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The basic change required is that the 'upper vertex’ scattering process is
now ~ym; — moms, which will now have the complication of the photon helicity
index. I'll consider two ways to set this up

1 General 2 — 2 helicity amplitude

Perl equation (10-9a,b) tells us that in the CM frame of the 2 — 2 scattering
process we can write the helicity amplitude
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where the angles 6, ¢ are those of one of the pions relative to the z-axis defined
by the incoming photon. In the case that the photon is actually a pion and
has no helicity index this reduces to the first line of Ascoli equation (2.7). Par-
ity invariance is manifested in Perl equation (10-19a) and gives the constraint
(00|77 (s)| = X0) = —(00|T"/(s)|\0)
If one performs an Euler rotation, (aq, 51, 71), followed by another, (az, 82, v2),

the resulting net rotation is («, 5,7). In the basis of angular momentum eigen-
states we have the representation

m(au 577) = Z D;{L’,m” (062, 627’72)D;{7,”)m(a17 61771)' (2)
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Tx,(s,0,0) = Z 2J +1)ds, 4(0)(00|T7 ()| A0) (1)

The m = m’ = 0 case of this expression is used in Ascoli equation (2.8)
to relate the scattering amplitude in the [23]grp to some standard angle set. I
think it works something like this:

e 73 is at angle (x1,7) to the 23 direction (not sure this is how vy enters?)
e hence in the [23|gr 72 is at angle (7 — x1,7 + )
e from Ascoli figure 5 there is an angle ¥ between A and 23

So then we can compose the angles (not sure about the ordering though) as

Ps(0xr) = D5 (0, 07r,0) ZD )DYo(y+ 7 —x1,0)  (3)
:Zd(»\ )(=1) el/\v( )S /\dAo(Xl) (4)

Zdo,\ )D35 (7, x1,0). (5)



In the photon case the only difference appears to be the extra helicity index

dx0(6y Zd 0(7:x1,0). (6)

I'll assume we can put the 2 — 2 reaction in the zx plane (¢ = 0) and deal with
the photon polarisation direction (which we could define using the angle ¢ in
the first equation) later (via the density matrix). Then we have
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Tx,(s.0,) = ’T}C Z (27 +1){00|T(5)[A0) (~ Zd V) D557 X1, 0),
Py
(7)
which is in a form that allows us to follow through the rest of the Ascoli ma-
nipulations easily.

2 Covariant method for S =1

This provides a cross check to the above, but note that it is still reliant on me
having correctly understood all the angles. Discrete and Lorentz symmetries
limit the structures of 7w and 7 couplings to the p,

(m2(p2)m3(ps)|p(A, p2 + p3)) = geu(p2 — ps)” (8)
(0O pa +p) Ay pa)me(pr)) = feea(Ny,pa)(pa + pi)s(pa — pt)WEE()\az(oA) +pi).
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Hence the helicity amplitude
T, = (m2(p2)7s(p3) |7 ( Ay, pa)me(pe)) (10)
oc Y (ma(p2)m3(ps) (N p2 + p3)) (p(A pa + PV Ay AT (P1) + - -
A
(11)

PP\ . N
= fg(p2 —p3)" <—9ua + ;52 > € BWSPﬁ(Z’A —pe)yes(Apa+pi), (12)

where P = py + p3 = pa + pr. In the CM frame P* = (,/5,0), po = —3 ... SO
that

Tx, o< —fgv/s(=4)(=1)p3 - Py x €\y). (13)
Let’s evaluate this in a couple of simple frames. Firstly the frame in which

the photon is along the z axis and ps is at some angle 6, ¢. Then the basis of
photon polarisation vectors is €\, = £) = :F%(l, +4,0). Hence

sin 6
Ty(s,0) x —4fg\/si et (14)
\/_
Since dl,(0) = $Si;’—9 we see that this agrees with our general form above

including satifying the parity constraint.



The other obvious frame is the one used by Ascoli where I think the appro-
priate angles are

P3 = (sin x1 cos~y, sin x1 sin+y, cos x1) (15)
ﬁA = (_ Sin1/),0,COS’l/)). (16)
I'm assuming Ascoli figure 5 is telling me the z-compt of p4 is negative).
g g g g
We can rotate the photon polarisation basis for z-directed photons into the

direction p4:
€lpa, ) = F5(cost, +i,siny). (17)

Hence we can evaluate

Ty(s,...)ox —4fgy/s cos 1) sin x1 cosy £ isin x1 siny + sinv cos x1), (18)

(
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which can be compared to the case S =1 in
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TM _ /5 Z (2J+1 <OO|TJ )|A0) (— Zd D>\0 (7,x1,0), (19)
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with the result that they agree.




