
Appendix 1

Homotopy groups used in physics

A1.1 Homotopy groups
A1.1.1 Generalities

If M and N are two topological spaces then for their direct product we have

πk(M ×N) = πk(M)× πk(N).

If M is a simply-connected topological space (π0(M) = π1(M) = 0) and
group H acts on M then one can form topological space M/H identifying
points of M which can be related by some element of H (x ≡ hx). We have

π1(M/H) = π0(H).

In particular, if H is a discrete group π0(H) = H and

π1(M/H) = H.

For higher homotopy groups we have

πk(M/H) = πk(M), if πk(H) = πk−1(H) = 0.

A1.1.2 Homotopy groups of spheres

For a circle

π1(S1) = Z,

πk(S1) = 0, for k ≥ 2.

For higher-dimensional spheres it is true that

πn(Sn) = Z,

πk(Sn) = 0, for k < n.

Homotopy groups of spheres πn+k(Sn) do not depend on n for n > k + 1
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(homotopy groups stabilize). In the table below we shade the cell from which
homotopy groups remain constant (along the diagonal).

Homotopy groups of spheres

π1 π2 π3 π4 π5 π6 π7 π8 π9 π10 π11 π12

S1 Z 0 0 0 0 0 0 0 0 0 0 0

S2 0 Z Z Z2 Z2 Z12 Z2 Z2 Z3 Z15 Z2 Z2 × Z2

S3 0 0 Z Z2 Z2 Z12 Z2 Z2 Z3 Z15 Z2 Z2 × Z2

S4 0 0 0 Z Z2 Z2 Z × Z12 Z2 × Z2 Z2 × Z2 Z24 × Z3 Z15 Z2

S5 0 0 0 0 Z Z2 Z2 Z24 Z2 Z2 Z2 Z30

S6 0 0 0 0 0 Z Z2 Z2 Z24 0 Z Z2

S7 0 0 0 0 0 0 Z Z2 Z2 Z24 0 0

S8 0 0 0 0 0 0 0 Z Z2 Z2 Z24 0

Here and thereon we denote Z the group isomorphic to the group of
integer numbers with respect to an addition. Zn is a finite Abelian cyclic
group. It can be thought of as a group of n-th roots of unity with respect
to a multiplication. Alternatively, it is isomorphic to a group of numbers
{0, 1, 2, . . . , n − 1} with respect to an addition modulo n. Or simply Zn =
Z/nZ.

A1.1.3 Homotopy groups of Lie groups

A1.1.3.1 Unitary groups

Bott periodicity theorem for unitary groups: for k > 1, n ≥ k+1
2

πk(U(n)) = πk(SU(n)) =
{

0, if k-even;
Z, if k-odd.

The fundamental group π1(SU(n)) = 0 and π1(U(n)) = 1 for all n.
In the following table we shade the cells from which Bott periodicity

theorem “starts working”.
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Homotopy groups of unitary groups

π1 π2 π3 π4 π5 π6 π7 π8 π9 π10 π11 π12

U(1) Z 0 0 0 0 0 0 0 0 0 0 0

U(2) 0 0 Z Z2 Z2 Z12 Z2 Z2 Z3 Z15 Z2 Z2 × Z2

U(3) 0 0 Z 0 Z Z6

U(4) 0 0 Z 0 Z 0 Z

U(5) 0 0 Z 0 Z 0 Z 0 Z

A1.1.3.2 Orthogonal groups

Bott periodicity theorem for orthogonal groups: for n ≥ k + 2

πk(O(n)) = πk(SO(n)) =






0, if k = 2, 4, 5, 6 (mod 8);
Z2, if k = 0, 1 (mod 8);
Z, if k = 3, 7 (mod 8).

In the following table we shade the cells from which Bott periodicity
theorem “starts working”.

Homotopy groups of orthogonal groups

π1 π2 π3 π4 π5 π6 π7 π8 π9 π10 π11 π12

SO(2) Z 0 0 0 0 0 0 0 0 0 0 0

SO(3) Z2 0 Z Z2 Z2 Z12 Z2 Z2 Z3 Z15 Z2 (Z2)×2

SO(4) Z2 0 (Z)×2 (Z2)×2 (Z2)×2 (Z12)×2 (Z2)×2 (Z2)×2 (Z3)×2 (Z15)×2 (Z2)×2 (Z2)×4

SO(5) Z2 0 Z Z2 Z2 0 Z 0 0 Z120 Z2 (Z2)×2

SO(6) Z2 0 Z 0 Z 0 Z Z24 Z2 Z120 × Z2 Z4 Z60

SO(n), n > 6 Z2 0 Z 0 0 0
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A1.1.3.3 Symplectic groups

Bott periodicity theorem for symplectic groups: for n ≥ k−1
4

πk(Sp(n)) =






0, if k = 0, 1, 2, 6 (mod 8);
Z2, if k = 4, 5 (mod 8);
Z, if k = 3, 7 (mod 8).

In the following table we shade the cells from which Bott periodicity
theorem “starts working”.

Homotopy groups of symplectic groups

π1 π2 π3 π4 π5 π6 π7 π8 π9 π10 π11 π12

Sp(1) 0 0 Z Z2 Z2 Z12 Z2 Z2 Z3 Z15 Z2 Z2 × Z2

Sp(2) 0 0 Z Z2 Z2 0 Z 0 0 Z120 Z2 Z2 × Z2

Sp(3) 0 0 Z Z2 Z2 0 Z 0 0 0 Z Z2

Sp(4) 0 0 Z Z2 Z2 0 Z 0 0 0 Z Z2

Sp(5) 0 0 Z Z2 Z2 0 Z 0 0 0 Z Z2

A1.1.3.4 Exceptional groups

Homotopy groups of exceptional groups

π1 π2 π3 π4 π5 π6 π7 π8 π9 π10 π11 π12

G2 0 0 Z 0 0 Z3 0 Z2 Z6 0 Z × Z2 0

F4 0 0 Z 0 0 0 0 Z2 Z2 0 Z × Z2 0

E6 0 0 Z 0 0 0 0 0 Z 0 Z Z12

E7 0 0 Z 0 0 0 0 0 0 0 Z Z2

E8 0 0 Z 0 0 0 0 0 0 0 0 0
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A1.1.4 Homotopy groups of some other spaces

A1.1.4.1 Tori

n-dimensional torus can be defined as a direct product of n circles Tn =
(S1)×n. One can immediately derive that

π1(Tn) = (Z)×n,

πk(Tn) = 0, for k ≥ 2.

A1.1.4.2 Projective spaces

The real projective space RPn can be represented as RPn = Sn/Z2. There-
fore, RP 1 = S1 and we have:

π1(RP 1) = Z,

π1(RPn) = Z2, for n ≥ 2,

πk(RPn) = πk(Sn), for k ≥ 2.

Homotopy groups of real projective spaces

π1 π2 π3 π4 π5 π6 π7 π8 π9 π10 π11 π12

RP 1 Z 0 0 0 0 0 0 0 0 0 0 0

RP 2 Z2 Z Z Z2 Z2 Z12 Z2 Z2 Z3 Z15 Z2 Z2 × Z2

RP 3 Z2 0 Z Z2 Z2 Z12 Z2 Z2 Z3 Z15 Z2 Z2 × Z2

RP 4 Z2 0 0 Z Z2 Z2 Z × Z12 Z2 × Z2 Z2 × Z2 Z24 × Z3 Z15 Z2

Similarly for complex projective spaces CPn we have CP 1 = S2 and
generally CPn = S2n+1/S1. We have for homotopy groups

π1(CPn) = 0,

π2(CPn) = Z,

πk(CPn) = πk(S2n+1), for k ≥ 3.
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Homotopy groups of complex projective spaces

π1 π2 π3 π4 π5 π6 π7 π8 π9 π10 π11 π12

CP 1 0 Z Z Z2 Z2 Z12 Z2 Z2 Z3 Z15 Z2 Z2 × Z2

CP 2 0 Z 0 0 Z Z2 Z2 Z24 Z2 Z2 Z2 Z30

CP 3 0 Z 0 0 0 0 Z Z2 Z2 Z24 0 0

CP 4 0 Z 0 0 0 0 0 0 Z Z2 Z2 Z24


