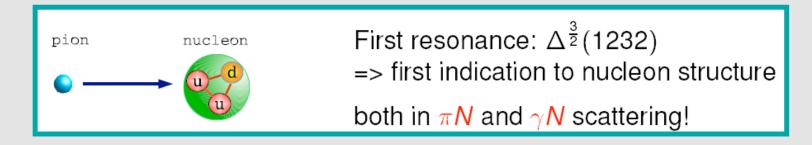
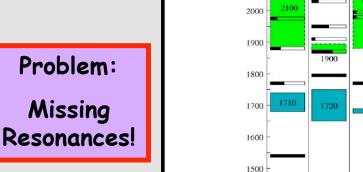
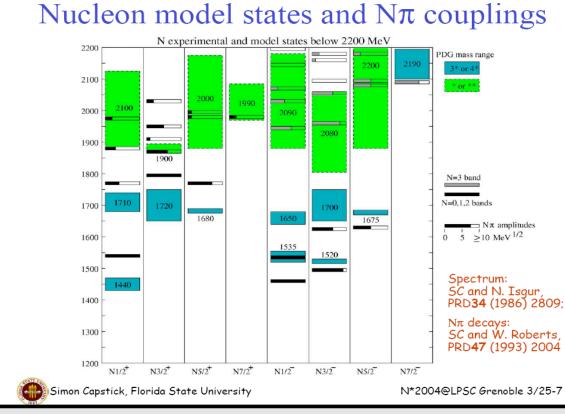
Meson Production on the Nucleon in the Giessen K-Matrix Approach


H. Lenske Institut für Theoretische Physik, U. Giessen


Agenda:

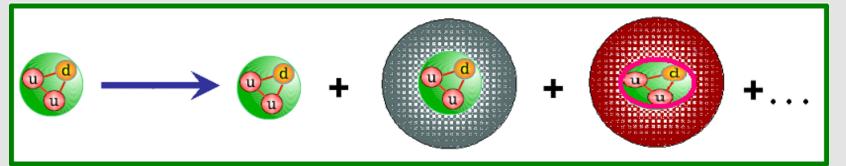
- · Probing Baryons by Resonance excitation
- Unitary K-Matrix Approach to Meson Production
- Photoproduction on the Nucleon: ωN and $K\Lambda$
- · Outlook: Hadronic and Leptonic Production on Nuclei
- · Summary

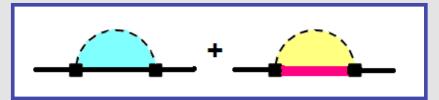

Probing Baryons by Hadronic and Electromagnetic Probes

Problem:

Missing

Confronting Theory with Reality:


Hunting missing resonances: photoproduction.


Recent years: new photoproduction data, new opportunity

Motivation

- γN ◊ ωN (SAPHIR)
 Search for nucleon resonances which couples strongly to ωN channel
- γN ◊ ΚΛ (SAPHIR, CLAS, SPring-8)
 New physical domain: search for 'missing' states which couple strongly to the associated strangeness channel.

Baryons: Quark Model vs. Dynamical Models

Our Choice of Degrees of Freedom (besides photon):

- · asymptotic hadronic states: mesons and baryons
- · empirical hadron masses
- · Lagrangian model with phenomenological coupling constants
- regularization by form factors
- · unitary coupled channels approach

Structure of the Lagrangian:

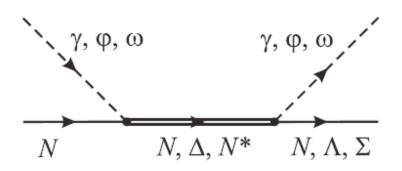
Born and *t*-channel terms:

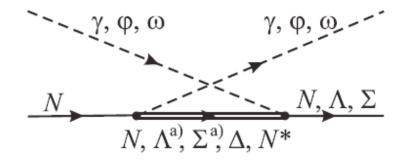
$$\mathcal{L}_{Born} + \mathcal{L}_{t} = -\bar{u}_{B'}(p') \left[\frac{g_{\tilde{\varphi}}}{m_{B} + m_{B'}} \gamma_{5} \gamma_{\mu} (\partial^{\mu} \tilde{\varphi}) + g_{\eta} i \gamma_{5} \eta + g_{S} \Phi_{S} \right.$$

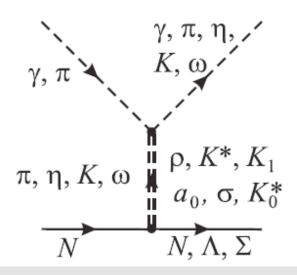
$$\left. + g_{V} \left(\gamma_{\mu} V^{\mu} + \frac{\kappa_{V}}{2m_{N}} \sigma_{\mu\nu} V^{\mu\nu} \right) \right] u_{B}(p)$$

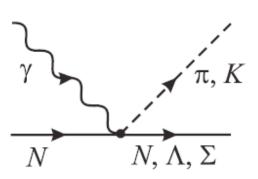
$$\left. - \frac{g_{S}}{2m_{\pi}} (\partial_{\mu} \varphi') (\partial^{\mu} \varphi) \Phi_{S} - g_{V} \varphi' (\partial_{\mu} \varphi) V^{\mu} - \frac{g_{V}}{4m_{\varphi}} \epsilon_{\mu\nu\rho\sigma} V^{\mu\nu} V'^{\rho\sigma} \varphi \right.$$

positive-parity spin-1/2 resonances, PV coupling is used:

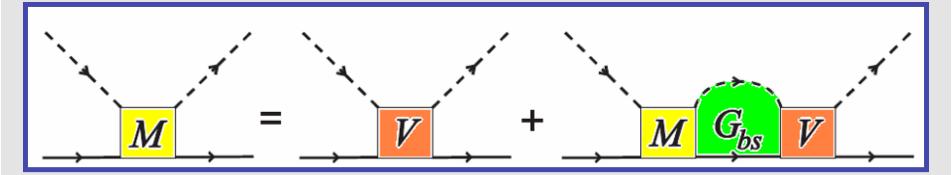

$$\mathcal{L}_{\frac{1}{2}B\varphi}^{PV} = -\frac{g_{RB\varphi}}{m_R \pm m_B} \bar{u}_R \begin{pmatrix} \gamma_5 \\ i \end{pmatrix} \gamma_\mu u_B \partial^\mu \varphi .$$


$$\pi, \eta, K$$


negative-parity spin-1/2 resonances, PS coupling is used:


$$\mathcal{L}_{rac{1}{2}Barphi}^{PS} = -g_{RBarphi}ar{u}_{R}\left(egin{array}{c}1\-i\gamma_{5}\end{array}
ight)u_{B}arphi \; .$$

Tree-Level Diagrams in the BS Equation



The Giessen Model: Coupled Channels K-Matrix

$$G_{bs} \equiv \frac{P}{H-\omega} + i\pi\delta(H-\omega)$$
:

$$\mathcal{K} = \mathcal{V} + \mathcal{V} \frac{P}{H - \omega} \mathcal{K} \sim \mathcal{V}$$
 $\mathcal{M} = \mathcal{K} + i \mathcal{K} \delta (H - \omega) \mathcal{M}$

$$\mathcal{M}_{lphaeta} \equiv \left[rac{\mathcal{K}}{1-i\mathcal{K}}
ight]_{lphaeta} \sim \left[rac{\mathcal{V}}{1-i\mathcal{V}}
ight]_{lphaeta}$$

- · Widths Γ_{N^*} are generated dynamically
- Unitarity for K=K⁺, Resonances and background!

The Giessen Model: Multi-Channel T-Matrix

Coupled Channel Picture of Resonance Excitation

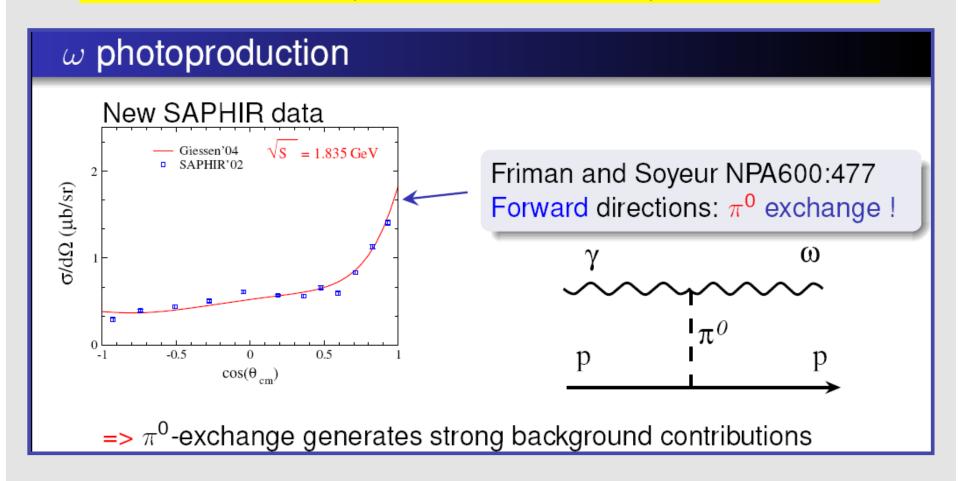
- Each resonance can be reached through each asymptotic channel
- T matrix provides unitary, analytic structure
- all channels (e.g. πN , ρN) couple to all other channels in intermediate state
- photon multipoles $(E_{l\pm}, M_{l\pm})$ directly related to T

$$T(J^{\pi}) = \begin{pmatrix} T_{\pi N \to \pi N} & T_{\eta N \to \pi N} & T_{\gamma N \to \pi N} & T_{\rho N \to \pi N} & T_{\kappa N \to \pi N} & T_{\kappa \Sigma \to \pi N} \\ T_{\pi N \to \eta N} & T_{\eta N \to \eta N} & T_{\gamma N \to \eta N} & T_{\rho N \to \eta N} & T_{\kappa N \to \eta N} & T_{\kappa \Sigma \to \eta N} \\ \hline T_{\pi N \to \gamma N} & T_{\eta N \to \gamma N} & T_{\gamma N \to \gamma N} & T_{\rho N \to \gamma N} & T_{\kappa N \to \eta N} & T_{\kappa \Sigma \to \eta N} \\ \hline T_{\pi N \to \rho N} & T_{\eta N \to \rho N} & T_{\gamma N \to \rho N} & T_{\rho N \to \rho N} & T_{\kappa N \to \rho N} & T_{\kappa \Sigma \to \rho N} \\ \hline T_{\pi N \to \rho N} & T_{\eta N \to \rho N} & T_{\gamma N \to \rho N} & T_{\rho N \to \rho N} & T_{\kappa N \to \rho N} & T_{\kappa \Sigma \to \rho N} \\ \hline T_{\pi N \to \kappa N} & T_{\eta N \to \kappa N} & T_{\gamma N \to \kappa N} & T_{\rho N \to \kappa N} & T_{\kappa N \to \kappa N} & T_{\kappa N \to \kappa N} & T_{\kappa \Sigma \to \kappa N} \\ \hline T_{\pi N \to \kappa N} & T_{\eta N \to \kappa N} & T_{\gamma N \to \kappa N} & T_{\rho N \to \kappa N} & T_{\kappa N \to \kappa N} & T_{\kappa \Sigma \to \kappa N} \\ \hline T_{\pi N \to \kappa \Sigma} & T_{\eta N \to \kappa \Sigma} & T_{\gamma N \to \kappa \Sigma} & T_{\rho N \to \kappa N} & T_{\kappa N \to \kappa \Sigma} & T_{\kappa \Sigma \to \kappa \Sigma} \end{pmatrix}$$

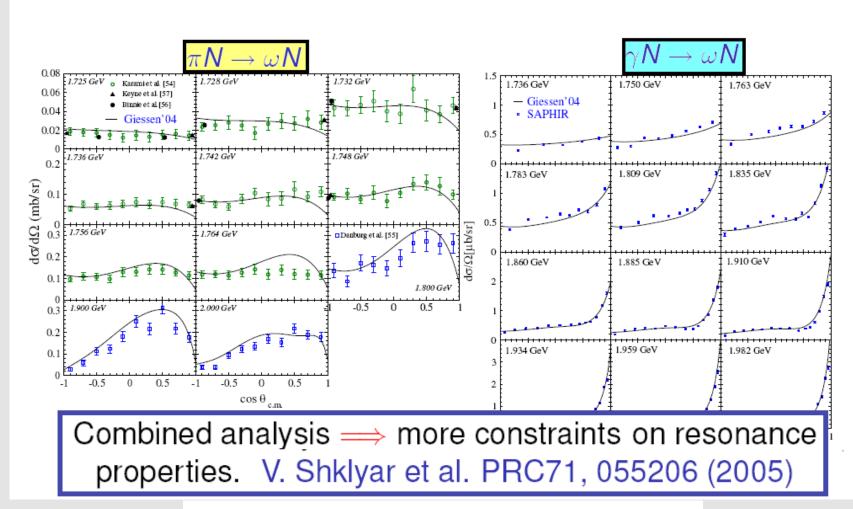
ωN photoproduction

 ωN final state: Hard to analyze

Vector mesons:

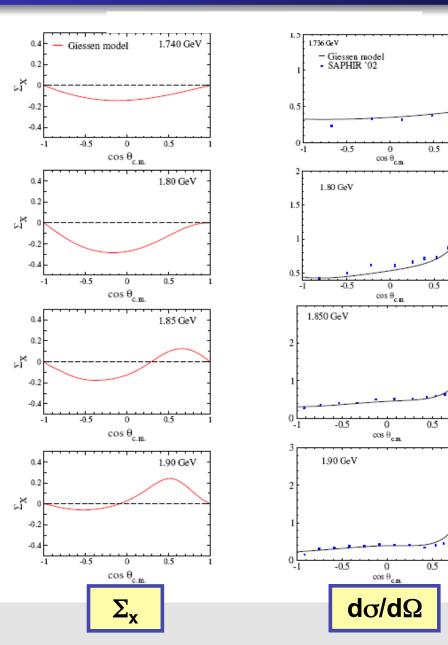

```
\gamma N: different helicity states \frac{1}{2} - 1, \frac{1}{2} + 1 \omega N: different helicity states \frac{1}{2} - 1, \frac{1}{2} + 1, \frac{1}{2} + 0 => different resonance coupling to helicity states.
```

• photoproduction analogy with $\gamma N \to \pi N$: needs $\pi N \to \pi N$ as an input.


Same for $\gamma N \to \omega N$ photoproduction: knowledge about $\pi N \to \omega N$ channel is mandatory.

New channel: include also j=5/2 states

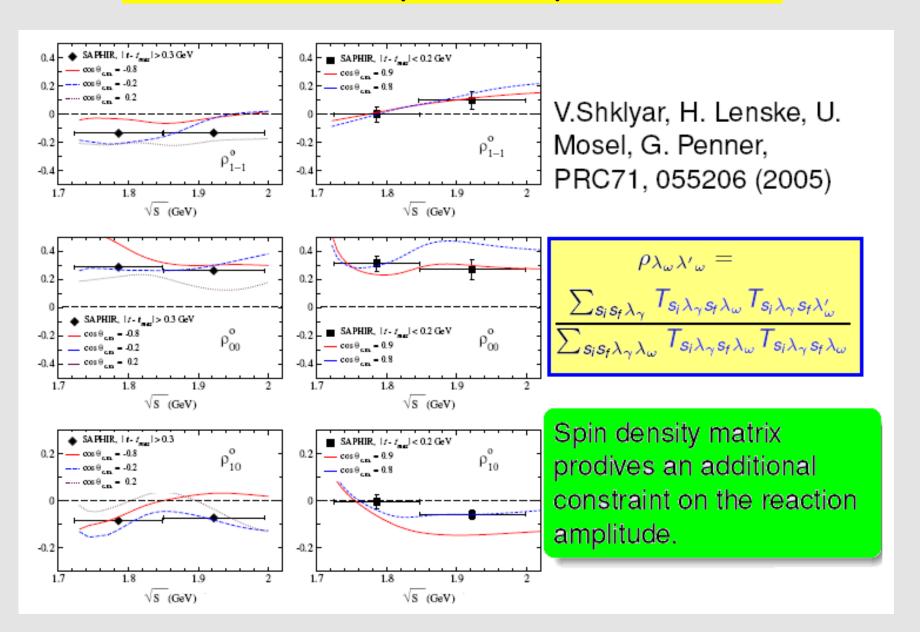
Production Dynamics of ω Photoproduction



Giessen model. Results for the $(\pi, \gamma)N \rightarrow \omega N$ reactions

 $\pi N \rightarrow \omega N$: More precise data needed

Giessen model. Results for $(\pi, \gamma)N \rightarrow \omega N$


A. Titov, T.-S.H. Lee PRC66:015204 and

Q. Zhao PRC63:025203
Asymmetry is sensitive to the production mechanism!

Beam asymmetry:

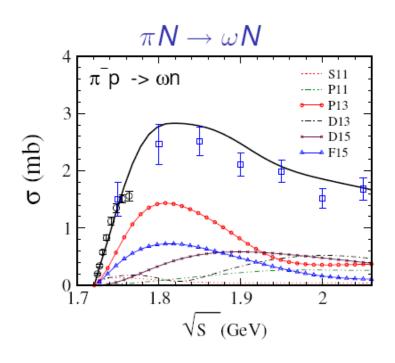
Changes sign with increasing energy: *t*-channel dominates the forward directions.

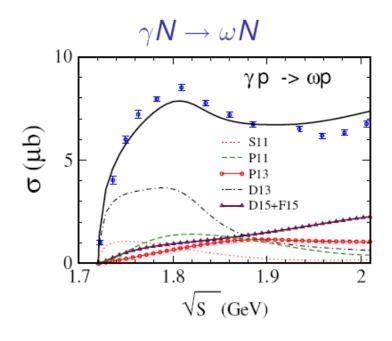
$\gamma N \rightarrow \omega N$ Spin Density Matrix

Sensitivity on Reaction Input: Spin Density Data and Cross Sections

with ω spin density matrix data

without ω spin density matrix data

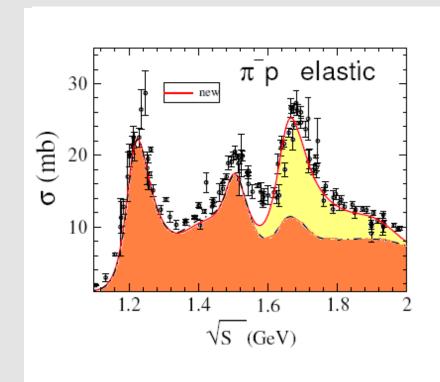

 $\chi^2 \approx 4.2$


(SAPHIR Data)

 $\chi^2 \approx 6.5$

V. Shklyar et al., PRC71 055206 (2005) G. Penner et al., PRC66 055211 (2002)

Giessen model. Results for $(\pi, \gamma)N \rightarrow \omega N$



- P₁₃: interference between resonance and background
- strong $N^*(\frac{5}{2})$ coupling to ωN
- D₁₃ shows minor influence

- strong Born and π^0 -exchange contributions
- D_{13} is due to π^0 -exchange

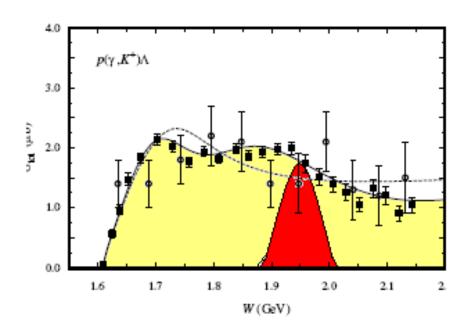
Phys.Rev.C71:055206,2005

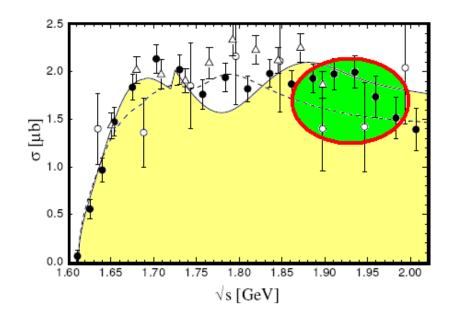
Contributions of j > 3/2 Resonances to πN ?

New results:

with spin- $\frac{5}{2}$ resonances!

V. Shklyar et al .PRC71, 055206 (2005)

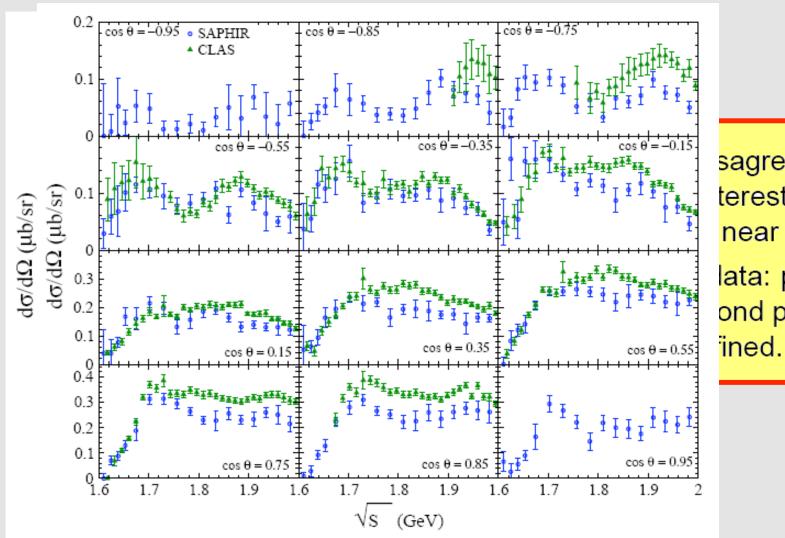

Optical theorem:


$$ImT_{\pi N \to \pi N} \sim \sigma_{\pi N \to \omega N} + \dots$$

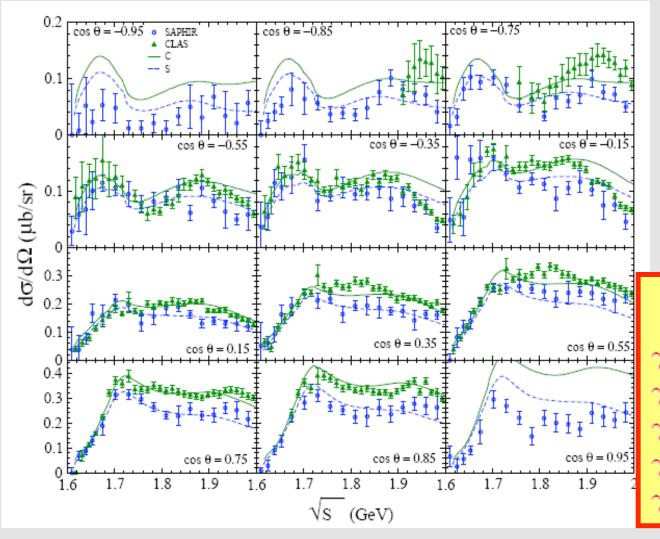
 πN and ωN : $D_{15}(1675), F_{15}(1680), F_{15}(2000)$

New Resonances in $\gamma+N \rightarrow K+\Lambda$?

SAPHIR, Tran et al. (1998): structure at about 1.9 GeV in $\gamma + N \rightarrow K + \Lambda$

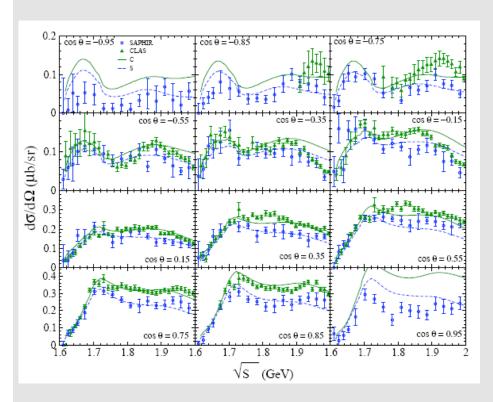


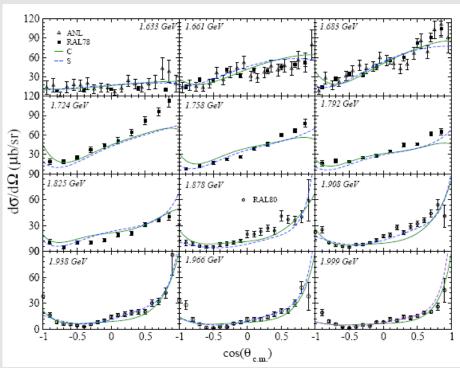
Mart, Bennhold (PRC 61: 012201): claim for a new D13(1960) resonance


Penner, Mosel (PRC66: 055212): Born term and tylenamel interference

New $\gamma N \rightarrow K\Lambda$ Data from SAPHIR and CLAS

sagree in the teresting energy near 1.9 GeV. lata: position of ond peak is not


$\gamma N \rightarrow K\Lambda$ Results from the Giessen Model



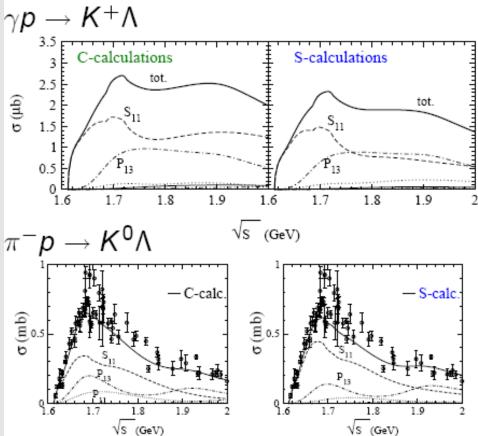
- separate fits to SAPHIR and CLAS data
- constraints from other hadronic and γ channels

```
\begin{array}{ccc} \pi N \longrightarrow K \Lambda \\ & + \\ \gamma N \longrightarrow \gamma N & \pi N \longrightarrow \pi N \\ \gamma N \longrightarrow \pi N & \pi N \longrightarrow 2\pi N \\ \gamma N \longrightarrow \eta N & \pi N \longrightarrow \eta N \\ \gamma N \longrightarrow \omega N & \pi N \longrightarrow \omega N \\ \gamma N \longrightarrow K \Sigma & \pi N \longrightarrow K \Sigma \end{array}
```

$\gamma N \rightarrow K\Lambda$: Influence on other Channels

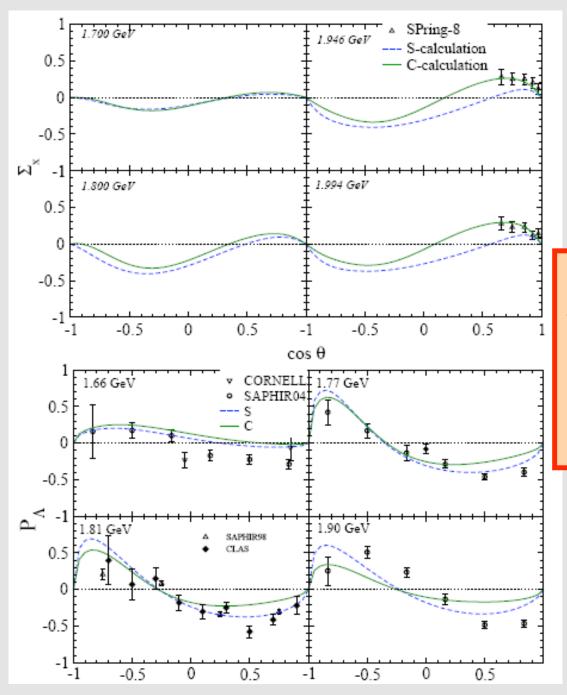
$$\gamma p \rightarrow K^+ \Lambda$$

separate fits to SAPHIR and CLAS data


$$\pi^- p o K^0 \Lambda$$

Disagreement between the CLAS and SAPHIR data does not affect $\pi^-p \to K^0 \Lambda$

Consequences on Reaction Dynamics of KA Channels from CLAS/SAPHIR Solutions

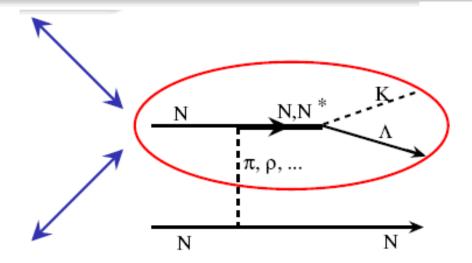

Resonance contributions:

 $S_{11}(1650) P_{13}(1720)$ and $P_{13}(1900)$

L _{21,2S}	$R_{K\Lambda}(C)$	$R_{K\Lambda}(S)$
S ₁₁ (1535)	1.3 ^b	1.26 ^b
S ₁₁ (1650)	3.2(+)	4.6(+)
P ₁₁ (1440)	1.48 ^b	-0.71 ^b
<i>P</i> ₁₁ (1710)	6.8(+)	3.1(+)
P ₁₃ (1720)	4.6(+)	4.0(+)
P ₁₃ (1900)	2.4(+)	2.3(+)
$D_{13}(1520)$	-0.58 ^b	-0.33 ^b
D ₁₃ (1950)	0.1(+)	0.1(-)
D ₁₅ (1675)	0.2(+)	0.1(+)
F ₁₅ (1680)	0.0(+)	0.0(+)
F ₁₅ (2000)	0.0(+)	0.2(-)

 N^* decay ratios to $K\Lambda$ for the C and S calculations.

Predicted photon beam asymmetry.

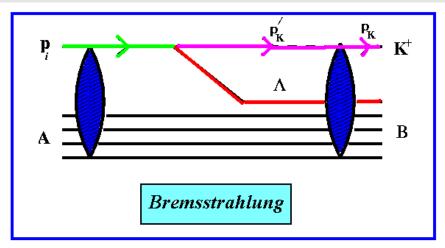

(LEPS data: R. G. T. Zegers et al., Phys. Rev. Lett. 91, 092001 (2003))

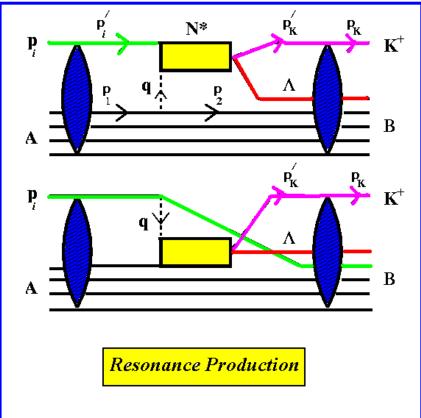
Differences between SAPHIR and CLAS cross section data have minor influence on the spin observables! (PRC 72:015210 (2005))

 Λ polarization for $\gamma + p \rightarrow K$ $+\Lambda$.

Data: SAPHIR98, SAPHIR04, CLAS, and CORNELL.

- reaction pp → pK⁺Λ
- hypernuclei: $A(p, K^+)_{\Lambda}B$


To constrain $pp \rightarrow pK\Lambda$ reaction: combined analysis of


- \bullet $\pi N \rightarrow K \Lambda$
- $\gamma N \rightarrow K \Lambda$

is necessary

Relation to Hadronic KA Production on the Nucleon and on Nuclei

R. Shyam, H. Lenske, U. Mosel: nucl-th/0505043 & Nucl.Phys. A (2005); nucl-th/0308085 & Phys.Rev. C69 (2004) 065205

Associated (p,A) Strangeness Production

- exploratory for hadronic production at COSY
- elementary process for HI production
- extension to electroproduction at ELSA, MAMI and JLAB in preparation

 $N*(1650)[\frac{1}{2}], N*(1710)[\frac{1}{2}], N*(1720)[\frac{3}{2}]$

R.Shyam, H.L., PRC 69: 065205 (2004), nucl-th/0505043 & NPA (2005) in print

Summary and Outlook

- The Giessen Model: Lagrangian Approach to Coupled Channels K-Matrix
- · Coherence of resonance and background contributions
- · Simultanuous description of photo- and hadro-production
- · Photoproduction and reaction dynamics of ωN and $K\Lambda$ states
- · Spectral structures: interference effects or resonances?
- · in progress: dynamical correlations in 2-pion channels
- \cdot hadro- and electro-production of $K\Lambda$ on nucleons and nuclei

In collaboration with: V. Shklyar, U. Mosel

EuroGK

