
Neutron Matter
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Perfect Liquids

sQGP

Trapped Fermi Gas

Neutron Star (Crab)
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Universality

What do these systems have in

common?

dilute: rρ1/3 ¿ 1

strongly correlated: aρ1/3 À 1

a

r

k −1
F

Neutron Matter Feshbach Resonance in 6Li
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Universality

Consider limiting case (“Bertsch” problem)

(kFa)→∞ (kF r)→ 0

Universal equation of state

E

A
= ξ

(E

A

)

0
= ξ
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( k2F
2M

)

How to find ξ?

Numerical Simulations

Experiments with trapped fermions

Analytic Approaches
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Effective Field Theory

Effective field theory for pointlike, non-relativistic neutrons

Leff = ψ†
(

i∂0+
∇2
2M

)

ψ− C0
2
(ψ†ψ)2+

C2
16

[

(ψψ)†(ψ
↔

∇
2

ψ)+h.c.
]

+ . . .

Scattering amplitude

A = 1

p cot δ − ip p cot δ = −1
a
+
1

2
Λ2
∑

n

rn

(

p2

Λ2

)n+1

Low energy expansion (natural case)

A = −4πa
M

[

1− iap+ (ar0/2− a2)p2 +O(p3/Λ3)
]
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Modified Expansion

Coupling constants determined by nn interaction

C0 =
4πa

M
a = −18 fm C2 =

4πa2

M

r

2
r = 2.8 fm

Problem: Large scattering length

(ap)¿ 1 p¿ 10 MeV

Need to sum (ap) to all orders. Small parameter Q ∼ (a−1, p, . . .)

−1A

−1A −1AA0

A−1 = −
4π

M

1

a+ ip

A0 = −
4π

M

r0p
2/2

(a+ ip)2
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Power Counting Made Manifest: PDS Scheme

Dimensional regularization in PDS scheme

∫

d3q

(2π)3
M

k2 − q2 + iε
= −M

4π
(µ+ ik)

Low energy constants

C0 = −
4π/M

µ− 1/a ∼
1

Q
C2 k

2 =
4π/M

(µ− 1/a)2
r

2
k2 ∼ Q0.

Scattering matrix

T (k) =
C0 + C2k

2

1− M
4π (µ+ ik)(C0 + C2k2)

.
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Low Density Expansion

Finite density: L → L− µψ†ψ ⇒ Modified propagator

G0(k)αβ = δαβ

( θ(k − kF )
k0 − k2/2M + iε

+
θ(kF − k)

k0 − k2/2M − iε
) k2F

2M
= µ

Perturbative expansion

� � � � � � ��� ��� � � � � ��� � � �
	

E

A
=

k2F
2M

[

3

5
+

(

2

3π
(kFa) +

4

35π2
(11− 2 log(2))(kFa)2

)

+ . . .

]
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Low Density Expansion: Higher orders

Effective range corrections

E

A
=

k2F
2M

1

10π
(kFa)

2(kF r)

Logarithmic terms

E

A
=

k2F
2M

(g − 1)(g − 2) 16
27π3

(4π − 3
√
3)(kFa)

4 log(kFa)

related to log divergence in 3→ 3 scattering amplitude

local counterterm D(ψ†ψ)3 exists if g ≥ 3
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Lattice Calculation

Free fermion action

Sfree =
∑

~n,i

[

e(mN−µ)αtc∗i (~n)ci(~n+ 0̂)− (1− 6h)c∗i (~n)ci(~n)
]

− h
∑

~n,ls,i

[

c∗i (~n)ci(~n+ l̂s) + c∗i (~n)ci(~n− l̂s)
]

Contact interaction: Hubbard-Stratonovich

exp
[

−Cαta
†
↑a↑a

†
↓a↓

]

=

∫

ds√
2π
exp

(

− 1
2
s2
)

exp

[(

s
√
−Cα+ Cαt

2

)

(a†↑a↑ + a†↓a↓)

]

Path Integral

Tr exp [−β(H − µN)] =
∫

DsDcDc∗ exp [−S]
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Lattice Fermions

Introduce pseudo fermions: S = ψ∗
iQijψj + V (s)

Z =

∫

DsDφDφ∗ exp [−S′] , S′ = φ∗iQ
−1
ij φj + V (s)

C < 0 (attractive): det(Q) ≥ 0

Hybrid Monte Carlo method

(4+1)-d Hamiltonian H(φ, s, p) = 1
2p

2
α + S′(φ, s)

Molecular Dynamics ṡα = pα ṗα = − ∂H
∂sα

Metropolis acc/rej P ([sα, pα]→ [s′α, p
′
α]) = exp(−∆H)
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Continuum Limit

Fix coupling constant at finite lattice spacing

M

4πa
=

1

C0
+
1

2

∑

~p

1

E~p

Take lattice spacing b, bτ to zero

µbτ → 0 n1/3b→ 0 n1/3a = const

Physical density fixed, lattice filling → 0

Consider universal (unitary) limit

n1/3a→∞
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Lattice Results

0

0.5
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1.5
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E
/A

*(
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5 
E

F
)-1

T/TF

0.07

0.42

0.14

T = 4 MeV
T = 3 MeV
T = 2 MeV

T = 1.5 MeV
T = 1 MeV

Canonical T = 0 calculation: ξ = 0.25(3) (D. Lee)

Not extrapolated to zero lattice spacing
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Green Function Monte Carlo

10 20 30 40
N

0

10

20

E
/E

FG

E = 0.44 N E
FG

Pairing gap (∆) = 0.9 E
FG

odd N

even N

Other lattice results: ξ = 0.42 (Bulgac et al. ,UMass)

Experiment: ξ = 0.27+0.12−0.09 [1], 0.51± 0.04 [2], 0.74± 0.07 [3]
[1] Bartenstein et al., [2] Kinast et al., [3] Gehm et al.
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Other Lattice Calculations

Neutron matter with realistic interactions (pions)

Sign problem returns; can be handled at T 6= 0

Neutron matter with finite polarization

Sign problem returns

Nuclear Matter (neutrons and protons)

No sign problem in SU(4) limit (Wigner symmetry)

Need a three body force (can be handled with HS)

Isospin asymmetry possible
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Analytic Approaches: Ladder Diagrams

Sum ladder diagrams at finite density (Brueckner theory)

E

A
=

k2F
2M
×

[

3

5
+

2(kFa)/(3π)

1− 6
35π (11− 2 log(2))(kFa)

]

-1 0 1 2
1/k

F
a

-1

0

1

2

3

4

E
/E

0

pp ladders
pp (f

PP
->2)

pp (f
PP

-> f
PP

)

pp (D ->    8)

� ��

�� �

�� �� � �� 	�

Independent of renormalization scale µPDS

Unitary Limit (kFa)→∞: ξ = 0.32
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Large N approximation: Ring Diagrams

Consider N fermion species. Define x ≡ NkFa/π

E

A
=

k2F
2M
×
[(

3

5
+
2x

3

)

+
1

N

(

3

π
H(x)− 2x

3
+
4

35
(22− 2 log(2))x2

)]

� ��� � � �

��� � � ��
� -4 -2 0 2 4

C
0
~k

F
a

-2

-1

0

1

2

3

4

5

E
/(

E
F A

)

ph ring (g = 2)
ph ring (g->   8)

O((k
F
a)

2
)

depends on PDS scale parameter µPDS

not suitable for (kFa)→∞
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Large d Limit

In medium scattering strongly restricted by phase space

P
2

+ k

� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �

P k

2

Find limit in which ladders are leading order

��� � ��� 	�
 � ���

� � � ��� 	�

 
 � ���

λ ≡
[

ΩdC0k
d−2
F M

d(2π)d

]

λ = const (d→∞)
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Particle-Particle Scattering Amplitude

∫

dD−1q

(2π)D−1

θ+q
k2 − q2 + iε

= fvac(k) +
kd−2F Ωd

2(2π)d
fdPP (κ, s),

0 0.1 0.2 0.3 0.4 0.5 0.6
s,k [k

F
]

0

0.5

1

1.5

2

f PP
(s

,k
) 

[s
ca

le
d]

D=4
D=10
D=20
D=30
D=40

0 0.2 0.4 0.6 0.8 1
k [k

F
]

0

2

4

6

8

f PP
(0

,k
) 

[s
ca

le
d]

D=4
D=10
D=20
D=30
D=40

f
(d)
PP (s, κ) =

1

d
f
(0)
PP (s, κ)

(

1 +O
(1

d

))

.
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Example: 2nd order diagram

∫

ddP

(2π)d

∫

ddk

(2π)d
θ−k f

(d)
PP (κ, s) =

k2dF
(d+ 1)2

[

Ωd

(2π)d

]2
4

d+ 1
+ . . .

Energy per particle is given by

E2
A
= 2

[

ΩdC0k
d−2
F M

(d+ 1)(2π)d

]2
(

k2F
2M

)

.

Ladder diagrams form geometric series

E

A
=

{

1 +
λ

1− 2λ +O

(

1

d

)}(

k2F
2M

)

λ→∞: ξ = 1/2 +O(1/d)
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Pairing in the Large d Limit

BCS gap equation

∆ =
|C0|
2

∫

ddp

(2π)d
∆

√

ε2p +∆
2

Solution

∆ =
2e−γEF

d
exp

(

− 1

dλ

)(

1 +O

(

1

d

))

,

Pairing Energy

E

A
= −d

4
EF

(

∆

EF

)2

∼ 1

d
.
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Polarized Fermions: From BEC to BCS

BEC limit: Tightly bound bosons, no polarization for δµ < ∆

δµ > ∆: Mixture of Fermi and Bose liquid, no phase separation

Stable against current formation? Consider EFT for gapless fermions

L = ψ†
(

i∂0 − ε(−i~∂)− (~∂ϕ) ·
↔

∂

2m

)

ψ +
f2t
2
ϕ̇2 − f2

2
(~∂ϕ)2

εv(~p) = ε(~p) + ~vs · ~p− δµ

Free energy of state with non-zero current

F (vs) =
1

2
nmv2s +

∫

d3p

(2π)3
εv(~p)Θ (−εv(~p))

Unstable for BCS-type dispersion relation
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Schematic Phase Diagram

∆

1/a1/a*

∆

homogenoeous 
superfluid

gapless
superfluid

supercurrent

LOFF

1

δµ

∆

23



Experimental Situation (MIT group)
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Summary

Effective Field Theory (EFT) methods provide

systematic and efficient calculational tools

unified approach to very different physical systems (cold

atoms, neutron matter, quark matter)

EFT in many body systems

Low energy expansion: FL, NonFL, Goldstone bosons, . . ..

EFT for free space interaction. Need extra tools: lattice,

large N , large d, exact RG
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