MAID Analysis Techniques

- introduction
- * a dynamical approach to meson electroproduction
- the unitary isobar model MAID
- comparison of multipoles between MAID and SAID
- * resonance parameters and transition form factors
- summary and outlook

The MAID Project

http://www.kph.uni-mainz.de/MAID/

MAID

$$e+N\rightarrow e'+N+\pi$$

unitary isobar model

S. Kamalov, D. Drechsel, L.T.

currently Maid03 on the web, Maid05 is ready

DMT

$$e+N\rightarrow e'+N+\pi$$

dynamical model

S. Kamalov, S.N. Yang, D. Drechsel, L.T.

currently DMT 2001

KAON-MAID
$$e+N \rightarrow e'+\{\Lambda,\Sigma\}+K$$

isobar model

T. Mart, C. Bennhold, H. Haberzettl, L.T.

KAONMAID 2000

ETA-MAID
$$e+N \rightarrow e'+N+\eta$$

isobar model

W.-T. Chiang, C. Bennhold, D. Drechsel, L.T.

ETAMAID 2001

$$\gamma + p \rightarrow p + \eta$$

regge isobar model

W.T.-Chiang, M. Vanderhaeghen, L.T.

ETAMAID 2003

ETA'-MAID
$$\gamma + p \rightarrow p + \eta'$$

regge isobar model

W.-T. Chiang, M. Vanderhaeghen, L.T.

ETAPRIMEMAID 2003

DR-MAID

$$e+N \rightarrow e'+N+\pi$$

dispersion model

S. Kamalov, D. Drechsel, L.T.

in progress

why partial wave analysis

- learn about nucleon resonances in particular about their e.m. structure transition moments, form factors $G_{\rm E}$, $G_{\rm M}$, $G_{\rm C}$
- study threshold amplitudes to compare with ChPT
- obtain cross sections and amplitudes over a wide range of energies for dispersive studies
 - sum rules: GDH, FFR, etc.
 - two-photon reactions: Compton, VCS, SSA, etc.
- find missing or exotic resonances

Isobar and Dynamical Models

dynamical approach to pion electroproduction

coupled channels Lippmann-Schwinger equation: $T = V + VG_0T$

$$t_{\pi\pi} = v_{\pi\pi} + v_{\pi\pi} g_{\pi} t_{\pi\pi}$$
$$t_{\gamma\pi} = v_{\gamma\pi} + v_{\gamma\pi} g_{\pi} t_{\pi\pi}$$

for resonance analysis, we split the amplitude in background + resonance

the background is calculated dynamically with driving potential (Born+vector meson exchange)

$$t_{\gamma\pi}^{\alpha}(E) = v_{\gamma\pi}^{\alpha}(E)(1+it_{\pi\pi}^{\alpha}) + P\int \frac{v_{\gamma\pi}^{\alpha}(E')\,t_{\kappa\pi}^{\alpha}(E,E')}{\text{part of the resonance dressing}}$$

$$\text{part of the resonance dressing}$$

$$\text{in K-matrix and isobar models}$$

$$\text{in K-matrix and isobar models}$$

$$\text{- as well as in PDG definition}$$

the resonance part is parametrized phenomenologically with Breit-Wigner functions

$$t_{\gamma,\pi}^{\alpha}(W,Q^2) = A_{\lambda}(Q^2) f_{\gamma N}(W) \frac{\Gamma_{tot}(W) M_R}{M_R^2 - W^2 - i M_R \Gamma_{tot}(W)} f_{\pi N}(W) e^{i \Psi(W)}$$

MAID

the Mainz-Dubna Unitary Isobar Model

$$t^{\alpha}_{\gamma,\pi} = v^{\alpha}_{\gamma,\pi}(Born + \omega, \rho) \; (1 + i t^{\alpha}_{\pi,\pi}) \\ + t^{\alpha}_{\gamma,\pi}(Resonances) \; e^{i\Phi(W)}$$

unitarization phase determined by the Watson theorem, below 2π threshold relaxed above 2π threshold

> the Resonances in MAID are dressed resonances

Unitarity at Pion Threshold

here demonstrated with dispersion relations: MAID and SAID groups, Phys. Rev. C66 (2002)

$$Re \widetilde{\mathcal{M}}_{\alpha}(W,Q^{2}) = \widetilde{\mathcal{M}}_{\alpha}^{Pole}(W,Q^{2}) + \frac{P}{\pi} \int_{W_{thr}}^{\infty} dW' \frac{Im \widetilde{\mathcal{M}}_{\alpha}(W',Q^{2})}{W'-W} + \frac{1}{\pi} \int_{W_{thr}}^{\infty} dW' \sum_{\beta} \widetilde{\mathcal{K}}_{\alpha\beta}(W,W',Q^{2}) Im \widetilde{\mathcal{M}}_{\beta}(W',Q^{2})$$

$$= \begin{bmatrix} E_{0+}(\pi^{0}p) & \text{MAID} \\ E_{0+}(\pi^{0}p) & \text{SAID} \\ E_{0+}(\pi^{0}p) & \text{SAID}$$

Unitarity at Eta Threshold

demonstrated with new exp. data of GDH collaboration, MAMI 2005

for further details see Allessandro Bragheri, Thursday morning

$$\vec{\gamma} + \vec{p} \rightarrow n + \pi^+$$

background potential $\,V_{\pi\gamma}^{bg}$

Born terms from field theoretical Lagrangians

e.m. current of nucleon: $\mathcal{L}_{\gamma NN} = -e\bar{\psi} \left[\gamma_{\mu} \mathcal{A}^{\mu} F_1^{p,n}(Q^2) + \frac{\sigma_{\mu\nu}}{2m_N} \partial^{\mu} \mathcal{A}^{\nu} F_2^{p,n}(Q^2) \right] \psi$

e.m. current of pion: $\mathcal{L}_{\gamma\pi\pi} = e\left[(\partial_{\mu}\pi)^{\dagger} imes \pi
ight]_{3} \mathcal{A}^{\mu}F_{\pi}(Q^{2})$

pseudoscalar πN coupling: $\mathcal{L}_{\pi NN}^{PS} = ig\bar{\psi}\gamma_5\tau \cdot \psi\pi$

pseudovector πN coupling: $\mathcal{L}_{\pi NN}^{\mathrm{PV}} = -\frac{f}{m_{\pi}} \bar{\psi} \gamma_5 \gamma_{\mu} \tau \cdot \partial^{\mu} \pi \psi$

PS-PV mixing:

$$\mathcal{L}_{\pi NN}^{HM} = rac{\Lambda_{m}^{2}}{\Lambda_{m}^{2} + q_{0}^{2}} \mathcal{L}_{\pi NN}^{ ext{PV}} + rac{q_{0}^{2}}{\Lambda_{m}^{2} + q_{0}^{2}} \mathcal{L}_{\pi NN}^{ ext{PS}}$$

is equivalent to PV coupling plus a gauge invariant contact term:

$$j_{\kappa}^{\mu} = \frac{ieg}{2m} \kappa_N F(q_0^2) \frac{\sigma^{\mu\nu} k_{\nu}}{2m} \gamma_5$$

similar approach for vector meson exchange in the t-channel

$$\mathcal{L}_{\gamma\pi V} = e \frac{\lambda_V}{m_{\pi}} \varepsilon_{\mu\nu\rho\sigma} (\partial^{\mu} A^{\nu}) \pi_i \partial^{\rho} (\delta_{i3} \omega^{\sigma} + \rho_i^{\sigma}) F_V(Q^2)$$

$$\mathcal{L}_{VNN} = \bar{\Psi} \left(g_{V1} \gamma_{\mu} + \frac{g_{V2}}{2m_N} \sigma_{\mu\nu} \partial^{\nu} \right) (\omega^{\mu} + \tau \cdot \rho^{\mu}) \Psi$$

s-channel resonance contributions with Breit-Wigner ansatz

advantage: no off-shell effects, no anti-resonances each resonance with total spin $J = L \pm \frac{1}{2}$ and isospin I contributes only to multipoles of the partial wave $L_{2I, 2J}$

e.g.
$$\Delta(1232)P_{33}$$
: $E_{1+}^{(3/2)}$, $M_{1+}^{(3/2)}$, $S_{1+}^{(3/2)}$

$$A_{l\pm}(W) = \bar{\mathcal{A}}_{l\pm} f_{\gamma N}(W) rac{\Gamma_{tot} W_R e^{i\phi}}{W_R^2 - W^2 - iW_R \Gamma_{tot}} f_{\pi N}(W) C_{\pi N}$$

$$f_{\gamma N}(W) = \left(\frac{k_W}{k_R}\right)^n \left(\frac{X^2 + k_R^2}{X^2 + k_W^2}\right), \quad n \geqslant l_{\gamma} \qquad f_{\pi N}(W) = \left[\frac{1}{(2j+1)\pi} \frac{k_W}{|q|} \frac{m_N}{W} \frac{\Gamma_{\pi N}}{\Gamma_{tot}^2}\right]^{1/2}$$

energy dependent width: (implicitly includes coupling with 2π and η channels)

$$\Gamma_{tot} = \Gamma_{\pi N} + \Gamma_{in}$$

$$\Gamma_{\pi N} = eta_{\pi} \Gamma_{R} \left(rac{\mid q \mid}{q_{R}}
ight)^{2l+1} \left(rac{X^{2} + q_{R}^{2}}{X^{2} + q^{2}}
ight)^{l} rac{W_{R}}{W}$$

$$\Gamma_{in} = (1 - eta_{\pi}) \, \Gamma_{R} \, \left(rac{q_{2\pi}}{q_{0}}
ight)^{2l+4} \, \left(rac{X^{2} + q_{0}^{2}}{X^{2} + q_{2\pi}^{2}}
ight)^{l+2}$$

Nucleon Resonances Overview (< 2 GeV, > **)

resonance	partial wave $L_{2I,2J}$	overall status	πN	γN	new rating (BRAG)	in MAID since	multipoles
$\Delta(1232)\tfrac{3}{2}^+$	P ₃₃	****	****	****	****	1998	E_{1+}, M_{1+}, L_{1+}
$N(1440) \frac{1}{2}^+$	P_{11}	****	****	***	***	1998	M_{1-}, L_{1-}
$N(1520) \frac{3}{2}$	D_{13}	****	****	****	****	1998	E_{2-}, M_{2-}, L_{2-}
$N(1535) \frac{1}{2}^{-}$	S_{11}	****	****	***	***	1998	$E_{0+}, \qquad L_{0+}$
$\Delta(1600) \frac{3}{2}^{+}$	P_{33}	***	***	**	**	-	E_{1+}, M_{1+}, L_{1+}
$\Delta(1620) \frac{1}{2}^{-}$	S_{31}	****	****	***	***	2000	$E_{0+}, \qquad L_{0+}$
$N(1650) \frac{1}{2}^{-}$	S_{11}	****	****	***	****	1998	$E_{0+}, \qquad L_{0+}$
$N(1675)\frac{5}{2}^{-}$	D_{15}	****	****	****	****	2003	E_{2+}, M_{2+}, L_{2+}
$N(1680) \frac{5}{2}^+$	F_{15}	****	****	****	****	1998	E_{3-}, M_{3-}, L_{3-}
$N(1700) \frac{3}{2}^{-}$	D_{13}	***	***	**	**	-	E_{2-}, M_{2-}, L_{2-}
$\Delta(1700) \frac{3}{2}^{-}$	D_{33}	****	****	***	**	1998	E_{2-}, M_{2-}, L_{2-}
$N(1710) \frac{1}{2}^+$	P_{11}	***	***	***	***	-	M_{1-},L_{1-}
$N(1720)\frac{3}{2}^{+}$	<i>P</i> ₁₃	****	****	****	**	2003	E_{1+}, M_{1+}, L_{1+}
$\Delta(1905) \frac{5}{2}^{+}$	<i>F</i> ₃₅	****	****	***	**	2003	E_{3-}, M_{3-}, L_{3-}
$\Delta(1910) \frac{1}{2}^{+}$	P ₃₁	****	****	*	**	2003	M_{1-}, L_{1-}
$\Delta(1950) \frac{7}{2}^{+}$	F_{37}	****	****	****	****	2003	E_{3+}, M_{3+}, L_{3+}

resonance gap

some different techniques in different channels

MAID	$t_{\gamma,\pi} = (Born + \omega, \rho) \left(1 + i t_{\pi N}\right) + \sum_{k=1}^{13} Res_k e^{i\Phi_k}$
$\eta - MAID$	$t_{\gamma,\eta} = (Born + \omega, \rho) + \sum_{poles/Regge}^{8} Res_k$
	$S_{11}(1535), S_{11}(1650), P_{11}(1710), P_{13}(1720)$
	$D_{13}(1520), D_{13}(1700), D_{15}(1675), F_{15}(1680)$
η' — MAID	$t_{\gamma,\eta'} = (Born + \omega, \rho) + \sum_{\text{Regge}}^{3} Res_k$ $S_{11}(1930), P_{11}(1950), P_{13}(1950)$
K – MAID	$t_{\gamma,K} = (Born + K^*, K_1) + \sum_{k=1}^{5} Res_k$ poles $for K, \Lambda S_{11}(1650), P_{11}(1710), P_{13}(1720), D_{13}(1900)$
	for $K, \Sigma + S_{31}(1900), P_{31}(1990)$

Results on photo- and electroproduction of nucleon resonances

Resonance Parameters

hadronic parameters: (MAID uses SAID pion nucleon analysis)

 M_R : mass

 Γ_R : total width

 $\Gamma_{\pi}\,,\,\Gamma_{\eta}\,,\,\Gamma_{\pi\pi}\,,\,\cdots$: partial widths

electromagnetic parameters:

 $A_{1/2}, A_{3/2}, S_{1/2}$: photon decay helicity couplings (amplitudes, form factors)

world database on pion photoproduction

GWU/SAID database from 1960 - 2001:

```
d\sigma/d\Omega, \Sigma, T, P, \sigma_{tot}

1500 pts of p\pi^-
6900 pts of n\pi^+
7700 pts of p\pi^0
```

more recent data:

```
Mainz/TAPS (2001): 1500 pts of p\pi^0 d\sigma_0, \Sigma Mainz/GDH (2002): 300 pts of p\pi^0 d\sigma_0, d\sigma_{31} Mainz/GDH (2002): 300 pts of n\pi^+ d\sigma_0, d\sigma_{31} GRAAL (2001): 240 pts of n\pi^+ \Sigma GRAAL (2005): 1330 pts of p\pi^0 d\sigma_0, \Sigma BONN (2004): 670 pts of p\pi^0 d\sigma_0 BNL (2004): 280 pts of p\pi^-
```

comparison between MAID and SAID

comparison between MAID and SAID

helicity amplitudes $A_{1/2}$ and $A_{3/2}$ at $Q^2=0$

		proton				neutron			
		PDG	GW 02	Maid 03	Maid 05	PDG	GW 02	Maid 03	Maid 05
P ₃₃ (1232)	A _{1/2}	-135 ± 6	-129 ± 1	-140	-137				
	A _{3/2}	-255 ± 8	-243 ± 1	-265	-260				
P ₁₁ (1440)	A _{1/2}	-65 ± 4	-67 ± 4	-77	-61	40 ± 10	47 ± 5	52	54
S ₁₁ (1535)	A _{1/2}	90 ± 30	30 ± 4	73	66	-46 ± 27	-16 ± 5	-42	-51
D ₁₃ (1520)	A _{1/2}	-24 ± 9	-24 ± 4	-30	-27	-59 ± 9	-67 ± 4	-85	-77
	A _{3/2}	166 ± 5	135 ± 4	166	161	-139 ± 11	-112 ± 3	-148	-154
S ₁₁ (1650)	A _{1/2}	53 ± 16	74 ± 4	32	33	-15 ± 21	-28 ± 4	27	9
D ₁₅ (1675)	A _{1/2}	19 ± 8	33 ± 4	23	15	-43 ± 12	-50 ± 4	-61	-62
	A _{3/2}	15 ± 9	9 ± 4	24	22	-58 ± 13	-71 ± 5	-74	-84
F ₁₅ (1680)	A _{1/2}	-15 ± 6	-13 ± 4	-25	-25	29 ± 10	29 ± 6	25	28
	A _{3/2}	133 ± 12	129 ± 4	134	134	-33 ± 9	-58 ± 9	-35	-38
P ₁₃ (1720)	A _{1/2}	18 ± 30		55	73	1 ± 15		17	-3
	A _{3/2}	-19 ± 20		-32	-11	-29 ± 61		-75	-31
S ₃₁ (1620)	A _{1/2}	27 ± 11	-13 ± 4	71	66				

electroproduction analysis of nucleon resonances with MAID

$$A^{res}(W,Q^{2}) = \overline{A}(Q^{2}) f_{\gamma N}(W) \frac{\Gamma_{tot}(W) M_{R}}{M_{R}^{2} - W^{2} - i M_{R} \Gamma_{tot}(W)} f_{\pi N}(W) e^{i \Psi(W)}$$

a) single-Q² analysis: (Q²=0.12, 0.4, 0.52, 0.65, 0.7, 0.9, 1.0, 1.15, 1.45, 2.8, 4.0 GeV²)

uses only data at fixed Q^2 and gives helicity amplitudes as "data points" $A_{1/2}$, $A_{3/2}$, $S_{1/2}$

b) Q²-dependent analysis: (superglobal fit)

uses all data at any Q^2 and gives Q^2 -dependent helicity amplitudes as smooth functions

 $A_{1/2}(Q^2), A_{3/2}(Q^2), S_{1/2}(Q^2)$

(transition form factors)

typical parametrization for Q^2 region of $0 \le Q^2 < 3 \; (GeV/c)^2$

$$A_{1/2}(Q^2) = A_{1/2}(0) (1 - \alpha Q^2) e^{-\beta Q^2}$$

etc.

with 1 or 2 parameters α , β for each form factor

experimental data on pion electroproduction

mostly $d\sigma_V/d\Omega$ and $d\sigma_T + \epsilon d\sigma_L$, $d\sigma_{LT}$, σ_{TT}

```
GWU/SAID database from 1971 - 1999:  \frac{d\sigma_{V}}{d\Omega} \text{ and } \frac{d\sigma_{T} + \epsilon}{d\sigma_{L}} \frac{d\sigma_{LT}}{d\sigma_{LT}}, \quad \sigma_{TT} \text{ for } 0 < Q^{2} < 4 \text{ GeV}^{2}  800 pts of p\pi^{-} 6500 pts of n\pi^{+} 13000 pts of p\pi^{0} Bates (2000): 80 pts of p\pi^{0} Bonn (2002): 4900 pts of p\pi^{0} JLab C (1999): 1600 pts of p\pi^{0} JLab B (2002): 22000 pts of p\pi^{0} JLab A (2003): 360 pts of p\pi^{0}
```

MAID analysis of proton helicity amplitudes and transition form factors

Delta $P_{33}(1232)$ and $D_{13}(1520)$ resonances

$N \rightarrow \Delta$ transition form factor M1

Maid fit: $G_M^*(Q^2) = 3 G_{dip}(Q^2) e^{-0.21 Q^2}$

$N \rightarrow \Delta$ transition form factor ratios

- MAMI 1997-2000
- **∮** JLAB/A 01

JLAB/C data, Frolov 99

BATES 2000

▼ JLAB/CLAS 02

JLAB/C data, Maid analysis 01

- **■** ELSA 2002
- DESY 1979

J. Kelly et al. (Hall A), Phys. Rev. Lett. 95 (2005)

Roper $P_{11}(1440)$ and $S_{11}(1535)$ resonances

transition form factors for Roper and S_{11} at low Q^2

Maid2005 superglobal fit Maid2005 single-Q² analysis

comparison with isobar model • and dispersion analysis • of Aznauryan and Burkert, Phys. Rev. C 71 (2005)

some results from Eta-MAID

$S_{11}(1535)$ analysis from η electroproduction

W.-T. Chiang, S.N. Yang, L. Tiator and D. Drechsel, Nucl. Phys. A 700 (2002) 429

Resonance Parameters from η -MAID

N *	Mass	Width	$eta_{\eta N}$	A ^p _{1/2}	A ^p _{3/2}
D ₁₃ (1520)	1520	120	0.05%	-39	166
S ₁₁ (1535)	1545	203	50%	125	
S ₁₁ (1650)	1640	130	10%	73	
D ₁₅ (1675)	1682	150	17%	17	24
F ₁₅ (1680)	1670	130	0.04%	-9	145
D ₁₃ (1700)	1700	100	0.7%	-18	-2
P ₁₁ (1710)	1725	100	26%	22	
P ₁₃ (1720)	1720	150	6.6%	18	-19
	Γ10-3 (7.51/21			

[MeV]

 $[10^{-3} \text{ GeV}^{-1/2}]$

Numbers in green are fitting parameters

$D_{15}(1675)$ mainly a neutron resonance with large branching into ηN

quasifree $\gamma N \to N \eta$ total cross sections

summary on MAID techniques

- > field theoretical background in tree approximation
- pion loop contributions in K-matrix approximation guarantees a unitarized background
- non-Born bg terms account for missing loop contributions a) empirical terms near threshold for E_{0+} , S_{0+} b) PS-PV mixing at higher energies in E_{0+} , S_{0+} , M_{1-} , S_{1-}
- nucleon resonance excitation in s-channel Breit-Wigner parametrization (MAID strategy: as few as necessary, in Maid05: 13 res.)
- Outlook: PWA groups should work together in order to determine and eventually to reduce model dependence