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Describing gauge bosons at zero and finite temperature

Abstract

Gauge theories of the Yang-Mills type are the single most important building block of
the standard model and beyond. They are an integral part of the strong and weak inter-
actions, and in their Abelian version of electromagnetism. Since Yang-Mills theories are
gauge theories their elementary particles, the gauge bosons, cannot be described without
fixing a gauge. Therefore, to obtain their properties a quantized and gauge-fixed setting
is necessary.

Beyond perturbation theory, gauge-fixing in non-Abelian gauge theories is obstructed
by the Gribov-Singer ambiguity, which requires the introduction of non-local constraints.
The construction and implementation of a method-independent gauge-fixing prescription
to resolve this ambiguity is the single most important first step to describe gauge bosons
beyond perturbation theory. Proposals for such a procedure, generalizing the perturbative
Landau gauge, are described here. Their implementation are discussed for two example
methods, lattice gauge theory and the quantum equations of motion.

After gauge-fixing, it is possible to study gauge bosons in detail. The most direct
access is provided by their correlation functions. The corresponding two- and three-point
correlation functions are presented at all energy scales. These give access to the properties
of the gauge bosons, like their absence from the asymptotic physical state space, the
absence of an on-shell mass pole, particle-like properties at high energies, and their running
couplings. Furthermore, auxiliary degrees of freedom are introduced during gauge-fixing,
and their properties are discussed as well. These results are presented for two, three, and
four dimensions, and for various gauge algebras.

Finally, the modifications of the properties of gauge bosons at finite temperature are
presented. Evidence is provided that these reflect the phase structure of Yang-Mills theory.
However, it is found that the phase transition is not deconfining the gauge bosons, although
the bulk thermodynamical behavior is of a Stefan-Boltzmann type. The resolution of this
apparent contradiction is also presented. In addition, this resolution provides an explicit
and constructive solution to the Linde problem.

Thus, the technical and conceptual framework presented here can be taken as a basis
how to determine correlation functions in Yang-Mills theory, therefore opening up now the
avenue to investigate theories of direct practical relevance. The status of this effort will
be briefly described, alongside with connections to other approaches to Yang-Mills theory
beyond perturbation theory.
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Chapter 1

Introduction

The basic ingredient of the standard model is Yang-Mills theory, which is described by the
classical Lagrangian |1, 2]

1

L = —ZFSF;‘ (1.1)
Fi = 0,AL—0,A% + gfg;AZA; (1.2)

Herein the fields Aj; are the gauge fields describing the gauge bosons, called here for sim-
plicity gluons. Furthermore, the parameters of the Lagrangian are the coupling constant
¢, and the numbers f¢, which are the structure constants of the associated gauge algebra
A. This gauge algebra can, in principle, be any semi-simple Lie algebra. In case of the
standard model it is A =su(3)xsu(2)xu(1) [3]. The factor su(3) generates the strong
interactions, and the factor su(2)xu(1) yields, after mixing, the weak and electromagnetic
interactions.

For a semi-simple algebra the interactions of Yang-Mills theory factorize into the dy-
namics of Yang-Mills theories with independent simple algebras. They would only be
linked by the presence of matter fields, which in the standard model are the leptons, the
quarks, and, possibly, the Higgs field. In the standard model, these matter fields couple
only minimally to the gauge fields, leading in case of the electroweak sector also to a hiding
of the symmetry by the Higgs mechanism [2].

However, even without the presence of the matter fields, Yang-Mills theories are far
from trivial. As long as the gauge algebra is non-Abelian the structure constants fa
are non-vanishing. Then, due to the quadratic part of the field-strength tensor (L.2]),
interactions between the gauge fields are introduced. These interactions are found to
obey asymptotic freedom, i. e., they become weaker with increasing energy [2]. On the
other hand, with decreasing energy they become stronger. As a consequence, perturbation
theory can only capture the leading behavior at large energies, but fails completely when
the energy of a process reaches the typical scale of the theory, which is denoted as Ay in
the following. E. g., in the strong interactions, this scale is of the order of 1 GeV. With
reaching this scale, all types of genuine non-perturbative effects are present, in particular
the existence of bound states like glueballs, or the confinement of gluons [4].



Since these effects are qualitatively present even in the absence of matter fields, it
is worthwhile to first investigate the simpler case of neglecting matter fields, and con-
centrate on Yang-Mills theories with a simple Lie algebra. Understanding this system
non-perturbatively then provides a firm basis for going back to the standard model. It is
one possible version of this foundation with which the following will be concerned.

At the heart of many obstacles to be encountered in this process is the fact that in
Yang-Mills theory redundant degrees of freedom are introduced for the sake of having a
local quantum field theory [5]. As a consequence, Yang-Mills theory is a gauge theory.
One of the most striking features of the Lagrangian ([ILT]) is therefore its invariance under
local gauge transformations, which take the infinitesimal form

Al — AL+ D, (1.3)
DY = 570, +gflAs,

where ¢ are some arbitrary functions. Therefore, the gauge fields themselves cannot be
entities of the physical reality, as any observations should be independent of the chosen
gaug. Consequently, any particle-like excitations associated with the gauge fields, which
will be called gluons here in analogy with the strong interactions, also cannot represent
physical observable particles. In fact, the particle-field duality [5] turns out to be only a
high-energy property [2], and at low energies the fields lack a structure which can be easily
interpreted as a particle-like excitation. The theory must therefore in some way remove
them from the physical spectrum, an effect which cannot be captured by perturbation
theory [2]: They are said to be confined. Indeed, there appears to also exist no mecha-
nism, which could turn the gauge-dependent gluons into gauge-independent ones [5], since
otherwise it should be possible to experimentally detect isolated gluon-like states. Within
experimental uncertainties, this is not the case [1].

Since the confinement of gluons is not described by perturbation theory, which has
asymptotically observable gluon states [2], it is necessarily non-perturbative. Further-
more, the behind-the-moon-problem illustrates that the mechanism is also nonlocal [§].
This confinement of gluons is not yet fully understood. Here, a possible scenario will be
described, though important connections still remain to be made. In addition, the under-
lying mechanism could very well be gauge-dependent, but even an understanding in one
gauge would be substantial progress. However, the gauge-invariant statement of gluon
confinement must be valid in any gauge.

With this in mind, in the following the discussion will be essentially restricted to the
Landau gauge, which will be introduced below. Actually, arguments will be given why
the Landau gauge, which is uniquely defined in perturbation theory, could correspond to
a family of gauges beyond perturbation theory. This will be discussed in more detail in
chapter 2l Occasionally, comments on the state of affairs in other gauges will also be
made, but this is not the main focus here. Of course, eventually the aim can only be to

IFor the theory to be consistent it is required that no anomalies are present [6]. Whether this is the
case for Yang-Mills theories beyond perturbation theory has not yet been proven, but no evidence exists
which suggests the presence of anomalies, and their absence will therefore be assumed here.
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understand the same mechanism in at least a sizable number of different gauges, similar
to the concept of gauge-parameter independence of perturbation theory [2].

Irrespective of the particular choice, once a gauge is unambiguously fixed, the concept
of gluons is well-defined, and questions relating to their properties can be posed. This will
be done in chapter[dl. The methods used for this purpose are described in chapter 3] and are
the equation of motions and lattice gauge theory. These will be used jointly to determine
the correlation functions of gluons. From the two-point functions, the propagators, it
is possible to infer properties of gluons. By determining the corresponding three-point
functions it is possible to determine their relative interaction strength, the running gauge
coupling, but also estimates of decay rates and fusion processes. Ultimately, this will give
access to much more complicated quantities like scattering amplitudes in the future.

These investigations can be extended to finite temperature, which will be done in
chapter Bl This setting is of quite some importance when considering the early universe,
but also for its laboratory-based recreation in heavy-ion collisions. Here, the change of the
properties of gluons will be read off from the temperature-dependent propagators, which
will be determined once more by the quantum equations of motion and lattice gauge theory
simultaneously. It is found that gluons are not deconfined at any temperature, though they
generate a thermodynamic potential which at high temperature coincides with that of a
gas of non-interacting gluons. This apparent contradiction will be resolved, showing that
long-range physics is sub-leading to hard effects for bulk thermodynamics.

Finally, the state of the art, the required steps to make this a full formal procedure,
and possible pitfalls will be summarized in chapter Also the results will be set into
perspective to other investigations and other theories, in particular QCD, over the course
of this text.



Chapter 2

Quantizing Yang-Mills theory in
Landau gauge

2.1 The structure of gauge orbits

As noted, the Lagrangian (ILI) is invariant under the infinitesimal gauge transformation
(C3). In fact, it is also invariant under the finite gauge transformation

Al = hAL 4 hO,hT!
A, = TAL
h = 1,0°

where 7 are the generators of the gauge algebra in the fundamental representation. As a
consequence, the set of fields connected by gauge transformations

G(A,) = {A}, Vh},

are all equivalent representations of a given, fixed space-time history A, of the gluon
field. Such a space-time history will be called a configuration in the following. The set G
depending on such a configuration is its associated gauge orbit. The value of all objects
which do not change under a gauge-transformation, e. g., the action, are called gauge-
invariant. On the other hand, objects which are changing under gauge-transformations
will depend on the chosen representative, and will be called gauge-dependent.

To determine the expectation value < Q > of a quantity Q(A,), depending on the
field variables A, the path-integral formalism can be used]] [12]. The value of < Q > is
then given by

<Q>= /DAHQ(AM)eId“M, (2.1)

'From here on everything will be given in Euclidean space-time in natural units. The reconstruction
of any Minkowski quantity can be done either by explicit Wick rotation |9] or by usage of the Schwinger
function reconstruction [3]. In a lattice formulation it can be proven that this is possible for all gauge-
invariant quantities [10]. A proof for gauge-dependent quantities, necessary to make the theory well-defined
in Euclidean space-time, is still lacking, but henceforth it will be assumed to be possible. See [11] for
more details.
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where the measure DA, is normalized such that < 1 >= 1. It is then necessary to ensure
that the integral is only sampling each gauge-orbit once, or at least every gauge-orbit the
same number of times using adequate normalization, to obtain a well-defined result for Q.
For gauge-invariant quantities, this is sufficient [4, [10]. For a gauge-dependent quantity,
like the gauge-fields, this is not sufficient. The arbitrariness in selecting a representative
of the gauge-orbit yields that all such expectation values vanish [13]. To obtain a non-
zero value, it is necessary to define how to select a representative, or a weighted set of
representatives, of each gauge orbit, which is equivalent to choosing a coordinate system
in terms of the field variables [2]. This is not only interesting as a conceptual question
in its own right, nor just because it is not possible to discuss gluon properties without
fixing a gauge, but also for practical reasons. As will be discussed in section 2.3.2] it is
very convenient to use gauge-dependent quantities in intermediate stages to finally obtain
gauge-invariant, observable quantities.

2.2 Perturbative gauge-fixing

The simplest way to implement a selection criterion is obtained in perturbation theory.
Furthermore, the implementation in perturbation theory is also a viable starting point to
generalize to the full theory.

In perturbation theory, it is sufficient to implement a local condition to select a unique
representative on the gauge orbit |2, [14]. One possibility to do so is by requiring

B, A% =0, (2.2)

the Landau gauge condition. This gauge condition will be used exclusively here, i. e.,
whatever other conditions a field configuration satisfies in the following, it will always
satisfy (22) as well.

The Landau gauge is a limiting case of the class of covariant gauges 2], which are well
suited for perturbative purposes. Furthermore, many other gauge conditions, like Coulomb
gauge, maximal Abelian gauges, interpolating gauges, axial gauges, Curci-Ferrari gauges,
background-gauges, and others can be used. However, Landau gauge has a number of
distinct advantages. One is that it is manifestly covariant, and none of the technical
complications associated with non-manifest covariance appear [15]. Furthermore, renor-
malization is most simple in Landau gauge, as the degree of the divergence is the lowest
of all possible, i. e., just logarithmically divergent and not quadratically divergent in four
dimensions. As a consequence, all correlation functions in lower than four dimensions
are finite. Finally, in Landau gauge, transverse tensor structures and longitudinal tensor
structures of correlation functions, with respect to gluon momenta, are as decoupled as
possible [16]. In particular, the minimum number of tensor structures is required when
treating non-amputated Green’s functions. All these properties make Landau gauge tech-
nically convenient. As a consequence, it is by all means the best-studied gauge beyond
perturbation theory so far.

The condition (2.2) is sufficient to perturbatively single out one representative of each
gauge orbit, up to global gauge transformations. This follows from the fact that no trans-
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formation functions ¢® exist, which takes a gauge copy satisfying the Landau gauge by
an infinitesimal transformation (3]) into a gauge copy which also satisfies the Landau
gauge condition (2.2]). It is only necessary to study infinitesimal transformations for this
purpose, as only this kind of transformation is admissible in perturbation theory.

This condition can be introduced as a restriction of the space of all gauge orbits to a
hypersurface of representatives satisfying the Landau gauge condition by either use of the
Faddeev-Popov procedure [2], or by the more general anti-field formalism [6, [14]. Both
equivalent formalisms introduce two additional auxiliary fields ¢* and ¢*, the ghost and
anti-ghost fields belonging to the adjoint representation of the gauge algebra. This permits
to construct a localized formulation of the restriction of the gauge orbit to a hypersurface.
As a result, the path integral (2.1]) takes the form

<Q> = lm DA,DcDeQ(A,, c,c)e I 4wt (2.3)

L, = L+ %@Agf + a0, Dl ey,
in d dimensions. The introduction of a gauge parameter £ is necessary in an intermediate
step to make all possible inversions of operators well-defined. In implementations using
lattice gauge theory, see section [3.1] it is actually not necessary to make explicit references
to it, and also in calculations using functional methods, see section [B.2] it is possible to
remove this parameter rather early on. It will therefore be left implicit hereafter. It
should be noted for all such expressions that implicitly necessary weight-factors have been
included in the measure to ensure that still < 1 >=1 is valid.

Of course, given the presence of auxiliary fields it is possible to also construct objects Q
including them. From the appearance of the covariant derivative it follows that the ghosts
interact in non-Abelian gauge theories with the gauge fields. Thus it is mandatory to
include them in any calculations, which makes explicit use of the gauge-fixed path integral
in the form (2Z3]). However, they do not represent physical particles, and as such will not
appear in observable physical states, but only in intermediate states. In fact, it is possible
to form bound states from them [8], which mix with gluonic bound states, and only their
combination provides a gauge-invariant, physical bound state in the end.

After having obtained a perturbatively gauge-fixed setting, it is possible to determine
correlation functions in perturbation theory, using standard methods [12]. For going be-
yond perturbation theory, it is quite useful to first introduce the concept of correlation
functions in more detail, as they will play a central role when attempting to gauge-fix
beyond perturbation theory in the way proposed here.

2.3 Correlation functions

2.3.1 Propagators and vertices

The basic entities, which determine the complete partition function, are the Green’s or
correlation functions [12]. In their simplest version, these are polynomials of n field oper-
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ators

< Ag (21).. Ag, (20) / DA Ay, (21)... Ag, (z,) eI T (2.4)

with a; a multi-index encompassing field-types as well as further indices. The number n of
fields involved will henceforth be called the order of the correlation function. From these
the connected correlation functions can be derived, which are defined for the two-point
functions as

< AjAg >=< A1 Ay > — < Ay >< Ay >,

and correspondingly for higher n-point functions [2|. Furthermore, the amputated corre-
lation functions, or vertex functions, I'* fulfill the relation [12]

1
<A <x1).“Aan (xn) e /dylmdynlﬂAalAbl (1 — yl)...FAanAbn(

[Abr A, (Y1 ey Yn)-
Tp — yn)

In particular, for the two-point functions, the propagatorsg, the relation holds
< Ag(2)Ay(y) >e= T4z —y) = DAz —y),

and it has been assumed that the system is translationally invariant, which will be the
situation encountered throughout. It should be noted that for Yang-Mills theory the one-
point functions in all covariant gauges, and in particular in Landau gauge, always vanish, as
otherwise Lorentz symmetry would be no longer unbroken. Therefore, connected and full
Green’s functions coincide for two- and three-point correlation functions, and a difference
is only encountered for higher correlation functions.

The relation (24]) permits the definition of the generating functional for the various
correlation functions [17]. The equations for the full correlation functions are obtained

from
( 53 m “a) 21 =0 (2.5)

Z[j] = / DA,e 5+ dait e, (2.6)

where the j, are sources to be set to zero at the end of the derivation. The derivative

in the argument of the expression of the action implies that all appearances of the fields

have to be replaced by a derivative with respect to the sources, inheriting their indices.

This equation yields the one-point correlation functions. Higher correlation functions are

obtained by taking further functional derivatives of this equation with respect to the fields.
The connected correlation functions are obtained from

oS |OW 9
A, {5 + 517} +7.=0 (2.7)
W =1InZ,

2The inverse appears essential due to the amputation of the two-point correlation functions.
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and the vertex functions from

2
or 55[14 W 5]20 (2.8)

oA, oA, | T 5judi i
I[p] = —W + /ddx?;/ja.

a

Thus, the Legendre transform of W is the generating functional of vertex functions. In
particular [2]
orr

Ay Aan _
: (@1 2n) = S oA (o) (29)

AaAy _ PAdAp—1 _ 6T B 2w !
ey = D “’*y)—(ma(x)mb(y)‘<6ja<x>5jb<y>) |

The order of the field indices A; is relevant not only because of assignment of the arguments,
but also if anti-commuting fields appear. From (2.9) follows the reconstruction of the
original path-integral (2.6]) as [2]

Z[j] = Z/ddxl...ddxn < Ag, (71). Ag, (#0) > Jay (T1) -, (T0). (2.10)

The equations for the vertex functions generated by derivations of (2.8]) with respect to
the fields are known as Dyson-Schwinger equations [12, [17], and are described in more
detail in section [3.2

As a general convention, in the following the function, or functions, which modify a
propagator or vertex away from its tree-level value will be called a dressing function. E.
g., for a propagator I'; its dressing function v is defined as

1
F0Lb = ng_u
Y

where the inversion is used to connect to the literature [17]@, while TY, is the tree-level
propagator. In general, for both propagators and vertices, additional tensor structures
both in Lorentz and color indices can appear beyond tree-level. In this case more than one
dressing function will be needed. They will be defined as dimensionless factor functions,
and the new tensor structures are taken to not contain any information beyond those
needed to specify its transformation properties. E. g., if the gluon 2-point vertex were
transverse at tree-level, but acquired a non-trivial longitudinal dressing beyond tree-level,

this would read , )
PAjab _ 5ab (5 L — pMpV) p + 5abpupl/ p .
" et ) Z(p?) p* L(p?)

3Note that in the context of (functional) renormalization-group equations often the inverse of v is
called a dressing function [18].
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Of course, this is not the case in Landau gauge [2,19]. In particular, the transverse gluon
propagator dressing function will be denoted by Z throughoutﬂ, while the ghost propagator
dressing function will be denoted by G. As a general shorthand, D, will be used for the
gluon propagator Ff};“*l, D for Z(p)/p?, and D¢ for the ghost propagator I'“~1 and color
indices are kept explicit if not a factor of §%° has been factored out, i. e., D®(p) = §°°D(p).

2.3.2 The construction of gauge-invariant observables

By expanding the equation (2.8)) and its functional derivatives in the coupling (or another
parameter), a perturbative set of equations for the correlation functions is obtained [12].
This permits straightforward computations of the perturbative behavior of the correlation
functions.

In particular, the matrix elements of two-body decays are described by the three-
point correlation functions, while two-to-two scattering cross sections matrix elements
can be derived from the four-point correlation functions [2,9]. The latter are the lowest
correlation functions which can be combined to yield a gauge-invariant quantity in Yang-
Mills theory, their computation is therefore the minimal requirement to obtain gauge-
invariant information in general. In perturbation theory, their calculation can often be
reduced to simpler calculations by, e. g., Cutosky rules [9]. Any such gauge-invariant
result will necessarily always have all color indices in some way contracted, as on any
non-contracted index a gauge-transformation could act, and thus would modify the result.

Note that gauge-invariant physics also influences gauge-dependent correlation func-
tions, for any order. E. g., a gluon can emit a virtual glueball, and reabsorb it later.
Turning the argument around, there must exist indirect ways to infer gauge-invariant
information from the gauge-dependent correlation functions. Therefore, in principle, it
should be possible to obtain this information also from lower-order correlation functions.
An example for this will be the determination of the phase transition temperature and
order parameters from the two-point correlation functions in section [5.2

It should be noted that, though the final result is gauge-invariant, it is often possible to
choose a gauge which is especially suited to calculate a particular gauge-invariant quantity.
This makes gauge-fixed calculations, though requiring more degrees of freedom, for many
purposes quite attractive. E. g., almost all of perturbation theory is formulated in this
way [2, 9], though it is not necessary when only calculating gauge-invariant quantities
[4, 120, 21]. The calculation of the hadronic spectrum in lattice gauge theory utilizes also
gauge-fixed intermediate stages for a more efficient treatment [22].

Thus, the complete stage for perturbative calculations is now set. Unfortunately, many
interesting effects, like bound-states, phase transitions, hiding or breaking of symmetries,
confinement, etc. cannot be obtained in perturbation theory [2], and a treatment beyond
perturbation theory is necessary. This is the main topic of this work.

4Note that this function corresponds to the trace in both color and Lorentz indices of the full gluon
propagator, multiplied by p?, thus being p* < A%(—p)A%(p) > /((d — 1)Na) with the dimension d of
space-time and V4 the size of the adjoint representation of the gauge algebra. It is thus always positive
semi-definite.
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2.4 Non-perturbative gauge-fixing and Gribov copies

To calculate gauge-dependent quantities non-perturbatively, in particular correlation func-
tions, it is necessary to obtain a gauge-fixing which is valid beyond perturbation theory.
However, beyond perturbation theory, gauge conditions like the Landau-gauge condition
(2:2) have no longer a unique solution for a given configuration. There are several ex-
plicit examples illustrating this fact [23-25]. Such independent solutions are called Gribov
copies, and the associated ambiguity of the gauge condition is termed the Gribov-Singer
ambiguity [23,126]. This is a property which pertains to any non-Abelian gauge theory of
Yang-Mills type.

Unfortunately, it turns out that it is impossible to construct any kind of purely local
gauge condition to single out a unique representative for a configuration [26]3. This is a
rather general result, which is based on the structure of the gauge orbits in non-Abelian
gauge theories. As a consequence, it is only possible to specify a unique representative of
a gauge-orbit when this specification is done non-locally.

2.5 Proposals for resolving the Gribov-Singer ambi-
guity
2.5.1 Gribov regions

In principle, it would be possible to average, in a well-defined way, over the Gribov copies
to obtain also non-perturbatively a well-defined gauge, similar to, e. g., covariant gauges in
perturbation theory. However, such Hirschfeld gauges [29, 130] induce significant cancella-
tions, and no practical implementation has been constructed so far, but only conceptually
developed [31-34]. Thus, the alternative is to select by some prescription a single repre-
sentative for each gauge orbit, which therefore satisfies furthetﬁ constraints in addition to
).

Thus, further (non-local) constraints are required. To implement the constraints, a
sequence of further conditions can be applied. In all cases, the first step taken is always
to reduce the perturbative gauge freedom by implementing a local gauge condition, here
the Landau gauge (2.2]).

The remaining set of Gribov copies is called the residual gauge orbit |36]. Since the
condition is perturbatively unique, only finite gauge transformations connect two different
elements of the residual gauge orbit [37]. This is trivially so, since any infinitesimal
gauge transformation will move along the gauge orbit automatically out of the gauge-
fixing hypersurface implemented by the perturbative gauge-fixing by construction.

The first restriction of the residual gauge orbit taken here is to constrain it to the
so-called first Gribov region [23]. This Gribov region is defined by the requirement that

This is only proven for covariant gauges [26]. However, it has not yet been possible to find any local
gauge condition which resolves the problem, and at best it can be traded in for a different problem of
similar complexity, as is done, e. g, in direct Laplacian gauges |27, 128].

6The global gauge freedom will be left unfixed. Fixing it would lead, e. g., to Polyakov gauges [35].



Chapter 2. Quantizing Yang-Mills theory in Landau gauge 11

the Faddeev-Popov operator M
M® = -0,D, (2.11)

is strictly positive semi-definite, i. e., all of its eigenvalues are zero or positive. This region
can be shown to be bounded and convex [38], and the Faddeev-Popov operator has zero
eigenvalues only on the boundary of this regionE], the Gribov horizon. It can be shown
that all gauge orbits pass at least once through the first Gribov region [39], and hence no
physical information is lost by restricting to it. The boundedness is a remarkable fact, as
it implies that when calculating physical observables no arbitrarily large field fluctuations
have to be taken into account. It contains the origin of field-space, and thus perturbation
theory, as well. This follows from the fact that in the vacuum case (ZII]) reduces to
the positive semi-definite Laplacian [24]. Thus by restricting to the first Gribov region,
ordinary perturbation theory is always included.

Besides this first Gribov region, the remainder of the residual gauge orbit is a set of
further Gribov regions. These are separated by further concentric Gribov horizons, each
having more and more negative eigenvalues. The number of negative eigenvalues increases
by one by passing the boundaries of these regions, but stays constant inside |23, [25]. Also,
each residual gauge orbit passes at least through the first Gribov region [39]. Tt is expected
that every residual gauge orbit passes through every Gribov region, though there is not
yet an explicit proof of this.

This restriction can be implemented using a 6-function [23, 40] in the perturbative
gauge-fixed path integral (2.3))

<Q> = lim [ DA,DDQY (=0, D) (Ay, c,e)e S 4oks (2.12)
0(-0.0) — MO

where J\; is the ith eigenvalue of the Faddeev-Popov operator (ZI1). Thus, only if all
eigenvalues are positive the #-function contributes. To make contact to the implementation
of this restriction in lattice gauge theory below in section B.1.2] the definition 6(0) = 1 has
to be made for the step function.

Unfortunately, a unique, method-independent prescription how to effectively imple-
ment this restriction to the first Gribov region explicitly has not yet been constructed.
There are, however, a number of possibilities, which have been explored.

A proposal for how to implement this restriction using additional ghost fields, and thus
in a similar way as in perturbation theory, has been made by approximating the #-function
by a d-function with the argument that in a high-dimensional space only the boundary
contains an appreciable part of the volume [40]. This generates the so-called Zwanziger
Lagrangian. However, due to subtleties related to the definition of the step-function it is
not yet proven that this is a valid procedure, though it has many interesting properties,
and has been investigated in great detail, see e. g. |37, 140-52].

Another proposal [53] how to enforce this restriction explicitly stems from empiric
observations, and insights gained from two-dimensional Yang-Mills theory in Coulomb

" Apart from trivial zero modes due constant eigenmodes, which will always be implicitly factored out.
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gauge [54]. These suggest that a possible method-independent characterization of the first
Gribov region would be the requirement that the ghost propagator

DY =< & >=< M7 >, (2.13)

is negative-semi-definite in position space. The results, shown explicitly in section [ALI1.T]
suggest that this should also be the case in momentum space. Though at least the former
statement is clearly a necessary condition, it has not yet been possible to show that this is
a sufficient condition. Therefore, this has the status of a proposal which requires further
investigations. However, for the methods employed here there are some method-dependent
means how to restrict to the first Gribov region. This is described in chapter [3l

After restricting to the first Gribov region, the remainders of the residual gauge orbits
still possess a large number of Gribov copies |39, [57-59]. This set will also be denoted
as the residual gauge orbit in the following, to avoid the term residual of the residual
gauge orbit. In fact, in an infinite volume this number is likely infinite, and in a finite
volume V' it appears to be a rapidly rising function of V' [59], possibly even proportional to
exp V' [53]. Actually, counting Gribov copies is in practice a non-trivial problem, since two
Gribov copies are different if and only if they differ at least at one space-time point after
factorizing all possible global gauge transformations and all space-time transformations.
This implies that for the decision whether two representatives of a gauge orbit are identical
or Gribov copies, it is required to compare their field values at every space-time pointﬁ. It
is also in general non-trivial how to find all Gribov copies, so that they can be counted.
Thus, except for very special systems [59], only a lower limit can be posed on the number of
Gribov copies. Examples for these are shown for two, three, and four space-time dimension
on a finite latticd] in figure 2.1l It should be noted that, though two dimensions has
trivial dynamics [63], gauge fixing has the same subtleties as in higher dimensions. Two-
dimensional Yang-Mills theory is therefore an ideal laboratory to study these issues without
the obscuring dynamics [62].

It should be noted that one Gribov copy has no intrinsic difference compared to another
Gribov copy, since they are physically equivalent. Thus any choice of a Gribov copy to
represent the residual gauge orbit is equally acceptable. This is nicely illustrated by
stochastic quantization, in which it is found that there is no stochastic force acting along
a gauge orbit, and thus in the stochastic equilibration process no point on a gauge orbit is
preferred [38, 164-66]. This, of course, is just in disguise the problems encountered when
defining the path integral, which require to introduce a gauge condition in the first place.

2.5.2 Minimal Landau gauge

As stated, the residual gauge orbits inside the first Gribov horizon possess further Gribov
copies. It is therefore necessary to constraint the choice of Gribov copies further. There

81t appears that Gribov copies differ from each other over some large domain [60], so in practice already
a coarse search can yield that two candidates are different. However, to ensure that they are the same
requires a check of the whole space-time point by point.

9Details of the lattice method are given in section 3.1l All units here and hereafter have been fixed by
setting the string tension to (440 MeV)?, see for details |61, 62].
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Figure 2.1: Lower limit for the number of Gribov copies ﬂﬁ, @] as a function of volume and
a lattice-regulator @] for two (top-left panel), three (top-right panel), and four (bottom
panel) dimensions.

are two strategies mainly in use currently for that purpose. Both were originally motivated
by studies on a finite lattice [67, 68)].

The first method is essentially a stochastic approach. In this case, instead of specifying
conditions for selecting a Gribov copy, a random Gribov copy is chosen for each residual
gauge orbit @] This prescription, termed the minimal Landau gauge, therefore averages
over Gribov-copy-dependent properties when calculating correlation functions. Assuming
the choice to be ergodic, unbiased, and well-behaved, this implies that this prescription is
equivalent to averaging over the residual gauge orbit. However, there is no constructive
prescription how to make this choice, and only operational definitions of this procedure
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in terms of algorithms in lattice gauge theory are available [68], and just rather indirect
evidence exists that these procedures have these properties [53, [55]. The second method
attempts to characterize Gribov copies and make a choice based on these characteristics.
Two possibilities for this characterization will be presented in the next two sections.

The central element of all operational definitions of the minimal Landau gauge is the
fact that any Gribov copy in the first Gribov region maximizes the functional |58, |69]

o 1 d a pa __ Ng d—1 naa
FlA] = 1-+ /d pAAL =1 = (T 07 /dpp Dii(p)  (2.14)

b b
Dy, = <ALA) >,

where DZIZ, is again the gluon propagator. If any given algorithm finds all maxima with
equal probability, it would be a faithful representation of the distribution along the residual
gauge orbit, and also be ergodic.

Actually, it has been proposed that all Gribov copy selection procedures in the infinite-
volume and continuum limit, the so-called thermodynamic limit, should yield the same
result [38], and thus therefore the one of the minimal Landau gauge. The basic idea
behind this argument is essentially of thermodynamic nature: The configuration space
is in this limit infinite-dimensional, thus almost all Gribov copies of almost all residual
gauge orbits should lie at the boundary of the first Gribov region. Assuming that all Gribov
copies at the boundary have similar correlation functions, then the same argument as in
thermodynamics holds, and the equilibrium behavior should emerge. Since the minimal
Landau gauge is already averaging, this equilibrium behavior should coincide with the one
found in the minimal Landau gauge. However, this argument is only expected to hold for
any finite polynomial in the gauge fields. E. g., the ghost propagator (2.13) cannot be
expressed as a finite series in polynomials of the fields, and therefore the argument does
not need to hold for it.

Take as an example the expression (2.I4]) itself, which is a finite polynomial in the
fields. Its distribution over the residual gauge orbit is shown in figure 2.2l It is clearly
visible how the distribution of (ZI4]) moves towards a more peaked distribution, and is
actually well described by a Gaussian, with a volume-dependent width, shown in figure 2.3
Thus, it appears plausible that this quantity, and thus likely also the gluon propagator,
will have the same value, irrespective of the representative chosen along the residual gauge
orbit.

However, this statement does not take renormalization into account. In particular,
(Z14) has to be regularized, to be meaningful in the continuum limit. It is not a-priori
clear how this quantum effect affects the distribution, as it involves the regularization of
a composite, non-local operator. From U(1) gauge theory it is known that this may cause
significant problems [70)].

The consequences of changing the cut-off and performing only a multiplicative renor-
malization are shown in figure 2.4l While in two dimensions, where almost no Gribov
copies are present, there is little change, the distribution appreciably changes in higher

0Note that discretization effects can also play a role here, and thus volumes as large as possible should
be used.
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Figure 2.2: The distribution of (2.I4]) for a fixed discretization of ¢ = 0.22 fm, after
subtracting one and rescaling by a factor of -1000 [55]. Results are shown for two (top-left
panel), three (top-right panel), and four dimensions (bottom panel). Here and hereafter
always 1000 configurations with 20 checked Gribov copies each have been used.

dimensions. Thus, regularization of this composite, non-local operator plays an important
role in understanding the thermodynamic limit, and how stringent a finite polynomial
of the fields has to take the same value irrespective of the choice of Gribov copy. It is
therefore better to to investigate instead the gluon propagator, and see whether it takes a
unique value in the thermodynamic limit. This will be discussed at length below in section

4111
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Figure 2.3: Lower limit of the width of the distribution of (2.14]) for a fixed discretization
of a = 0.22 fm on a lattice [55], after subtracting one and rescaling by a factor of -1000.

2.5.3 Absolute Landau gauge

An alternative way to choose a representative on the residual gauge orbit is the absolute
Landau gauge |36, 58, 169], which makes a very definite choice rather than a random choice.
This gauge choice is derived from the following observation. The functional (2.14]) has,
up to topological identifications [58], a unique absolute maximum™]. The resulting set of
absolute maxima, called the fundamental modular domain or region [69], in analogy to
conformal field theory, is by definition embedded in the first Gribov region, and includes
the origin. It is less trivial to show that it is convex and bounded, and thus connected [38].
It can furthermore be shown that part of the boundary of the fundamental modular domain
coincides with the Gribov horizon in the thermodynamic limit only [38, 169]. All possibly
remaining degenerate absolute minima are on the boundary. This boundary has actually
a quite rough structure [71], including wedge singularities, and topological configurations,
like e. g. instantons [24], are located there. By construction, in this region the gluon
propagator has its least integrated weight. A sketch of the situation is shown in figure

Based on this observation, the absolute Landau gauge is defined as selecting the Gribov
copy which belongs to the fundamental modular domain |72, [73]. This condition can
be realized by either checking the absolute minimization of (2I4]) explicitly or by the
introduction of a suitable weight factor in the path integral [74]. In case the residual
gauge orbit has more than one Gribov copy on the boundary of the fundamental modular
domain, again a random choice is made [36]. It should be noted that if the thermodynamic
arguments made before were correct, the absolute Landau gauge and the minimal Landau
gauge will coincide in the thermodynamic limit, at least for correlation functions being

171t should be noted that in some theories the relative and absolute minima become arbitrarily close in
the thermodynamic limit [70].
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Figure 2.4: The change of (2.14]) when the cut-off is increased, and only a multiplicative
renormalization is performed [55]. The top-left panel shows a volume of (5.7 fm)? in two
dimensions, the top-right panel a volume of (3.1 fm)? in three dimensions, and the bottom
panel a volume of (1.3 fm)? in four dimensions. A one is subtracted before renormalization.

finite polynomials of the gauge fields.

It should be noted once more that the relevant quantity (Z.I4]) has to be renormalized.
As has been illustrated by figure 2.4l this is likely not just a multiplicative renormalization.
However, an additive renormalization can, in principle, make a local minimum a global
minimum, and this is not yet fully understood. In addition, finding the global minimum
along the gauge orbit is in general a hard problem, since this requires to know all Gribov
copies inside the first Gribov region. Therefore, actually reaching the absolute Landau
gauge is in practice very complicated, see chapter
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Gauge orbit

1. Gribov region

Landau gauge—fixing
surface

Residual gauge orbit

Figure 2.5: A sketch of the geometry of field configuration space. A gauge orbit is shown,
which intersects the gauge-fixing hypersurface, defined by (2.2), six times in the visible
part. Three of these Gribov copies are inside the first Gribov region. These three form the
residual gauge orbit, after the restriction to the first Gribov region has been performed.
As is visible, they are not connected by infinitesimal transformations. One of the Gribov
copies is (necessarily) inside the fundamental modular region (FMR), and in this case a
second Gribov copy is located very close to the boundary of the fundamental modular
region, which itself touches the Gribov horizon.

2.5.4 Landau-B gauges

A further proposal are the so-called Landau-B gauges. They are motivated by two obser-
vations.

One is that all information on a theory is contained in its correlation functions [12].
As a consequence, if two gauges differ, at least one correlation function has to differ.
Furthermore, e. g., the perturbative Landau gauge condition (2.2)) can be cast into a
condition on the gluon propagator as [19, 53]

Pubv Dty = (pu A5 ()P AL (p)) = 0,

for all momenta equally, and thus locally. Thus the gauge condition in Fourier space
already implies the vanishing of the longitudinal part of the gluon propagator. Similar
conditions can also be posed for covariant gauges in general [19]. It appears therefore pos-
sible that the non-local condition to select a particular representative of the residual gauge
orbit should also be specifiable by a condition on one or more correlation functions. Since
the condition needs only to be non-local in position space, it can be local in momentum
space.
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The second observation comes from the solutions of the Dyson-Schwinger equations
(DSEs), as will be discussed below. There a family of solutions is found |16, [75-78], which
are parametrized by the value of the ghost dressing function at zero momentum [16], or,
equivalently, by the infrared value of an effective ghost-gluon coupling [75-77]. It has been
speculated that this should also be possible at a non-zero momentum instead [16, 53],
but this possibility has not been followed yet. Therefore, here only the zero momentum
case will be discussed. Of course, in a finite volume, and due to the trivial zero-modes
of the Faddeev-Popov operator [79], the ghost propagator cannot be evaluated at zero
momentum. Therefore, in this context always the momentum closest to zero will be used,
and it is understood that the infinite-volume limit has to be taken eventually.

The idea that this quantity could be of interest is supported by the fact that in almost
all cases a differing value of (ZI4]) also leads to a differing value of the ghost propagator
at zero momentu [36, 153, 72, 180-82]. However, without knowledge of all Gribov copies,
this cannot be made an exact statement at the current time.

This observation can now be used to construct a set of gauges, the Landau-B gauges
[53]. The following construction has been found to work on small finite volumes [53,55,183],
and also at strong coupling [84]. The situation in the thermodynamic limit will be discussed
below. The basic ingredient of the Landau-B gauges is a second, strictly positive, non-
perturbative gauge parameter B, which can be selected within a certain range to be
determined below.

To implement the gauge, an auxiliary parameter b is needed, which is defined as

2 2

=0 G(p?, pi?)’ (2.15)

By definition, this quantity is renormalization-group invariant. In two and three dimen-
sions, p can actually be chosen to be infinite [53], since the correlation functions do not
diverge, and then G(00, c0) = 1, see section B.2.3] The parameter b is taken to be defined
Gribov copy-wise, i. e., on each individual Gribov cop. Thus, strictly speaking, b is,
as F'(A), a functional of the configuration, and should also be written as b(A) and the
appearing ghost dressing functions as G(A, p?, u?). This will be suppressed throughout.
The gauge is now defined [53] by the condition that on each residual gauge orbit the
Gribov copy is selected as a representative which has a value of b, which is closest to the
gauge parameter B. If there exist more than one Gribov copy satisfying this condition, once
more a degeneracy is encountered, and in this case, as before, a random choice should be
made. The element of randomness has to be such that it selects in equal measure copies
which have a positive or negative distance to B. This gauge construction implies that
< b >= B, and thus determines the averaged ghost dressing function at zero momentum.
If B should be selected such that this cannot be realized, e. g. because B is larger than b
for all copies and configurations, the resulting ghost propagator is as close as possible to

12For simplicity, in the following always zero momentum is used, with the understanding to replace it
by the lowest momentum accessible.
13In a finite volume, the actual momentum is not zero. Therefore, the fact that a Gribov copy is

not rotationally and translationally symmetric has to be taken into account in practical calculations, see
[53, 155, 183].
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B. In this sense, it is possible to define a minB and a maxB gauge [53], by always selecting
the Gribov copy with the smallest and largest value of b for each orbit, respectively.

It should be possible to construct a corresponding weight for the path integral, which
implements this condition. But neither the existence nor the form of such a construction
has yet been proven, there exists only proposals for it [55, 85].

Given the path integral in Landau gauge restricted to the first Gribov horizon (2.12)),
one proposal to do so is by modifying the path integral to

<O > = limlim [ DA, DcDcO(A,,c,c)d (_8uDzb) o Sty

n—0 €0

X exp (—% ((% / ddxddyajea(x)agca(y)) - 237)2> (2.16)

Here, the representation of the ghost dressing function at zero momentum as
G*(0) = limp*D& (p) = limp* < *(—p)c*(p) >
p—0 p—0

1 )
= lim v A zdyp*e? Y < &(y)c(z) >

p—0

1 .
= lim v ddxddyﬁfj@ze”’(m’y) < (y)c(z) >

p—0

= })ii%% dd:pddyeip(x_y)az < E“(y)@ffca(x) >= %/ddxddy < 836“(y)8ﬁca(x) >
has been used, and Zgvy = B guarantees the correct renormalization. The volume factor
V remains due to the translational invariance of the zero mode. The Gaussian weight thus
inserted in (2.I6]) then enforces that in the limit the ghost dressing functions has to reach
the pre-determined value, satisfying (2.15), for each Gribov copy. Note that this additional
term explicitly breaks perturbative BRST symmetry, and is non-local. Furthermore, the
order of the limits is important. The statement of this inclusion is, however, merely that
the ghost dressing function should become B at zero momentum, which can therefore be
considered a boundary condition. This permits to implement this constraint also without
explicitly taking into account this non-local term in the path integral in self-consistent
calculations, as will be done in section 8.2 Of course, in lattice gauge theory just the
appropriate Gribov copy will be selected. It should be noted that it is likely possible,
analogously to conventional covariant gauges [2], to remove the limit in 1 in (2I6). This
yields then a gauge averaging over non-perturbative Gribov copies, with a Gaussian weight
centered at Zpv.

However, the expression (2.I6]) is only appropriate if, up to a measure zero set, all
configurations have at least one Gribov copy which can satisfy the condition™. Otherwise
gauge-invariant quantities would be affected. If a B value is chosen for which this is not the
case, the maxB or minB gauges are explicit examples of such a case, the expression ([2.16])
cannot be correct. Instead, at best it can only be imposed that the condition < b >= B

141 am grateful to D. Zwanziger for a discussion on this topic.



Chapter 2. Quantizing Yang-Mills theory in Landau gauge 21

can be satisfied, but not b = B. This can be implemented in the path-integral by using
Zp7v as a Lagrange parameter, like temperature, rather than as a gauge parameter, which

gives (2.16]) the form
<0> = lim [ DADDO(A, ¢, (—0,Dsb) e~ d'wks
—
1
X exp (ZBWV /ddxddyﬁﬁé“(az)azca(y)) : (2.17)

Otherwise the same statements about (2I7) hold true as for (ZI€). Indeed, there is at
least one value of Zpy = B for which this is possible, since the ghost dressing function has
to have at least one value at zero momentum. However, there are still some values which
cannot be imposed, like negative values of B, much like negative temperatures (usually)
cannot be employed. It thus still remains to identify the permitted set of B values.

At the present time there is neither proof, nor rock-solid evidence that this eliminates
the Gribov-Singer ambiguity in the same way as the absolute Landau gauge, i. e., by
uniquely identifying a Gribov copy for at least some value of B, which would imply for
this/these value(s) of B the admissibility of the construction (2.I6]). However, it removes
the Gribov ambiguity at least in the same form as the minimal Landau gauge, since it
provides a prescription how to treat the residual gauge orbit. This follows, since if indeed
there exists a set of residual gauge orbits with non-zero measure where there are Gribov
copies degenerate in this condition, then, as in minimal Landau gauge, just random choices
will be made. The gauge-fixing conditions then returns to the same operative level of gauge
definition as for the minimal Landau gauge. Of course, in such a case the non-perturbative
gauge-dependence between different Landau-B gauges will be trivially just a lower limit to
the variability which would be obtained when resolving any further degeneracies, like in the
absolute Landau gauge. Thus, all three gauges, minimal Landau gauge, absolute Landau
gauge, and Landau-B gauges, are complete resolutions of the Gribov-Singer ambiguity: In
all cases it is fully specified how to treat Gribov copies.

After specifying this gauge, it is now an important question what the actual distribution
of b is. A particular interesting question is, whether there are holes in the distribution
of b, whether it has a finite width in the thermodynamic limit, and so on. Results from
functional continuum calculation [16] suggest that the possible range is [ By, 00), with some
lower limit By not precisely determined yet, and including the limit B — oo. The latter
would be required to be implemented by another limit in (2Z16) to be taken after the limit
n — 0, and also in (2.I7). However, even in the opposite extreme case that the interval
should shrink to a single value, the construction is not wrong, since the ghost dressing
function has to take some value at zero momentum, being it finite or infinite. In this case,
all what happens, is that the Landau-B gauges are reduced to the minimal Landau gauge.

Thus, the permitted range of B is primarily of practical importance. The distribution
of b as a function of volume is shown in figure 2.6l First of all, the distribution is very
strongly asymmetric, with a long tail towards large values, and thus quite different from
the Gaussian one found for F'(A). It is furthermore strongly volume-dependent. However,
as can be seen from the result for two dimensions where on small volumes almost no Gribov
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Figure 2.6: The distribution of b for a fixed discretization of a = 0.22 fm [55]. Results are
shown for two (top-left panel), three (top-right panel), and four dimensions (bottom panel).
The absolute value is necessary due to some peculiarities of the method in determining the
b value in the algorithms employed here [86, [87], which are negligible when determining
lattice averages, and in particular for the thermodynamic limit [55, 83)].

copies exist, this is to quite some extent a ’trivial’ finite volume effect, which is also seen
in the minimal Landau gauge. These just stem from the fact that in a finite volume the
lowest momentum is non-zero, but decreasing with volume.

On the other hand, the renormalization properties shown in figure 2.7 are much better
than for F'(A). If the discretization errors are not too large, i. e., the number of lattice
points is sufficiently large, then there are essentially no cut-off effects visible for the distri-
bution. This is to be expected from a renormalization-group invariant quantity, which b
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Figure 2.7: The change of (2.14]) when the cut-off is increased for ;1 = oo in two and three
dimensions, and p = 2 GeV in four dimensions. The top-left panel show a volume of (5.7
fm)? in two dimensions, the top-right panel a volume of (3.1 fm)? in three dimensions, and
the bottom panel a volume of (1.3 fm)* in four dimensions [55].

is. From available results, it appears that a cut-off larger than 1 GeV is at least necessary
for reaching the appropriate behavior, and at least a lattice size of 20°.

Hence, it remains to get a better view on the development of the permitted interval for
B. A useful possibility is to determine the gauge corridor, which is given by [< minb >, <
max b >|. This corridor is shown in figure [Z8. The results shown are only approximations
in two respects. Because of the inherent problem to find all Gribov copies with any given
method, the results shown give only a lower limit to the size of the interval. That is an
issue which has to be taken into account at any rate for any results displayed in this work:
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Figure 2.8: The interval [< minb >, < maxb >] in two (top-left panel), three (top-right
panel), and four (bottom panel) dimensions [53,55]. Note that these results are lower and
upper bounds to < maxb > and < minb >, respectively.

in almost all cases only lower limits of the possible gauge variations are available, and
though an extrapolation in the number of Gribov copies is possible in principle [83, 88],
there is no guarantee. The effect of taking different search spaces into account is illustrated
in figure 2.9

Irrespective of this, the corridor in all dimensions, even in the case of two dimensions
with its small number of Gribov copies, quickly opens. The increase of the ratio of upper
to lower bound of the corridor is actually not affected by trivial finite volume effects, but
can be affected by non-trivial finite volume effects. Still, this is the strongest impact of the
choice of Gribov copies for the investigated volumes which has been found so far. Though
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Figure 2.9: Various observables [55] as a function of the size of the search space [53, [72]
for a 24 lattice with lattice regulator a = (0.94GeV)~!. Note that also the number of
configurations taken into account can modify this result.

it is tempting to conclude from these results that the interval of permitted B values is
indeed larger than a point, and has an infinite upper limit, experience has shown that
this cannot so easily be decided without investigating the volume dependence over a much
wider range |[89-92]. In particular, convincing evidence has been found that at least in
three and four dimensions the lower limit is necessarily finite |89, [90, [92], and thus the
lower boundary of the B corridor has to flatten out, which has not been seen yet.

Note that the construction so far has been entirely based on selection of Gribov copies,
without returning to the findings in functional calculations. Whether indeed, as in func-
tional calculations, the upper limit of the B corridor is infinite in the thermodynamic
limit cannot be decided yet. The evidence in favor or disfavor of this possibility will be
discussed at length in section L.I.Jl Some rather general comments on whether this is
possible at all will also be given in section [£.3.2l However, the discussion here shows that
the expectation value of the ghost dressing function at zero momentum can be brought
into contact with Gribov copies. If either (2.16]) or (2.I7) can furthermore be shown to be
correct in general, this would imply that selecting the zero-momentum value of the ghost
propagator in functional calculations is indeed equivalent to treating Gribov copies.

The fact that giving a definite prescription how to deal with Gribov copies can be
based on a desired behavior of the ghost propagator at zero momentum is already showing
that the Gribov-Singer ambiguity can be resolved in this way in a well-defined manner,
in the same sense as the minimal Landau gauge resolves it. It thus remains to formally
understand how this is resembled in the approach starting with the continuum theory.
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Figure 2.10: The first Gribov region projected to the coordinates F'(A) (after subtraction
of one and multiplication by -1000) and b. Top, middle, and bottom panel show results for
two, three, and four dimensions, respectively. Always three different volumes are shown,
with increasing volume from left to right. Red points denote copies on the would-be
horizon (see text), green points are in the fundamental modular domain, blue points have
both these properties, and black points neither. More details can be found in [55].

2.6 Gauge relations

Before turning to the more practical matter of calculating the correlation functions, it
provides further insight to investigate the relation between the two quantities F'(A) and b.
A first insight is given by the projection of the first Gribov region to these two coordinates.
This is shown in figure It is visible that, for the largest volumes studied here, there
is essentially no correlation between the two coordinates. Thus, it can be expected that
when using one of the parameters to fix the gauge, the results for the other parameter
will be essentially its average value. Thus, it will have a similar value as in the minimal
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Landau gauge.

The next observation comes from classifying the different Gribov copies. One possibility
is to select the fundamental modular region copies, at least as good as the algorithm can
identify them. The second possibility is to select the largest value of b. In minimal
Landau gauge, for sufficiently large volumes, this quantity is dominated by the lowest
eigenvalue of the Faddeev-Popov operator [83, 190, 93], and thus this would be in one-to-
one correspondence with the Gribov horizon. If this were to hold in general, b can also be
used to characterize the Gribov horizon.

It is then seen in figure that the set of copies belonging to both categories shrinks
with increasing volume and cut-off. Thus, less and less gauge orbits have a Gribov copy
belonging to both categories. Hence, it appears that though such a common boundary
exists [38,169], its contribution to the measure could be negligible. It is also seen that this
happens when the number of Gribov copies increases [55], so there is the chance that this
particular Gribov copy of each orbit is just not found among the large number of copies.
However, this would also imply that the standard algorithms used for minimal Landau
gauge will not sample this type of copies very well.

Because both coordinates appear to be quite unrelated, it is a natural possibility to
select combined gauge choices. E. g., the Gribov copy for a configuration could be selected
which maximizes

xF(A) + yb,

for some value of z and y, or any other function of the two coordinates. However, it does
not appear to be possible from this view to require the satisfaction of two independent
conditions for F'(A) and b. Another possible choice would be just minimizing instead of
maximizing F(A), which could be called an inverse Landau gauge [53, [88]. Here, these
possibilities will not be pursued further, and only the set of Landau-B gauges together
with the absolute and minimal Landau gauge will be investigated.
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Methods

It is actually a quite non-trivial problem to determine the correlation functions beyond
perturbation theory. Various methods have been employed for this. However, much more
successful than any individual method was the combination of two or more of them to
compensate the respective disadvantages. For the task of describing gluons, the combi-
nation of lattice gauge theory and functional methods has been most useful, and will be
employed here. Alternative approaches employed are in particular methods based on effec-
tive actions |37, 41-46, 48,149, 194], but also stochastic quantization approaches [38, 166, 95],
both of which will not be detailed further.

The functional methods can be split further, in the quantum equations of motion
on the one hand, and functional renormalization group methods on the other. Though
the quantum equations of motion will be mainly used here, the related approach using
functional renormalization group equations will be shortly introduced in section [3.2.2]

An enormous advantage of all of these approaches, in contrast to models, is that per-
turbation theory is always included. Because of asymptotic freedom, it becomes manifest
for Yang-Mills theory at large momenta. Conversely, this implies that use can be made of
the wealth of perturbative results in all of these methods.

3.1 Lattice gauge theory

One of the most successful methods to investigate gauge theories in the non-perturbative
domain is lattice gauge theory [4,22]. In this approach, space-time is discretized and only
a finite volume is investigated, usually with the geometry of a hypercube. Effectively,
thus, quantum field theory is approximated by quantum mechanics. Only by taking the
appropriate thermodynamic limit in the end, the original quantum field theory is recovered.
However, the existence of this limit is still an unproven assumption. The results shown in
figures 2.1H2.4] and in the previous chapter were all obtained with this method.
This method is particularly useful to determine gauge-invariant quantities [4, 22]. Fur-
thermore, in this case it is known also how to establish the connection to Minkowski
space-time [10]. The most dramatic successes of lattice gauge theory have been obtained
by making use of the fact that it is very well approachable by numerical methods [22],

28
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permitting to evaluate path integrals directly. Though this process just delivers final
numbers, it permits insight into the hadronic spectrum and many other results, and is es-
sentially only limited by the possibilities of the numerical algorithms. Though these made
enormous progress over the years, there are still substantial challenges. These include very
light dynamical fermions, isospin breaking, finite density, disparate scales, supersymmetry,
critical slowing down, and other problems.

Here, however, the focus is different and is on the possibility to determine correlation
functions directly by numerical evaluation. With the numerical approach to lattice gauge
theory, it is only possible to evaluate expressions of the type (2.4]). Thus, this implies that
only full correlation functions can be obtained. To obtain vertex functions, the connected
contributions have to be determined, and these have to be amputated. The latter has
quite some implications in Landau gauge, as will be discussed in more detail in section

B3

3.1.1 The action

The detailed approach to obtain the correlation functions is a multi-step process [4, 22].
Usually, the formulation of Yang-Mills theory using lattice gauge theory is in terms of the
group elements rather than of the algebra-valued gauge fields themselves. In principle,
any group representation of the theory is equally valid, however, some turn out to be more
amendable to numerical calculations than others. A dramatic example is the case for the
gauge algebra su(/V). In this case a formulation in terms of the group SU(N) is much more
efficient with the available algorithms [22] than for the gauge group SU(N)/Zy [96-98],
which would be more appropriate for the standard model [3]. Since the gluonic correlation
functions are invariant under group transformations which are mapped to the identity in
the algebra, e. g. center transformations for SU(V), the notion of algebra and group will
be used synonymously in the following.

In general, the gauge fields AZ(&:) are thus represented by the corresponding group-
valued link variables U, (z) = exp(iAf.7,) for each lattice site x and direction p. Of course,
from these the original algebra-valued gauge fields can always be reconstructed, though
this in general produces errors of the size O(a?), where a is the lattice spacing. E. g., for
SU(2) the relation is given byf!

Al = ﬁtrT“(UM - U5+ O(a?) (3.1)

b 44a

where 8 = 4Np/g? is related to the bare coupling g, and Ny is the dimension of the
fundamental representation of the gauge algebra.

The discretized lattice action S is then given in terms of these link variables. The

1Care has to be taken if the center symmetry of the gauge group is broken [99]. In this case, [B.1) can
at best be used for configurations with a positive, real Polyakov loop.
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form used here is the so-called Wilson action [4]

1
Sp o= B <1 — N—FtrUW)

V>N

Uw = Uu@)U(z+e)Uu(z+e) Uy (2)",

with the unit vector in the hypercubic lattice e, in the direction p and the (gauge-invariant)
plaquette U,,. The size of the hypercubic lattice is N®. This lattice action agrees with the
continuum action S up to corrections of order a?, and thus coincides with it in the limit
a — 0. This behavior can be improved [22], but this will not be necessary here. Studies
of correlation functions using improved actions can be found, e. g., in [100].

Using a Monte Carlo simulation, a set of (independent) gauge orbits {G}, being a set
G ={U,} of dN 4 link variables U, each, is generated. For this purpose, various methods
are available, which will not be detailed here, as they are not specific for the purpose of
calculating correlation functions. See [22] for a comprehensive introduction, and for the
particular algorithm used for most of the results presented here [86].

It should be noted that there are quite a number of technical problems still associated
with the generation of the configurations, not the least to determine the value of the cut-
off, and thus of a as a function of 5. For the present purpose, standard methods are
sufficiently well known [4, 22], and will not be detailed here. The important technical
point is that in all cases here the scale is set by giving the intermediate distance string
tension the value (440 MeV)?, see for details e. g. |61, 62, [101].

3.1.2 Fixing the gauge

A typical Monte-Carlo algorithm generates a set of N¢ independent field configurations
{U,} using the weight exp(—S.), i. e., each configuration contains link variables for all
directions and lattice sites. Each of these link configurations are in a random gauge,
and have to be transformed into the desired gauge first before the gauge-fixed correlation
functions can be evaluated. Otherwise, the gauge-dependent correlation functions average
to correlation functions of Gaussian random variables, according to Elitzur’s theorem [13].
To fix the gauge first to satisfy the Landau gauge condition (22) and to restrict to
copies inside the first Gribov region can be performed by minimizing the expression

Z trU,(z) ~ 1 4+ const. Z A AS + O(a?), (3.2)
o

T,p,a

which agrees with (ZI4]) in the continuum limit up to prefactors [68]. For this purpose, a
gauge transformation g(z) on the lattice is searched for, such that the gauge fields obtained
from the gauge transformed links u,(z) = g(z)U,(z)g(x + e,)" satisfy the Landau gauge
condition. To check whether this condition is indeed fulfilled, it is possible to calculate, e.
g., the gauge-fields by ([B.) and check whether they are transverse [68]. In fact, despite
that these fields can be transverse up to the numerical precision, due to the discretization
errors the corresponding continuum fields will only be transverse up to order O(a?).
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Actually, this direct local evaluation is not very sensitive to long-wavelength fluctua-
tions. Therefore, a more useful quantity to evaluate is [6§]

1 1 1 )
P %: N, Z RO ;(tr{[qu(fcu) — Qul7}) (3.3)

Qu(Ty) = 2% [g(x)Uﬂ(x)g(a: +en)t =gl + e“)Uﬂ(:U)Jrg(:U)”L]
Ty, VFEL
Qu = NLM Z Gu(p),

where N, is the size of the hypercubic lattice in direction p. A typical good numerical
condition on this quantity is to require it to be below 107'% [68, 186].

To determine the gauge transformation g(x), several algorithms have been developed,
see [68] for a detailed discussion. A particularly useful example of such an algorithm
for contemporary lattice sizes is the stochastic overrelaxation algorithm. FKEssentially, it
updates g(z) at each lattice site in turn? by either choosing the new g(z) such that it min-
imizes (B.2]) locally or by only rotating it such that ([3.2)) is left unchanged. Which of both
possibilities is performed is chosen randomly. The probabilities assigned for both possibil-
ities significantly influence the performance of the algorithm, and depend on the volume,
discretization, and dimensionality of the lattice investigated [62,68]. Tt is most convenient
to permit the algorithm to adapt these probabilities during run-time [86]. However, the
best value for the probability is also very much configuration-dependent [36]. Therefore,
no optimal choice exists, and the best choice is one which optimizes the algorithm on the
average.

The gauge fields obtained so minimize (3.2]) and therefore fulfill the perturbative Lan-
dau gauge condition (2.2)). Furthermore, it can be shown that they are in the first Gribov
region [69], by noting that at the minima of (3.2)) the Hessian of its second derivatives
has to be positive (semi-)definite, and that this Hessian coincides with the Faddeev-Popov
operator (2.I7]). Actually, getting out of the first Gribov region using lattice calculations
is not entirely trivial. This can be achieved using, e. g., stochastic quantization [102] or
gauge-fixed Monte-Carlo simulations [34, [103].

However, without further specification no minimum is preferred and thus a random
Gribov copy is obtained within the first Gribov region. Choosing this copy for proceeding
is therefore equivalent to implementing the minimal Landau gauge. To obtain other gauges,
it is necessary to specify this copy further. Since for this purpose knowledge of more copies
is necessary, this requires access to further Gribov copies. Up to now, no systematic
way of generating new Gribov copies is known. Therefore, a stochastic approach is used
[53, 72, 188]. For this it is important to note that any kind of local algorithm which
attempts to minimize (3.2]) will find the closest minimum to its starting point, or even
with some amount of randomness in its search, a minimum very close to its starting point.
Therefore, restarting the gauge-fixing algorithm with a different initial guess for g(x) will
in general produce another Gribov copy, if there exists more than one copy, though with

2This can be accelerated by using a checker-board update instead of a lexicographical update.
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an unlucky guess the previous one will be found?. By repeating this sufficiently often, a
set of Gribov copies is generated. In this set of copies then the copy which matches the
non-perturbative supplemental gauge condition, e. g. absolute Landau gauge or a Landau-
B gauge, as good as possible is selected to represent the gauge orbit. Since this is a
high-dimensional optimization problem, it is in general not possible to guarantee finding
all copies [36]. Therefore, gauges like the absolute Landau gauge or the maxB gauge can
never be reached with certainty, though sophisticated algorithms can be devised to make
the search at least somewhat more efficient [36, 81,188, 105-107]. For gauges which do not
strive to find an extreme value, like a Landau-B gauge with some non-extremal value of
B, this problem only manifests itself in the generation of more stochastic noise.

Any of these methods finally selects one particular Gribov copy with particular, gauge-
fixed links u, for each configuration. This yields the set of gauge-fixed configurations
{{u,}}. These represent the gauge orbitd]. Note that no ghost fields need to be introduced.
Gauge-fixing on the lattice, in the original spirit of gauge-fixing, is due to selecting a
representative for each gauge orbit.

3.1.3 Correlation functions

Once such a set of Gribov copies representing the gauge orbits has been specified, correla-
tion functions can be determined. This is done by determining the correlation function on
each gauge orbit’s representative and then average over all gauge orbits. Thus, for some
correlation function I'414» being the expectation value of the product of n fields A,,, the
lattice result for the correlation function from Ng gauge orbits is given by

1 S

where the index ¢ labels the representatives of the N¢ gauge orbits. In the limit of No —
oo the function obtained is indeed the correlation function [4]. At finite Ng, statistical
fluctuations will be present, and a stochastic error can be assigned to the correlation
functions at each point [4,/109]. Furthermore, on any finite lattice, there will be systematic
errors due to the finite volume and discretization and the presence of the non-trivial
geometrical structure of choosing a hypercube. Only by taking the thermodynamic limit
(or extrapolating to this limit) the continuum correlation functions in an infinite volume
can be obtained. These lattice artifacts will be discussed in more detail in section [3.1.4]
Here, the correlation functions in momentum space are in most cases more interesting
than those in position space. Therefore, instead of evaluating the correlation functions
first in position space and then Fourier-transforming it is more convenient to transform

3This assumes perfect numerical accuracy. On finite machines, numerical artifact copies will be found,
but can be identified with knowledge on the precision of the algorithm [36]. Further artificial Gribov copies
exist due to the lattice regularization |104], but these become irrelevant when taking the continuum limit.
41f the aim is to implement gauges averaging with a specific prescription over gauge copies, like general
covariant gauges or Hirschfeld-like gauges, this requires to average over the set of Gribov copies found with
the required weight functions. Such gauges will not be considered further here. See, e. g., [19,134,1103,[108].
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the gluon fields directly, which is done by [110]

o im Py

Aa )=e€ ™u Zezmz

LXH

AL (), (3.5)

where on a finite lattice the components P, of P have the integer values —N,/2 +
1,..., N,/2 and the components X, of X are the (integer) coordinates in the lattice
ranging from 0 to N, — 1. The physical momenta p to which the integer lattice ones P
correspond are

2 P,ﬂr
= —sin —
Pu= a N,

The prefactor in ([B3) comes from the implicit mid-point definition of the gauge-fields
when using the links, and has to be taken into account. The gluon propagator, e. g., is
then given by

Dib(p) = 3 AL (D) AL(~),
where use has been made of the reality of the gluon field in position space and V' is the
total volume of the lattice, stemming from the normalization of the Fourier sum. The
three-gluon correlation function is then given by

VAZ( P)A(q) Ag (), (3.6)
and so on.

A bit more complicated is to determine quantities involving the ghost fields. In the
lattice calculations a gauge copy is selected directly, and the Jacobian is never required, and
thus no ghost fields appear. Therefore, the only possibility to obtain correlation functions
involving ghost fields is by returning to the path integral (2.3). Integrating out the ghost
fields gives expressions for correlation functions involving the ghost fields in terms of the
Faddeev-Popov operator (2.11]).

To make use of these relations requires to determine the Faddeev-Popov operator on
the lattice. It is defined in terms of its action on an arbitrary function w® as a function of
the gauge-fixed link variables as [69]

M{(y, x)“bwb(x) = ¢ (Z (G“b( Jwp() + Z A“b Jws(z +€,,) + sz(x)wb(x — eu))>
G®(x) = Ztr {79, 7} (uu( )—l—uﬂ(x—eu)))

Aff’(az) = —2tr(7' Thu,(z))
Bﬁb(a:) = —2tr(7'“7bu+(:c—eu)),

where ¢ is an arbitrary normalization parameter, depending on the normalization of the
generators 7¢ of the gauge algebra.
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E. g., integrating out the ghost fields for the correlation functions of a ghost and an
anti-ghost, the ghost propagator, then yields its representation in terms of the Faddeev-
Popov operator as

< &(x)ct(y) >=< M (z,y) > .

Therefore, to determine the ghost propagator, and actually all correlation functions involv-
ing a ghost and an anti-ghost field, requires to invert the Faddeev-Popov operator. This
needs to be done numerically in lattice simulations. Similar to the case of fermion fields
[22], there are two numerical possibilities widely used, both based on a (bi-)conjugate
gradient algorithm [111, [112], exploiting the positive-semi-definiteness of the Faddeev-
Popov operator in the first Gribov region. They differ by the source vector, point source
[83, 186, 187] or plain-wave source [72, 79, 86]. The advantage of a point source is that the
inversion has to be done only once to get the full Fourier spectrum of the ghost propagator
after Fourier transformation, while this has to be done separately for each mode with a
plain-wave source. The drawback of the point source is that it suffers from significantly
larger statistical fluctuations, limiting its use essentially to only calculating the propagator.
A quantitative comparison of both methods for the ghost propagator and the ghost-gluon
vertex can be found in [86].

The ghost number is a conserved quantum number in Landau gaugeﬁ. Hence, knowl-
edge of the inverse Faddeev-Popov operator is then already sufficient to construct all higher
order ghost correlation functions. E. g., the ghost-gluon vertex is given by [116]

< AZ(x)ﬁj(y)cc(x) >=< AZ(x)MbC_l(y, z) > .

Once more, this can be proven by integrating out the ghost fields.

Thus, in general, the construction of vertices is a straight-forward generalization of
the calculation of the propagators [8G]. However, the relation (B8.4]) already shows that
the correlation functions obtained are the full correlation functions. To compare it to
the vertex functions, lattice results always have to be reduced to their connected and
amputated part. The connected part is not a problem for correlation functions up to
order three, as any one-point correlation function vanishes in Landau gauge, but can
become very cumbersome at higher orders [62,86]. The fact that the correlation functions
are non-amputated implies that only the tensor structures transverse in all gluon momenta
can be obtained in lattice calculations in Landau gauge, but not the longitudinal ones. To
isolate then the individual transverse tensor structure requires projection of the connected
correlation functions with appropriate tensors [117], and then amputation by division with
appropriate products of propagators. Details of this procedure can be found in [116] for
the ghost-gluon vertex and in [86] for the three-gluon vertex. Higher vertices have not yet
been determined in lattice calculations, mainly due to the statistical noise which increases
quickly with the number of fields involved.

It should be noted that the correlation functions of an individual configuration will not
exhibit translational nor rotational symmetry, and thus a propagator will depend on both

SThere is a second symmetry of the ghost fields in Landau gauge which relates ghosts and anti-ghosts
[17). In principle, this symmetry could be broken [113,[114], but this does not seem to be the case [115].
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x and y separately, instead of only the difference x —y. Only after performing the average
(B4) these symmetries will become manifest in the limit No — oo, within discretization
errors and hypercubic artifacts. Thus, the averaged propagators will indeed depend only
onx —y.

3.1.4 Lattice artifacts

The previous description produces the correlation functions for a finite set of momenta.
This set ranges from a lower cut-off, which is essentially given by 1/L, where L is the
extension of the lattice in the direction of the momentum, up to a largest momentum of
size 1/a, where a is the lattice spacing. At the infrared cutoff, the system becomes aware
of its extension, and the fact that it is a cube, while at large momenta it becomes aware of
its hypercubic symmetry, and that there is a lattice. Thus, in principle, only for momenta
fulfilling the relation [118]

eyl
the lattice can be expected to give reliable results. Thus the strength of the lattice for-
mulation lies in an intermediate momentum window. An example for such artifacts in the
case of finite volume, i. e. finite L, will be given in section [L.1.1]in figure below.

Though not directly comparable, an example of how misleading such artifacts could be
comes from the treatment of full QCD. There, for several hadronic observables the results
are still far from the experimentally known values because the quarks are heavy, despite
that the pion mass is already quite close to the physical one (see, e. g., [119] for a more
detailed discussion and further references). Also, expected states still have not been seen,
like pion scattering states. In this case also physical effects, like isospin breaking, may
play a role. Thus, this should serve only as a warning, but should not be treated as a
general permission to distrust the lattice results.

A less obvious source of artifacts appears when n-point vertices, instead of propagators,
are considered: The n — 1 independent momenta cannot be positioned arbitrarily with
respect to each other, but only in a way compatible with the geometry of the lattice. E.
g., on a two-dimensional lattice, there are very few possibilities to construct two momenta
such that they have the same size as their sum, as the 60° angle between them can only
be realized for very particular sizes in lattice units [62]. Thus, it is not always possible
to easily reconstruct momentum configurations from the continuum, and this becomes
worse the larger the number of momentum vectors involved is compared to the number of
dimensions. Of course, the finer the lattice is, the weaker this problem becomes, but at
lattice sizes currently accessible, this can be a serious restrictionﬁ.

There are further problems. One is that, since the lattice is discrete, any function
is actually only given by a set of numbers. Even if all correlation functions were fully
analytic, it is a-priori impossible to predict how well they will approximate the continuum
correlation functions, as a general statement of function theory [11]. This is of particular

6This is connected to the problem of assigning spin and orbital angular momentum to states, since
the rotation group is the discrete hypercubic group Hy, rather than the continuous group SO(d) [22].
However, this is of little relevance for the topic here.
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seriousness when considering the continuation to Minkowski space. A second problem is
that there is still no proof that lattice gauge theory has as limit the desired continuum
theory [4], though it appears unlikely that this should not be the casdl.

A particular problem for the gauge-fixed setting followed here is that in addition to
the conventional Gribov copies there are also additional Gribov copies which are lattice
artifacts |[104]. These will disappear when taking the limit to the continuum field theory
in an infinite volume, but may contribute otherwise. However, it appears that this does
not provide a new qualitative dimension to the problem of Gribov copies [36], and in the
present treatment lattice Gribov copies are therefore not distinguished from other finite
volume and discretization artifacts.

On top of all these principal problems, there is of course a practical problem. Most non-
perturbative insights, including those presented here, come from numerical calculations.
Thus, computational resources are a very practical limitation, especially when considering
accessible volumes and discretizations [62, 90-92, [118]. Thus, the investigation of dis-
parate energy scales is strongly restricted by computation time. A possibility is to use
extrapolations, but since neither finite volume nor finite discretization are approximations
which are under analytical control, extrapolations cannot be considered to be ultimately
reliable. Tt is known from solid-state physics [120] and lower-dimensional QED [121] that
these can be easily misleading.

Hence, the lattice approach is alone not sufficient, at least at the current time, to treat
the problems of interest, e. g., in the standard model and beyond. To complement it, in the
following continuum functional methods will be paired with this approach. Their particular
strengths are exactly at the extremities of scales: in the far infrared and ultraviolet and for
light and heavy states, as well as combinations of all this. Thus, they are best where the
lattice artifacts are strongest, and both approaches naturally compensate their respective
weaknesses and combine their strengths.

3.2 Quantum equations of motion

3.2.1 Formulating the equations

The quantum equations of motion, or Dyson-Schwinger equations (DSEs), can be obtained
for full, connected, or vertex functions. The starting point are the respective equations
for the generating functionals (2.5)), (Z7), and (2.8). Here, the most useful one will be the
one for vertex functions (2.8, though (2.7) will be valuable in section 3.3

The equation (2.8]) yields an equation for the one-point vertex function for the se-
lected field. Repeated derivations with respect to other fields then generate a hierarchy
of equations for higher-n-point correlation functions by virtue of (Z9). This derivation is
essentially an algorithmic problem, and can be formalized and thus automatized [122]. It

In fact, at times the position is taken that the lattice is the only well-defined version of Yang-Mills
theory. However, given that the universe is finite, and gravity plays a role at some point, this is more a
philosophical question. Even if it were the case, the continuum field theory could then still be seen as a
possible approximation of the lattice theory.
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should be noted that the equations may differ in form depending on the order of deriva-
tives [122], though of course this only corresponds to rearrangements due to the identities
relating different vertex functions.

Before being able to obtain a set of equations it is first necessary to perform the gauge-
fixing. To enforce the Landau-gauge condition the usual Faddeev-Popov formulation (2.3])
can be used. Thus, there will be not only gluon fields but also ghost fields, and both types
of fields have to be included in the construction of correlation functions. This fixes the
perturbative part of the gauge.

The further restrictions are less simple to implement. First of all, it has been shown
that the form of the equations is invariant whether they are derived on the whole of
field-space, or within a fixed Gribov region [66]. The reason is that the Faddeev-Popov
determinant, which appears after integrating out the ghost fields, is by definition zero on
the boundaries of these regions, effectively cutting off the integration.

However, this is not sufficient to fix which of the Gribov regions is used. This can only
be enforced by selection conditions on the set of vertex functions {T'!,...,T™, ...}, which
satisfy the various non-local gauge conditions. As addressed in section 2.5] there is not
yet a sufficient condition known to restrict the set of solutions to those belonging to the
first Gribov region. Here, the assumption will be made that it is sufficient to require that
the ghost two-point function I'* is negative semi-definite in both position and momentum
space. The remaining solution manifold can then be reduced further. E. g., implementing
the absolute Landau gauge (2.14]) corresponds to selecting the solution of the DSEs which
has the smallest integrated diagonal gluon propagator. Implementing a Landau-B gauge
can be done by implementing (215 as a restriction for the ghost propagator, i. e., requiring
it to coincide with the desired value of B,

2D 2,2
B — 1 PP, 1)

. 3.7
p—=0 112D (12, 12) (3.7)

It should be noted here that in contrast to the condition (215, this is a condition on the
averaged ghost propagator and not on an individual configuration. Thus, also B appears
here explicitly. Of course, if either of the conjectured restrictions (ZI6) or (2I7) were
correct, and DSEs could be derived despite the non-locality involved, this would be an
alternative. This will not be done here.

It remains to formulate the case of the minimal Landau gauge. There is no direct
way of constructing an equivalent gauge choice with continuum methods. However, there
is an indirect way, which will be shown to be indeed, at least, approximately correct
in section LTIl In this case, in fact a Landau-B gauge is chosen, but the value of B
is the one obtained in the minimal Landau gauge. This, of course, requires an outside
source like lattice gauge theory for this information. Since the minimal Landau gauge
just produces the average value of the ghost propagator, it will yield the average value
of B, thus giving an indirect handle on fixing the minimal Landau gauge in DSEs. This
prescription is correct, even if the ghost propagator coincided for all Landau-B gauges
in the thermodynamic limit. If, however, the Landau-B gauges did not yet completely
exhaust all permitted constraints to select a Landau gauge, this would imply that further
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constraints on further correlation functions can be implemented as well, and would have
to specified if they were averaged over as well.

A practical implementation of the Landau-B gauge, and thus the minimal Landau
gauge, can then be obtained using the DSE for the ghost propagator. Since it is also the
simplest DSE, it can serve as an example for deriving DSEs [12, [17].

Neglect for a moment the problem of Gribov copies. The ghost sector of the action is
then given by

Sgh = /ddzéc(z)ap(écdau + ngdeA;(z))cd(z). (3.8)

Inserting this into (2.8)) and differentiatingd with respect to ¢*(x) yields
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where the z-index on a 0 indicates the variable with respect to which to derive, and
the wave-function renormalization of the ghost with the wave-function renormalization
constant Z; has been taken explicitly into account. The renormalization constants of the
interactions are absorbed into the derivatives of I', and will only reappear if these are
written in terms of vertex functions. Replacing the fields by their respective derivatives
and dividing, after taking the derivative, by exp(W), yields

2
a0 () — g fadea;< SW W AW ) o7

i@ o) agpwer@)) i@

where j and 7(7) are the sources for the gluon and the (anti-)ghost, respectively. As a
general feature of such derivations, products of single derivatives of W appear. When
deriving such terms again with respect to the fields, always at least one single derivative
remains, which can be replaced by a classical field. When setting the classical sources to
zero at the end, the classical fields are also set to zero and therefore these terms always
vanish. Hence they can already be neglected at this stage of the calculation, and will
not appear furthermore. Note that this is not necessarily true if more than one further
derivative would be applied.

So the remaining expression is

=0.
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To obtain the equation for the ghost propagator, this equation is derived once more with
respect to c?(y) which leads to

W 6T

~ 2z sab . o ade N
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=0, (3.9)

8 All derivatives used are left-derivatives.
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Figure 3.1: The DSE (310) for the ghost. Dotted lines are ghosts, curly lines are gluons.
Lines with a dot are fully dressed propagators, white circles are full vertices, and all other
vertices are bare.

where the appearance of the ghost propagator stems from W being the Legendre transform
of I". The third term of (B9]) yields the interaction part. Using

02w a,d OW 0*T O*W
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where the minus arises due to the anti-commuting derivatives. Since all mixed two-point
functions vanish in Landau gauge, it is possible to write down the result in position space

DE e —y) = Z0™8(x—y)
+gf“d68fj / ddzddeE{,(:c — z)Dég(a: — W) (y w, 2).
Herein the gluon propagator and the ghost-gluon vertex appear.

Replacing all expressions with their Fourier-transformedd and afterwards dropping
[ d?p/(27)% exp(—ip(x — y)) produces the result in momentum space as
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ddq CC. ae e .
+/ Gyl (40,0 = D = ) DE @I (=pya.p — o)

where the tree-level ghost-gluon vertex

Lo (p, q, k) = igf**q (3.10)

has been made explicit. The resulting equation can be depicted graphically, similarly to
Feynman graphs. For the case of the ghost equation, this is shown in figure 3.1

9All momenta are always defined incoming and momentum conservation at the vertices is taken into
account. Hence in principle one of the arguments of the vertices could be dropped, but since this depends
on conventions, all are kept.
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Figure 3.2: The DSE for the gluon propagator.

The DSE for the ghost propagator (3.10) already shows the generic features of a DSE
for a primitively divergent vertex function. These differ from the ones for non-primitively
divergent vertex functions only by the appearance of the tree-level term [12, [123], in
this case the bare ghost propagator. The further terms are self-energy contributions,
which have the form of loop integrals like in Feynman rules, but differ from them by
the appearance of the full vertex functions. Thus, these equations are self-consistency
equations and take the form of non-linear integral equations [12].

Another property is the generic structure of the equations, which is

™ (p1y ooy Puct) = D8(p1y ooy Puct) + T (P, ooy pu1, D2, T3, ., T T T2,

where it has been used that I'' = 0 in Yang-Mills theory and 'y denotes the tree-level value
of I'". The important property is that [ does not only depend on all vertex functions with
lower n, but in general also on those with'd n + 1 and n + 2. Thus, this set of equations,
being the analogue of the classical equations of motion, is coupled. In fact, it forms an
infinite hierarchy of equations for the correlation functions.

Furthermore, the number of self-energy diagrams proliferates factorial with the number
of legs [12,1122]. However, in contrast to perturbation theory [12,124], the self-consistency
of the equations guarantees that the equations of motion are still well-defined, though their
practical treatment becomes increasingly complicated. Already the gluon equation, shown
in figure 3.2] gives an impression of the complexity. An important aside is here that the
sign of the ghost-loop for tree-level quantities is opposite from the one of the gluon loop
at one-loop order. Thus, the gluons provide an anti-screening behavior at large momenta,
while the ghosts provide a screening behavior. Adding both up, this will finally yield the
asymptotic freedom of Yang-Mills theory, as the gluons dominate at large momenta [9].

10Tn a theory with higher than quartic terms in the fields even higher n-point correlation functions can
appear.
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Figure 3.3: The DSE for the ghost-gluon vertex.

The simplest vertex equation is the one for the ghost-gluon vertex, shown in figure
B3l The particular structure of this vertex will play a great role in the following sections.
Various further examples for DSEs for vertices can be found in [122, [125-127].

Returning now to the problem of Gribov copies, the form of the ghost propagator DSE
suggests a way to implement the Landau-B gauges [16, 53, [55]. Multiplying the equation
(B.I0) by p? and neglecting for now the color structur, it becomes an equation for the
ghost dressing function. By subtracting the ghost equation from itself at zero momentum,

it takes the form
1 1

where T1® is the ghost self-energy. Multiplying then by the ghost dressing function at u
yields

G([L) 1 cc cc

@_E = G(p) (I1%(p) — () -
Since the value of G(p) is fixed by the renormalization condition, this completely specifies
the equation, and introduces the B parameter directly. As noted above, this method can
also be used to solve the equations in the minimal Landau gauge. Only the absolute
Landau gauge requires a different approach. In this case, the full solutions manifold of
the equations has to be constructed, and then the one solution has to be selected which
absolutely minimizes the (renormalized) expression (Z.14]).

The remaining problem is then to find a solution to the DSEs with a positive semi-
definite ghost propagator. For such non-linear integral equations this is quite a formidable
task, and rarely possible exactly. In particular, it is in general necessary to truncate the
DSEs, which usually implies to neglect most of the equations for the higher correlation
functions. This will be detailed below in section B.2.5l Before turning to this task, it
is useful to first introduce a related formalism, the (functional) renormalization group
equations.

"This will be justified by the results presented in the next chapter.
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3.2.2 Renormalization group methods

The functional renormalization group equations (FRGEs) [18, 21, [128] are very similar in
nature to the quantum equations of motion. Without going into further details, they are,
essentially, functional derivatives of the quantum equations of motions. In this derivation a
regulator function is introduced into the equations. A solution is then obtained in the limit
of removing the regulator at the end. If the system of equations is truncated, the choice
of the regulator can have a non-trivial impact [129, 130}, though for an exact solution its
choice is irrelevant.

Instead of deriving the functional renormalization group equations from the quantum
equations of motion, they can instead be derived directly from another generating func-
tional given as

LV 7 PR W N
§A A I2(z,y) + Ri(z,y) 0A ’

where R is the regulator function and k is the regulating scale, which has to be sent to
zero to obtain the full result for the correlation functions. From this generating functional,
similar as for the quantum equations of motion, a hierarchy of coupled non-linear integral
equations for the vertex functions can be obtained.

However, the structure of these equations is significantly different from the ones of the
equations of motion. One obvious difference is the appearance of the regulator function.
More importantly, the appearing loop diagrams are always only one loop. The resulting
drawback is that only full vertex functions appear, instead of also bare ones as in the
equations of motion [18].

The two systems of equations are thus sufficiently different that finding a solution to
both of them is a non-trivial consistency check [131, [132]. It has been shown that indeed
the one-parameter family of solutions, which is obtained from the DSEs by selecting the
B parameter, can also be obtained with FRGEs [16], in particular the one for B = oo
[16, 129]. On the other hand, the fact that indeed both systems are solved by the same
solution is sufficiently restrictive to show that the infrared structure of the vertex functions
has to be unique in the B = oo case [131], [132], under certain weak assumptions. The
latter is what would be expected if selecting the B parameter were sufficient to uniquely
specify a Landau gauge.

Furthermore, the freedom in choosing the regulator can be used to compensate for the
effects of truncations [18, [130]. As a consequence, the results from functional studies for
propagators most closely resembling the ones from lattice calculations up to now have been
obtained using FRGEs [16, 133]. Nonetheless, for the solution of functional renormaliza-
tion group equations otherwise the same applies concerning the necessity of a truncation
as in the case of the quantum equations of motion.

In total, both sets of equations have, from a practical point of view, their individual
strengths and weaknesses. Exploiting the combination of both of them has so far been
most useful [123, 131, 132], and promises to be so in the future as well.
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3.2.3 Ultraviolet

At large momenta, the leading behavior of the correlation functions can be obtained using
perturbation theory in the coupling constant, due to asymptotic freedom [2, |9]. The
corresponding equations are obtained by expanding all correlation functions in the DSEs in
the coupling constant [12]. As a consequence, the contributions from correlation functions
of order n + m in equations for correlation functions of order n are then subleading by
m powers of the coupling constant, and can thus be neglected if the expansion order is
less than m. Therefore, at any given order of the perturbative expansion the number of
equations is finite, and identical to the ones constructed with conventional Feynman rules.

Since the results in two, three, and four dimensions are interesting and have turned out
to be important to the understanding of Yang-Mills theory, it is worthwhile to also analyze
the perturbative expansion in all cases. However, in two dimensions the perturbative
integrals are ill-defined, and require an infrared cut-off, not leading to a viable perturbative
expansion [45]. Thus, only the case of three and four dimensions remain, which exhibit
a qualitatively different behavior. Therefore, it is worthwhile to consider the situation in
four and three dimensions separately.

The characteristic properties of perturbation theory are already obtained from the
leading corrections to tree-level. At this order, all vertices become their tree-level counter-
parts in the propagator equations. Corrections to the vertices are then of higher order in
the coupling constant. The much more complex case of higher-order correction including
higher-order correlation functions is in principle analogous, though much more challenging
in detail [2, [136].

The generic properties of correlation functions at large momenta can already be ob-
tained from a dimensional analysis. This can be illustrated most easily for the case of the
propagators. For this analysis it is important that Yang-Mills theory is renormalizable
in four dimensions, and in Landau gauge the highest appearing divergence is logarithmic
[136].

As a consequence, in four dimensions, the generic propagator behaves as [2]

2

p*D(p) — ¢ (1 +wln p_) + O(g%),
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AYM

where ( is a normalization factor and Ayyr is a dynamically generated scale. The appear-
ance of it, called dimensional transmutation [9, [17], is a pure quantum effect. The classical
theory is scale invariant, and thus the propagator would have to scale like the canonical
dimension of the fields, and thus p?D(p) would be constant. The quantum effects break
this scale (or dilatation) symmetry of the classical theory, and give the theory a scale, Ayy.
Since this is the only scale, the propagator has to depend on p?/A%,;. The logarithmic
behavior is then typical for such renormalizable field theories like Yang-Mills theory.

12Gtrictly speaking, this also applies to three dimensions [134], but there the breakdown of perturbation
theory only occurs at higher order, and is thus not relevant for the purpose here. In particular, the Linde
problem at finite temperature [135], to be discussed in chapter [ is also connected to this.
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In contrast, in three dimensions the propagators asymptotically take the form

2 4
D) — 1+ 10 (9—2) (3.11)
p p
with some constant a. This is the simplest, asymptotically free possibility just by power-
counting, since ¢g? has dimension of mass. The classical theory is therefore not scale-
invariant, in contrast to the four-dimensional case.

Though, as stated, in the two-dimensional case perturbation theory is not applicable,
the same arguments, and the fact that ¢ now has the dimension of mass, suggest that the

asymptotic behavior will be

p!
which turns out to be correct [62, [137]. It is thus similar to the behavior in three dimen-
sions. It should be noted that the possibility for the expansions ([B.11]) and (B.12)) are solely
based on a dimensional analysis, and therefore remain valid even if perturbation theory is
not applicable.

Higher order correlation functions show, of course, a more complicated structure, as the
number of external momenta increases [2]. Still, the characteristic perturbative behavior
is logarithmic in four dimensions, and polynomial corrections to the tree-level value in
lower dimensions. Note that in lower dimensions, operator-product expansion corrections
19, 136] could mix with the perturbative contributions, in contrast to four dimensions,
where they are sub-leading.

2 4
p*D(p) — 1+‘;i2+o<g ) (3.12)

3.2.3.1 Three dimensions

At leading order in the perturbative expansion the two-loop diagrams in the gluon equation
drop out, since they are of order g*, compared to the order g2 one-loop diagrams. A second
important point to this order is resummation, i. e. the inclusion of all one-particle reducible
contributions for a self-consistent solution of the DSEs to a given order |2, 112, [17]. In four
dimensions, resummed and ordinary perturbation theory does not coincide. However, in
three and two dimensions resummation only produces effects from order g* on. This follows
from dimensional arguments alone, since only tree-level expressions can contribute at order
g% in the loop diagrams, such that a polynomial correction of type ¢g?/p appears. The next
higher orders are of g%, and thus require a factor 1/p?. However, there resummation sets
in, as factors (¢%/p)? appear in next-to-leading-order from the leading order. Therefore,
resummation effects do not occur at leading order, but only from next-to-leading order
onwards.

The next problem is that each of the loop integrals in the propagator equations is
possibly linearly divergent from superficial power-counting, and only their combined result
is finite. The latter can be deduced from the fact that Yang-Mills theory has only a
logarithmic divergence in Landau gauge in four dimensions [136]. To cope with these
divergences in perturbation theory it were convenient to use dimensional regularizatio

13Which in odd dimensions implicitly already fixes the renormalization scheme |2, [136, [138].



Chapter 3. Methods 45

[2,19] to perform the integrals. However, dimensional regularization requires an analytic
continuation to non-integer dimensions. It is a-priori not clear whether such an analytic
continuation exists for the non-perturbative correlation functions [56]. Even if it exists,
it is generally not known beforehand, and thus dimensional regularization can only be
applied if an assumption on this structure is made [139]. The alternative is to use a
different regularization scheme.

It is thus more instructive to use instead of dimensional regularization the same reg-
ularization scheme used later for the non-perturbative calculations. This is even more
important as, besides the lattice, no non-perturbative regularization scheme is known,
which preserves manifest gauge covariance [56]. This is not in itself a problem, as this
merely implies that the counter-terms will also not be gauge—covarian [136]. Only the
renormalized correlation functions will then be again gauge-covariant. Thus, studying
this effect already in perturbation theory, where it is possible to compare to a gauge-
covariant regularization scheme, provides insights into how to treat these problems in the
non-perturbative calculations.

This does not matter for the ghost equation, which due to the non-renormalization of
the ghost-gluon vertex] [142-144) is actually fully finite in three dimensions. Performing
the loop integral yields the result for the ghost dressing function as [13§]

O _ g 9Ca0" (3.13)
G(p) 16p
where C'4 is the adjoint Casimir of the gauge group. Thus, the perturbative correction is
polynomial in the momentum. Hence, at very large momenta just the tree-level behavior
remains, in a manifest display of asymptotic freedom. On the other hand, at a small, finite
momentum the dressing function diverges, a manifestation of the Landau pole, and the
explicit breakdown of perturbation theory.

The case of the equation for the gluon propagator is different. The cutoff-regularization
produces spurious divergences in this case. First, it is useful to note the result obtained
using dimensional regularization, yielding [53]
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where in the first line the first term is the tree-level contribution, the second term comes
from the ghost loop, the third term from the gluon loop, and the tadpole vanishes upon
dimensional regularization. The individual diagrams are not individually transverse, but
only their sum reproduces this property [9]. This cancellation of the longitudinal com-
ponents is actually guaranteed by the Slavnov-Taylor identities (STIs) and by the gauge
condition [19], discussed in section B3l

“Note that such a procedure modifies the corresponding Slavnov-Taylor identities in a well-defined way
[16, [18, 1140].
15An explicit leading-order confirmation can be found in [141].
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This should be compared to the result obtained using a cut-off regulator,

sab (m - pZé’”) o <5W B pupy)

Z(p) 2 P 2
_g»d 62;‘ (@W + 2 ;f”) - 967%?5“’75“”
e 2) e

where the first line is the tree-level part, the second line comes from the ghost loop, the
third from the gluon loop, the last from the tadpole, and A is the cut-off. The finite part
agrees with the previous result. However, there remains a longitudinal part proportional
to the cut-off, which is spurious, and behaves like a gluon mass. It emerges since a cut-off
regulator does not respect the gauge symmetry [9, 156, [136]. As a consequence, the gluon
propagator is no longer transverse, as it ought to be in Landau gauge.

However, this is not a problem. Such spurious divergences or other artifacts of a non-
gauge-invariant regulator can always be compensated for by non-gauge-invariant counter-
terms [136]. In this case, the counter-term Lagrangian to be added takes the form

Lo = A5(x)Al(x)om?
9 _QQCAA
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which has the dimension of a mass squared since the coupling constant squared in three di-
mensions has the dimension of a mass. This counter-term makes the gluon self-energy once
more finite and transverse, and in agreement with the result using dimensional regulariza-
tion. It should be noted that these counter-terms are fully fixed by the requirements of
gauge invariance, as in the present case, and thus no additional arbitrary renormalization
constants appear.

Similarly, any other kind of such artifacts of a non-gauge invariant regularization pro-
cedure can be absorbed in corresponding counter-terms. Thus, the one-loop perturbative
result for the gluon dressing function becomes

11920,4 -
A =|1-
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This already shows that in the non-perturbative treatment, where dimensional regulariza-
tion is not possible without knowledge of the analytic structure, such counter terms will
naturally appear, and have to be taken into account.

(3.14)

3.2.3.2 Four dimensions

The situation in four dimensions is different for two reasons. One is that the dressing
functions are not finite, but actually divergent, and therefore have to be renormalized
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even when using dimensional regularization. The second is that resummation already sets
in at one-loop order. This is due to the fact that corrections are logarithmic instead of
polynomial, and two logarithms at different order can be combined into one, as the mo-
mentum dependence is the same. Thus, to obtain a self-consistent solution of the DSEs at
a given order requires to perform resummed perturbation theory in four dimensions. Since
the DSEs are inherently self-consistent, only such a solution makes sense as a perturbative
approximation to the full solution. The resummed solutions can be obtained with a variety
of methods from ordinary perturbation theory, but here simply an appropriate ansatz will
be made.
The form of the perturbative dressing functions in four dimensions is [2]

G(p) = G(s) [wlog <i—z> +1}(S (3.15)
Z(p) = Z(s) [wlog (z—z)ﬂr, (3.16)

with the anomalous dimensions § and v, and the parameter w, which all three will be
determined from self-consistency, the subtraction point s, and the renormalized values
Z(s) and G(s) of the dressing functions at the subtraction point.

The perturbative domain is reached for momenta large compared to the scale Ayy. It
is furthermore sufficient to only inspect the large momentum tail of the integrals, cutting
off the loops in the infrared at p, the scale of the external momenta [145-147].

Since the external momentum is small, it is justified to approximate the internal dress-
ing functions by G(p 4+ q¢) =~ G(q) and then performing the angular integrals explicitly.
The explicit form of the ghost equation is in this limit given by
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p2

with y = ¢ and the wave-function renormalization constant Zs, and the upper cut-off just
indicates the use of a regulator. As in three dimensions, there are no spurious divergences,
even when using a cut-off regulator. The (logarithmically) divergent upper boundary of
the integral can then be absorbed by the wave-function renormalization constant. Putting

in the ansétze ([B.13) and (B.16]) yields that the solutions must fulfill

39°(11)Ca
64725
1

0 = —5(’7+1)

to be self-consistent solutions, reproducing the known relations [2] between these pertur-
bative parameters.

For the gluon equation, a new problem appears. In fact, there is no self-consistent
solution to it and the ghost equation simultaneously, as long as the three-gluon vertex
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retains its tree-level value [145, 147]. The reason is that, due to resummation, high-order
effects of the vertices also contribute to generate a self-consistent solution. This does
not affect the ghost equation, due to the non-renormalization of the ghost-gluon vertex.
Therefore, it would be necessary to solve the corresponding equations of propagators and
vertices simultaneously. This can be addressed better with the renormalization-group
improved perturbation theory, but this is a rather lengthy calculation [2,9]. Here, it is
sufficient to note that this yields the missing quantity ¢ as

9

In fact, the knowledge of (B.15]) and (B.16) can then be used in turn to limit the structure
of the three-gluon vertex [148]. This is important for truncations to be discussed below.

Again, asymptotic freedom yields that these are indeed the leading ultraviolet contri-
butions to the propagators, and at high-energies the non-perturbative contributions will
be only sub-leading corrections to it, falling off as inverse powers of the momenta [9].

As a final remark it should be noted that the gauge algebra does not enter the ultraviolet
behavior in a qualitative manner, but only alters some of the coefficients, and in four
dimensions the value of the anomalous exponent at higher orders, but without changing
its sign.

3.2.4 Infrared

In analogy to finding the (resummed) self-consistent solutions at large momenta, the aim
of a non-perturbative infrared analysis is to find self-consistent solutions to the equations
at asymptotically small momenta. Two qualitatively different types of solutions have been
found over the time, the so-called scaling and decoupling solutiond!d. Here, the latter name
is chosen for the characteristic momentum-behavior of its running coupling in a certain
scheme, which is infrared vanishing. It is also referred to as a massive solution [151]
because the gluon exhibits a finite screening mass. However, as discussed this occurs also
in the scaling case with a finite or infinite screening mass, the later being an overscreening
behavior. Thus, this distinction is not entirely satisfactory. The most elementary difference
is found in the ghost dressing function, which is for the scaling case infrared divergent,
while it is infrared finite, like for a photon, in the decoupling case. Thus it is possible to
refer to the decoupling case as the photon-ghost case, which will be done here.

For a discussion of the infrared behavior, it is quite useful to discuss photon-ghost-like
and scaling-like behavior separately, which turn out to be quite distinct. Though the
scaling solution will be formally obtained in the limit of B — o0, it is not settled which
is the relation of the scaling case to this gauge-fixing condition, in particular if it turns
out that only finite B values or even only a single value of B is admissible in the first
Gribov region. This will be discussed further in section £.3.21 Until then, the results for

16Qriginally, as a third possibility a singular solution has been proposed, embodying the concept of
infrared slavery [17,[149,[150]. This possibility is at the current time not a consistent solution of functional
studies anymore, and there are no indications using lattice gauge theory that it could exist, see chapter @l



Chapter 3. Methods 49

the scaling solution will be just displayed alongside with those of the photon-ghost type,
which are obtained for finite values of B.

In any case, a momentum is infrared if it is very small compared to all other scales.
At zero temperature the only scale of Yang-Mills theory is Ayy, and thus an infrared
momentum is a momentum satisfying [118, [147]

p < Aywm, (3.17)
while at finite temperature infrared momenta satisfy

irrespective of the relative size of T" and Avyy. If Yang-Mills theory is coupled to matter,
then the momenta also have to be much smaller than any mass or other dimensionful
parameters introduced by this coupling.

The quantification of much smaller than all other scales, and thus the value of the
energy scale beyond which an asymptotic behavior is expected, is a highly non-trivial
question. Investigations of string-breaking in four dimensions indicate that the typical
length scales where dynamical effects can still be encountered in Yang-Mills theory is of the
order of 50 MeV, or about 10 fm [152]. In the context of Wilson lines, this domain is known
as the N-ality domain, i. e., the domain where only asymptotic properties are relevant
[153]. This indicates a lower distance limit from where on pure asymptotic behavior could
be expected. However, it is well possible that the behavior is already almost asymptotic

at much smaller distances, but in terms of correlation functions rather the converse seems
to be the case [89-92, [118§].

3.2.4.1 Scaling behavior

One hallmark of a scaling-type behavior is that diagrams can be classified as leading or
non-leading when all momenta are asymptotically small [154]. It is then actually possible
to provide an analytic solution to the whole tower of equations on the level of the scaling
dimensions [123, [154, [155], which under certain weak assumptions is unique [131, 132].
In particular, for the propagator equations it can be shown that only those one-loop
diagrams are relevant which contain a ghost loop, and that in general ghost dominance
[38, 166, 1147, [156-158] holds [154]. To illustrate the method of this so-called infrared
analysis again the propagator equations will be useful.
The relevant part of both equations then read [66, 147, 159]

D) = —Zp (319
abc ddq : e cc
+gf® / (%)dzml?ui(p—q)Dég(q)FyA’bgf (—=p,¢,p—q)
Dabfl _ ___ rabc ddq . Dcf Dde FcéA,feb - -
w (p) = —gf 2 P ¢ @D (p+ Uy (—a,p+ a4, —p),

and all contributions which turn out later to be self-consistently sub-leading have already
been neglected. Comparing to figures B.1] and B.2] these are just all diagrams containing
at least one ghost-line on the right-hand side.
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The only further input needed is the then the full ghost-gluon vertex ['*42 or actually
only its infrared-leading part. The consistency of the scaling solution actually demands
it to be infrared finite [131], [132], though variations as a function of the angle between
the two independent momenta are still permissible, but will be ignored for the sake of the
argument. Such possibilities have been explored [159], but the results shown in section L. 1.2]
indicate that any such variations are rather small. Note that an additional color tensor
proportional to the symmetric color tensor d**¢ would get lost due to the contraction with
the antisymmetric tree-level vertex. Hence, at least the leading infrared part will not have
color off-diagonal elements for either propagator. Thus, the ansatz is to replace the full
ghost-gluon vertex by its bare form.

Making then the scaling ansatz [66, [147, 156, 159, [160]

Dg(p) = —6"Agp > e (3.20)
Div(p) = &% (%u—p]‘;f”) Agp=?72raa, (3.21)

it is possible to absorb the remaining tree-level term in (3.19]) by implementing the bound-
ary condition of an infrared divergent ghost dressing function [147], i. e., setting 1/B = 0.

The integrals (3.20) and (3.2I)) can now be evaluated exactly, using the dimensional
regularization formula [9]

/ diq g 1 D(—a—B8—-9r ¢ +a)l(¢+ ﬁ)y2<%+a+5)
(2m)4 (4m)z  Dld+a+ B)(=a)l(=p) ’

(3.22)

which entails a definite minimal subtraction scheme in odd dimensions [138]. The essential
point for the validity of this formula is that, because of the absence of other scales, the
integral is dominated by the contributions around the external momental] [147]. Since
this in turn depends on the singularity structure of the propagators, and in general of the
vertices [159], this yields that the integration turns, up to a constant pre-factor, into a
map from the topology of the diagram to the exponent of the external momentum scale
[161].
The integrals can then be performed analytically to yield

P = GPOAAGAZ I (Ree, tian, d)p~ DB
PP = P CAAG ALy (e, d)p 20,

The expressions I and I are functions depending solely on the exponents kg and K44,
and the structure of the underlying space-time manifold, symbolized by the dependence
on d, and can be found, e. g., in [66, [159].
Counting powers of momentum yields the fundamental scaling relation [66, 156, [159]
d—4

0:2/€55+/€AA+T. (3.23)

17 Attempts to determine corresponding general formulas for the case in the presence of further scales
can be found in [161], see also [132].
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This basic relation is the single most important property of the scaling-type solution
[131, [132]. If it is not fulfilled, the solution will not be of scaling-type, irrespective of the
behavior of the individual propagators or vertices.

The remaining consistency condition

IZ(/{Eca d) = IG(KIEca K'AA(/{Eca d)7 d) (324)

implies that the exponents depend only on the space-time manifold. The solution of this
consistency condition for a bare ghost-gluon vertex yields kg & 0.595 in four dimensions

166, [159], Kkee = 1/2 or Kz ~ 0.39 in three dimensions, and kz = 1/5 or kz = 0 in
two dimensions [66]. As a consequence of (3.23)), the gluon exponent satisfies ka4 < —1,
and the gluon propagator is infrared vanishing. A formal second solution kz;. = 1 of

(3:24)) in four dimensions is not admissible, as it cannot be brought into agreement with
renormalizability |76, [145].

However, only the product of the pre-factors can be determined, and it may depend
sensitively on departures of the ghost-gluon vertex from its bare form [138, [162].

A direct consequence of the setup of this infrared analysis is that the exponent rg.

must satisfy the inequality

d—2
K“EC Z 2 9 (3.25)

otherwise the basic assumption made, i. e., that the ghost loop in the gluon propagator
equation is the leading term, is invalid. If the equality applies, indeed the ghost loop is
as leading as all other loops [160], and the gluon propagator becomes infrared constant,
and its therefore appearing screening mass receives contributions from all other loops
[163]. This furthermore implies that the relation (3.24)) receives corrections on top of any
corrections from the ghost-gluon vertex. This option has not yet been widely explored,
though it may be relevant. Note that furthermore arguments exist, which suggest a lower
upper bound in four dimensions of less than 1 [164].

A much more stable consequence of the scaling solution than the numerical value of
Kge 18 that the renormalization-group invariant running coupling [147, [156, [165]

1

Rl Trpy

a(p®) =p DE*(p*, 1u*) Dy (0%, 18%), (3.26)
where N, is the size of the adjoint representation, is constant at zero momentum, as
this follows directly from (B.23]). Of course, in dimensions smaller than four there is no
dependency on the renormalization scale p. It should be noted that, except for an overall
scale factor of the adjoint Casimir in the running coupling, the underlying gauge algebra
has not entered into this result [137, 156, [166]. Thus, the infrared in the scaling case
should be qualitatively independent of the gauge algebra. The only possible exception
occurs, if again equality holds in (B.25]), in which case contributions from the two-loop
diagrams could, in principle, enter [163].

Furthermore, the relation (3.20) also holds at finite momenta, and can be deduced from
the ghost-gluon vertex [147]. It is thus sufficient to know both propagators to calculate
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the full running coupling in Landau gauge. However, to ensure the correct renormalization
behavior of the running coupling, in particular the relation

Zy= 74, (3.27)

Lol

7,7

which follows from multiplicative renormalization alone, requires that the renormalization
conditions for both propagators are locked as [147]

Z(py )G (1, 1)* = 1. (3.28)

Herein, Z, denotes the renormalization constant of the gauge coupling, Zs the wave-
function renormalization of the gluon, and it has entered that in the renormalization
scheme employed, see section [3.4] the renormalization constant of the ghost-gluon vertex
Z, has been set to one. Of course, an alternative is to introduce a scheme with an explicit
(finite) renormalization constant Z1 of the ghost-gluon vertex, which will then appear as
a factor on the right-hand side of (3:27)) [75, [77].

In dimensions smaller than four, the simplest possibility to ensure (3.:28) is to formally
set u to infinity, in which case Z(00) = G(00) = 1, just because of asymptotic freedom, as
has been discussed in section B.2.3] [53, [138].

Based on the insight gained with the propagator equations, it is possible to turn the re-
sults into a general rule [131], 132, [161], akin to the power-counting rules used to determine
the superficial degree of divergence in the renormalization process [136]. In particular, it
is possible to calculate the superficial exponent § of a diagram, which determines the
dependency on the single momentum scale at the symmetric point, i. e. the momentum
configuration p? = ... = p? = p? [123, [131, [154].

To obtain this result, the first step is to calculate the scaling behavior of a diagram
in the DSEs (or FRGs) at this symmetric point in the infrared. Similar to corresponding
formulas in the renormalization program, a formula can be constructed which maps such
a diagram onto this exponent. For a diagram having ng, external legs of field type ] ¢; it
is given by [123]

ld
0 = c+ o + Z g, (Fgg — 1) + Z Ny sy Cjy by
7 bare vertices r

D Tyt (R T o0 (3.29)

dressed vertices r

where ng, is the number of external propagators with their corresponding exponents kg, q,
signifying their power-law behavior, and the ng,; ¢, count the number of bare and full
vertices, respectively, appearing in the diagrams having infrared exponents kg, 4, and
canonical exponents ¢y, .4, , respectively. Finally, ¢ is the overall canonical dimension of
the diagram, and [ is the number of loops. Similar to the case of the superficial degree
of divergence [136] it is also possible to recast this expression using graph theory into one
involving only the critical exponents x and the type of internal lines, but no longer the

18For the case of mixed propagators, see [47].
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canonical dimensions [123]. For the purpose here, it is sufficient that such a mapping
exists.

With this mapping at hand, and the assumption that the superficial infrared exponent
is indeed the correct one, it is possible to determine a recurrence relation between the
infrared exponents [123, 131, [132, [154]. Tt follows from the fact that the exponent of the
left-hand-side of the DSE must be the same as the dominating one on the right-hand-side.
The simplest example for this is the gluon equation keeping only the tree-level term and
the ghost-loop. The corresponding statement is then for a bare ghost-gluon vertex

— Ka4 = min (O, (d2;4) + 2500) . (3.30)
The minimum appears, since the smallest positive or most negative exponent gives the
dominating low-momentum behavior. Since the ghost equation implies that xz < 0 [160],
the second option is the dominating one, and the tree-level term is subleading. In analogy,
such a hierarchy of relations can be obtained for all equations. To actually resolve them
requires a further piece. This comes from comparing relations of type (3.30) for the same
quantities in DSEs and FRGs [131]. Since in FRGs all vertices are always dressed, while
in the DSEs always one vertex is undressed, both hierarchies are not identical. This is
sufficient to find an explicit resolution of the infinite hierarchy of inequalities.

This result yields the infrared critical behavior of all correlation functions at the sym-
metric point for Yang-Mills theory in the scaling case as [154, [155]

(nm) (p2) -~ (p2)(nfM)Hach(l*n)(dﬂ*z) ’ (331)

where n is the number of external ghost legs (identical to the number of external anti-ghost
legs) and m is the number of external gluon legs. An important consequence of this result
is that any coupling constant defined from the higher vertices is also finite [154, [155], by
a construction similar to (3.26]).

Note that the construction presented here is given for Yang-Mills theory only. Various
investigations have been performed when matter fields are included [167-170], but it is
possible that some assumptions necessary for the construction then break down in the
matter sector [132]. This has not yet been finally clarified.

3.2.4.2 Photon-ghost behavior

The photon-ghost case was first discussed in [171, [172] and has afterwards been investi-
gated in, e. g., [16, 137, 42, 43, 7578, 194, 151, 161, 173-183]. The photon-ghost case is
characterized by an infrared finite gluon propagator and an infrared massless ghost,

ng — _5abApr2
ab ab pupv
D® = 5 <5W— t )AZ.

In this case, it is more complicated to make a general infrared analysis as in the scaling
case. Taking the ghost equation, and choosing a photon-ghost behavior by setting B to
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a finite value, the tree-level term is no longer canceled in (3.I9). Inserting the photon-
ghost ansatze in a truncation at the same level as in the scaling case automatically yields
that the ghost is infrared massless and the gluon is infrared screened [16, (76, [151]. In
particular, in the infrared limit the appearing mass scale acts as a bare mass, and only
finite momentum corrections make it sufficiently fast vanishing in the ultraviolet to ensure
the correct ultraviolet behavior |16, (151, [174].

The reason for this is rather simple. Investigating the appearing integrals in detail show
that the diagrams in general harbor a mass-like term [138, [162], even if not introduced
by assumption [151]. In perturbation theory, these terms cancel exactly [9,[184]. Beyond
perturbation theory, this is in general no longer the case. However, in the scaling case,
they are infrared sub-leading [138, [146, [162], since they behave like m?/p*, where m is
some scale, generically proportional to Ayy. The contribution due to the ghost-loop for
a scaling ghost and kg > (d — 2)/4, e. g. in the gluon propagator DSE (B.21]), provides
a stronger infrared divergence than just p—2, therefore dominating the screening behavior
and leading to the scaling behavior. This option is, by construction, switched off in the
photon-ghost case, and thus the screening behavior becomes leading. This does not occur
for the ghost due to the factorization of the external ghost momentum of the ghost-gluon
vertex. This makes terms automatically more infrared divergent, promoting the screening
mass to just a correction of the wave-function renormalization [118].

Thus, a photon-ghost behavior emerges naturally, as soon as any other infrared-
dominating behavior is switched off by choosing B finitd. Similar effects are expected
to also occur in the vertex equations, closing the system self-consistently [185]. However,
this has not yet been investigated in detail on the level of a self-consistent solution of the
vertex equations, but the investigations are ongoing [186].

On the other hand, this mechanism implies the possible existence of a scaling win-
dow in the correlation functions’ behavior even for the photon-ghost case [16, [118]: De-
fine the momentum pg to be the one at which the normalized ghost dressing function
p5Dg(p%)/(1?Da(p?)) becomes similar of size as 1/B. Then screening becomes manifest
at momenta at or below pg. If B is chosen such that pg is much smaller than the scale
Ay s, then there exists a window where the correlation functions show a scaling behavior,
up to sub-leading corrections, in the momentum range

pp < p < Aym. (3.32)

Since the power-laws exhibited in this energy regime are the same as expected for the
scaling case, this will be called the scaling window. The existence of this window follows
from the fact that for momenta within the range (3.32)) no sensitivity to the deep infrared
yet exists.

The one technical challenge associated with the photon-ghost solution is that any such
screening mass inevitably mixes with the spurious divergences discussed in the perturbative
case when a non-gauge-invariant cut-off regularization is used. Therefore, disentangling the
different contributions, in principle, requires in this case a resolution of the corresponding
broken Slavnov-Taylor identities [16, 18, [140], to obtain the screening mass, e. g., of

19This can also be achieved, e. g., by an explicit infrared regulator like a finite volume, see [11§].
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the gluon propagator. In general, this is complicated, and instead usually the necessary
counterterms are modeled such that corresponding lattice and perturbative results are
reproduced |16, 1381145, 175,187, |188], or an appropriate truncation is chosen to eliminate
these artifacts [16, (151, [174]. Finally, as is clear from the fact that all free parameters
of Yang-Mills theory are fixed once Avy is fixed, the gluon screening mass is not an
independent parameter of the theory.

Note that the effective wave-function renormalization of the ghost is less arbitrary.
Since its value is uniquely fixed to the B parameter, no problem would emerge even if
such spurious divergences were encountered in the ghost equations.

3.2.5 Intermediate momenta

At the current time, in order to obtain solutions at all momenta, it is necessary to truncate
the system of equations@. In general, the main ingredient is to drop all equations for
higher order correlation functions from a certain, usually low, order n. This requires to
make assumptions for the various higher n-point correlation functions still appearing inside
the equations, and which are no longer determined self-consistently. Various schemes have
been employed for this purpose. Such schemes include modeling the remaining vertices
along some guiding principles [16, 129, [138, [145, 147, [167, [186], truncations based on the
desired properties of the solutions inferred from other sources |76, [77, [151], methods based
on a background-field formulation [95, 151, 174, 189,1190], effective actions [47], analyticity
concepts [17, 185], and others [17, [18, [191]. The possibilities are essentially only limited
by the necessities imposed to answer a particular question.

As an example, the truncation, with slight variations, to be used below in the chapters [l
and Bl will be discussed. Alongside the guiding principles will be presented which motivate
this truncation.

The aim in the present case will be results for the propagators. This requires their
respective equations, which are then truncated at one-loop level. Thereby models for the
three-point functions are required.

The first central requirement is to establish contact with resummed perturbation theory
[16, [138, 145, [147, [187]. The main motivation to make this the central guide-line for the
truncation is that this is the fastest way to make contact to experimentally accessible
quantities, instead of using non-perturbative quantities like bound-states as a guiding
principle. The second advantage is that this makes the non-perturbative approach here
a direct extension of the perturbative case, guaranteeing a smooth transition from one to
the other.

The aim here is to have agreement to perturbation theory at one-loop order. A con-
sistent truncation scheme therefore requires to keep the equations for the propagators
and include all one-loop diagrams, but to drop all two-loop diagrams and all higher-order
equations. This level of truncation is the currently most commonly used?!. Thus, it is
necessary to specify the ghost-gluon vertex and the three-gluon vertex.

20Very few systems, like the 141-dimensional Schwinger model, are known where this is not necessary
[17).
21Gee for first progress in going beyond this level [167, [188].
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One possibility to achieve this is to leave the ghost-gluon vertex bare, which even turns
out to be a rather good approximation of its full behavior, see section[£.1.2] This is not the
case for the three-gluon vertex. As discussed in section B.2.3] reproducing leading-order
perturbation theory already requires a modification such as to provide the correct self-
consistent behavior for the gluon propagator in four dimensions to order ¢g?. A possible
asymptotic dressing realizing such a behavior for the three-gluon vertex is, e. g., [187]

Te(pq, k) = [T (p,q, )T (0, ¢* k) (3.33)

pvp pp
1 e 1 4z
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with k% = (p + ¢)?, Fff,i)p the tree-level vertex, and Z; the renormalization constant of

the three-gluon vertex, which is introduced to ensure the correct renormalization of the
vertex. This ansatz explicitly preserves the Bose symmetry of the vertex. This construc-
tion which will be used in section [l for finite temperatures. The choice of the constant
az is uniquely fixed by requiring the correct renormalization properties and resummed
perturbation theory [187]. The parameter ag is then free and chosen such as to make the
vertex freeze in the infrared. This establishes a truncation scheme which is self-consistent
in the perturbative domain. Note that in three dimensions the choice I'"V = 1 is sufficient
to ensure the correct perturbative behavior. The only remaining problem is the presence
of spurious quadratic divergences due to the cutoff regularization. For this truncation,
these can be dealt with by explicit counter-terms [187, 192], or by explicit and implicit
subtraction [138, 192].

A bit more elegant is the possibility to provide an additional dressing of both the
ghost-gluon and the three-gluon vertex [16]. In case of the three-gluon vertex, it is given

bye2

FASabc(p’ q, k) — fach(tl) (p’ q, k)ruv(q’p) > (334)
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where p is the external momentum and ¢ is the loop momentum. This form completely
eliminates the spurious quadratic divergences. The formfactors f; with their corresponding

22Note that fyy is not the same as the one in [16], and it is more generally applicable. I am grateful
to Markus Huber for pointing out a potential problem with the original version.
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parameters ensure that at large momenta only the ultraviolet completion I contributes
to ensure the correct perturbative behavior. This completion can be chosen, e. g., as (8:33))
or as [16, 145]

(g = LI6W + A G +0)° + 7 (3.35)

Zy  [Z(p* + AR)Z((p+ q)? + Afg)]H)

with a free, but conventionally chosen as 36, and Z; the three-gluon vertex renormalization
constant. This choice breaks Bose symmetry, and also does not reproduce the results
obtained for the three-gluon vertex obtained using lattice gauge theory, shown in section
below. However, the difference at the level of the propagators is very small, in
particular in the scaling case [16].

This choice also requires a modified ghost-gluon vertex to fully cancel the spurious
quadratic divergences. Furthermore, in the scaling case the only contribution in the far
infrared are those containing ghosts, and thus the transversality of the gluon propagator
must be guaranteed by the ghost loop alone, though this is not necessary in the photon-
ghost case. This is ensured by the construction [16]

Tedp,q.p+4q) = ipAlp,q. k) —i(p+q)uB(p. ¢, k) (3.36)

2
Alp,q, k) = (1 - z% fov(p, q; k))

kq
B(p,q,k) = (ﬁ frr(p, ¢; k))
ASp
(p? + AjR) (@ + AfR) (K2 + Adp)

with the same form factor fy as for the three-gluon vertex. Note that, in principle, the
longitudinal part should be determined by the STIs, but generically depends on the four-
point ghost-gluon scattering kernel, unknown at this level of truncation [147]. Making an
ansatz to obtain transversality in the scaling case is therefore the only possibility here.
However, as emphasized, this longitudinal contribution is completely irrelevant when cal-
culating the non-amputated correlation functions, and in particular physical observables.
It should be noted that the transversality of the gluon propagator is guaranteed by this
ansatz only at asymptotically large and small momenta. However, the residual longitu-
dinal component at intermediate momenta, being a truncation artifact, is negligible [16].
Truncations which ensure transversality at all momenta have been proposed in [151, [186],
though at the expense of disagreement with perturbation theory at large momenta. A
truncation having both virtues is in principle possible to construct, though great care
is necessary to avoid the introduction of infrared-ultraviolet mixing [146, [162]. Such a
truncation would make use of the not yet included longitudinal tensor structures of the
three-gluon vertex, which could be chosen to ensure transversality at all momenta. Since
for the present case the effects appear negligible, this will not be done here. How well
transversality can be achieved once the three-point vertices are included self-consistently
has not yet been explored. However, for a final construction the four-point vertices and
the two-loop terms in the gluon equation could play a role.

fir(p, 3 k) =
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Figure 3.4: The two truncation ansitze for the ghost-gluon vertex (left panel) and the
three-gluon vertex (right panel) in four dimensions. The functions A and B for the ghost-
gluon vertex are given in (3.30]), the function I in (3.35]), the improved vertex in (3.34]),
and the Bose-symmetric one in (3.33]). The parameter A;g is 300 MeV, and Ayy 20 GeV,
the dressing functions are for the scaling case, using the fits in [145].

These various ansatze for the vertices at the symmetric point are shown in figure 3.4 to
provide a comparison to the results from lattice gauge theory presented in section [4.1.2] It
is visible that the vertices which have the ultraviolet cancellations of the quadratic diver-
gences built in drop off sharply at large momenta, since there the divergent contribution
from the integral kernels are needed to generate the correct ultraviolet running. The Bose-
symmetric ansatz, which requires explicit counter-terms, shows directly the logarithmic
running, which is also encoded in the ultraviolet dressing part of the improved three-gluon
vertex (3.30). Note that this logarithmic rise may be altered if the ansatz were enlarged to
include the other three possible transverse (and ten more longitudinal) tensor structures of
the three-gluon vertex [117], for which first studies have been performed in [126, 167, [186].

On the other hand, compared to the results shown in section the bare ghost-
gluon vertex, depicted also in figure B.4] shows at the symmetric point a rather decent
resemblance of the results obtained below in lattice calculations, and is in agreement with
self-consistency studies [125, 131], 1132, [159, [161], but the three-gluon vertex fails this test.
Nonetheless, at the level of propagators this turns out to be of minor importance, in both
the scaling and photon-ghost case [16]. Therefore, this departure from the presumably
better results of lattice calculations seems to be of minor importance at the level of prop-
agators. For other quantities this may not be the case, and for a systematic improvement
of the truncation three-point vertices would have to be the first to be treated, see e. g.
[167] for such an investigation.

These are only two examples of employed vertex constructions. Various alternatives
and modifications have been explored [138, 147, [151, [159, [192]. The results turn out to
depend only quantitatively on the employed version of the vertices, after fixing B. The
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only major exception is finite temperature, and there only for one polarization of the gluon
[187]. This will be discussed in more detail in chapter Bl Reiterating, the guiding principle
here has been to obtain the correct resummed perturbation theory, renormalization [16],
and for the scaling case infrared self-consistency. Conceptually different guiding principles
have also been employed, in particular those guided by reproducing a particular infrared
behavior 76, 77, [151]. Going beyond such modeling of the vertices is an ongoing endeavor.
It should be noted that using FRGs instead of DSEs, self-optimizing flows and regulators
can be used to at least partly capture the effects of four-point functions [16, [133]. This
yields the currently best quantitative agreement between functional and lattice methods
on the level of propagators [16].

This fully fixes the equations to be solved here. This leaves a coupled set of non-linear
integral equations. Solving them is still a non-trivial numerical problem. Various methods
exist to solve these equations, mainly based on iterative methods [172, 193], as well as
local [146, 194] and global [195] Newton algorithms. One of the main advantages for such
methods turns out to be factorizing the known analytical behavior from the sought-for
functions, since the remainder are well-behaved functions of order one, which makes them
amendable to numerical treatment [195].

3.3 Slavnov-Taylor identities

Though fixing the gauge is a difficult problem non-perturbatively, it also has an advantage.
In particular, it restricts the structure of the vertex functions. A particular example of
such a restriction is that the longitudinal part of the gluon propagator has to vanish in
Landau gauge. This follows immediately from [19]

pupv Dt = pupy < A A, >=FT < (9,4,)(0,4,) >=0, (3.37)

where FT denotes Fourier transform, and the Landau gauge condition in Fourier space,
p"Af, = 0, has been used. Another example is that the part of the non-amputated ghost-
gluon vertex longitudinal in the gluon momentum has to vanish

0=p, < Aup)e(q)c(p — q) >=< p Au(p)e(q)c(p — q) > . (3.38)

Similarly, it can be shown that in the limit of ¢ — 0, the vertex self-energy is not divergent,
yielding a finitd?d ghost-gluon vertex for all momenta [142, [143].

These results follow from the constraints imposed by the gauge freedom. They can
be generalized, yielding the Slavnov-Taylor identities (STIs) [2]. In fact, these can be
formulated just based on the presence of gauge-symmetry of the original Lagrangian.
After fixing a gauge, they yield a hierarchy of algebraic conditions on the vertex functions,

23Finite in the sense that the renormalization constant is finite.
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which can be obtained from the Zinn-Justin equations [18, 56, [140]

/ 6T 0T T 4T 9u43 o7
SK20Az " §Leden | & oen

or or

T

) = cut-off terms

Herein K and L are sources for the gluon and ghost fields in the effective action T,
respectively. The cut-off terms on the right-hand side represent contributions which are
non-generic, and depend on the regulator used. In case of gauge-symmetry preserving
regulators, they will be zero, but non-zero for a cut-off regulator. However, similar to the
functional equations, these are a coupled infinite hierarchy of conditional equations. Only
in perturbation theory the hierarchy, as for the functional equations, decouples [2, [12].
Therefore, it is generally not possible to decouple these additional conditions. This can
be illustrated [16] by the STT for the three-gluon vertex, which is given by [117]

1
0 = — < A0 > — < AL, > e < AL AL D, A >
—g (% < ACALTE" > 2 < AZAS T ). (3.39)

Here, terms from the cut-off regulator have been dropped. The last term is evidently
always of higher order in the coupling constant than the other terms, and thus does not
contribute in perturbation theory. However, in a non-perturbative setting it cannot be
ignored in general. So far, however, all non-perturbative investigations of this STT have
kept this term either at best approximately [196] or not at all [75, [77, [117, [147], since as
a scattering kernel its structure is enormously complicated. Furthermore, it appears to
be consistent to truncate the STIs at the same level as the DSEs |16, [147], thus for the
present one, it would be self-consistent to drop it.

The question naturally arises whether these conditions further restrict the solution
manifold for the functional equations. In general, the answer is affirmative [2]. However,
Landau gauge is special in this respec [16].

As already indicated by (3.37), (3:38), and ([B3:39), the hierarchy of STIs involve the
contributions longitudinal with respect to the gluon momenta of vertex functions. On
the other hand, the non-amputated correlation functions have all gluon legs contracted
with a transverse projector from the gluon propagators. Hence, no longitudinal tensor
structures contribute to these. Since the DSE hierarchy of equations for the non-amputated
correlation functions is closed, the longitudinal parts of the correlation functions cannot
contributd?d., The STTs, on the other hand, involve both the transverse and the longitudinal
contributions. Since the transverse contributions are completely determined, the STIs are

241t is possible that very severe infrared divergences, proportional to OuAy, could appear in the ver-
tices when taking the Landau-gauge limit, which spoil this argument. This is a rather weak regularity
assumption, and there are no indication that this occurs |16, [133].

250n the lattice, this is manifest, since only full non-amputated correlation functions are accessible.
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then constraint equations for the longitudinal contributions as a function of the transverse
contributions only [16, [133]. In particular, the STIs can be solved for the longitudinal
tensor structures as functionals of the transverse tensor structures.

This is to be expected: The STIs are relations manifesting the constraints due to the
gauge symmetry. As such, they are conditions which are automatically fulfilled by the
correct solutions, and thus do not contain any independent information compared to the
hierarchy of DSEs. In particular, when determining physical observables, all correlation
function are fully contracted with transverse projectors™, and hence the longitudinal ten-
sor structures do not carry any physical information. Thus, the STIs cannot constrain
physical observations. However, when attempting to solve the functional equations for the
amputated correlation functions this will only be possible in general when, at least at the
same level of truncation, the longitudinal tensor structures will fulfill the corresponding
STIs. Otherwise additional truncation artifacts may be introduced.

Two remarks must be made here. First, the hierarchy of equations for the amputated
correlation functions requires the determination of both transverse and longitudinal tensor
structures, and for the latter the STIs provide additional information. Second, any kind
of truncation potentially violates the hierarchy of DSEs at one point, and therefore also
the STIs in general are not fulfilled anymore, even at the same order. From these, the
only available information which can be gained is on properties of truncations, but not on
the correct result. An example is perturbation theory, in which case the violations of the
STIs are well present, though always of one order higher in the coupling constant than the
employed one. Thus, it is possible to show that the violations occur because the expansion
is truncated, but it is not possible to infer, e. g., the size of higher order contributions just
from these violations.

3.4 Renormalization

An important technical issue to be returned to is that besides the spurious divergences
discussed earlier there are the divergences which are physical, i. e., they result from the
fact that Yang-Mills theory (at least in four dimensions) can only be a low-energy effective
theory, but not a consistent theory of its own [197, [198]. This can be directly seen in
perturbation theory [2], but lattice calculations also confirm this beyond perturbation
theory [4, 110].

This fact can be hidden in the renormalization process, which permits to encode this
unknown physics in the renormalization constants [2]. In the perturbative expansion of a
renormalizable theory, like Yang-Mills theory, it can be shown that this is possible with
a finite number of independent renormalization constants. For covariant gauges, like the
Landau gauge, this is equivalent to multiplying correlation functions by appropriate chosen
renormalization factor, at least as long as no matter fields are involved. If this is also
possible beyond perturbation theory has not yet been proven, though no evidence to the

26Which in a perturbative construction is known as the LSZ formalism, if the asymptotic state space is
available [9].
2TThis not true for all gauges, in particular not for non-covariant gauges [15].
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contrary exists. Since due to asymptotic freedom the process of renormalization, once
multiplicative renormalizability is assumed, can be performed essentially in the same way
as in perturbation theory, it appears likely that this is correct.

As a consequence, for the purposes here the renormalization can essentially be per-
formed as in perturbation theory [16, [17, 147, [191], and will not be discussed in detail
other than to state the renormalization conditions. In particular, the renormalization
can be performed using counter-terms [146, [147] or even more conveniently using a BPHZ
[136] regularization prescription [162]. The only important constraint is that the truncated
system of DSEs shows the correct qualitative transformation behavior under the renor-
malization group. Enforcing the coincidence with leading-order perturbation theory in
the ultraviolet in the present truncations guarantees this actually even quantitatively [16].
Results from lattice calculations automatically show the correct renormalization behavior,
up to lattice artifacts [4, [110].

It should be noted that Landau gauge is one of the gauges having optimal renormaliza-
tion properties in the sense that the least number of independent divergent renormalization
constants occur, and all of them are at most logarithmically divergent with the cut-off in
four dimensions [2, 156, [136]. Indeed, there are at most two independent renormalization
factors |2, 147], which can be chosen, e. g., to be the one of the running coupling and
the wave-function renormalization of the ghos@. Furthermore, in dimensions lower than
four all renormalization constants, and thus correlation functions, are finite, though still
some loop-graphs are divergent and require regularization [136]. In perturbative diction
the theory becomes super-renormalizable, though from the point of view of correlation
functions it is actually finite [138].

A last consideration concerns the scheme dependence [2] of the results. The standard
scheme used in the calculations is the miniMOM scheme, given in [147, 165]. It essentially
implements the condition (3.28) to lock the gluon and ghost wave-function renormaliza-
tions, and a condition on either propagator at an arbitrary, non-zero momentum can
be used to yield the remaining wave-function renormalization. Furthermore, the finite
ghost-gluon vertex renormalization constant is set to one. The finite three-gluon vertex
renormalization constant, by virtue of the ansitze (3.33) and (B:33]), cancels out, and the
finite four-gluon vertex renormalization condition is dropped anyway. This leaves only
the renormalization condition for the running coupling, which is implicitly defined by the
relation (3.20]).

There are two additional remarks to this scheme. First, if the different non-perturbative
gauges indeed exist as described in section 2.5l the propagators will differ for different
choices, though the difference at very large momenta will be power-like suppressed [36].
Still, this implies that the renormalization conditions will differ between different non-
perturbative versions of the Landau gauge, introducing a gauge-dependence. The second
is that the definition ([3:26]) for the running coupling is not unique. In particular, it is
possible to define a running coupling which will have an infrared fixed-point irrespective

28Since the resolution of the Gribov-Singer ambiguity can be done by the specification, as it appears, of
at least one of the two correlators to some extent, it may be that one can be related to the non-perturbative
gauge-fixing procedure. This would be satisfying, as it would leave only one independent condition for
the one independent parameter of the theory. However, at the present time, this is pure speculation.
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of whether the propagators show a photon-ghost or a scaling behavior [16, 176]. This is in
contrast to the definition (B:26), for which the running coupling is only infrared finite for
the scaling case, but not for the photon-ghost case. Since this implies a difference between
the corresponding S-functions, this yields that both correspond to different renormalization
schemes. In fact, since the former always produces an infrared fixed-point while the latter
can imply either a fixed-point or a zero crossing of the g function, as demonstrated in the
next chapter, it follows that the scheme transformation between both schemes is singular.



Chapter 4

Describing gluons at zero
temperature

With the chapters 2land [B] the stage is set to actually determine correlation functions. In
the following the results of such calculations will be presented. Also, the interpretation of
these results in terms of physical properties will be briefly discussed.

4.1 Correlation functions

4.1.1 Propagators

The simplest correlation functions which are non-zero in Landau gauge are the propaga-
tors. Before investigating their momentum dependency, a first important question is the
justification of whether it is permitted to factorize the color structure in the form of a
unit matrix, as it is usually done. The so-called primitiveness assumption of group theory
[199] suggests this, as does perturbation theory [2]. Furthermore, the DSE for the ghost
propagator shows that the non-tree-level color structure of the ghost-gluon vertex is not
relevant for the ghost propagator. Still, a general proof is lacking.

Explicit lattice calculations have also provided substantial support for color-diagonal
propagators [61, 162, 186, 137]. As an example in figure ] some of the color-off-diagonal
components of the propagators in two, three, and four dimensions for various gauge al-
gebras are shown. In all cases, within statistical errors, the off-diagonal propagators are
compatible with zero. Thus, assuming the propagators to be color-diagonal seems to be
justified, and therefore will be done henceforth.

The first propagator to be studied is the gluon propagator, also as function of the
dimensionality, and for the various gauges and cases. The results are shown for both
the propagator and the corresponding dressing function in figure for two dimensions,
in figure for three dimensions, and in figure [4.4] for four dimensions, also comparing
different gauge algebras. Most of the results are from lattice calculations, though there
are also some results provided from the available functional calculations using DSEs and
FRGs in three and four dimensions. In the cases presented results are shown for four
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Figure 4.1: Some components of the off-diagonal gluon propagator (left panels) and ghost
propagator (right panels) in two (top panels) [62, [137], three (middle panels) [86, 137],
and four (bottom panels) [61, [200] dimensions, for various gauge groups. The results in
four dimensions are renormalized at 2 GeV. Here and later in the legends the group used
for the lattice implementations are given.
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Figure 4.2: The su(2) gluon propagator (top left panel) and its dressing function (top
right panel) in two dimensions. Shown are results for minimal Landau gauge (MLG) [62],
absolute Landau gauge (ALG) [36], and the maxB and minB gauge [53]. The bottom
panels show the same, but for gauge algebras su(3-6) and gs in MLG [137]. Further results
in two dimensions can be found in [45, 184, 91, [101].

different choices of the non-perturbative gauges, the minimal Landau gauge, the absolute
Landau gauge, and the maxB and minB gauge, to explore both a typical choice of B, and
extreme possibilities. Since the implementation of gauges beyond the minimal Landau
gauge are numerically very expensive until now only much smaller volumes are available.

The first result visible is that there is very little dependency on the gauge algebra, at
least up to finite volume effects, and quantitative dependencie. The former turn out to
be very similar for all cases [89, 137, 207]. Tt thus suffices to stay with the su(2) case for
now, for which most data is available. In case of DSEs, the gauge algebra dependency

!Note, however, [208, [209] for su(2) and su(3) in four dimensions.
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Figure 4.3: The su(2) gluon propagator (top left panel) and its dressing function (top
right panel) in three dimensions. Shown are lattice results for minimal Landau gauge
(MLG) [201], absolute Landau gauge (ALG) [36], the maxB and minB gauge [53], and
DSE results for the scaling case [138]. A photon-ghost-type DSE solution can be found in
[173]. The bottom panels show the same, but for gauge algebras su(3-6) and g; in MLG
[137]. Further lattice results can be found in [55, 61, 84, 186, 91, 1101, 202, 203].

is entirely through the combination g?C4 at this level of truncation, and therefore the
dependency can be absorbed in a dependency on the renormalization scale, and perfect 't
Hooft scaling is manifest [147, [166], except for perturbative corrections in four dimensions.
Of course, by construction, leading-order (resummed) perturbation theory is reproduced
at sufficiently large momenta for all cases.

At first glance, there is very little difference between the propagator for the different
gauges. This is in line with the expectations from figure 2.2] which already indicates
that the total integral of the gluon propagator is rather constrained. However, since the
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Figure 4.4: The su(2) gluon propagator (top left panel) and its dressing function (top right
panel) in four dimensions, renormalized to Z(1.5 GeV?)=1. Shown are lattice results for
minimal Landau gauge (MLG) [89], absolute Landau gauge (ALG) [55], and the maxB
and minB gauge [55]. The bottom panels show the same, but for gauge algebra su(3) in
MLG [200] and ALG [92], compared to scaling and photon-ghost DSE and scaling FRG
results [16]. Further results can be found in [17, 137, 42, 76, 181, 191, 194, 1100, 102, [129, 151,
158, 165, [174, 178, [189, 191, 202, 204-213).

measure in (2I4]) strongly suppresses the infrared, this is not a necessary result, and
large differences in the infrared could be possible [36]. This is indicated by the DSE
results, which show a qualitative difference between the scaling and photon-ghost case,
with a vanishing gluon propagator at zero momentum in the former case. Concerning this
statement, there are two points to be cautious about. One is that in every finite volume,
even in the scaling case, the gluon propagator has to be non-zero at zero momentum [118].
As shown in figure [1.5] however, only in the two-dimensional case the gluon propagator at
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Figure 4.5: The gluon propagator at zero momentum [36, 53, 55, 62,189,192, 201] for su(2)
for maximal Landau gauge, absolute Landau gauge, minB gauge, and maxB gauge. Two
dimensions are shown in the top-left panel, three dimensions in the top-right panel, and
four dimensions (renormalized at 2 GeV) in the bottom panel. Note the remarks on the
reliability of the largest volume in the absolute Landau gauge in [36], and that the results
could potentially be affected by discretization effects [55, 165, 204, 214].

zero momentum appears to extrapolate to zero [36, 53, 155, 162, 91] and in this case for all
gauges. On the other hand, the gluon propagator appears to be non-zero in three and four
dimensions in all gauges [36, 53, 189, 91, 192]. The fact that the result of the minB gauge
undershoots the one of the absolute Landau gauge demonstrates again the irrelevance of
the zero-momentum behavior for the absolute-Landau-gauge condition. A comparison at
finite momenta shows that the integrated weight of the propagator in absolute Landau
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gauge at the same lattice setting is smaller than for the minB gauge [55].

This seems to be ruling out the scaling case in four and three dimensions in the first
Gribov region, but, as discussed in section B.2.4.1] the actual value of the exponent k44
is dependent on the truncation, and its value changes if the ghost-gluon vertex is different
from a bare vertex in the infrared. For both ansitze employed here, the ghost-gluon vertex
becomes constant in the infrared. In this case [66, [159] the value of kg can be determined
to be approximately 0.595 in four dimensions. Thus, the value of k44 is then about 1.19.
In three and two dimensions, two possible solutions are found. In three dimensions the
values are 1/2 and about 0.39, yielding k44 as 3/2 and 1.28, respectively. The functional
equations yield consistent solutions for both values [138]. In two dimensions, the possi-
bilities are 1/5 and 0. The latter value, yielding k44 = 1 with an infrared finite gluon
propagator, appears to be ruled out by the lattice data, which prefer k44 = 1.4. However,
in all cases it is possible to obtain scaling with a ghost-gluon vertex, which differs quantita-
tively from a bare one in the infrared. Hence, at most, the conclusion which can be drawn
from the gluon propagator alone is that the truncation in three and four dimensions is
possibly not viable, if scaling is realized in the first Gribov region. Since the ghost-gluon
vertex indeed shows infrared variations, as will be shown in the next section, this is a
possibility to reconcile scaling with the gluon propagator results, but a full understanding
requires further investigations for both lattice and continuum methods. Furthermore, the
ghost propagator also has to be taken into account, which will be done below. In addition,
there are further subtle issues concerning this question, which will be detailed in section
4.3.2]

The results in three dimensions in minimal Landau gauge illustrate the concept of the
scaling window, (3.32)), rather nicely. After reaching the maximum, the gluon propagator
first decreases, over a momentum range, showing an approximate scaling behavior with
a local kg4 larger than one, before it finally reaches an infrared finite value when the
screening sets in. In four dimensions, this window seems to be closed, i. e. pgp ~ Ayy. If
in two dimensions at very small momenta still screening sets in, for which there is no sign
yet, then the scaling window in this case would be very large.

The second elementary propagator is the ghost propagator. It, and again its dressing
function, is shown in figure for two dimensions, in figure [4.7] for three dimensions, and
in figure for four dimensions. Again, there is little dependency on the gauge algebra,
and thus the following will be restricted to the su(2) case [89, [137, 207]. The ghost
exhibits a rather strong dependency on the gauge. The propagator is least divergent in
the minB Landau gauge [36, 53,72, 181,1107], at least for the same lattice settings. Different
volumes and discretization artifacts in the renormalization in four dimensions can lead to
an apparent different ordering. In the case of minimal Landau gauge the dressing function
is infrared finite in three and four dimensions [89, 190, [92], but does not appear to be so
in two dimensions [62, 90]. Tt is also quite visible that the infrared enhancement strongly
depends on the volume [62, 186, [118]. The features of these photon-ghost cases is rather
well reproduced by the photon-ghost solution of the DSEs [16]. The behavior is thus that
of a massless particled.

2 Actually, the lattice data cannot exclude the possibility of a logarithmic divergence, which has been
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Figure 4.6: The su(2) ghost propagator (top left panel) and its dressing function (top
right panel) in two dimensions. Shown are results for minimal Landau gauge (MLG) [62],
absolute Landau gauge (ALG) [36], and the maxB and minB gauges [53]. The bottom
panels show the same, but for gauge algebras su(3-6) and gs in MLG [137]. Further results
in two dimensions can be found in [45, 184,190, [101].

The situation for the maxB gauge is drastically different [53]. In this case, the ghost
propagator is much more divergent than even the scaling case, and more divergent than
the results in any of the other gauges. Such an over-scaling can actually also be observed
in functional calculations in a finite volume at finite cut-off for the scaling case [215]. In
the latter case the over-scaling originates from a mismatch between continuum and finite-
volume regularization, and can thus be regarded as a kind of lattice artifact [118]. Given

proposed for the photon-ghost case |90, [175]. It will be assumed here henceforth that this is not the case,
as the results from most calculations are much better in agreement with an infrared finite ghost dressing
function in the photon-ghost case.
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Figure 4.7: The su(2) ghost propagator (top left panel) and its dressing function (top right
panel) in three dimensions. Shown are lattice results for minimal Landau gauge (MLG)
[62], absolute Landau gauge (ALG) [36], the maxB and minB gauges [53], and DSE results
for the scaling case [138]. A photon-ghost-type DSE solution can be found in [173]. The
bottom panels show the same, but for gauge algebras su(3-6) and gs in MLG [137]. Further
lattice results can be found in [55, 61, 184, 186, 90, (101, 202]

that in the other gauges the ghost propagator also becomes less divergent with increasing
volume, it is to be expected that this also applies to the maxB gauge. If then in the
infinite-volume case the ghost propagator becomes the scaling one or a photon-ghost one
is currently an open question [53]. Since the functional calculations naturally provide such
a scaling case, there exists a motivation that this should be the case. However, as will be
discussed in more detail in section [£.3.2] it may also be that it is not possible to achieve
scaling within a single Gribov region. This will require further investigations.

It should be noted that the various gauges only start to differ significantly below about
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Figure 4.8: The su(2) ghost propagator (top left panel) and its dressing function (top right
panel) in four dimensions, renormalized to G(1.5 GeV?)=1. Shown are lattice results for
minimal Landau gauge (MLG) [89], absolute Landau gauge (ALG) [55], and the maxB
and minB gauges [55]. The bottom panels show the same, but for gauge algebra su(3) in
MLG [200] and ALG [92], compared to scaling and photon-ghost DSE results and scaling
FRG results |16]. Further results can be found in [17,137, 42, (7577, 81, 190, [102, (129, [151,
158, 163, [174, 178, [189, 191, 202, 204 210, 212, 13].

1 GeV. As to be expected [36], in the essentially perturbatively dominated energy range
above 1 GeV the non-perturbative gauge dependency does not alter the results. This
indicates that the contributions decay faster than the leading-order perturbative contri-
butions. However, when performing an operator-product expansion of the propagators
[216, 217], the alterations would contribute.

As repeatedly stated, these results have a significant dependency on lattice artifacts.
Studies of such artifacts due to volume effects and discretization effects can be found,
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Figure 4.9: Dependency of the gluon propagator (left panels) and the ghost dressing
function (right panels) on the volume in two (top panels), three (middle panels), and four
dimensions (bottom panel) [55]. All results are from lattice calculations at the same lattice
spacing a = 0.22 fm and in minimal Landau gauge.
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e. g., in 55, 162, 186, 90, 91, 165, 206]. The major contribution of the artifacts is due to
finite-volume effects. In the figures told.4land told.8 always very large volumes have
been used. To illustrate the dependency on the volume, results for different volumes are
shown in figure 4.9 It is is visible that the volume-dependency for the gluon propagator
is apparently stronger than for the ghost dressing function, making the infinite-volume
extrapolation of the latter a rather subtle problem [90]. It is also possible to perform
studies using functional methods in a finite volume and at finite discretization, which also
show sizable finite volume artifacts [118].

Still, the possibility exists that scaling is not realized, even if the ghost dressing func-
tion were divergent and the gluon propagator were vanishing. The characteristic property
of scaling is the sum rule (3:23), and thus the infrared constancy of the running cou-
pling ([B.20). For the su(2) case, this coupling is shown for the four gauges and three
dimensionalities in figure .10l Shown alongside is the volume-dependent behavior of the
left-hand-side of the sum rule ([3.26]), using volume-dependent effective infrared exponents
[62,1118]. The results show a photon-ghost behavior in three and four dimensions for min-
imal and absolute Landau gauge as well as for minB gauge, at least for the given volumes.
This apparently rules out the original idea that the absolute Landau gauge could be con-
nected to the scaling case [16, 36, 138], at the very least for the volumes investigated so far.
However, in any finite volume a photon-ghost-like behavior is expected for the running
coupling [118]. Hence, only a detailed analysis and extrapolation of the sum rule (3.23]),
shown in the right-hand side of figure .10, can distinguish between the different cases.
Indeed, the sum rule appears to confirm the statement that scaling is at best seen only in
two dimensions, but neither in three nor in four dimensions, as has also been established
indirectly on large lattice volumes including only relatively few points for the ghost propa-
gator at low momenta [89-92]. In two dimensions the situation is rather special, since the
sum rule coincides for both the photon-ghost case and scaling. Thus here the propagators,
showing in all cases a scaling-like behavior, have to be included in the discussion as well,
as detailed above.

The situation looks somewhat different when going to the maxB gauge. In both two
and three dimensions the coupling shows over-scaling, i. e., it appears to diverge. As noted
above, this may be a lattice artifact. Still, it implies that because the distribution of b
is continuous over the gauge orbit, see figure 2.6l in all volumes studied the value of B
can be adjusted such that a scaling-like behavior is obtained [53, 184]. It remains to be
seen whether this is also possible on significantly larger volumes. In four dimensions, the
coupling seems to saturate the behavior. This may be misleading, as the results for the
maxB gauge are inherently lower bounds. Since in four dimensions the number of Gribov
copies at fixed lattice extension is largest, see figure[2.1], it cannot yet be concluded whether
over-scaling occurs also in four dimensions. Given the experience with including more and
more Gribov copies in the maxB gauge, see figure 2.9, this appears to be at least a viable
option to be studied further.

Since the running coupling is both gauge-dependent and scheme-dependent, it is inter-
esting to also investigate the underlying B—functionﬁ. The latter has the advantage that

3Note that in the photon-ghost case the behavior of the running coupling appears to be qualitatively
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Figure 4.10: The running coupling ([B.26) for the gauge algebra su(2) in two (top-left
panel) [36, 53, 162], three (middle-left panel), |36, 53] and four (bottom-left panel) [55]
dimensions for the minimal, absolute, and maxB gauge. For comparison, results from
DSEs for scaling in three dimensions are also shown [138]. In the right-hand plots the
corresponding behavior of the sum-rule (3:23) is shown. Note that the lowest momentum
points are not used to calculate the exponents [62]. Solid lines give the value of the sum
rule in the scaling case and dashed lines for the photon-ghost case. In two dimensions
both lines coincide.
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Figure 4.11: The p-function in four dimensions for su(2) in the minimal Landau gauge
(top-left panel) and the maxB gauge (top-right panel) [55], and in absolute Landau gauge
for su(3) in the bottom-left panel [92], compared to NLO perturbation theory [2], and the
functional continuum results for su(3) for the photon-ghost and scaling case in the bottom-
right panel |16]. Both axis have been rescaled by an arbitrary constant for visibility, and
therefore the absolute values should not be taken from the figures.

it, at least in principle, can be connected to scattering amplitudes [21], though a scheme
dependency still remains. The g-function is defined as

Blo(m) = 52,

where g is connected to the running coupling ([3.26) by 472¢g?> = . The resulting [-
functions are shown in figure 11l It is well visible that in next-to-leading order (NLO)

the same in both the confinement and the Higgs phase of a fundamental-scalar-Yang-Mills system [83].
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perturbation theory describes the running of the coupling rather well up to g around five,
correspondingly « around 0.4, for the lattice data. The functional results are only up
to leading order (LO) consistent with perturbation theory, and therefore start to deviate
quicker from the NLO result. It is also well visible how the  function approaches the
Gaussian fix-point in the ultraviolet. In the infrared for the minimal and absolute Landau
gauge lattice data and the photon-ghost functional results, a zero of the 5 function emerges
at a finite g, corresponding to the maximum in the running coupling. At this point the
coupling, however, does not stop running, but decreases once more, and the S-function
becomes positive. This indicates that the derivative of the 8 function at this point is non-
zero, and becomes dominant at this position. In the very far infrared it appears that the
[-function reaches another, likely trivial Gaussian, fix-point when the running coupling
becomes zero. It would be highly interesting whether this occurs in an analytic or non-
analytic way, but this has not yet been investigated. In the maxB gauge a zero-crossing
is not yet seen, but much larger volumes are required to check whether this remains true.
Of course, for the scaling solution, the S-function has indeed a non-trivial infrared fixed-
point, but the running coupling also exhibits a shallow maximum, and thus the g-function
arrives at its infrared fixed point from above. This can essentially not be resolved on the
scale of the figure .11l and could be a truncation artifact [145].

Thus, from these investigations it should be concluded that in the infinite-volume limit
both the photon-ghost case and scaling can be found using functional methods. Whether
the setup of lattice calculations will reproduce this at large volumes is still to be clarified.
Since the lattice investigation so far is limited to the first Gribov region, it is not clear,
whether this is possible, see section [4.3.2l If it were confirmed, it would indeed validate the
interpretation of the B parameter also in functional calculations as an additional gauge
parameter [16, [53]. This remains to be seen.

Before continuing, it should be noted that the functional results show by construction
the correct perturbative behavior. By comparing it to the lattice results, which auto-
matically contain up to lattice artifacts all orders of perturbation theory, it shows that
already at momenta around 1.5 GeV resummed leading-order perturbation theory becomes
an adequate description of the propagators within a few percent. Given that there are
processes for which a perturbative description is not valid even for substantially higher
energies [218], this is rather early. On the other hand, the onset of Gribov effects at mo-
menta starting from around 1 GeV shows that significant non-perturbative effects come
into play already very close to the perturbative domain, leaving only a rather small win-
dow where higher-order perturbation theory can substantially improve the description of
the propagators.

In total, the results for the propagators exhibit clearly different behaviors, depending
on how the residual freedom appearing in the form of the B parameter, either as explicit
Gribov copies in lattice calculations or of undetermined parameters in the functional equa-
tions, are treated. The presence of the photon-ghost case is definitely established for the
minimal Landau gauge, and rather well reproducible by functional calculations for the
same choice of B. The existence of the scaling solution is not established on the lattice,
though it is definitely present, up to lattice artifacts, in small volumes. Its existence in the
continuum rests on entirely different arguments, see section Finally, the absolute
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Landau gauge seems to also show a photon-ghost behavior [205], very similar to the case
of the minimal Landau gauge, and in contrast to the scenario depicted in [36]. However,
since it becomes increasingly complicated to obtain a reasonable approximation of the ab-
solute Landau gauge with increasing lattice volume, see chapter 2, this statement is much
less reliable than the one about the minimal Landau gauge.

4.1.2 Vertices

The next-simple correlation functions beyond propagators are the three-point vertices.
Two of them exist in Landau-gauge Yang-Mills theory. One is the ghost-gluon vertex, the
other one is the triple-gluon vertex.

Of both, the ghost-gluon vertex Tﬁémbc is the significantly simpler one. It is related to
the corresponding correlation function by [116]

a —b c - AZ%ad ccbe ceef T Acede
< A5 (p)(q)ct(k) >= Dy, *(p) D*(q) DT (p, q,k)d(p + q + k). (4.1)

Because of Lorentz-symmetry, the ghost-gluon vertex can be expressed in terms of two
tensor structures [142]

rae(p, q, k) = ig (q. A (p, 4, k) + p. B (p. ¢, k)) , (4.2)

which are chosen here conveniently to be one along the anti-ghost momentum, and one
along the gluon momentum. At tree-level, A%¢ = f%¢ and B® = 0. Due to the explicit
(transverse) gluon propagator, of the two possible Lorentz structures only the one not
longitudinal in the gluon momentum appears in the unamputated correlation function
(A1), and in particular in functional equations projected transversely. So there is only
one relevant tensor-structure to be kept. At tree-level, this structure has a color-structure
of fa. 1In principle, others can appear beyond tree-level. This has so far only been
investigated to some extent, indicating the appearance of a d®¢ structure for su(N > 2)
gauge algebras [170], i. e., for the only ones with non-vanishing d®¢ [199]. However,
since only the component proportional to f®° is relevant for the functional equations at
propagator level, here only the component proportional to the tree-level color structure
will be discussed. This leaves one single scalar dressing function. In Landau gauge, it
can be shown that the associated renormalization constant is finite [142]. Furthermore,
because of a ghost-anti-ghost symmetry in Landau gauge [17], which is presumably intact
[115], the ghost and anti-ghost legs can be exchanged without changing the value of the
dressing function, i. e., A(p,q, k) = A(p, k, q).

Lattice results in two, three, and four dimensions for su(2) for this dressing function in
various kinematic configurations are shown in figure for the minimal Landau gaugeﬁ.
In all cases, the vertex dressing only slightly deviates from tree-level at mid-momentum,
and becomes comparable to tree-level in both the infrared and ultraviolet, though might
be slightly smaller than tree-level in the infrared. The enhancement at mid-momentum

“Connected and full correlation functions coincide in Landau gauge for three-point functions [86)].
5There are not yet any results in other gauges available.
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Figure 4.12: The tensor component A of the ghost-gluon vertex for two (top panels) @],
three (middle panels) @], and four (bottom panels) @] dimensions, in minimal Landau
gauge. In three and four dimensions, results from a semi-perturbative evaluation of the
DSEs in the scaling case are also shown M] The left panel shows the result in the
symmetric momentum configuration p? = ¢ = k? for three and four dimensions. In two
dimensions, this configuration is not possible on a quadratic lattice except at special points

|, and the result for zero gluon momentum is shown instead. The right panels show
the results for the gluon momentum orthogonal to the ghost momentum for the largest

volume shown in the left panel.
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increases with dimensionality, but never exceeds about 50%. Thus, the ghost-gluon vertex
is indeed very close to tree-level, as commonly assumed in functional calculations. How-
ever, a comparison with figure 3.3 immediately shows that the ansatz to remove quadratic
divergences from the ghost loop is different in the ultraviolet. From this it can immediately
be deduced that the removal of these divergences in the gluon equation has, in principle,
to be done with the necessary counter-terms for the non-gauge-invariant regularization,
instead of some modification of the vertices.

For the scaling case, functional results are available, which are obtained in a semi-
perturbative manner, i. e., by using a skeleton expansion [154] but replacing the propaga-
tors with the non-perturbative ones from the previous section [125]. Thus, these results are
not self-consistent, and will only give a first estimate of the non-perturbative corrections.
The result is also included in figure These are found to not deviate significantly from
tree-level as well. Even when modifying the input vertices drastically [159], this does not
change [125, [141)].

In four dimensions, results for su(3) are also available, from both lattice [219, [220] and
continuum calculations [125]. They show the same qualitative behavior, and almost the
same quantitative behavior.

In summary thus the ghost-gluon vertex is essentially constant. Since this is also the
case in two dimensions, it can be expected to be the case in both the scaling and the
photon-ghost case. As noted, this is also anticipated in the scaling case from very general
consistency arguments between the DSEs and the FRGs [131), [132]. The slight angular
variations at low momenta may however be of quantitative importance, as they could alter
the value of the exponent k. In particular, such changes tend to decrease this exponent,
and therefore move it closer to one generating an infrared finite gluon propagator even in
the scaling case [159].

The three-gluon vertex is a much more complicated object, due to its much more
involved Lorentz structure [61, 186,126, 221-224]. It is related to its full correlation function
by [86, 221]

< A%(p) Ab(q)AS(K) >= D (p) Dyt () D T2 (p, 4. K)o (p + g + k).

The correlation function harbors four independent Lorentz structure, which are transverse
in all gluon momenta [117], and on top one or more color structures. The latter have
been investigated, and it has been found that at least one other non-trivial structure can
exist in principle [46,170]. The various structures have been investigated using functional
studies in the far infrared in the scaling case [126], showing differences not too large for
the various Lorentz structures, though this remains a subject of further investigation.

In lattice calculations, only the projection on the tree-level color and Lorentz structure
has been investigated so far [61), 186, 221-224], which is given in general by [86]

AAAA(p q k?) _ Pf},ulp/,Aaﬂbc(pv q, k) < AZ(p)AZ(Q)A;(k) >
y &y 3 abe @ . c ,L,A3 de '
Loy (p, q, k) D% (p) Dbe.(q) Dl (k)T (p, g, k)

Aow

(4.3)

The index L at the tree-level vertex denotes the usage of the lattice version of the tree-level
vertex [110], to reduce artifacts from violation of rotational symmetry [86]. By definition,



82

4,

1. Correlation functions

| Three-gluon vertex, gluon momentum vanishing, in two dimensions

|| Three-gluon vertex, orthogonal momenta, in two dimensions

5 2F l ¢ ? T <L
s ]
S 1 | L i
:f f[oeeT LN |
< ofF + { 2 07
» (e}
E g
-1 é
- % S
-2
-3 ;— ® Lattice, V=(14 fm) 2, a=0.18 fm
-4 O Lattice, V=(8.1 fm) 2, a=0.10 fm
5 E_ Tree-level
- :I 111 I 111 1 I 11 1 1 I 11 1 1 I 11 11 I 1111 I 1111 I 11 1 0'5
% 05 1 15 2 25 3 35 0
q [GeV]

15
1
qleeV!

0.5

| Three-gluon vertex, symmetric point, three dimensions

|| Three-gluon vertex, orthogonal momenta, three dimensions

& 2 * T

a T

Q L

e r . .H l xl f}» % <L |

£ i

< [ ..C” + T
of ¢
_1_—
:+ @ Lattice, V=(10 fm) %, 2=0.17 fm
—2-— O Lattice, V=(4.5 fm) %, a=0.11 fm
: Tree-level
_ -I 1 1 1 I 1 1 1 1 I 1 1 1 I 1 1 1 1 I 1 1 1 1
% 1 2 3

p [GeV]

A

e

");’;
G

Q“‘

| Three-gluon vertex, symmetric point, four dimensions

Figure 4.13: The tensor component ([£3)) of the three-gluon vertex for two (top panels) [62],
three (middle panels) [61], and four (bottom panels) [61] dimensions, in minimal Landau
gauge. Momentum configurations are as in figure [.120 Points with an error larger than
1 have been suppressed. Some results in four dimensions for gauge algebra su(3) can be

& 2
=
N
5
~
c
3 L
<
< L 0({)
{ :
| [
| + + @ Lattice, V=(4.6 fm) %, a=0.21 fm
| [ Jo) O Lattice, V=(1.9 fm) *, a=0.085 fr{
| Q Tree-level
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
% 1 2 3 4 5 5
q[GeV]

found in [221-224], for one gluon momentum vanishing.

N
XK

N,
X
s

.

N
252 '//l“‘¢ =

1
a(GeV)

A




Chapter 4. Describing gluons at zero temperature 83

’ Three-gluon vertex, one momentum vanishing
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Figure 4.14: The tensor component (43]) of the three-gluon vertex in two dimensions for
the gauge algebra su(2) in the minimal Landau gauge at low momenta [62]. The points
come from different lattice volumes and discretizations. The line corresponds to a function
0.17p~22, the exponent coming from (3.31]).

the function (43]) would be one if the full and the tree-level vertex coincided. It should be
noted that this is the only contribution of the three-gluon vertex which contributes in the
gluon loop of the gluon propagator’s DSE [86]. Results in two, three, and four dimensions
are shown in figure for su(2) in the minimal Landau gauge. The results are very noisy,
and thus very high statistics are necessary for an accurate result [61, 62, 86], making the
determination of this vertex a computational challenge. The results finally show that
the qualitative behavior is rather similar for all dimensions. In particular, in all cases a
suppression at momenta around the typical scale Ayy of a few hundred MeV is found. In
two and three dimensions a sign change occurs at about 100-300 MeV. In four dimensions,
data at these momenta are not available yet, but the tendency is of the same type.

In the very far infrared, in two and three dimensions a very strong enhancement (with
negative sign) is found [61, 62, 86]. In fact, the behavior is very much reminiscent of the
infrared divergence found in the scaling case for the vertex in functional studies [154, [155].
Since again in the two-dimensional case minimal Landau gauge is at the very least very
close to the scaling case, it is even possible to quantify the infrared exponent [62], which
turns out to be in agreement in this scaling window with the formula (3.31]), confirming the
analysis of all vertex functions in the infrared [154,[155]. This is shown explicitly@ in figure

SNote that the momentum configuration is strictly speaking not the same as used in the corresponding
calculations using functional methods, which would be at the symmetric point. However, for the Bose-
symmetric three-gluon vertex, this could be of minor importance.
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[4.14l Remarkably, the fitted pre-factor is about an order of magnitude smaller than the one
of the propagator power-law [62]. This has also been found in semi-perturbative functional
calculations to be the case [126, 127]. Moreover, when determining the four-gluon vertex
with the same method, the pre-factor is found to be a further order of magnitude smaller
[127], while at the same time showing the self-consistent exponent of (3.31]) [154].

Though in higher dimensions it cannot be expected that the enhancement is a genuine
divergence due to the screening occurring in the propagators at very low momenta, at
the very least, the triple-gluon interaction strength in this channel is strongly enhanced
at low momenta. In the scaling case, it has been found to be infrared divergent in all
dimensions [154, [155], as would be all other tensor structures, as an infrared analysis
of the functional equations [154], semi-perturbative studies |126], and approximate self-
consistent treatments have shown [167].

Calculations of the four-point functions using lattice gauge theory have not yet been
performed due to the strong statistical noise in such higher-order correlation functions
[62, 186]. An even more restricting problem is that disconnected contributions have to
be removed explicitly, beginning with the four-point functions. Functional calculations
have started to explore higher n-point functions using a semi-perturbative ansatz [127].
Beyond this point in both lattice and continuum calculations usually only bound-state
properties have been calculated, either directly from the correlation functions in lattice
calculations from their exponential decay in Euclidean time [4, 22], or using Bethe-Salpeter
or Faddeev equations in functional methods [17, 191, 1225, 226]. Rather recently, dynamic
hadronization has also received attention for an effective possibility to include higher-order
correlation functions in way of a self-consistent effective theory |18, 1227]. For the only
physical bound-states in Yang-Mills theory, glueballs [228; 1229], functional methods have
met quite severe technical problems, which are still a matter of research [230-233], while
lattice studies have been quite successful in determining their spectrum [234,235]. Further
objects of interest so far are scattering processes and coupling constants, though their
direct determination in terms of correlation functions becomes increasingly complicated
14,117, 22, 225, 236].

Even with the yet limited range of higher order n-point functions results, conclusions
can be drawn both for physics and for technical aspects. From the technical point of view,
the fact that the ghost-gluon vertex should be enhanced at mid-momentum and this par-
ticular tensor structure of the three-gluon vertex should be suppressed, has been inferred
from functional studies under the assumption that the two-loop terms are negligible [138].
The reason is that otherwise the opposite signs of the ghost and the gluon loop destabilize
the system, and in particular tends to drive the gluon dressing function into the negative,
which is by construction not permitted. This is now confirmed a-posterior to be correct
by the results shown in this section.

The sign change of the particular tensor structure of the three-gluon vertex also has
quite far-reaching implications. Since it is the only contribution relevant for the gluon
loop in the gluon propagator equation at one-loop order, it can provide a sign change of
the whole loop in the infrared. Thus, the gluon physics changes from being anti-screening
at large momenta to screening at small momenta. In accordance with the observations in
section3.2.4.1] the screening mass from the ghost-loop in the critical limit of Kz = (d—2)/2
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is then enlarged by the gluon-loop, as both now have the same sign. This is also of
profound importance for the photon-ghost case, where the gluon loop is one of the leading
contributions, and the sign change helps to provide a positive screening mass.

The second consequence is even more profound. The three-gluon vertex behavior shows
that at the hadronic energy scale the emission of a gluon from a gluon is strongly sup-
pressed, at least for the tree-level tensor. However, it becomes strongly enhanced at
momenta close to zero, i. e., close to the the light-cone. At these small momenta the
gluons are screened by either a finite or an infinite mass, thus not contributing anymore.
This could be an important hint into how the infrared enhancement threatening to be
unitarity-violating in parton structure functions could be remedied by non-perturbative
effects [237].

4.2 Schwinger functions, mass, and confinement

Having the propagators now available, it is an interesting question what kind of insight can
be obtained from them on the properties of the elementary particles. In particular, their
masses and widths are of great interest, as is their analytic structure. This information is
encoded in the propagators, and can be obtained by determining their space-dependence.

The most direct access to properties like masses and widths is granted by the Schwinger
function [11]. This function is defined ad]

>1|~

/dpo cos(tpo) (pg)
0

for a particle with propagator D(p?). The notation p, indicates that the dressing function
is evaluated at zero spatial momentum. On the lattice, the corresponding expression is
given by [23§]

where both ¢ and F, are in lattice units, i. e., integer, and N, is the lattice extension in
time direction.

In case of a stable particle with a simple pole at mass M, having an Euclidean propa-
gator

1
D(p) = ——— 4.4
0= =57 (4.4
the Schwinger function is given by
1
At) = —e™
(t) =5 ¢

"The Schwinger function can also be evaluated directly in position space without the detour over
momentum space |22, 234].
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Therefore, a simple exponential decay is expected in Euclidean time for a massive, stable
particle. It is worthwhile to note for the investigations at finite temperature in chapter
that such an exponential decay for a bosonic, stable particle with zero width is also
expected in the spatial directions for the soft mode, i. e., for A(z), since its propagator
is 1/(p* + M?). Here, the energy is zero, as it is a soft mode, as are the other spatial
momentum components orthogonal to the direction along which the integral to determine
the Schwinger function is performed.

On the other hand, for an unstable particle with mass m and finite width, having a
generic Euclidean propagator described by a meromorphic function [11]

D(p) —
(p) p* + 2m2 cos (2¢) p? + m*’

(4.5)

the Schwinger function is given by

2

e 2

e~ tmeos(9) ( gin msin fm sin (¢ — tmsin ) )
= (sin 0+ emsin (6) + 75 sin 6~ tmsin 9))) .- (40

Alt) = 2m3 sin
The Schwinger function therefore exhibits oscillation with a period determined by the
width. Its positivity violations are signaling therefore the instability of the particle. The
propagator (L3 illustrates at the same time the difference between the concept of screening
mass and pole mass. The screening mass is defined as the inverse square-root of the
propagator at zero momentum, and given by

Since e depends on the wave-function renormalization, this immediately shows that a
screening mass is never renormalization-group-invariant, and can therefore not be a phys-
ical observable quantity. The pole mass M, i. e., the location of the poles of (AH]) is given
by

M = me*®,

and is thus a set of complex conjugate poles with non-zero residuum. This mass is
renormalization-group invariant, if there is no additive mass-shift to m, and can thus
be, at least in principle, a physical mass, though in the present case it may be gauge-
dependent. Note that in the limit of real masses, e has to go to m and f to one, or
otherwise a double-pole would emerge.

There is another concept which appears when using the Euclidean correlation function.
Assume that the propagator can be written as

D(p) z

TP M) o

with some wave-function renormalization constant Z. At first sight, the condition M (p?)? =
p?> = —P? could look like an indicator for the pole mass of the particle described by the

80f course, this is an over-simplification, as the second pole of this function lies on the wrong Riemann
sheet [9].
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Figure 4.15: The Schwinger function for the gluon in two (top-left panel) [36, 53, 62], three
(top-right panel) [36, 53, 201, 1238], and four (bottom-left panel for su(2) and bottom-right
panel for su(3)) dimensions [55, 89, 92], for the minimal Landau gauge for su(2), the
absolute Landau gauge, the maxB gauge, and the minB gauge. Oscillations at large
times can be due to reaching the Nyquist frequency of the lattice with the given lattice
discretization, and are thus a lattice artifact [55]. Also results from DSEs are shown for
the scaling case in three dimensions [138]. Functional results for four dimensions can be
found for both the photon-ghost case and scaling in [16] and further lattice results also in
[239, 1240]. These are all qualitatively and quantitatively very similar to those shown.

propagator. However, this is only possible if the function M (p?) only depends on the real
part of p?. This is certainly the case for (44]), but is not necessarily the case for (7).
Thus, the point P? only gives a would-be pole mass, and the correct pole mass is only

obtained when taking into account the full dependence of M (p?) on complex momenta
[11, 16].
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Returning from this digression, the first object to apply this formalism to is the gluon
propagator. As ﬁgure@] shows, the Schwinger functions for the various cases are quali-
tatively identical. Furthermore, the DSE results for both the photon-ghost and scaling are
also qualitatively identical [16]. However, the results are strongly affected by finite-volume
corrections, and it requires a certain minimal volume to observe the most characteristic
feature, the zero crossing of the Schwinger function at a range of a half to a few Fermi,
depending on the number of dimensions, the gauge algebra, and whether the behavior is of
photon-ghost type or scaling@ [55, 1238]. Besides this first zero crossing, no further cross-
ings have been observed, and thus there is no oscillatory behavior, as would be expected
from an unstable particle. In particular, the gluon Schwinger function is negative above a
certain distance. Secondly, the decay of the Schwinger function at large distances is also
not exponential, and thus there is also no pole-mass behavior underneath the fall-off.

This implies that the gluon is neither a stable nor unstable particle, and that positivity
is manifestly violated for i, particular, it can be inferred from these results that there
is no Kallen-Lehmann representation for the gluon’s propagator, and thus the gluon cannot
be considered a physical particle [5, [11], as expected when starting from the hypothesis
that the gluon is confined. Note that this does not prevent the existence of an asymptotic
gluon state in the unphysical part of the Hilbert space of the theory; it is just excluded
from the physical part of the Hilbert spac [8]. Thus, despite the screening mass found
in the photon-ghost case there is no pole mass of the gluo. However, this is neither
a sufficient nor a necessary condition for confinement, as, illustrated by equation (4.5])
and (0]), this also applies to unstable particles. It only implies that the gluon will not
appear as an asymptotic state in the physical part of the Hilbert space. Though this is
certainly a necessary condition for the experimental statement of confinement, this does
not require positivity violation. More insight can be gained from the analytic structure of
the propagator.

Having both the correlation function and the Schwinger function available, these im-
pose constraints on the analytic form of the propagator. Functional forms which fit both
of them in the scaling case are given b [11, [138]

A, pas
Zl(p) 1+f+Azp2RAA

Azp?ran

ZZ(p) = (1+f+Ap)2“AAfUV(p2)’

9Note that for the su(2) MLG results in four dimensions a cone-cut has been applied, and thus the
effective volume is smaller [89)].

19Gimilar results have also been obtained using an effective action approach [37, |43].

"Note that a gluon propagator which vanishes at zero momentum is implying (maximal) positivity
violation [11].

12This observation can already be indirectly inferred from the violation of the Oehme-Zimmermann
superconvergence relation in perturbation theory [17, [241].

13Tt is therefore irrelevant whether the mass would be gauge-parameter-independent, as described by
the Nielsen identities [242].

4Note that similar functional forms are already encountered in QED [17, 243], but also appear in
(near-)conformal theories, as are considered for unparticles [244], and to some extent technicolor models
in beyond-the-standard-model scenarios |245].

va(PQ)
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where fyy encodes the perturbative tail. While the first version works better in three
dimensions [138], the second is more adequate for four dimensions [L1]. Irrespective of
the details both forms have a cut on the time-like axis starting at zero momentum, as is
expected for a particle not belonging to the spectrum and not having a pole mass. This
is a more direct, though also less certain, indication of the confinement of gluons.

Most importantly, both forms permit Wick rotation [11], essential to transfer the results
back to Minkowski space. These fits are the best approximation of the analytical structure
of the gluon propagator yet. Corresponding approximate fits for the photon-ghost case
can be obtained in various ways, and most easily by the screening behavior in the infrared
as a leading contribution, like

A.(p* + ap™44)

Z3(p) = 1+f+A pQHAAfUV(pQ)’

thus retaining the intermediate scaling behavior, which is quite relevant in particular for
lower dimensions.

Though not linked to a particle, it is also interesting to investigate the Schwinger
function of the ghost. It is shown in figure After taking into account the divergence
at zero momentum by appropriately normalizing it, it is found that the Schwinger function
becomes constant at long distances, instead of decaying to zero as for ordinary particles
or the gluon. Thus the ghost implies correlations over arbitrarily large distances. This
automatically implies the absence of a mass gap in the spectrum of the full Hilbert space
[5, 117], despite the presence of one in the physical subspace. In particular, this implies
the failure of cluster decomposition for Yang-Mills theory on the level of gauge-dependent
elementary particles and the absence of a ’behind-the-moon’-problem [8]. The presence
of these infinite-range correlations are then a consequence of the necessity to maintain
gauge invariance over long, and also space-like, distances. The Schwinger function itself is
then also negative, as the propagator is purely negative. Thus, the ghost trivially violates
positivity, and also does not belong to the physical state space.

It is another interesting question to investigate the Schwinger function of the coupling
constant. Though it does not describe a particle, this is essentially a measure of the
interaction strength as a function of distancd™d. The result is shown in figure L.17. At
short distances, an effective repulsion is observed, while at long distances, even in the
two-dimensional case where the coupling freezes out, the corresponding Fourier transform
vanishes. However, it is not yet unambiguously clear whether this is a Nyquist artifact or
not, and requires further investigations. The same applies to the fact that the Schwinger
function actually becomes slightly negative in three and four dimensions at times of the or-
der of 1 fm. However, the chance that a corresponding minimum exists could be significant
for the emergence of bound states, which exist in three and four dimensions [234].

15Tn QED, it corresponds to the potential, but this is no longer the case in a non-Abelian theory [9].
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4.3. Confinement scenarios
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Figure 4.16: The Schwinger function for the ghost [55] in two (top-left panel), three (top-
right panel), and four (bottom panel) dimensions, for the gauge algebra su(2), and for
the minimal Landau gauge, the absolute Landau gauge, the maxB gauge, and the minB
gauge. The Schwinger functions are normalized to one at ¢ = 0.

4.3 Confinement scenarios

Explicit violation of positivity, manifest in the Schwinger functions, shows that gluons are
not part of the physical asymptotic spectrum. This can be interpreted, in a loose sense, as
manifest gluon confinement, since this makes any kind of asymptotic gluon states part of
the unphysical Hilbert space. Assuming that the S matrix only transforms physical states
into physical states, this implies the absence of gluons from the asymptotic observable
world. Given that this is a necessary assumption to prevent a gauge anomaly to occur [6],
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Figure 4.17: The Schwinger function for the coupling constant [55] in two (top-left panel),
three (top-right panel), and four (bottom panel) dimensions, for the gauge algebra su(2),
and the minimal Landau gauge, the absolute Landau gauge, the maxB gauge and the
minB gauge.

this assumption appears reasonable.

The emergence of gluons as rather well-defined, quasi-massless states in high-energy
scattering experiments is not at odds with this result. Indeed, the gluon propagator be-
havior at large energies is dominated by the perturbative part, or by the tree-level part in
lower dimensions. Thus the corrections to the perturbative picture of a well-defined gluon
state are sub-leading at sufficiently high energies, and only manifest themselves at ener-
gies where the effective interaction permits to resolve the propagation of the gluons over
sizable distances. This duality of a highly non-perturbative, screened state at low energies
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and an almost perturbative state at high energies is again a consequence of asymptotic
freedom. However, even at the shortest distances the gluon has always a non-perturbative
dressing, which, though not quantitatively relevant, ensures its confinement as a necessary
consequence of having only gauge-invariant observable states: There is no almost local
definition of a gluon in contrast to a photon [5].

This said, it is worthwhile to compare the results for the gluons to scenarios describing
a confinement mechanism, which yield predictions for the correlation functions. Two such
scenarios have been of particular relevance recently, the ones of Kugo and Ojima [8, 246],
and of Gribov and Zwanziger [23,138,169]. There are many other proposed mechanisms, but
most operate on different entities, like collective (topological) excitations [153]. Relations
to them will be detailed more in section .4l There are also other scenarios which give
predictions on the analytic structure of the correlation functions |[17], like the one of Gribov
and Stingl [23, 1247-249]. However, none of them fits with the pole structure obtained in
the previous section. E. g., the Gribov-Stingl scenario predicts well-defined poles, though
with vanishing residues, and by this prevents gluon propagation [248, 249]. Such poles
have not been seen in the Schwinger functions, implying that this is a rather unlikely
candidate for the confinement mechanism for gluons. However, in all of the following it
should be permanently kept in mind that there is no full systematic control of any of the
methods employed to determine the correlation functions, and thus the following is an
evidence-driven discussion.

4.3.1 Perturbative BRST

Before starting with these scenarios, it is worthwhile to reconsider how in perturbation
theory the unphysical degrees of freedom like ghosts are removed from the spectrum, and
therefore confined |2, 8]. This mechanism at the perturbative level is not sufficient to con-
fine transversely polarized gluons, leaving the illusion that these are physical. Therefore,
it cannot be sufficient beyond perturbation theory. The only exception is two dimensions,
where the perturbative mechanism works, but this is due to the lack of transverse degrees
of freedom of the gluon in two dimensions, rather than a qualitative change [62].

In Landau gauge, the perturbative removal of ghosts and longitudinally and time-like
polarized gluons is achieved by the quartet mechanism [8]. This mechanism utilizes the
BRST symmetry of the perturbatively quantized theory to structure the complete space
in a physical and an unphysical subspace, with the ghosts and longitudinal and time-like
gluons residing in the unphysical subspace |2, 6].

The corresponding BRST symmetry transformations are [2]

5BRSTAZ (.T) = (MDZbcb(:L’) (48)
1
dprsTc’(z) = —5)\§gdf“bccb(x)cc(x) (4.9)
1
5BRSTEG(I‘) = 5)\58MAZ(I‘), (410)

where for the Landau gauge the appropriate limit & — 0 has to be taken and d\ is an
infinitesimal constant Grassmann parameter. These transformations leave the gauge-fixed
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Lagrangian (2.3) invariant. This defines the BRST-operator s as
5BRSTF = 5)\8F,

by its action on any field F.

It is possible to linearize the transformation by introducing an auxiliary field, the
Nakanishi-Lautrup field B® [6]. This manifestly establishes the nil-potency of the BRST
transformation

Without this field, the nil-potency is manifest only on-shell.

To find the corresponding algebra, it is necessary to include another symmetry: Rescal-
ing the ghost fields by a scale transformation exp(s) and its anti-field by exp(—s), leaving
all other fields unchanged, is a symmetry of the Lagrangian [, 8]. This gives rise to the
conserved ghost number ()¢, in analogy to the fermion number. As the ghosts are the
only fields carrying them, it is necessary that all observable final states must have ghost
number 0. Then, counting ghosts shows that the BRST charge ()grst has ghost number
1. Together, this establishes a closed algebra

{QsrsT, @BRST} = 0
[iQq, QBrsT] = QprsT
[iQc,iQc] = 0

as a global residual of the gauge symmetry in Landau gauge, besides the global color
symmetry [8] and the ghost-anti-ghost symmetry [17]. The important consequence of
(4.11) is that the BRST charge is also nilpotent.

A well-defined nilpotent charge splits the state space directly into three disjoint parts
[6]. The states which are not annihilated by the BRST-transformation form a subspace
(@1, carrying BRST-charge. By acting on these states, daughter states in a subspace Q)5
are generated which are annihilated by the BRST-charge. The last possibility are states
which are also annihilated by the BRST-charge but are not generated from parent states.
These form a subspace ()y. Physical states must be gauge invariant and are therefore
annihilated by Qgrsr, which is essentially a gauge transformation with the ghost field
acting as the transformation parameter. In addition, any states in (s do not contribute
to matrix elements, since they have zero norm. Therefore the physical subspace is

Hpnys = KerQprst/Im@Qprst = Qo-

It is this subspace in which the perturbatively physical transverse gauge bosons exist, while
forward polarized gluons and anti-ghosts belong to )1 and backward polarized gluons and
ghosts belong to )5. This can be seen directly using the Nakanishi-Lautrup formulation of
the gauge-fixed Lagrangian [2,[8]. Due to the relation of Q5 and @1, the unphysical degrees
of freedom are connected by BRST transformations and are thus metric partners. They
form a quartet under this charge, and are thus said to be confined by the quartet mech-
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anism. Hence in perturbation theory the physical subspace (), contains only transverse
gluons, and perturbatively unphysical degrees of freedom are confinedd.

4.3.2 Non-perturbative BRST and the Kugo-Ojima confinement
scenario

The basic idea of the Kugo-Ojima confinement mechanism is to extend the BRST construc-
tion such that not only transverse gluons, but also in general any colored state is moved to
the unphysical subspace [, 246]. E. g., pairing transverse gluons with gluon-ghost bound
states [8, 250] in a quartet would make them unobservable.

The basic ingredients needed for this construction are threefold.

One is the existence of a mass gap in the physical spectrum. Since the known lowest-
lying glueballs all have quite a significant non-zero mass, this appears to be fulfilled |235,
251, 1252]. For QCD this would actually be known from experiment [7]. At the same
time no mass gap is permitted in the complete state space, including the unphysical states.
As has been shown in section 4.2 the absence of a mass gap can be read off the ghost
Schwinger function for all cases investigated. This is therefore also fulfilled.

The second ingredient is that the global color charge after gauge-fixing is well defined
and unbroken. If all other preconditions of the construction are fulfilled, this is immediately
implied if the ghost propagator has a stronger than massless pole with negative residue, i.
e., its dressing function must diverge to positive infinity [8, [16]. Evidently, this is satisfied
in the scaling case. Hence, to the photon-ghost case the Kugo-Ojima scenario in its original
form cannot be applied. There have been several investigations whether it is possible to
construct a modified Kugo-Ojima mechanism also in this case [253-258], but this has not
been finally settled. Thus, the remainder of this section only applies to the scaling case.

The third, and probably most complicated, requirement is that there exists, in the
sense of differential geometry, a globally well defined and unbroken BRST charge [16].
Moreover, the field transformations induced by this charge must take the same form as
the perturbative oned™ [IRHI0) [4)].

The perturbative definition of the BRST charge is trivially not sufficient in the non-
perturbative setting. The reason is that perturbatively a BRST transformation mediates
between different gauge copies separated infinitesimally in a covariant gauge. It shrinks to
the identity transformation in Landau gauge, since perturbatively only one representative
of the gauge orbit fulfills the Landau gauge condition. Since there are Gribov copies,
connected by large gauge transformations [23, 25], a well-defined BRST transformation
cannot simply be just the identity. This is also clear from the fact that massless transverse

16Tn principle it is possible to have states in g with non-vanishing ghost number, which would render
the theory ill-defined |§]. This does not seem to be the case for Yang-Mills theories.

"Note that for QCD in the chiral limit with a massless pion this would have to be reconsidered.

18 Actually, when the original work of Kugo and Ojima was done |§] the existence of Gribov copies
was unknown, and the perturbative definition of the BRST charge was used. Since only the algebraic
properties of the charge are relevant to the construction, this supplemental condition is sufficient to
perform the construction even in presence of Gribov copies [16]. If this condition is not fulfilled, the
original Kugo-Ojima scenario fails.
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gluons are put into the physical state space by the perturbative construction, thus being
in conflict with experiment. A more formal argument can be found in [37, 259].

The question is then whether there exists a non-perturbative extension of the BRST
charge such that its algebra coincides with the perturbative one. In fact, there is one
[31, 133, 134, 1103], which is based on first performing a lattice regularization of the theory,
and then taking the continuum limit. The result is that one obtains a non-perturbative
BRST charge in the fully quantized and renormalized theory, i. e., with all renormalization
constants fixed. This Neuberger-von Smekal construction even leads to the same algebraic
form of the non-perturbatively well defined BRST charge. Indeed, together with the
assumption of a mass gap in the physical spectrum this is then sufficient to imply the
Kugo-Ojima construction if a solution of the DSEs (and FRGs) exists with an infrared
divergent ghost dressing function, and thus a globally well defined color charge, which
appears to be the case [16].

The remaining problem is how to relate the argument to the present situation, in par-
ticular concerning lattice calculations. The reason is that the Neuberger-von Smekal con-
struction is based on an average over all Gribov copies satisfying the Landau gauge condi-
tion (2:2)). This implies an average over all Gribov regions, weighted by the signed Faddeev-
Popov determinant [31), 33, 134, [103], and is thus equivalent to a full non-perturbative
evaluation of the path integral (23] in the sense of Hirschfeld [29]. Since the DSEs and
FRGEs are identical whether they are applied to a single Gribov region or to the whole
of all Gribov regions [38], the existence of the scaling solution implies that it is associated
with the sum over Gribov regions by virtue of the Kugo-Ojima construction as outlined
above [16].

The question is then how to relate this scaling case to lattice calculations presented
here. If this were possible at all, there must exist some prescription to select Gribov copies
inside the first Gribov region such that all correlation functions take the same value as in
the Neuberger-von Smekal construction. This may appear hopeless at first sight. However,
there are a number of arguments which motivate that such a relation may indeed exist.

The first is the simple fact that the scaling solution has a positive semi-definite ghost
dressing function, both in momentum and real space. In general, outside the first Gribov
region this does not need to be the case. An explicit counter example is given by 1+1-
dimensional Coulomb gauge, which can be solved exactly [54]. In this case it was also
shown that for a finite number of Gribov regions the scaling case is only realized if the
restriction is made to the first Gribov region.

The second argument is that scaling appears to be realized inside the first Gribov
region in two dimensions, for reasons not yet fully understood [45, 162, 166, 90, 91, 159].
Since the construction of the global BRST proceeds in two dimensions in the same way as
in higher dimensions [31], 133, 134, [103], in this case even the minimal Landau gauge seems
to be equivalent to a sum over all Gribov copies.

The third argument is that the finite-volume version of scaling can be realized at least
for small volumes inside the first Gribov region using the Landau-B gauges [53, 184, [118§].

All of these arguments are not sufficient to ensure the possibility of scaling in the first
Gribov region, nor can they explain how the appropriate cancellation of Gribov copies
should occur such that this is possible. However, it is sufficient motivation to indeed pursue



96 4.3. Confinement scenarios

such a construction. In particular, it requires a realization of the idea of a simultaneous
formulation on both the lattice and in the continuum, e. g. like (ZI6) or (ZI7). The
Landau- B gauges provide at least a possibility in principle how this could be realized, and
an explicit construction description to verify this possibility: Trace the maximal attainable
value of B as a function of volume inside the first Gribov region. If it diverges in the
infinite-volume (and continuum) limit, scaling could be realized. Check then whether the
correlation functions exhibit a scaling behavior. Unfortunately, current lattice calculations
can at best give evidence that such a behavior could be correct, and, even worse, could
never falsify it. Furthermore, this does not exclude that a different selection procedure for
Gribov copies could still yield scaling inside the first Gribov region, if it were not realized
in some Landau-B gauge. An alternative would be to select Gribov copies such that the
infrared behavior of the running coupling is as constant as possible.

It thus remains at the current time a hypothesis, based on the arguments presented,
that such a connection could exist. This working hypothesis is the central element to
make contact between the results obtained for the correlation functions and the Kugo-
Ojima construction, as well as the possible scaling Landau-B gauge on the lattice and the
DSE/FRG scaling case. This is a matter of ongoing research [55]. However, the realization
of the Kugo-Ojima scenario is not necessary for gluon confinement, as noted above, but
it would be very desirable, as it would immediately extend the construction to all colored
quantities, and would immediately permit an interpretation of Yang-Mills theory as a local
quantum field theory beyond perturbation theory [159)].

As pointed out above, a vital ingredient is the divergence of the ghost dressing func-
tion. Thus, in the photon-ghost gauges the Kugo-Ojima construction is not possible, and
in fact even a local off-shell version of the standard BRST symmetry is not implementable
[37, 142, 1260]. Still, proposals exist to provide even in the photon-ghost case a non-local
symmetry which could possibly replace BRST symmetry and pave the way to a construc-
tion analogous to the Kugo-Ojima one in the scaling case |44, 258, 259, [261-265)].

4.3.3 Gribov-Zwanziger confinement scenario

A scenario based on a completely different point of view, but leading to rather similar
predictions for the correlation functions, is the one of Gribov and Zwanziger |23, 40)].

The original basic idea was that it should be possible to restrict Gribov copies by
restricting to the first Gribov region [23]. In a semi-perturbative way it was then shown
that this restriction yields an infrared divergent ghost dressing function with a positive
residue. When it was later realized that there are also Gribov copies inside the first Gribov
region it became clear that this required further refinement.

The next step was the assumption that it is permissible to implement a selection of
Gribov copies inside the first Gribov region by replacing the 6 function in (2I2) by a J-
function [40]. This reduces the region of field configuration space in the functional integral
to the first Gribov horizon. This was motivated by the idea that most Gribov copies are
located there, since most of the volume of the hypersurface of Landau gauge in the first
Gribov region of the total infinite-dimensional field configuration space is located there
[38,169]. From the current point of view this corresponds just to a particular choice among
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Gribov copies, though without a formal justification up to now.

Assuming this procedure to be valid, it was possible to cast this condition with the help
of auxiliary fields into a renormalizable and local, albeit complicated, Lagrangian [40, 259].
Already at tree-level this Lagrangian exhibits an infrared divergent ghost dressing function
and infrared vanishing gluon propagator, in qualitative agreement with the results in the
scaling case |40]. This is not altered by perturbative corrections [46, 157, 266, 267] and
remains true beyond perturbation theory [49].

This qualitative agreement even becomes quantitative beyond tree-level in the non-
perturbative domain [47]. Implementing the same restriction of perfect tree-level cancella-
tion in certain DSEs in the Gribov-Zwanziger framework, it was found that the correlation
functions exhibit the same qualitative behavior as in the scaling case. In particular, the
ghost dressing function still diverges in the infrared. Depending on the precise behav-
ior of the ghost-gluon vertex, even the same infrared critical exponents are found for the
Faddeev-Popov ghost and gluon propagators.

Thus, so far this appears just to reproduce the scaling case. Given the results of
lattice calculations in the minimal Landau gauge in three and four dimensions, it has
been investigated whether it is possible to implement a photon-ghost behavior also in the
Gribov-Zwanziger Lagrangian [37, |42, 143, 45, [181], 267]. This is indeed possible, by im-
posing condensation of certain combinations of the auxiliary fields needed for localization.
An unambiguous determination of the values of the condensates is an intricate problem
[37, 143, 152, 1268]. In fact, a possibility would be that the value of these gauge-dependent
condensates could be determined by the treatment of Gribov copies, e. g. the B parameter
of Landau-B photon-ghost gauges. This possibility has not yet been explored.

Irrespective of the actual values of the condensates, the generic result of perturbative
calculations in these cases coincide qualitatively with the photon-ghost case [37, 143, [181],
i. e., an infrared photon-like ghost and a screened gluon. In addition, in these cases also
a Schwinger function showing the same qualitative behavior for the gluon propagator is
found [37,143]. Thus, the results are in good agreement with lattice results in three and four
dimensions. Interestingly, at least the perturbative treatment in two dimensions breaks
down [45], i. e. exactly for the case in which it is not yet clear whether a photon-ghost
behavior can be achieved by a choice of Gribov copies in lattice calculations.

If indeed the imposed ¢-function on the field configuration space is equivalent to the
f-function, it is also possible to provide a connection to the results in absolute Landau
gauge [38]. The basic assumption is that all correlation functions of a finite number of
field variables take the value which is most probable, based on a maximization of the
corresponding entropy. This is exactly analogous to what indeed happens in the minimal
Landau gauge, thus indicating a possible formal connection. In this case, the results of the
Gribov-Zwanziger Lagrangian for these correlation functions should coincide with the ones
of minimal Landau gauge. If furthermore all copies become equivalent for such finite-order
polynomials of field operators, like discussed in section .5.3] the result would also agree
with the absolute Landau gauge on the lattice.
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4.4 Relations to topological structures

Many popular and powerful confinement scenarios are not based on correlation functions,
but rather on topological, i. e. collective, gluon excitations [153, 269-271]. These sce-
narios in turn are usually based on one particular type of excitations, like vortices [153],
monopoles [269, 271], merons [270], and possibly others [272]. From this non-exhaustive
list it is evident that not even the underlying dimensionality of the relevant structure is yet
decided. Still, there has been quite a number of investigations to find relations between
the various excitations, yielding e. g. deep connections between vortices and monopoles
[153, 273-276], even at finite temperature [277].

Given that these scenarios are quite successful in describing properties of non-local
observables like the string tension [153, 269] it is of importance to also understand how
correlation functions contain the same mformatlon@ That this information is contained
follows directly from the fact that the exact correlation functions are sufficient to recon-
struct the complete generating functional |2], and the functional equations contain all
information about the correlation functions [12]. In particular cases, this has even been
demonstrated explicitly for solvable models [17, 280).

Besides indirect checks, there is an explicit possibility to investigate this relation. This
is done by obtaining the correlation functions in a topological background field and com-
paring the results to the ones obtained in the full Yang-Mills vacuum. This has been
done using analytical and modeling methods, which in both cases indicate that the char-
acteristic features of correlation functions are influenced or even dominated by topological
excitations. In particular, the infrared behavior of the ghost propagator has been linked
analytically via the Faddeev-Popov operator to topological excitations [24, 281/], as have
been the properties of the gluon propagator [216].

Complementary to analytical methods, lattice simulations provide a possibility to ac-
cess the topological content of a field configuration by smearing and projecting, at least in
an approximate way 282, 283]. The so treated field configurations become self-dual, which
classifies them as topological [2,284]. Evaluating the correlation functions in such smeared
or projected configurations provides then a possibility to assess which generic features are
dominated by topological contributions. One possibility for such a smearing prescription
is the so-called APE smearing [283]. APE smearing on the lattice is implemented by
iteratively replacing links by a Weighted average over neighboring links

Ulz) — aU,(x)+ XZ vz +e)UT(z +e,)U) (x)

+U (z + e, — e,,)UJ(:U —e,)U,(z —e))

projected to the group ’

where “projected to the group” implies that the non-group element U, L found after addition
is replaced by the group element U ;L’ closest to the result, where the distance is given by

190f course, there is no guarantee that any kind of truncation in functional equations will preserve any
of this. Given that the modern truncation schemes presented here maintain not only the shape of the
correlation functions but also effects which are usually attributed to topological excitations, like chiral
symmetry breaking [146, 191, [278], possibly the formation of a string [167, [169], or the ' mass [279], it is
likely that at least a considerable amount of the topological information is captured.
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Figure 4.18: The gluon dressing function (left panel) and ghost dressing function (right
panel) evolving under APE smearing [285]. Already at about 100 smearing steps, the
configurations are essential self-dual [282], and thus approximately pure topological con-
figurations. Results are for a V' = (2.5 fm)? lattice at @ = 0.21 fm and su(2) in the minimal
Landau gauge.

trU,U,,, with no summation implied. A typical value for o, which is also employed here,
is 0.55. Choosing « to be zero is referred to as cooling.

Results for such a calculation are shown in figure [£18 in minimal Landau gauge [285].
The absence of the ultraviolet tail of the correlation functions after a few smearing steps
results from the removal of the ultraviolet fluctuations by the smearing process. Fur-
thermore, the behavior at or below Ay is qualitatively almost unchanged, showing that
indeed the low-momentum behavior of correlation functions does not only contain topo-
logical information, but is rather dominated by it?d. Similar results have been obtained
using projection methods, in particular for center vortices [240, 1286], and also in Coulomb
gauge |71, 287].

This indicates that the collective excitations are indeed reflected in the properties of
the correlation functions at low momenta. Even though more exact analytical mappings
have yet to be developed fully |24, 216, 281], this makes clear that topology-based and
correlation-function-based approaches to the non-perturbative properties of Yang-Mills
theory are just two (equivalent) facets of the same physics [288]. Therefore, also the
question whether a description in terms of elementary particles or of collective excitations is
more appropriate is rather a question of practicality for a given question than a conceptual
difference.

As a side-remark, it is also interesting to investigate whether the correlation functions
depend on the net topological charge. This is exemplified in figure 19, where it is
seen that the dependence is probably only quantitative. This is of considerable practical

20This also supports that the truncations presented here captures a significant part of the topological
information.
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Figure 4.19: The gluon dressing function (left panel) and ghost dressing function (right
panel) as a function of topological charge after ten APE sweeps @, @] The topological
charge has been measured as the volume integral of F’ o ﬂﬁ] Results are fora V' = (1.7
fm)? lattice at a = 0.21 fm and su(2) in minimal Landau gauge.

importance, given that topological properties have a much longer relaxation time in lattice
simulations than most other quantities .

4.5 Beyond Yang-Mills theory

Of course, the approach discussed here is not limited to elementary particles in Yang-
Mills theory. Two rather important extensions are the inclusion of matter fields and the
determination of the properties of composite objects, in particular bound states. However,
these topics are beyond the scope of this presentation, and will only briefly be introduced
here.

4.5.1 Matter fields

Adding matter fields to Yang-Mills theory is rather straight-forward E] Since Landau
gauge, in contrast to e. g. 't Hooft gauge outside the Landau gauge limit E, ], does not
involve the matter fields in any active way, all that has been said so far on gauge-fixing
remains valid. This does not imply that the process remains completely unchanged. E.
g., the corridor of the permitted B values may change in the presence of matter fields. An
indirect example of this has already been found in the Higgs phas of a fundamental-
Higgs-Yang-Mills system in both Coulomb ﬂﬂ, @] and Landau @] gauge. In this case
the average properties of the Faddeev-Popov operator change qualitatively compared to

21Gtrictly speaking, the Higgs phase is continuously connected to the confinement phase when a (lattice)
cut-off is imposed , @], but the notation will be kept for the sake of simplicity.
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the confinement phase. Though this has not yet been investigated in detail, this makes it
likely that also the corresponding B-corridor is different in both phases [83].

The same goes for the viability of the truncations in functional calculations [132, [170],
not to mention technical problems in lattice calculations when including fermions [22].
However, these are technical rather than conceptual problems.

Still, there have been various investigations including matter fields. The emphasis is of
course on fermions in the fundamental representation, as these are necessary for an investi-
gation of QCD [17, 1167, 188,191, 278, 2917297]. Less often the properties of adjoint and
fundamental scalars have been investigated [83, [132, [138, [169, (170, 299, 1300], though they
are much more amendable to lattice calculations [4]. Investigations of fermions in different
representations than the fundamental, however, have received significant attention lately
[245], as these are candidates for theories exhibiting an approximate conformal behavior
in the infrared, and thus are possibly relevant for, e. g., walking technicolor extensions of
the standard model. However, determinations of the corresponding correlation functions
are just beginning [301, 1302].

A sample of results for propagators for various cases are assembled in figure
Going into details or even listing a complete set of references just for Landau gauge is
far beyond the scope of this manuscript. It suffices to say that one can investigate from
them a host of physical phenomena like, e. g., the dynamical generation of mass [191,
219, 1220, 227, 293-296, 1302, 1303, 1305, 306], chiral symmetry breaking and restoration
at finite temperature [227, 307, [308], the deconfinement transition [200, 308-311], center
observables like the Polyakov loop [200, 312], conceptual access to the string tension [167-
169, 1313], confinement of matter fields [167-169, 312, 1314], color-superconducting phases
at large densities [315-319], the Higgs effect [83], and infrared conformality [245, 301, 1320,
321], only to mention some. However, already from the brief presentation in figure FL20]
it can be deduced that the presence of matter fields can be both, almost irrelevant and of
qualitative impact for the properties of the Yang-Mills sector.

This rapidly growing field shows the versatility of correlation-functions-based methods.
The wealth of possible physics results has yet only been tapped to a small extent, and will
certainly be the focus of many investigations in the time to come.

4.5.2 Composite objects

The natural quantities to be determined from the point of view of experiments, beside
the ultraviolet properties of elementary particles, are the properties of bound states. In
particular, quantities like masses and decay constants, but also widths, have therefore
received a lot of attention [17, [191), 225, 298].

In principle, these quantities can be obtained from the corresponding correlation func-
tions, e. g. a glueball mass from the 4-point correlation function [230, 1232, 1234]. Since the
masses of colorless bound states are gauge-invariant and renormalization-group invariant,

22This only includes references which to some extent take into account the Yang-Mills correlation
functions and are in Landau gauge and only focusing on the properties of the quarks. There is a wealth
of literature on calculations using various ansétze for these correlation functions, see |17, 225, 298] for
introductory reviews.
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4.5. Beyond Yang-Mills theory
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Figure 4.20: Examples of the gluon propagator and ghost dressing function for theories
with different matter content. Top-left panel: Two flavors of fundamental fermions and
gauge group SU(3) [219, 220, 303] on a 24? x 48 lattice and Wilson clover fermions with
rk = 0.13575. The scale is fixed by the intermediate-distance string tension. Top-right
panel: Two flavors of adjoint fermions and gauge group SU(2) 301, 304] on an 123 x 24
lattice with Wilson fermions and —amgy = 0.95. Scale is fixed by a 2 TeV techniglueball
[301]. Bottom-left panel: The confinement phase for a doublet of complex fundamental
scalars for SU(2) in the confinement phase [83] on a 24* lattice with £ = 0.25 and A = 0.5.
Bottom-right panel: The Higgs phase for a doublet of complex fundamental scalars for
SU(2) in the Higgs phase [83] on a 24 lattice with x = 0.32 and A = 1. In both cases the
scale is fixed by a 250 GeV Higgsonium [83]. All results are in minimal Landau gauge.
Results using functional methods can be found, e. g., in [132, 167, [169, 278].

they can even be obtained without explicit gauge fixing [4, 10, 22, 234]. In particular
for lattice calculations use has been made of this possibility. Despite the numerical costs
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to simulate quarks with physical masses it was even possible to obtain results essential
at the physical parameters of QCD [322-324]. Using this approach, information on the
gauge-dependent internal structure of composite objects is lost, and at best it is possible to
expand the states in terms of gauge-invariant operators [325, 1326]. In particular, relative
momenta between the compounds are not accessible without fixing a gauge.

Similarly, it is also possible to use functional methods to determine the gauge-invariant
masses of colorless bound states. Instead of using the DSEs or FRGs for the corresponding
correlation functions directly, it is possible to employ the Bethe-Salpeter [188; 291, 292,
327] and Faddeev [226, 328] equations to obtain the mass spectrum of mesons and baryons,
respectively. This has been widely discussed in the literature [17, 191, 225, 298].

The lattice results suffer primarily from statistical and systematic uncertainties, the
latter mostly due to the extrapolation to the continuum and infinite volume, as well as
to physical quark masses. The functional calculations suffer in contrast from the errors
introduced by the truncations. Thus, comparing both approaches, the uncertainties have
completely different origins. Thus, once more, the comparison of both methods can give
mutual support [329,1330]. In fact, the results of both methods are in acceptable agreement
with each other and with the experimental values, thus giving even more confidence to
have access to a theory like QCD even at low momenta and beyond perturbation theory
than a single method alone could.

It should be noted that the results using a hierarchy of correlation functions, as with
Bethe-Salpeter equations, are rather insensitive to the details of the infrared behavior of
the gauge-dependent correlation functions [291, 1297, 1329, 1331,1332]. This is as it should be,
given that this infrared behavior is essentially dominated by the gauge-fixing procedure.
Explicit calculations show that, when taking the gauge-dependence of all involved corre-
lation functions into account, the results for the photon-ghost case and the scaling case,
and thus possibly for different non-perturbative gauges, agree within the errors, and with
experiment [291]. This also provides the possibility to understand how gauge-invariance
is recovered for physical states, as has been done previously for QED [148].

This concludes the construction of the framework at zero temperature, which gives an
impression how to start with the elementary degrees of freedom and obtain the correlation
functions. A discussion more detailed than the short presentation here how to finally
arrive with this approach at gauge-invariant, observable quantities can be found in various
reviews and textbooks, e. g. |4, 17, 22, [191), 225, 234, 129§].



Chapter 5

Describing gluons at finite
temperature

In the previous chapters the properties of gluons have been determined using correlation
functions. It has long been discussed whether these properties fundamentally change when
the system is heated up [333]. In the case of Yang-Mills theory it is rather well established
that a phase transition occurs at a non-zero temperature T, of the order of Ayy, for any
gauge group investigated so far [333, 1334], including SU(N < 9) [335], Sp(2) and Sp(3)
1336, 337], E7 [337], and Gy [338-340]. Only the order and other details of the phase
transition turn out to be dependent on the particular gauge group.

One of the central ideas about this transition was deconfinement [333, 1341]. Based on
the argument that the running coupling evaluated at the temperature becomes small for
increasing temperature it was assumed that confinement as a strong coupling phenomenon
should cease. At first sight, this is supported by the fact that thermodynamical quantities,
like the pressure, logarithmically approach a Stefan-Boltzmann behavior with increasing
temperature [334, 1342].

It is of course clear that this can only be superficially correct. On the one hand, Haag’s
theorem forbids the absence of non-perturbative interactions [5]. On the other hand, this
would require a gauge-invariant formulation of asymptotic, almost local colored states at
finite temperature. Though the existence of such a formulation has not yet been excluded,
the impossibility of such a bleaching at zero temperature for non-Abelian gauge theories
[5] makes this rather unlikely. Furthermore, the impossibility of stable asymptotic states
of elementary particles at finite temperature due to the Narnhofer-Thirring theorem [343]
alleviates this question anyway [344].

After introducing in the following the formalism to describe gluons using correlation
functions at finite temperature, it will be shown that indeed gluons are not deconfined.
In fact, they do not develop an asymptotic physical pole, as will be read off from their
Schwinger functions once more. However, it will be necessary to distinguish the possibilities
of transversely and longitudinally polarized gluons with respect to the heat bath flow. It
will furthermore be argued that persisting gluon confinement is not in contradiction to a
Stefan-Boltzmann-like behavior of thermodynamical bulk quantities. These will be found
to be dominated by hard processes, i. e., at energies of the order of the temperature. Since
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this becomes a hard scale with increasing temperature, indeed their leading behavior will
be generated by leading-order perturbative contributions. However, the Linde problem
[135, 1333] of such a perturbative treatment will be cured by the non-perturbative effects.
In addition, the formal infinite-temperature limit will be discussed, showing the validity
of the arguments at arbitrarily high temperatures.

Finally, this will be concluded by showing that already from the two-point functions
gauge-invariant quantities like the critical temperature and order parameters can be ex-
tracted.

It should be noted that the approach has also been applied to the case of finite density,
after coupling to fundamental fermions. Since this goes beyond Yang-Mills theory, this
will not be described here. Discussions of this topic can be found, e. g., in [298, 1315-319].

5.1 Finite temperature

In the following only a thermostatic setting, i. e. equilibrium, will be discussed [333].
The extension of the framework presented here to non-equilibrium states [345] is not
yet completely constructed, especially beyond perturbation theory, but progress in this
direction is made [346].

5.1.1 Formulation

An adequate setting for equilibrium calculations is the Matsubara formalism [333]. With-
out going into detail, it essentially requires to change to Euclidean Spac and then com-
pactify the time direction with size Sy = 1/T. Therefore, equilibrium is manifest as no
genuine time dependency remains.

A further consequence of this distinction of the time direction is that energy p3 and
three momentum p? become independent variables. Though this may at first seem like
a breaking of Lorentz invariance, this is not the case [347]. In this standard setting,
merely a choice for the four velocity of the heat bath is made such that it is at rest. By
explicitly including this four velocity in the calculations, Lorentz symmetry can be made
manifest once more. Despite the gain in symmetry, the practical calculations become
rather cumbersome, and it is therefore simpler to have only hidden Lorentz symmetry.
This will be done here as well. However, it should be kept in mind that this is just
a choice of frame, without importance for the physics. A further consequence is that
at four-momenta with p? > T? temperature becomes negligible, and Lorentz symmetry,
or in Euclidean space-time O(4) symmetry, becomes restored: If all momenta are large
compared to the temperature the (perturbative) four-dimensional behavior of correlation
functions will be recovered. That is essentially a consequence of the Appelquist-Carrazone
theorem [136, [348], and applies within the same domain of validity.

In a sense, the finite temperature results are therefore much more closer to the real world than the
results presented at zero temperature where analytic continuation or the use of the reconstruction theorem
are necessary to make contact with Minkowski space.
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Furthermore, the reference direction of the heat bath makes it is possible to distinguish
between a polarization in the direction of the heat bath or transverse with respect to it.
As a consequence it is necessary to decompose the gluon propagator as [333]

D (po, ) = Pl (po, ) DF (po. 7°) + P, (po, 5) D’ (po, 7).

i. e., there are two independent dressing functions. The tensor structures are given by

Pubv
ﬁﬁmazu—%m—%(%—%)
P o, 0) = PBu(p) — Py (p).

A third possible tensor structure having a mixture of longitudinal and transverse indices
is due to the requirement of Landau gauge that D, is four-dimensional transverse not
independent, and thus does not appear explicitly. In terms of correlation functions, these
propagators are given by [187]

Dr(p) =28 = m <; Al (p)AS(—p) — ]];—32 AS(p)AS(—p)> (5.1)

N,

g
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where explicit use has been made of the Landau gauge condition. Of course, the ghost
propagator as being a scalar is still represented by a single scalar function, though now also
depending separately on energy and three-momentum. Furthermore, due to CP invariance,
the correlation functions do not change under the replacement py into —py. Thus, only
positive (and zero) energy solutions will be discussed below.

As a consequence of a compactified time direction the energies of the system become
quantized. Because of the Kugo-Martin-Schwinger condition gluons as bosons have to
have periodic boundary conditions, while fermions would have anti-periodic boundary
conditions [349]. Thus, the energies gluons can have are

Po = 27TTn, (53)

with n an integer. To maintain gauge invariance, it is then necessary that ghosts, despite
their Grassmannian nature, also have periodic boundary conditions, and thus the same
energy levels [350]. Since for n = 0 the energy vanishes there is a natural separation of
states in soft states n = 0 and hard states n # 0. The latter can never have p? = 0,
and thus cannot be on the tree-level light cone. In a perturbative setting only the soft
modes can go on-shell, though non-perturbatively this statement loses its meaning [344].
Furthermore, from the perturbative point of view, there are then three different energy
scales. One is given by the hard scale T', while there is a separation of soft states g(7')T
and ultrasoft states g(T)*T. Here, this further distinction will not be made. A more
important distinction is to declare a momentum to be infrared if and only if it is not only
much smaller than Ayyj, but much smaller than 7', as already given in (BI8]) [187).
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With this distinction comes another insight. When the limit of infinite temperature is
taken@, which will be discussed in detail in section £.2.3] only the soft modes have finite
energy and are therefore dynamical [166, [351]. Thus, it is formally admissible to remove
all hard modes from the Lagrangian. The result is the Lagrangian of a three-dimensional
Yang-Mills theory coupled to an adjoint scalar. Formally, the ghost remains unaltered in
the process, and the spatial components of the gluon field become the three-dimensional
gauge field, while the zero component of the gluon field becomes the adjoint scalar. From
the relations (5.)) and (5.2)) this is immediately clear, as the soft mode of the transverse
propagator is just the corresponding spatial gluon propagator and the adjoint scalar prop-
agator is given by the soft longitudinal propagator. However, in contrast to an arbitrary
such theory, the mass and self-coupling of the adjoint scalar are not free parameters, but
are fixed by their descent from the four-dimensional theory [352]. In particular, since the
parent theory is only logarithmically divergent the mass of the adjoint scalar is protected
from large radiative corrections of the order of the cutoff with the four-dimensional gauge
symmetry acting as a custodial symmetry. The infinite-temperature limit can therefore
be treated in such a reduced three-dimensional setting, which will be made use of below.
Since the longitudinal propagator is then entirely given by chromoelectric components of
the gluon field and the transverse part entirely by chromomagnetic ones, these notations
are also used at finite temperature. Since the ghost in the limit of infinite temperature
becomes the one of the three-dimensional Yang-Mills theory, it is usually also associated
with the chromomagnetic gluon, and both together are referred to as the magnetic sector
of the theory.

5.1.2 Modifications of the methods

After these general consequences of introducing finite temperature, the necessary alter-
ations to implement the Matsubara formalism in the methods employed should be noted.

In lattice calculations it is straightforward to implement finite temperature by explicitly
compactifying the time direction [22,[110]. For that purpose, the time extension aN; = 1/T
must be made much smaller than the spatial extensions alNy, = L. The reason is that
otherwise the time direction cannot be considered compactified. Such a difference can
be achieved by two possibilities. One is that the discretization in time direction is made
different than in the spatial direction, a; < a;. The other is that the number of lattice
points in time direction is made much smaller than in space direction, N; < N; (or a
combination of both). While the prior possibility provides less violations of rotational
symmetry, the latter is much cheaper. Given the necessity to reach large volumes, it is the
method of choice here. Note that in the infinite-volume and continuum limit also a; must
go to zero and N, to infinity, but while the product as/Ng has to diverge, in this limit the
product a;N; must be kept fixed at 1/7". Other than this, no further modifications in the
lattice methods are necessary.

The implementation inside functional methods is also comparatively simple. Besides
including the general structure of propagator and arguments explicitly, it amounts to

2This limit has to be taken after renormalization [192].
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replacing all integrals over energies with discrete sums over Matsubara frequencies [29§]
dpo
— =T

where n is the integer in (5.3]). This is sufficient. The evaluation can be simplified by mak-
ing use of the fact that all correlation functions remain unchanged under the replacement
Po — —Po-

Due to the discretization, the correlation functions can be regarded as an infinite
tower of correlation functions enumerated by n. Thus, in principle, an infinite number of
independent dressing functions have to be determined. In practice, it turns out that the
approximation

L(po. 7%) — T(0. 57 + ) (5.4)

is even for n = 1 rather well fulfilled [187, 1192, 200]. This is a consequence of the effective
restoration of Lorentz symmetry at large momenta. Therefore, only a small number of
Matsubara frequencies have to be treated independently, permitting the development of
efficient algorithms [195].

It should be noted that all of this and the following can also be transferred qualitatively
unaltered to dimensions different than four. However, due to the immediate practical
application to heavy-ion experiments and the early universe [333, 1349], the presentation
here is restricted to four dimensions. Some investigations concerning the three-dimensional
case in the present framework will be available in [353], and show no qualitative difference
to the four-dimensional case.

5.2 Propagators

As discussed previously, due to (5.4]), in the ultraviolet at momenta large compared to both
the temperature and Ayy, just the zero temperature perturbative behavior is obtained.
In case of functional methods the truncation has to respect this. An explicit calculation
of how this restoration takes place can be found in [166, [187].

In case the temperature is comparable or larger than 2w Ay, it is possible to describe
most of the temperature effects quite successfully with finite-temperature perturbation the-
ory |342]. This is the domain of hard-thermal loop calculations [354], which are included
in both lattice and functional methods by construction. Both approaches, by introduction
of non-perturbative effects, also solve the Linde problem. This problem essentially states
that from order ¢® onwards all orders of perturbation theory contribute equally, leading
to a breakdown of perturbation theory [333] even if the factorial growth leading to its
ultimate breakdown [12] would not yet be a problem. The reason is that in perturbation
theory the gluons acquire a screening mass, which is of order ¢7' in case of the longitudinal
propagator. By resummation, this produces an inverse dependence on the coupling con-
stant, yielding by power-counting the breakdown of perturbation theory since powers of g
in numerator and denominator cancel to one. A further obstacle is that the cancellation
of infrared divergences of zero temperature perturbation theory breaks down due to the
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screening of longitudinal gluons, which then cannot cancel infrared divergences generated
by perturbatively unscreened transverse gluons.

To overcome these problems constructively, improved perturbative methods have been
developed [342], relying essentially on one non-perturbative input parameter, which can,
e. g., be determined on the lattice, at least in principle [355]. This essentially amounts
to introducing an effective transverse gluon screening mass [354], yielding the missing
contribution of non-perturbative and higher order contributions. Instrumental in this
process is the possibility to map the theory at large temperatures on a three-dimensional
theory, as discussed above [352].

Here, the infrared suppression of the transverse gluon propagator will be generated
without an external input. Thus the dangerous infrared divergences no longer arise. This
genuine non-perturbative effect is obtained in the non-perturbative methods, which there-
fore do not suffer from the breakdown of the perturbative series at order g Thus, the
Linde problem is absent from the calculations presented here [166].

5.2.1 Infrared

The infrared behavior is most transparent once more in the scaling case. The situation in
the photon-ghost case will be discussed afterwards. It should be noted that due to (BI8])
the momenta are infrared only when they are much smaller than the temperature. On the
other hand, at momenta much larger than the temperature the zero-temperature behavior
will remain. In particular, if a momentum window exists with momenta satisfying

T7pB < p < AYM7

i. e., at very small temperatures, the temperature acts as an infrared cut-off, and in
the same way as at large finite volume [118] within this momentum domain the four-
dimensional infrared behavior, and in particular a power-law dependence of the correlation
functions, will be obtained [187].

The derivation of the finite-temperature DSEs can be found elsewhere |138,1192]. The
important point is that by an appropriate projection, two coupled equations for the dress-
ing function of the transverse and longitudinal part are obtained [138]. Keeping for now
only the contributions from the ghost loop, the equations for the soft modes are given by

1 g TCA /
— = Iyt —— dqdo 5.5
cob 3 Z (5.5)

(AT<0 0, K, )G a0, D2 (00,7~ ) + A0, 60, F. )G a0, @) H a0, T~ F))

1 °TC
= Zy+Z1A Z/dqdeR (0, qo, ¥, )G (g0, )G (g0,  + ) (5.6)
Z(0, k) (2m
1 2TC
o = ) [ dadoP(©. a0 F. G a0 )G, 7+ B (5.7)

The case of the hard modes will be discussed below. The wave-function renormalization
constants for the longitudinal and transverse propagator can become different at finite
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temperature, depending on the renormalization scheme, and are thus denoted differently
[192, 349]. The integral kernels Ay, A, R, P for the case of a undressed ghost-gluon
vertex can be found in [192]. By only keeping the ¢y = 0 contribution in the Matsubara
sums these equations become equivalent to the ones of the three-dimensional Yang-Mills-
adjoint-Higgs system in the same truncation [138]. In that limit the longitudinal equation
decouples, the longitudinal propagator becomes tree-level-like, and the transverse and
ghost sector behave as a three-dimensional Yang-Mills theory. Thus, in the scaling case
they will exhibit the characteristic three-dimensional exponents [138]. On the other hand,
in the limit of zero temperature it is possible to show that these equations yield again the
four-dimensional behavior |187].

Equations (5.5H5.7) can also be written as

— = Zy+1e(0,k) + Y el k) (5.8)
G(0,k) q(;)
1 . -
= = ZgT + Hz(o, k?) + Hz(QQ, k’) (59)
700 2
1 -
— = Z3. + My (qo, k), (5.10)
HOD 2

where II; denotes the various self-energies. As can be gleaned from the infinite-temperature
limit in the longitudinal equation, the zero-component gy = 0 explicitly vanishes, since
P(0,0,%,q) = 0 [13]]. This is a direct consequence of the tensor structure of the ghost-
gluon vertex, and it would require a highly non-trivial, temperature-dependent dressing
to alter this behavior. As a consequence, the result for the longitudinal mode H (0, l;:) is
entirely determined by the hard modes and depends only implicitly on the soft ones.

This requires to consider the hard modes, which have an effective tree-level mass of
2nTn. Since the external momentum is much smaller than this mass, the hard-mode
dressing functions become essentially constant in the infrared. Thus, for k— 0, the
dressing functions are, respectively, given by constants A, (ko), An(ko) and Ay(ko), which
are assumed to be bounded as a function of ky. Actually, because of asymptotic freedom,
they will decrease logarithmically with kg for kg — oo [187].

For the soft modes power-law ansétze

G(0,k) = B k> (5.11)
Z(0,k) = B.k* (5.12)
H0,k) = B,k (5.13)

are made with independent exponents x, t and [ and constant coefficients B,, B, and B},
The scaling condition requires k < 0. Then, the soft self-energies I15(0, k) and I1(0, k)
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take exactly the same form as in three dimensions [138], i. e.

21745(2 + 2k)
K(3+4(=2+ r)r)T (25 + 3)
2—4(1—}—/@)1"(2 + 2,:.@) sec(27r/{3 sin(ﬂli)Q yQ,ﬁ%’ (5_14)

K2(1+ )L (26 + 3)

-

Mg(0,k) = —B,B.g*TCa

t+r—2

Hz<o,/§) = —BSQQTCA

where y = k% = k2. These are exactly the results obtained in the three-dimensional case
[66], and thus will yield a three-dimensional behavior as the leading infrared behavior for
the transverse gluon and ghost if they are not exactly canceled or dominated by the re-
maining Matsubara sums. Setting the hard-mode dressing functions equal to the constants
Ay(ky), A,(ko) and Ap(ko), the self-energies in the ghost equation (5.8)) can be rewritten
as [187]

Ma(g #0,k) = ¢*TCa (5.15)
(_ <Az<qo> . Ah<qo>) 1 (quo) . Ah<qo>) B ol ,g>> |
127 96 g0 807 1920 / |qo)3

The first term is logarithmically divergent and can be absorbed in the wave-function
renormalization constant. The second term is sub-dominant when compared to the 3d-
term and is finite after summation over gy. Finally, the function W(E) vanishes identically
as k — 0 [187]. Thus, the leading part of the ghost equation is the same as in the 3d-case,
i.e. it is given by I (0, k).

For the transverse equation it is necessary to first get rid of the spurious divergences
in both gluon equations. After subtraction of these divergences, the contributions of the
hard-modes in the self-energies vanish as k — 0, separately for each Matsubara term [192].
Thus, the subtracted part cannot contribute to the IR behavior in the transverse equa-
tion. On the other hand, the infrared contributions from the unsubtracted self-energies
cannot be neglected in general [146, [147, [162]. This requires a regularization of the spu-
rious divergencesﬁ. To achieve this, one can replace the approximately constant dressing
functions of the hard modes by A,(qo)(¢* +¢3)~ ", which are suppressed when 7 > 0. This
is the prescription commonly used for regularizing the divergences at zero temperature
with 7 = —k [66, [147, 159].

Then, the integrals can be performed and yield in the limit k—0

X

2 1
. PTC, (C=3)T (r—1 Y »
HlZ)<q07k_>0) = - k2 3271'3/211(54—272'3 (27TT>1 ! E :Ag<n)2|n|1 ! (516>
n#0

2 1
¢ gTCA F(QT_'__) —4T —4T
(a0, k —0) = k2 832D (2 _527) (2nT) E :Ag<”)2|n|1 i, (5.17)
n#0

3Note that in the transverse case, divergences appear for each hard mode, while in the longitudinal
case only the sum over the hard modes is affected by spurious divergences [187].
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where n = qo/27T. These sums diverge for 7 < 1/2, due to the term ¢} ~*". For 7 = 1/2,
this exponent becomes equal to —1, i.e. the sums are logarithmically divergent. Finally,
for 7 > 1/2, the sums are finite and can be resummed analytically. One should also note
that the terms in (B.I6/5.17) behave like 1/k?%, i.e. like a mass term in the IR limit. In the
transverse case - but not in the longitudinal case [192] - this term may not be renormalized,
as this is not allowed by gauge-invariance [349]. If either a divergence not stronger than
logarithmic should be encountered or the same exponents 7 for the transverse and for the
longitudinal case should be used, then the only possibility@ is to have 7 > 1/2. For all
such values of 7, the contribution (5.1€]) is sub-leading in the transverse equation ([5.9])
[187,1356]. At the same time, the screening mass in the longitudinal equation would then
be solely due to the regularized contribution (5.I7). This result is a consequence of the
truncation scheme. In fact, due to the decoupling of the soft modes in the longitudinal
equation (see equation (B.I0))), the result is dominated by the hard modes, which are
very sensitive to truncation artifacts, since they live on a scale that is effectively mid-
momentum. Thus, this truncation scheme is not able to yield a consistent description of
the chromoelectric screening mass, and a determination of its value is not possible.

It is possible, but untested yet that the more sophisticated truncation&ﬁp used to elimi-
nate the spurious quadratic divergences in section would also eliminate the spurious
mixing of physics and truncation artifacts at finite temperature [16], and thus would per-
mit to access the electric screening mass. Indeed, the lattice calculations shown below
show that the phase transition dynamics is encoded in this screening mass, making its
self-consistent determination the most important task at finite temperature. The ques-
tion to which extent the modeling of the vertices in turn determines the thermodynamic
properties then becomes a central question. Thus, taking the vertices self-consistently
into account appears to become mandatory at finite temperature. Ultimately, this should
resolve whether it is a change of gluon properties or of bound state properties which drives
the phase transition |[187].

Nonetheless, the primary message is that the longitudinal gluon propagator exhibits a
non-zero screening mass, giving a qualitatively correct description of the physics involved.
It is also this screening mass which prevents the longitudinal gluon propagator from mod-
ifying the infrared behavior of either the transverse gluon propagator or of the ghost
propagator. Therefore these two propagators should behave at all non-zero temperatures
exactly as in the three-dimensional case at momenta much smaller than the temperature
T and than Avy.

A similar discontinuous change from zero to non-zero temperature is also found in
background-gauge calculations, using renormalization group equations and a scaling as-
sumption for the running coupling [358]. It is thus possibly a more generic feature of the
scaling case.

The situation for the photon-ghost case is even more involved. In this case, the screen-

40f course, 7 = 1/2 just corresponds to the limiting scaling case of an infrared finite gluon propagator
and an infrared divergent ghost dressing function. This possibility will not be discussed here for simplicity,
as this does not add anything new compared to the discussion in section B.2.4.1]

® Another, though somewhat simplified, truncation has been investigated in [357], and yielded a quali-
tatively similar result.
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ing masses obtained at zero temperature now obtain temperature-dependent contributions
also for the transverse gluon propagator. Similar modifications apply to the finite dress-
ing function of the ghost. In close correspondence to the longitudinal gluon propagator
in the scaling case the transverse propagator’s screening mass will now also mix trunca-
tion artifacts and temperature effects in a generic truncation. As a consequence, in the
photon-ghost case all screening masses will receive a temperature-dependent contribution,
but it will require a better understanding of truncation artifacts to separate the spurious
and physical contributions. However, this also implies that in the photon-ghost case no
qualitative change occurs when a non-zero temperature is introduced.

5.2.2 Intermediate momenta and temperatures

The investigation using DSEs provides a qualitative description of the general infrared
behavior for the propagators, at least in the scaling case. In particular, it will provide
direct access to the properties related to confinement in section £.2.4l However, the fact
that the longitudinal gluon propagator is sensitive to contributions on the scale of the
temperature already indicates that a pure infrared analysis is not sufficient to describe
the thermodynamics. That no sign of the well-known phase transition has been found is
another serious drawback.

A treatment of the DSEs over the total momentum range has been done to also inves-
tigate the intermediate momenta [138; 187, 1192]. However, since the truncation employed
did not remove the quadratic divergences, these provided another source for an electric
screening mass. Though the divergences introduced can be formally controlled [192], since
at finite temperature a mass renormalization of the zero mode of the chromoelectric gluon
propagator is actually admissible, this renormalization is totally arbitrary. Therefore, it
is not possible to obtain physically useful results from such an approach. It would require
at least a truncation scheme, like the one discussed in section B.2.5] which removes the
quadratic divergences already at zero temperatures@, to give at least the possibility for a
correct, behavior. However, this is a necessary requirement, but not necessarily a suffi-
cient one. In particular, if, e. g., the thermodynamics were driven by glueball dynamics,
this would possibly not be captured, except for an ingenious choice of truncation. It re-
mains to solve the DSEs at finite temperature with such an improved truncation to clarify
whether more is required. An alternative could be using gauges which directly include the
Polyakov-loop dynamics, like Polyakov gauges [35].

Fortunately, lattice calculations do not have similar problems [22, [110], and the cal-
culations performed at zero temperature can also be performed at finite temperature.
The resulting chromoelectric, chromomagnetic, and ghost propagators as a function of
temperature are shown in figure B.Il These results have been obtained in the minimal
Landau gauge. However, the volumes yet accessed are rather small, so a significant gauge-
dependence would naively only be expected for the ghost propagator [200]. However, the
comparison to absolute Landau gauge [364,1365] also shows an influence on the gluon prop-
agators, though this may be intertwined with the severe lattice artifacts [187, 365-367].

6There are also alternative truncation schemes proposed for that purpose [174].
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Figure 5.1: The transverse (top panels) and longitudinal (middle panels) gluon propa-
gator and the ghost dressing function (bottom panels) as a function of temperature and
momentum , ] The left panels show results for the gauge algebra su(2) and the
right panels for su(3). Independent determinations of the critical temperature 7, can be

found in @, @] Further results can be found in @, 187, 1299, 1361-1365).
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It is visible that the only significant temperature dependence is seen for the electric
gluon propagator. The temperature dependence of the magnetic gluon propagator is rather
weak, and in particular not qualitatively affected by the phase transition. For the ghost
propagator, besides effects which can be easily due to the different spatial volumes at the
different temperatures, no effect is seen [187, 200]. Since the relation (5.4) is found to
hold rather accurately even at the phase transition [200], none of the hard modes show
a pronounced dependence on the phase transition [55, 200], not surprisingly given their
effective energy of at least 277, ~ 2 GeV. Thus, the soft and hard magnetic sectors depend
rather smoothly on temperature. Also, the hard electric sector does not show a significant
dependence [187, 200]. This also implies that the electric-magnetic asymmetry observed
[368,1369] in dimension-two gluon condensates [370] at finite temperature is driven just by
the electric sector [200].

Only the soft electric part is then left. In agreement with the argumentation based on
the infrared analysis in section [(.2.1] there is a significant imprint of the phase transition
visible for the chromoelectric propagator. In particular, its screening mass is severely
affected, as is shown in figure The phase transition point can indeed be determined
from the maximum of the susceptibility of the electric screening mas

dD;(0)z
T T
Xmz = L™

for both su(2) and su(3). It is therefore possible to determine the gauge-invariant phase
transition temperature from the propagators alond). Note that the minimum of the screen-
ing mass, though close to the phase transition temperature, cannot be the location of the
phase transition for a second order transition, since at this point the susceptibility would
be zero instead of infinite.

For a second order phase transition, as is the case for su(2), it is somewhat surprising
that the screening mass remains finite at the phase transition. This is even more peculiar
since the temperature-dependence of the electric screening mass, after subtracting a zero-
point mass, shows a critical behavior] [353]. This is best illustrated using a fit of type

(5.18)

c Cc

mo + aif(T. — T) (1 - %) + and(T —T.) (% - 1)V, (5.19)

where v is the critical exponent. It is a current question whether it is related to the
one expected for su(2), which would have a value of about 0.63 in four dimensions, given
that su(2) is in the universality class of the 3d Ising model. The fitted value is 0.68315077,
though an asymmetric fit favors different, and thus non-universal, exponents above and be-

low the phase transition with values 1.3710 03 below the critical temperature and 0.55270 0%

"The overall scale and many details of the curve shown in figure are sensitive to lattice artifacts
[366]. However, only its temperature dependence is relevant, but this has to be studied further.

80mne should be somewhat wary with this statement. It is known that gauge-dependent quantities can
indicate a (quantum) phase transition, though there is no physical transition associated with it [276, 371].
However, in the present case the free energy and other physical observables confirm the presence of the
phase transition [334].

9This observation is courtesy of Lorenz von Smekal.
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above. A more refined analysis seems to indicate that the exponent below the phase tran-
sition may even be zero [353].

Of course, the overall scale of the figure[5.2], and thus of the fit (5.19]), is renormalization-
group-dependent, as is the screening mass in general. It is thus not a physical quantity in
itself. The fit, shown also in figure b.2] works quite well. A possible explanation of the
term my is then that it is a mass introduced by the gauge-fixing, and therefore unphysical
[353]. Taking this into account, the screening mass indeed shows a behavior consistent
with the critical scaling of a second order phase transition.

On the other hand, for the su(3) case a first-order transition is expected [334]. The
results shown in figure 5.1l and seem to indicate, despite the fact that the volumes in
the su(3) case are much smaller, that the transition observed in the electric screening mass
is much sharper for su(3) than for su(2) [200]. If this were to become a discontinuity in
the infinite-volume limit, in contrast to a smooth behavior in the su(2) case, this would
also demonstrate the first-order nature of the transition. This, however, requires further
studies of the volume dependence.

Another nice result is that, as in the discussion of the scaling case above, the resulting
propagator here in the minimal Landau gauge also solves both aspects of the Linde problem
immediately. One is the appearance of infrared divergent perturbative integrals as soon
as a magnetic propagator is involved. This has been solved previously by a regularization
procedure and the introduction of a phenomenological magnetic screening mass [354].
This screening mass is now recovered here from first principles. The second component
is that the perturbative expansion breaks down already at order g%, since from this order
on all orders of perturbation theory equally contributa™. This problem is also alleviated
by the present approach, since it provides a non-perturbative expression, which does not
require any expansion in the coupling constant. It is worthwhile to note that using the
Gribov-Zwanziger Lagrangian these problems are explicitly overcome, and permit even
perturbative calculations in finite-temperature Yang-Mills theory [373, 1374].

5.2.3 Infinite-temperature limit

At the current time there is quite a number of hints from both experiments [375, [376] and
theoretical investigations [375-377] that the matter above the phase transition is strongly
interacting up to temperatures as large or even larger than 2-3 times the critical temper-
ature. It is thus far from the naively expected quark-gluon plasma. This expectation was
based on the idea that the coupling evaluated at the temperature becomes small with in-
creasing temperature. Of course, in a renormalizable and interacting quantum field theory,
this simple argument is not fully adequate. However, it is imaginable that at very large
temperatures all processes are essentially dominated by leading-order perturbative effects.

Indeed, when measuring perturbative observables using lattice gauge theory at very
high temperatures, they show a behavior which could be in agreement with a logarithmic

10Ty resolve this problem, resummation techniques have been introduced, like hard-thermal loops
[354, 1372]. Though they provide an enormous improvement in the intermediate momentum regime, they
eventually fail in the infrared, disagreeing with the results for the propagators presented here [166].
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approach of a Stefan-Boltzmann behavior, and thus thermodynamic bulk quantities appear
as being dominated by free gluons [334].

However, there are a number of arguments against it. Already the infrared analysis
of section [B.2.T] suggests that this is not the case, and that at least in the soft magnetic
sector non-perturbative long-range interactions should remain [187]. Indeed, there is a
very general argument supporting this line of thought [351].

Take the limit of of infinite temperature. This is equivalent to the static limit of the
theory, as the extension of the time direction shrinks to zero [351]. Thus it becomes
effectively three-dimensional. The corresponding three-dimensional Lagrangian can be
obtained as an effective field theory [138,1352]. In this course the original Ay component
of the gluon field becomes an additional adjoint Higgs field, thus preserving the number of
degrees of freedom, as a three-dimensional gluon field has only one transverse polarization.
The constants that appear in the three-dimensional theory, like the Higgs mass, can be
obtained by matching with the original theory. The most important quantity in this
context is the (now dimensionful) three-dimensional gauge coupling, which to leading
order is given by g3 = ¢*T with the four-dimensional gauge coupling g. The limit actually
contains some subtleties, since the starting theory is a renormalizable theory, while the
limiting theory is finite in the sense that all renormalization constants are finite, at least
in Landau gaug [162,1192]. The resulting effective Lagrangian is then given by

1 1 h
L = _ZF‘L?VFéLV_'_a(DZb(bbDZLc C+mi¢a¢a>+z¢a¢a¢b¢b (520)

DY = §°°0, + gs LA,

which still requires the usual gauge-fixing techniques. As noted, the coupling constants, gs,
my, and h, are not free, but tied to their finite-temperature expressions, and in particular
functions of the four-dimensional gauge coupling and the temperature only.

Such a theory is actually confining, which could have been expected on the basis that
a three-dimensional Yang-Mills theory is qualitatively not much different from a four-
dimensional Yang-Mills theory [378]. The adjoint scalar could actually change this [379],
but for the parameters relevant this is not the case [299, 1300]. In fact, the adjoint scalar
is a residue of the electric sector of the theory, while the Yang-Mills sector corresponds to
the magnetic sector. Thus, it should be expected that even the infinite-temperature limit
is strongly interacting [166].

Motivated by this it is possible to also find non-perturbative quantities in the finite tem-
perature system which do not show a behavior compatible with a perturbatively dominated
system, like the spatial string tension [380]. The system is therefore non-perturbative.
Nonetheless, it remains that the thermodynamic bulk quantities are apparently pertur-
bative. The resolution of this apparent contradiction will be discussed below in section
.3l

Of course, such a system can be equally well solved using either lattice or functional
methods. In case of DSEs, the truncation employed is shown in figure 5.3l Employing

"From the perturbative point of view it is superrenormalizable, and outside Landau gauge it is actually
linear divergent. Both points are of no relevance here.
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Figure 5.3: The graphical representation of the DSE truncation in the infinite-temperature
limit used here [138]. Curly lines are gluons, dotted lines are ghosts, and dashed lines are
the adjoint scalars. Lines with a circle are full propagators, and open circles are full
vertices, which are set bare in this truncation.
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Figure 5.4: The quenched scalar-gluon vertex in three dimensions for su(2) in minimal
Landau gauge [55, 1381]. Note that the tensor structure of the scalar-gluon vertex is the
same as for the ghost-gluon vertex, (£2). The lattice size is (3.1 fm)? with @ = 0.13 fm.
The mass of the quenched scalar is 1 GeV.

a bare scalar-gluon vertex can be justified at least by quenched lattice results, shown in
figure 5.4l As a consequence, the adjoint Higgs decouples in the infrared for any non-zero
tree-level mass'd. Since the tree-level mass is essentially the electric screening mass, and
thus proportional to the temperature this is an acceptable assumption.

Also the tadpoles have to be included in a very particular way in this approach, in
contrast to the more simpler pure Yang-Mills case [138, 162]. On the one hand, the fi-
nite Higgs mass yields a finite shift of its mass. On the other hand, in principle any

12This can radically change for a massless scalar [162, [170)].



120 5.2. Propagators

| Gluon propagator | | Ghost dressing function |
N E
=< ok Lattice data
% F . Continuum extrapolated
v F I o 120° p=4.2
sf 411t o 120° p=5
11 4 3’
N 6 120 p=6
af

>
0

O]

ey
OOV\\\\‘\\\\‘\\\\‘\\\\‘\\\\T\\‘r—‘r—‘

\\\\‘\\\\‘\\\\‘\\\\\\\\\\\\
0.5 1 15 2 25 3 b o5 1 15 2 25 3 35 4 45 5
kig kig
3 3
| Adjoint Higgs propagator | | Running coupling |
w121 210
< [ 2 oF
i‘, c
S g
7t
oF
st
ac
3
2
e
E Il Il Il Il
% 1 2 3 4 5 6 7, % 1 2 , 4 5
k/g3 k/g3

Figure 5.5: The results for the su(2) infinite temperature limit from DSEs (in the scaling
case) [138] and lattice calculations (in the minimal Landau gauge) [299]. The top-left
panel shows the gluon propagator (the lattice data are for the Yang-Mills case [201], for
comparison), the top-right panel the ghost dressing function, the bottom-left panel the
adjoint Higgs propagator, and the bottom-right panel the running gauge coupling.

three-dimensional Higgs-Yang-Mills theory in Landau gauge features linear divergences.
However, this particular theory is the infinite-temperature limit of a four-dimensional
Yang-Mills theory in Landau gauge. Since temperature cannot introduce new divergences
[349], and in the current truncation no new artificial ones appear [138, [187, [192], the effec-
tive three-dimensional theory cannot have any divergent renormalization constants. This
dictates that the additionally introduced coupling constants have to arrange themselves
so that no such divergences arise, which has to be taken into account in the truncation,
finally yielding the truncation used here and described in detail in [138].

Similarly, the system can be simulated on the lattice [299,1300]. Again, it is necessary
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to tune the three independent constants in the system such that the theory is finite.
This is a highly non-trivial task [299], and guidance can be taken from the perturbative
equivalence [352], in particular since this problem arises in the deep ultraviolet. It is
then possible to determine the propagators of all involved fields in both lattice and DSE
calculations. The results are shown in figure It turns out that the presence of the
Higgs is actually a negligible effect for the propagators of the gluon and the ghost, and
hence the result for them is almost identical to the one of a three-dimensional Yang-Mills
theory [138,1299]. This is in line with the argumentation above using functional methods
that the chromoelectric sector essentially decouples at sufficiently high temperature, being
dominated by its screening mass. The latter encodes the influence of the hard modes on
the chromoelectric sector in the infinite temperature limit.

5.2.4 Schwinger functions and confinement

Once the propagators are available, it is natural to investigate once more what their
analytic structure is. From the infrared analysis of section [5.2.1lit can already be expected
that the transverse gluon propagator will not be an asymptotic state in very much the same
way as in four dimensions. Indeed, the corresponding Schwinger function shows exactly
this behavior, as can be seen in figure for the finite temperature case, though the
employed lattice volumes are not sufficient to make any final decision yet [367]. Only that
the Schwinger function is not monotonously decaying at these volumes can be observed.
Note that for the not shown hard modes their effective tree-level mass is so large that it
is not yet possible to find any significant deviation from a massive particle-like behavior,
nor any trace of their thermal width.

Thus, the magnetic sector again appears to be essentially unaffected by temperature. In
particular, this implies that magnetic gluons are not asymptotic states at all temperatures,
in contrast to the idea of a plasma of free gluons. However, given the problems encountered
when trying to construct a gauge-invariant gluon, this outcome is rather comforting.

The situation is somewhat different for the chromoelectric gluon. First of all [187], at
the perturbative level the zero component of the gluon in Landau gauge is a member of
an elementary (perturbative) BRST quartet [2,[8]. As such, it should not be observable, i.
e., it is effectively confined. This is also not altered at finite temperature |349]. However,
pending a final understanding of a non-perturbative BRST construction, this is at the
current time not fully satisfactory.

Therefore, again its Schwinger function is quite interesting, which is also shown in figure
(.6l for both the infinite and finite temperature casdd. At infinite temperature, both the
propagator and the Schwinger function Ay can be well fitted by the expression (45]) for
an unstable particle [138]. Indeed, the propagator is in very good agreement with a double
complex pole structure. It is even possible, at least in the infinite temperature case, to
identify a subleading pole structure. The lattice data, however, are not yet sufficiently
precise to make a final statement, except that the behavior is significantly different from

13Tt should be noted that the result is qualitatively independent of the interaction strength of the
Higgs with the gluons in the infinite-temperature case [162], a nice display of how even arbitrarily weak
interactions can have an influence.
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Figure 5.6: The soft transverse (left panel) and longitudinal (right panel) gluon Schwinger
functions above the phase transition temperature. The top panels show the results from
lattice calculation in the minimal Landau gauge [55], the middle panels using DSEs in
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temperature limit using DSEs in the scaling case [138]. Note that the ’time’ in this
equilibrium case is actually along a spatial direction, as discussed in section [4.2l
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the transverse case: The Schwinger function appears to be monotonously decreasing above
the phase transition temperature. Thus, it is in principle possible that there could be a
change of the analytic structure either when going to non-zero temperature or at the phase
transition. In particular, the latter option is interesting, as this would be closer to the
idea of a deconfining transition.

5.3 Thermodynamic quantities

5.3.1 Thermodynamic potential

With all these non-perturbative interactions around, it is a non-trivial question, why
various results [334, 1342] show that for asymptotically large temperatures a Stefan-Boltz-
mann-like behavior is observed for bulk thermodynamic quantities. It has been shown,
employing the dimensional reduction as a tool, that the thermodynamic potential can
be quite accurately reproduced using perturbation theory and only one further effective
parameter to include sub-leading non-perturbative contributions of the three-dimensional
Yang-Mills theory [342, 355]. These results show that the non-perturbative, effectively
three-dimensional, contribution is sub-leading by at least one power of the temperature
compared to the hard interactions, and thus the bulk thermodynamic quantities at suffi-
ciently high temperatures are essentially given by the perturbative expression. Arguments
based on DSEs [138] and the Gribov-Zwanziger effective theory [373] are in-line with this
conclusion.

From the physical point of view this is just the statement that the average energy
scale of interactions is given by the temperature, and this is then deep in the asymptotic
domain. However, this is essentially an off-shell process, since, as discussed previously,
the gluons themselves are likely confined. Therefore, a more appropriate picture may be a
dense glueball soup, which undergoes rapidly hard collisions dominated by hard partonic
processes [187].

Given the manifestation of the phase transition in the correlation functions, it is an in-
teresting question whether also the other thermodynamic information can be obtained from
the correlation functions. Indeed, it is, in principle, possible to determine the thermody-
namic potential by a 2PI/LWCJT construction [227, 1318, 382-388]. The exact expression
is given by [38§]

V(DMWDG’) = ‘/O(DMV7DG)+‘/2(DMV7DG) (521)
D De) = [ {5 [P D) gl - 30 (D7 0)0t0)

~ [Da("p) ' Da(p) — 1] +1n (DE®) ' Dalp) }.

where tl denotes the tree-level propagators. The contribution V5, contains contributions
from the vertices, which are dropped in the truncation at propagator level. In the infinite-
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Figure 5.7: Results for the approximation (5.2I]) of the thermodynamic action using the
soft mode and the lowest hard mode and a three-dimensional cut-off of 1.5 GeV for the
lattice data [55].

temperature limit, this expression reduces to [138]
- Y [ o = < (zzo(<qq)>)+(zzo(<qq)>‘1)
wn () - ((i(fq)) 1) =30 () +2 (g 1)) 62

where Z,, Gy, and H, are the tree-level dressing functions of the dimensionally-reduced
theory

Zy(p) = Go(p) =

P
By dropping the expression V5, although consistent with the truncation scheme of the
functional equations, this approximation has the serious drawback of not closing thermo-
dynamically |388]. In particular, this yields spurious divergences in the necessary cut-off,
which are very hard to determine at finite temperature. The spurious divergences can
be better isolated and subtracted in the infinite-temperature limit [138, [162], yielding an
expression proportional to the temperature cubed, and therefore as expected sub-leading
compared to the Stefan-Boltzmann behavior generated by the hard interactions [333].

A possibility to obtain a comparison at finite temperature is to use the lattice result in
the expression (B.21]) at the same truncation level. However, it suffers from discretization
artifacts, which require to include an artificially low cut-off of about 1 to 2 GeV with the

14T am grateful to J. M. Pawlowski for motivating this investigation.
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available lattice data. The corresponding temperature-dependence of this approximation
is shown in figure B.7 It is essentially dominated by the truncation of the Matsubara
sum, and has little resemblance to the expected behavior. This indicates that possibly
contributions from higher energy and higher Matsubara frequencies are important. This
is to be expected, since the cut-off imposed is below 277, ~ 1.8 GeV, and thus below the
natural scale of the hard interactions at the phase transition. Thus interesting in principle,
this approach requires much better input.

Of course, other bulk quantities, like the entropy, can in principle be determined as
soon as this problem is under control [333].

5.3.2 Order parameters

As already noted, the critical temperature can be accessed rather directly from the prop-
agators. It is therefore interesting whether it is possible to also determine other order
parameters. Of course, this is in principle not of direct relevance, since QCD likely does
not exhibit a genuine phase transition at finite temperature at all [389], though this may
change for the standard model [390]. Moreover, for most gauge algebras the finite temper-
ature phase transition of Yang-Mills theories is first order [335-340]. Therefore no order
parameters need to be associated with them [124]. However, it has been quite a striking
observation that the order parameters employed for su(2) Yang-Mills theory, in particu-
lar the Polyakov loop [153], remain to be rather good indicators for the first order phase
transitions [335-340], or even for the cross-overs observed in theories with matter fields
[389,1391H395]. Tt is thus worthwhile to determine them using the present setup.

This will be done here for the one central order parameter in Yang-Mills theory, the

temporal Polyakov loop [22]
P = <trexp /thO >, (5.23)

C

where the closed curve C wraps once around the compactified time direction. It is associ-
ated with the center symmetry Zy of SU(N) theor, being non-zero if the symmetry is
broken [153].

Unfortunately, the expression for the Polyakov loop (5.23) is an exponential in the
fields. Therefore, as for any Wilson line [4], it is an infinite series of contracted correla-
tion functions of arbitrary higher order. Therefore, an exact evaluation using correlation
functions is in general not possible.

As a consequence, a number of approximate evaluation schemes have been developed,
aside from the direct evaluation using lattice gauge theory [22]. Two of them are closely

15Strictly speaking, this symmetry has to be factored out in the standard model for anomaly reasons |3].
However, even for theories which do not possess a non-trivial center, the Polyakov loop is an acceptable
order parameter [337-340], and can therefore be expected to remain so also for the standard model. Tt is
then, however, no longer related to a symmetry-breaking transition, and is also not strictly zero in either
phase [396], though to a very good approximation it turns out to be so [339, [340, 396]. There are further
arguments concerning the product-group structure of the standard model suggesting its usefulness [390)].
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| Polyakov loop for SU(2) | | Polyakov loop for SU(3) |
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Figure 5.8: The Polyakov loop in the quenched approximation obtained from the dual
chiral condensate (5.24) by Fourier-transformation (5.25]) for SU(2) (left panel) and SU(3)
(right panel), using the procedure and data of [200].

tied to the correlation functions.

One is based on the Weisz-potential to determine an upper bound of the Polyakov
loop [35, 227, 1312, 1337]. This approach involves only the ghost and gluon propagators,
and even with the approximation of using their zero-temperature behavior provides rather
good qualitative and even quantitative results. This indicates that the dynamics of the
Polyakov-loop at the phase transition is not tied to the finite-temperature behavior of
the propagators, but is dominated by the interaction strength mediated by the gluon
propagator essentially at the scale of the temperature.

Another possibility is to use dual observables, which denote a class of observables
obtained by performing Fourier transformations of quantities with respect to the fermionic
boundary condition. The simplest example is the trace of the quark propagator S, yielding
the gauge-invariant dual chiral condensate [308, 397

(B), —ZQOATZ/

where Z5 is the wave-function renormalization constant of the quark, and the trace is over
both Dirac and color space. Of course, at ¢ = 7 this is just the usual, renormalization-
group-dependent quark condensate.

It can now be shown that the corresponding Fourier transform

trS p, 27T (n + 2fr>> (5.24)

2w

dy o~
5= [ e (G0, (5.25)

0

equals the Polyakov-loop in the quenched case [397]. Thus, it is only necessary to determine
the trace of the quenched quark propagator [308]. This can be done either by lattice
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calculations [398] or using functional equations@. The results obtained with the latter
method are shown in figure for the quenched SU(2) and SU(3) case. Though the
involved approximations make the Polyakov loop not exactly zero in the low temperature
phase, the phase transition is clearly discernible. However, since the available input data,
as shown in figure 0.2 do not yet clearly signal the order of the phase transition, this is
also not evident in the Polyakov loop. Thus, better data for the gluon propagator would
be necessary for this purpose. Nonetheless, this demonstrates how it is possible to access
thermodynamic order parameters using correlation functions.

5.4 Vertices

As remarked, vertices become tremendously complex at finite temperature due to the
large number of possible vertex structures once Lorentz/Euclidean symmetry is no longer
manifest [349, 1354]. As a consequence, at non-zero temperature there have not yet been
any investigations of the vertices beyond perturbative evaluations.

Only in the infinite-temperature limit, it is possible to make some statements about
the vertices, since the tensor structure becomes simple once more. However, even in this
case, reliable investigations without quenching the adjoint Higgs are not yet available. The
quenched case has been shown in figures 12} .13] and 5.4 [55, 61, 125, 1381)] for the ghost-
gluon, the three-gluon, and the two-adjoint-Higgs-gluon vertices, respectively. The former
two are identical to the ones of pure Yang-Mills theory, and show a very similar behavior
to the zero-temperature case. For the latter it is found that the vertex is essentially flat
and close to tree-level, supporting the approximations made in the DSE treatment of
the infinite-temperature limit in section £.2.3] though this requires confirmation in the
unquenched case.

16Where actually lattice results for the gluon propagator are used as input, and an assumption has to
be made on the quark-gluon vertex [200, 1308, 1331].
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Summary and discussion

6.1 The state of the art, pitfalls, and odds and ends

Summarizing, quite a lot of progress has been made in the determination of (gauge-
dependent) correlation functions compared to the first investigations using functional [149]
or lattice methods [67]. At the present time the technical tools for investigations using
lattice methods in Landau gauge are quite well under control. In functional methods, a
wealth of understanding of different approximations and truncations has been obtained.
As a consequence, sophisticated truncation schemes have been developed, which on the
one hand permit to reach rather good agreement with lattice results for the propagators
[16], while at the same time already give access to more complex quantities like three-point
vertices |61, 125, 126, [167], and to some extent four-point vertices [127, 132, [155], as well
as genuine bound-states [17, 191, 291] and thermodynamic properties [200, 298, [312]. In
particular the latter two points bring the functional approach, though quite less intensively
developed than lattice methods, to the same general level: Being a tool for investigating
physical processes.

This progress has been made possible by a synergistic development of lattice and contin-
uum methods, which also includes non-functional approaches, like effective theories. Only
this combination has made it possible to have as good a control over and understanding
of the correlation functions as has been presently achieved.

With this reached, a turning-point has essentially been reached. The investigation
of correlation functions has so far mainly have been conducted for its own sake, and for
the exploratory investigation of how to access physical observabled] and to understand
more about fundamental non-perturbative phenomena like confinement, chiral symmetry
breaking and topology directly on the level of correlation functions [17, 191, 288]. Now
the technology developed is sufficiently advanced to start accessing completely new fields.
And there are two avenues of investigations, which are currently followed. One is the
application of the combined framework of lattice and functional methods to new systems.

LOf course, in particular concerning the hadronic spectrum these have already been quite successful
[17, (191 225], but so far with somewhat ad-hoc approximations, mainly guided only by chiral symmetry
and neglecting most of the Yang-Mills sector, whose virtues can only now be fully understood [188, 291].

128
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First successes have been achieved in this program [55, 183, 138, 299-302, [321], but a lot
of work remains to bring to bear the full possibilities of the synergistic effects. The other
is to actually use the functional methods to extrapolate the lattice results into domains
where the lattice cannot venture currently for practical reasons, like cold, dense matter
[298; 1307, 1315, 1317, 1318], non-equilibrium [399], and scattering processes [236]. It can
therefore be expected that the combination of methods will provide access to a number of
unresolved problems in the future.

This said, there are still topics to be understood, even on a fundamental level. Though
quite a number of hints have been presented here for the idea of how the various solutions
available fit together, this is far from a proof. Being skeptical, it could easily turn out that
indeed all possible ways to select Gribov copies inside the first (or any fixed) Gribov region
could coincide in the thermodynamic limit. In particular, the discussion given in section
implies that it is very well possible that the scaling case of functional calculations
can never be connected with a feasible numerical simulation, though this does not imply
that it does not exist.

However, as has been repeatedly emphasized, this is actually not a limitation, since
the physical results turn out to be independent of the choice of solution [291, 297, 1329,
331, 1332], including questions like confinement [16,312]. Thus, in principle, it is possible
to sit back relaxed, and wait what is realized, and thus available, in Yang-Mills theory,
and all the while keep on working with the already confirmed set of correlation functions.
Their properties are anyhow equally well under control.

One has to be a bit less relaxed when thinking about their interpretation. Though
by now a non-perturbative realization of BRST symmetry [31, 133, 134, [103], and with it
an algebraic construction of the state space [, [16], is available, it is by far not clear how
to connect it to any of the proposed gauges on the lattice, as emphasized above. On the
other hand, in the photon-ghost cases, it is still not entirely clear how a Hilbert space has
to be constructed [16, 144, 1258, 261-263], and in particular this may involve explicit non-
localities [44, 258, 1259, [261-264]. Though this is not something with direct relevance to
the determination of observables, it is a pain in the back of the head, and conceptually not
yet satisfactory. In particular, though manifest quark and possibly gluon confinement has
been obtained from correlation functions [16, 137, 185, 1238, 239,1312], its full understanding
remains a challenge.

Another unclear question is yet how the string-like properties of Yang-Mills theory are
realized. This entails two questions. One is, whether it is in principle possible to encode the
string-like features in low-order correlation functions at all [153, 167, 168, 1288]. Since they
are already manifest in, e. g., the Regge trajectories [153] of mesons encoding the string
tension, the answer is an affirmative yes, since the meson properties can be determined
from the four-point functions |234]. But this implies that possible full self-consistency at
the level of four-point functions may be required, and this is definitely not yet achieved.
It is also not clear whether and how a corresponding truncation can be determined. The
situation is even worse for string-breaking, which requires at least six-point functions to
observe.

Even more complicated is the Wilson potential. Determining it may require rather dif-
ferent gauges, like the Coulomb gauge 400, 401], though some approximate results have
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been obtained [167,1313]. But even with the approximate results in place, the understand-
ing of how to realize the difference between Yang-Mills theory with different gauge groups
or for Yang-Mills theory coupled to matter in different representations remains a subject
of research [101, 166, 1169, [170, 1402, 403].

Finally, though again exploratory results are available, the connection of the correlation
function approach to other views of low-energy Yang-Mills theory and QCD still requires a
better understanding. In particular, only how to relate correlation functions to topological
scenarios 24, 216, 240, 281, 285287, 1404-406] as well as to stochastic quantization ideas
[38,166,195, 102] has been investigated so far. Still a direct relation to many other views, like
the stochastic vacuum, analytic perturbation theory, and many others remains unknown.

6.2 Summary and outlook

In total, in this manuscript an overview has been given on the determination of (gauge-
dependent) correlation functions with both lattice and functional methods at zero and
finite temperature in gauge theories. Particular attention has been paid to the problem
introduced by the Gribov-Singer ambiguity. The emphasis has been put on Yang-Mills
theory, with a simple Lie group, though connections to other theories and/or setups have
been indicated. The results here have concentrated on gauges fulfilling the perturbative
Landau gauge condition. Therefore, many results in Coulomb gauge [23, 54,400, 401, 407
429], interpolating gauges [143, 299, 430-432|, linear covariant gauges [17, 19, 108, 433,
434), maximal Abelian gauges [123, 1433, 1435-442], direct Laplacian gauges [443-445], and
other gauges |17, 135, 103, [150, 189, [190, 446, 447] have not been covered, though results
at a similar level have been obtained in these cases as well. In particular, a similar
situation with the photon-ghost case and scaling appears to be realized in Coulomb gauge
[409, 415, 1419, 428], though this has to be investigated further.

Of course, the current important topic is the full inclusion of matter fields to investigate
QCD, the standard model, and beyond-the-standard-model theories. In the end, however,
all this will rest on the concepts presented here, and will be achieved with similar methods.
It is thus the creation of this technological framework and the understanding of its results
within the last fifteen years, which is now paving the way for a complete new generation
of applications. Thus, with the next decade it will be decided whether the promise of the
possibilities these methods and approaches hold will be realizable, and perhaps even open
up the way to new frontiers in non-perturbative physics.
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