6.7 (stat)% for

X .136 By this measure the states look identical, but the prompt and b production

sources are not actually disentangled, nor is the ct-resolution specified. Parentheti-

cally we note that DØ considered other production features using this type of binary

comparison. In each case the X and ψ(2S) were indistinguishable; but lacking the-

oretical models one cannot assess the significance of such null comparisons.

CDF’s separation138 of prompt and b components begins with the same sample

used in the mass measurement. Since precise vertexing is fundamental for measur-

ing Lxy, additional SVX and beamline criteria are applied. The sample is reduced

by ∼ 15%, where the main loss is from rejecting candidates with Lxy errors above

125µm. An unbinned likelihood fit is performed in mass and ct to obtain the long-

lived fraction. The mass is modeled by a Gaussian for signal and a quadratic poly-

nomial for background. In ct, the long-lived signal is an exponential smeared by the

resolution function (double Gaussian), and the prompt part is the resolution func-

tion. Long-lived backgrounds are also modeled by resolution smeared exponentials.

The fit results are portrayed in Fig. 16 by projecting the likelihood PDF onto the

ct distribution of the data, which is well described. In this sample 28.3±1.0±0.7 %

of ψ(2S)’s are long-lived—similar to Run I.139 The M(ππ)>500 MeV/c2 sample is

used for the X fit, but the signal is still deeply buried in background in the ct projec-

tion. The long-lived X-fraction is 16.1±4.9±2.0 %, which is smaller than the ψ(2S),

but only by a bit more than 2σ. The absence of b→X-decays is excluded by 3σ based

on Monte-Carlo “pseudo-experiments.” It must be stressed that these fractions de-
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Fig. 16. “Lifetime” projections of likelihood fits onto data. LEFT: The ψ(2S) distribution with
full PDF and its breakdown into signal (shaded) and background (hatched) classes. Signal and

background are further separated into prompt and long-lived components. The projection is for
candidates within ±2.5σ of the ψ(2S) mass in order to be reflective of its signal-to-background
ratio. RIGHT: Corresponding distribution for the X(3872).

pend on the sample selection, mainly pT ,139 and are therefore sample specific.

CDF’s long-lived fractions for X and ψ(2S) are quite similar, but factors that

might otherwise distinguish X production from cc̄ may scale p̄p→X and b→X rates

together, canceling in the ratio. Indeed, an analysis of inclusive X production145 in

the NRQCD formalism146 lends credence to this view. Although posed in molecular

terms, the arguments are more general: matrix elements for the X as 1++ are

argued to scale with those of the χc1, yielding universalX-to-χc1 scaling in inclusive

processes. By setting the scale with a measured B → X branching ratio, other

production ratios are predicted—like those below (Tables 2 and 3). The predictions

are crudely successful, but they only test internal consistency amongst the data, as

an X data-point must set the scale. We take the larger lesson of this analysis to be a

case for a more general insensitivity of inclusive production ratios, such as B decay

relative to p̄p→X . Thus, the long-lived X fraction measured by CDF is probably

not so telling. A more incisive test is to consider the prompt and b sources separately,

but we lack models for crisp predictions as well as knowledge of the branching ratio

BX ≡ BX [X→J/ψπ+π−]. Still, we may forge ahead with some crude comparisons.

Using CDF’s X(3872) and ψ(2S) yields, NX and Nψ (Fig. 16), and long-lived

fractions fLL, one can estimate the production rate of X relative to ψ(2S), i.e.,

σ(p̄p→X . . .)

σ(p̄p→ψ(2S) . . .)
=

(1 − fXLL)NX

(1 − fψLL)Nψ
· Bψ[ψ(2S)→J/ψπ+π−]

BX [X→J/ψπ+π−]
· ǫψ
ǫX
, (2)

where ǫX/ǫψ is the (unreported) ratio of CDF efficiencies for X and ψ(2S). Given

the relatively soft kinematic cuts, ǫX/ǫψ likely deviates from unity by tens of per-

cents rather than factors of two147—a modest uncertainty for our purposes. The

results are shown in Table 2 along with CDF data for J/ψ139 and χc,
140 where the

b-hadron feeddown was removed by a lifetime analysis, as well as that from ψ(2S)

and χc to J/ψ. These values are corrected for efficiency, unlike the crude estimate

done here for the X—so that we must preserve the ǫX/ǫψ factor. The cross section
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Table 2. Ratio of charmonium production cross sections relative to the ψ(2S)
derived from CDF measurements at the Tevatron139,140 and PDG13 branching
ratios. The X(3872) ratio is determined from the raw measurement of the CDF
lifetime analysis, and requires an efficiency correction, ǫψ/ǫX .

State pT Range (GeV/c) σ[cc̄]/σ[ψ(2S)]

J/ψ > 5.5 ∼5.0 ± 1.0
χc1 > 5.5 ∼4.3 ± 1.1
ψ(2S) 1

X(3872)
∫

ǫ(CDF Analysis)·dpT (0.045 ± 0.008)/BX · ǫψ/ǫX

Table 3. Exclusive B+ → [cc̄]K+ branching ratios are compared to inclusive branching ratios for
“B+/B0/B0

s/b-baryon” mixture decaying to charmonium, and to the X(3872). Charmonium values
are from the PDG13 unless otherwise noted, the exclusive X is a Belle124 and BaBar137 average
(updated to PDG‘04), and the inclusive X is derived from CDF’s lifetime analysis. The X values
have residual unknowns: BX(X→J/ψπ+π−), and CDF’s X-to-ψ(2S) efficiency ratio, “ǫX/ǫψ .”

State B(B+→ [cc̄]K+) ×10−4 B(b→ [cc̄] . . .) ×10−2 Ratio

ηc (1S0) 9.0 ± 2.7 — —
J/ψ (3S1) 10.0 ± 0.4 1.16 ± 0.10 8.6 ± 0.8%
χc0 (3P0) 6.0 ± 2.3 — —
χc1 (3P1) 6.8 ± 1.2 1.5 ± 0.5 4.5 ± 1.7%
ψ(2S) (3S1) 6.8 ± 0.4 0.48 ± 0.24 14 ± 7%

ψ(3770) (3D1) 4.8 ± 1.3120 — —

X(3872) (??) (0.14 ± 0.03)/BX (0.011 ± 0.006)/BX · ǫψ/ǫX (13 ± 8) · ǫψ/ǫX %

ratios are known to vary mildly with pT , making the values in Table 2 depend on

the pT range. This is a potentially important caveat for the X , as its pT behavior is

(so-far) unknown.148 With these qualifiers, we can compare the measured produc-

tion ratios. It has been estimated that production of some D-states can be nearly

as large as the ψ(2S).149 The X plausibly follows a cc̄ pattern if 2%.BX.10%. A

much larger BX suppresses the cross section, perhaps indicating a non-cc̄ character.

Adapting Eqn. 2 to CDF’s long-lived component, one can estimate the inclusive

branching ratio of “B+/B0/B0
s/b-baryon” mixture decaying toX+anything relative

to that for ψ(2S). Then, B(b→X . . .) may be obtained from multiplication by the

known B(b→ψ(2S) . . .). Table 3 lists the result along with known inclusive branch-

ing ratios for cc̄ states, as well as the corresponding exclusive B(B+ → [cc̄]K+).

B(B+ →XK+) is an average of B-factory measurements, up to the unknown BX .

Both the inclusive and exclusive branching ratios tell a familiar story: modest BX
pushes b→X branching ratios into the cc̄ realm, and large BX implies suppression.

The last column shows the ratio of exclusive to inclusive branching ratios: the X is

consistent—independent of BX— with cc̄, albeit with very large errors.

With modest BX , say ∼ 2-10%, the X falls into line with the standard cc̄ in

Tables 2 and 3. Alternatively, large BX , as in some exotic scenarios, could imply

production and b-decay rates suppressed by up to an order of magnitude. Thus

the lesson to be learned hinges upon the size of BX(X→ J/ψπ+π−). BaBar has

recently shown promising results indicating that they hope to soon measure BX .150
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Fig. 17. Three examples of M(ππ) “slices” around the X of the J/ψπ+π− mass distribution.

5.3.3. The Dipion Mass Spectrum151

A feature of X(3872) decay is its propensity for high-mass dipions (Figs. 13 & 14).

Dipion spectra are often noted as window to the X . As is well known, ψ(2S) →
J/ψπ+π− prefers high M(ππ).152 High masses are no surprise for the X as cc̄ in a
3S1—but this is untenable as it should then be directly made in e+e−. Interest in

ψ(2S) decay lead to general treatments of ππ-transitions between quarkonia. Dipion

spectra have been calculated using a QCD multipole expansion (ME) of the color

electric/magnetic fields for 3S1,
153 1P1,

154 and 3DJ
153 cc̄ going to 3S1π

+π−. Other

JPC states involve, at lowest L, dipions in a 1−−, and for the masses of interest,

are dominated by the ρ-pole. The ME predicts that M(ππ) favors low masses for
1P1, and is relatively flat for 3DJ -states, both at odds with Fig. 13. The 3S1 and ρ

options do so peak. Normally [cc̄]→ J/ψρ0 is forbidden by isospin, but a state so

close to the D0D∗0 mass (Fig. 15) can violate isospin via virtual coupling to D0D∗0.

Belle’s original observation gave clear evidence for high ππ-masses, but only a

rough shape. CDF’s large sample offers a sharper view.147,151,155 An enlarged sam-

ple of ∼360 pb−1 is used. The selection is as before, except fiducial cuts are applied

to select a kinematic region of good efficiency: pT (X)>6 GeV/c2 and |η(X)|<0.6.

The sample is divided into slices of M(ππ), and the J/ψπ+π− distribution is fit

to obtain the signal yields for each slice (Fig. 17). The raw yields are corrected

for detector and kinematic selection efficiencies using Monte Carlo simulation. An

important ingredient is the simulation’s pT spectrum. This was varied so that the

simulation matched the observed spectra for the ψ(2S) and X . In this way no

assumption was made about the nature of X production. Within the limited preci-

sion, pT (X) is quite similar to that of the ψ(2S). The statistical error on the pT (X)

shape is propagated into a small systematic uncertainty on the M(ππ) efficiency

corrections.

The efficiency corrected spectrum for the ψ(2S) is shown in Fig. 18, along with

a fit of a multipole expansion model.153 This model has been fit to higher statistics
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Fig. 18. LEFT: Dipion spectrum for ψ(2S) fit with a multipole expansion calculation. RIGHT:

Dipion spectrum for X(3872) with fits of multipole predictions for 3S1, 1P1, and 3DJ charmonia,
as well as a phase-space modulated Breit-Wigner (constant width) distribution for decay to J/ψρ0,
and three-body phase space. The 1P1 fit is multiplied by 5 for better visibility.

(23k) BES data,152 and the CDF results agree with BES better than 1σ.

Also in Fig. 18 is the corrected X spectrum, along with fits for 3S1,
1P1, and

3DJ→J/ψπ+π− ME’s, the ρ (Breit-Wigner×phase-space), and simple phase space.

Only the 3S1 and ρ fits describe the data—the two shapes are almost indistinguish-

able. The 3S1 cc̄ assignment for the X being untenable seemingly forces the ρ option.

However, Υ’s serve as a cautionary tale: the basic ME fails to describe ππ-masses

for Υ(3S)→Υ(1S)π+π−.156 One hypothesis is that the Υ(3S) is so close to the BB

threshold that coupling to BB distorts the spectrum.157 This scenario has been

challenged as inadequate,158 but the mechanism itself is quite conventional. What-

ever the X is, it is well situated to couple to D0D∗0, potentially affecting M(ππ).

A definitive test for the ρ is X→J/ψπ0π0—forbidden for ρ’s, but half the π+π−

rate for I =0 dipions. But B-factories are not yet sensitive.159 Belle has reported

X→J/ψπ+π−π0, where the pions look like a virtual ω.159 The case would be com-

plete with J/ψ ω decay: the ω requires the dipions in J/ψπ+π− to be odd C-parity,

and thus a ρ. Belle quotes an ω-to-ρ branching ratio of 1.0±0.5160, signaling large

isospin breaking. Very recently Belle reported J/ψγ decay,160 providing compelling

support for the ρ. Confirmation may be desired, but all this fits neatly into a picture

where the X has C=+, and decays into J/ψρ and J/ψ ω with isospin badly broken.

Belle has pushed the ρ-analysis a step further by noting that a Breit-Wigner is

distorted by a centrifugal barrier if the J/ψ-ρ angular momentum, Lψρ, is non-zero.

A phase-space factor, the J/ψ momentum in the X rest-frame, q∗ψ, generalizes to

(q∗ψ)2Lψρ+1. Higher Lψρ softens the M(ππ) fall-off at the upper limit (q∗ψ→0), and

the ππ-peak shifts to lower masses. The fit in Fig. 18 corresponds to Lψρ=0, and

CDF has not yet provided an L=1 fit. But, as with Belle data,161 the agreement

will clearly deteriorate—favoring an S-wave decay, and even parity for the X .
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Table 4. Summary of arguments against cc̄ assignments for the X(3872). This ignores mass predictions
from potential models, which also creates varying degrees of problems for cc̄ states.132,133 The dipion
JPC is for lowest L. “Unseen modes” are expected to have been observed if the X is that state.

n 2s+1LJ J
PC State ππ Unseen Other Objections

JPC Mode

1 1D2 2−+ ηc2 1−− J/ψπ+π− expected to be very small

(ηcπ+π− ≫ J/ψπ+π−)132

M(ππ) in J/ψρ decay favors S-wave → Even Parity

1 3D2 2−− ψ2 0++ χc1γ124 J/ψρ,151,161 J/ψω,159 & J/ψγ160 decays → C=+

1 3D3 3−− ψ3 0++ χc2γ162 J/ψρ,151,161 J/ψω,159 & J/ψγ160 decays → C=+

2 1P1 1+− h′c 0++ Wrong cos θJ/ψ distribution159

2 3P0 0++ χ′
c0 1−− DD120 DD not suppressed → too broad

Wrong ℓ-π angular dist. in J/ψππ decay160

Not Seen in γγ Fusion165

2 3P1 1++ χ′
c1 1−− Br(J/ψγ)/Br(J/ψππ)=0.14±0.05160—too small161

2 3P2 2++ χ′
c2 1−− DD120 DD not suppressed → too broad

Not seen in γγ Fusion165

3 1S0 0−+ η′′c 1−− spin splitting ties mass to ψ(4040) → too heavy
Γ(ηc, η′c)∼ 20 MeV → too broad

5.4. X(3872) Reprise

The identity of the X(3872) is a pressing issue in spectroscopy. The natural inter-

pretation is a cc̄ state.132,133 In an effort to sort out options, an extensive search

has been made for other decays—none are seen in: χc1γ,
124 χc2γ,

162 J/ψη,163

D+D− and D0D0,120 but, very recently, J/ψγ160 and D0D0π0,164 have been. In

the end, a case can be made against all cc̄ candidates, as is summarized in Table 4.

But the caveat is: once one concedes that the X is unusual—and sitting on D0D∗0

offers some grounds—then the usual cc̄ expectations may be questioned. But we go

on to consider alternatives: 1) four-quark states105,130,131, 2) cc̄g hybrids,166−168

3) cc̄-glueball mixtures169, or 4) dynamic “cusp” from the D0D∗0 threshold.170

In this last scenario theX arises dynamically as a cusp due to the “de-excitation”

of the D0D∗0 threshold.170 Very close to threshold the S-waveD0D∗0 de-excitation

cross section follows a 1/velocity dependence, which competes with the available

phase space. If theD0D∗0 interaction is at all attractive, the 1/v factor can dominate

and produce a peak, but one which is not a true resonance. A preferred decay is likely

D0D0π0 and/or D0D0γ, and indeed Belle claims a quite large D0D0π0 rate.164

Another suggestion is that the X is a vector glueball mixed with cc̄.169 Although

a 1−− state, it would be highly suppressed in e+e− since photons do not couple to

gluons. However, X→J/ψρ, J/ψω, and J/ψγ all refute this hypothesis.

The X(3872) as a cc̄g hybrid166−168 is not very popular as the lightest states

are estimated to be &4 GeV/c2, albeit with a fair uncertainty. Numerous states are

expected, with exotic and non-exotic JPC ’s. The X ’s proximity to the D0D∗0 mass

is explained by assuming strong coupling to D0D∗0. The main decays are normally

[cc̄g] → [cc̄]gg (including J/ψπ+π−), and to light hadrons via gg annihilation for

C=+. A negative-C hybrid is more likely to be narrow, but is excluded by C=+
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decays like J/ψρ. Mixing with cc̄ orD0D∗0 opens up typical cc̄modes.168 Branching

ratios of B→ 0+− (exotic) hybrid, thought to be among the lightest, is estimated

to be ∼10× lower than for normal cc̄;171 but other hybrids could have higher rates.

Models of hybrid production at the Tevatron are less developed, but since there are

common matrix elements, presumably hybrids are similarly suppressed in p̄p. But

in the end, hybrid models must contend with the low X-mass and even C.

The idea of the X(3872) as four-quark state spans a range of extremes: from

bag-like models in which all quarks play an equal role, to scenarios where quarks

act in pairs. The latter can be a deuteron-like “molecule” of two qq̄′-pairs, or qq′-

q̄q̄′ diquarks. Bag models often serve for light-quark exotics; but for the X , four-

quark models gravitate to paired quarks given it contains heavy quarks, and is so

near the D0D∗0 mass. A diquark model envisages a rich family of [qc][q̄c̄] states:

various pairings with u and d, and two each of 0++ and 1+−, and one 1++ and

2++.105 The X is proposed to be the 1++. In addition to charged X+’s, two neutral

states are expected: X0
u = [cu][c̄ū] and X0

d = [cd][c̄d̄]. These can mix with some

angle, θ, and the mass difference between eigenstates is estimated to be: ∆MX ∼
(7±2)/ cos(2θ) MeV/c2. Since isospin is broken, both X0 eigenstates decay to J/ψρ

and J/ψω. From the fact that Belle reported a single narrow state the authors argue

that one X0 dominates in B+→XK+ decay, and the other in B0→X ′K0.

CDF data bring constraints to this model. While Belle supposedly produces only

one of the X0’s, CDF’s search is inclusive: X0
u and X0

d are produced equally. As is

apparent from Fig. 14, no twin of the X(3872) is visible, except for the possibility

that CDF sees an unresolved mixture of bothX0
u andX0

d . CDF fits theirX peak by a

(resolution dominated) Gaussian with σ=4.9±0.7 (stat) MeV/c2. From “toy” Monte

Carlo studies I find it is difficult to accommodate two peaks with |∆MX |&8 MeV/c2.

A more restrictive condition comes from mass measurements. As an equal mix-

ture of unresolved X ’s, CDF’s mass is the average of X0
u and X0

d , and if B+→XK+

is a pure species: |∆MX |=2|MBelle−MCDF |=1.4±2.2 MeV/c2. For a 1.64σ excur-

sion (95% 1-sided CL), the mass splitting must be less than 5 MeV/c2. CDF data

do not exclude a pair of X0 states, but they must have a small mass splitting, erod-

ing the strength of isospin breaking, and some of the appeal of this model. OR, the

splitting is so large that new modes open up and J/ψπ+π− decays become invisible.

BaBar has recently reported a possible B0→XK0
s signal (2.7σ),150 which if true,

enables a direct measurement: |∆MX |=2.7± 1.3MeV/c2. By the same scaling used

above, this translates into a 4.8 MeV/c2 limit, similar to that inferred from CDF.

A molecule is the most popular exotic interpretation. The proximity of the X

andD0D∗0 masses naturally incites such thinking. A JPC of 1++, and possibly 0−+,

are thought the most promising cases to be bound by pion exchange.128 Generally,

D0D∗0, D0D0π0, and D0D0γ, are expected to be major decay modes if energeti-

cally allowed. Existence of a D0D∗0 molecule suggestsD+D∗0, D+D∗−, D+
s D

∗−
s ,. . .

analogs. This simple scheme is undermined by a negativeX+→J/ψπ+π0 search,172

which nominally173 excludes the X as an isovector. But in fact, binding by pion ex-
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change is expected to be three times stronger for isosinglets compared to isovectors;

and the perturbation due to isospin breaking from the D0−D+ mass difference binds

D0D∗0 more tightly while creating repulsion for D+D∗0 and D+D∗− molecules.128

Thus, it is in fact quite reasonable for there to be only a single DD∗ molecule.

Swanson131 has built a particularly detailed molecular model, the crux of which

is the near degeneracy of DD∗, J/ψρ, and J/ψ ω masses. The X as 1++ will be a

mix of these components. In this model the latter two pairs are necessary to achieve

binding, and no other JPC or charged states exist. The X is mostlyD0D∗0 (&80%),

with modest (∼ 10%) D+D∗− and J/ψ ω fractions, and a tiny (< 1%) J/ψρ. The

J/ψρ is only a trace, but it has the largest branching ratio because of the ρ’s large

width. Unlike many models, J/ψπ+π−π0 decay, through a virtual ω, is also large:

∼ 60% of J/ψρ. The next largest decay is D0D0π0, ∼ 10% of J/ψρ. The J/ψω

prediction prompted Belle to search for it, and by measuring a ω-to-ρ branching

ratio of 1.0±0.5,159,160 one can chalk-up a victory for this model. However, Belle’s

preliminary report164 of a D0D0π0 rate more than 10× that of J/ψπ+π− is a

failure.

Näıvely one expects the formation of fragile states to be suppressed. This is man-

ifest in “low-energy universality.”174 As an S-waveD0D∗0 system (1+), the X is so

weakly bound that it is spatially large compared to its meson constituents, and has

an unnaturally large D0−D∗0 “scattering length.” Important properties of the sys-

tem are governed by this large scattering length rather than short-range details of its

construction. In particular, its cross section is ∝
√
EB for small binding energy EB.

One may imagine evading this suppression if the X is a mixture of DD∗ and cc̄ by

coupling to the cc̄ wave-function to elevate production rates to charmonium levels.

But by low-energy universality the non-DD∗ components of the wave-function also

vanish as
√
EB, again enforcing σ∝

√
EB. In fact, even if the X arises from cc̄, say

h′c(2
1P 1) or χ′

c1(2
3P 1), which is accidentally fine-tuned to the DD∗ mass, the cc̄

part is suppressed by
√
EB, and again σ ∝

√
EB . The same dependence is also

present in branching ratios to the X . One’s prejudice for suppressed production is

born-out in this picture; and, as seen with NRQCD (Sec. 5.3.2), the suppression is

similar in both the production of, and in B decays to, the X . Significant suppression

can be accommodated by data (Table 2) if BX is large—as in Swanson’s model.

Low-energy universality has also been used to construct a model for X forma-

tion by coalescence of D0 and D∗0 in B+ → D0D∗0K+.175 It is estimated that

B(B+ →XK+)≈ (2.7×10−5)Λ2
1/m

2
π

√

EB/0.5MeV, where Λ1 is a cutoff, and EB
the binding energy. The authors propose Λ1 ≈mπ, and thus: if BX is large, B is

close to the measured value (Table 3). From this theoretical perspective we get the

same message: decay rates favor molecules if J/ψπ+π− is a very prominent mode.

∼
After almost two years since its discovery the nature of the X(3872) remains

uncertain. New pieces to the puzzle are available, and much is unfavorable to cc̄

options. A case has been made161 that the X is most likely 1++—with the D0D∗0
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molecule an increasingly favored option. But as potentially the first unequivocally

exotic hadron, clear and compelling evidence must be required.

If one wants to cling to a cc̄ assignment, C-parity eliminates all but two: 1 1D2

and 2 3P1. The 2 3P1 has the favored JPC , but one must contend with predictions

that make it ∼100 MeV/c2 too heavy and the small X→J/ψγ rate.

On the other hand, the 1 1D2 prediction is only ∼30 MeV/c2 below the X , and it

should be narrow because DD decay is forbidden. CLEO’s γγ-fusion search was not

sensitive enough to exclude it.165 An objection against the 1 1D2 is that ηcπ
+π−

dominates its dipion transitions. Barnes and Godfrey132 estimate 1 1D2 decay rates

but ignored the apparently significant D0D0π0 decay.164 If we arbitrarily extend

their model with a partial width Γ(D0D0π0) = 1 MeV, then ΓTot = 1.86 MeV—a

little less than Belle’s 2.3 MeV limit on ΓX . The ηcπ
+π− fraction is then 11%. Belle’s

preliminary D0D0π0 rate is ∼ 15× that of J/ψπ+π−, but with ∼ 50% error.164

This rate limits BX(X → J/ψπ+π−) . 10%; but used with Γ(D0D0π0) = 1 MeV,

we find BX ∼ 3%. This is, given the uncertainties, a BX rate ∼ 2-5× below the

ηcπ
+π− prediction, thereby respecting ηcπ

+π− dominance. Furthermore, estimates

of ππ transitions usually do not include resonant enhancements, such as from the

ρ. The 1 1D2 can decay to J/ψρ, but not to ηcρ. This could help boost J/ψπ+π−

expectations, but only if one is willing to badly break isospin.

Isospin is a general objection to cc̄. The X(3872) is well positioned to break it by

sitting onD0D∗0. Belle measures, with ∼50% errors, equal branching ratios to J/ψρ

and J/ψω. However, these decays rely upon the width of the ρ/ω to populate the

allowed phase space. If one makes a simple estimation of the allowed (phase space)×
(Breit Wigner), the ρ should have ∼5× the rate of the ω. Thus one can argue that

J/ψρ may be suppressed by isospin, and, allowing for uncertainties, by ∼ 2-10×.

This is a far cry from the ∼200× one would expect from ψ(2S)→J/ψπ0 vs J/ψπ0π0

data. This difference sets the scale of isospin breaking desired from D0D∗0.

A final obstacle for the 1 1D2 is the sharp fall-off of the ππ-spectrum seen by

CDF (Fig. 18) and Belle161. This favors S-wave decay, whereas the 1 1D2 must go

by P -wave. The data are fairly striking in this respect. A loophole is the possibility

of other effects intervening. The S-wave argument is based on the Breit-Wigner

shape, which ignores any more complicated dynamics in the decay. In particular, the

influence of virtual D0D∗0 coupling on M(ππ) is unknown—recall the Υ(3S) tale.

Admittedly the above arguments for cc̄ rely as much on ignorance as they do

on our knowledge. But we should not be swept away by the appealing prospects of

an exotic X . Are the loopholes for cc̄ more contrived than an exotic X would be

momentous? There is even some hints against molecules. Belle’s large D0D0π0 rate

bounds BX to be rather small, thereby making X production very charmonium-like:

plug BX =5% into Tables 2 & 3! This begs the question of how a D0D∗0 molecule

bound by only ∼1 MeV can escape significant suppression. We may be on the verge

of isolating the first unambiguous exotic hadron, or maybe not quite yet.
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6. Summary

If 2003 was ‘the year of observation’ for pentaquarks, 2004 may well be ‘the year of

non-observation.’ CDF has searched in very large samples and found no evidence for

Θ+(1540), Φ(1860), or Θ0
c(3100). Whether this means that one or more of these

states are spurious, or only that pentaquark production is highly suppressed at the

Tevatron, is unclear. Both cases are interesting. But the bulk of world data casts a

dark shadow over pentaquark prospects—if they are to revive, high-statistics signals

will be pivotal. Such analyses are expected soon from low-energy photo-production

experiments that have claimed the Θ+—early reports93 are discouraging.

Irrespective of the fate of pentaquarks, 2003 also saw important, and uncontro-

versial, discoveries of D+
sJ states and the X(3872). The D+

sJ ’s look increasingly like

L=1 cs̄ states, albeit in conflict with prior potential models. This is still exciting, if

only to specialists. The recent SELEX claim of D+
sJ (2632) kicks up new dust, both

because of its unusual properties and the null searches at B-factories. It will be

interesting whether CDF can see D+
sJ(2632)→D0K+ in their large charm sample.

The X(3872) remains an exciting exotic candidate. A case has been built against

all charmonium options, and a D0D∗0 molecule is increasingly popular. The case

against cc̄ is, however, partially predicated on conventional expectations, and the

exceptional qualities of the X creates enough latitude to keep the cc̄ door open a

crack. Production data seem to point towards charmonium, but a reliable measure-

ment of BX(X → J/ψπ+π−) is needed. More is to be learned from existing data,

and samples are growing at the Tevatron and the B-factories.

Are we in the midst of a revolution in spectroscopy? Or only actors in the latest

episode of a forty-year snark hunt? We are hopefully on the cusp of learning which.
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