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PHOTOPRODUCTION

H. Rollnik,

Physikalisches Institut der Universitdt, Bonn

I. INTRODUCTION

The aim of these lectures is to explain what the investigation of photoproduction
processes can teach us about the structure of strongly interacting particles. In the beginn-
ing of meson physics, experiments on the photoproduction of pions have led to a series of

) the ratio
of w+ and 7° production led to the invention of the first pion-nucleon resonant state’ );
also the existence and properties of the second [N(1512)] and third [N(1688)] 7-N resonance

important discoveries: the existence of neutral pions was finally established

was for the first time discussed using results of Cal-Tech and Cornell Electron synchrotron .

Nowadays most of the structures in Elementary Particle Physics have been discovered
by people working with hadrons - strongly interacting particles - only, but there are important

properties of these resonances which can be studied only with photons.

Using photons for particle physics brings about experimental as well as theoretical
complications. These lectures have to deal with the new theoretical problems which arise due
to the peculiar properties of the photons. From a principal point of view there are only a

few such peculiarities and these are of a more technical character:

the spin 1 of the photon makes formulae clumsy;
the vanishing mass of the photon introduces problems of
gauge invariance;

the photon breaks isospin invariance.

The last point does not introduce such great changes as one might expect because of
the fortunate fact that the photon is coupled to other particles only "electromagnetically" by
the small fine structure constant a = 1/137. Therefore it does not take part in the strong
interconnection of the hadrons often referred to by the term "ynitarity of the S matrix".

More precisely, this fact allows the properties of the photons and the strongly interact-
ing particles to be separated. In mathematical terms: any photoproduction amplitude T
can be factorized according to

T=A”<...lju|...> (1

only if contributions of the order J; are taken into account. Here AY describes the photon
wave function,and the Hilbert states in the matrix elements contain only hadrons. Equation
(1) is valid for real as well as for virtual photons which are exchanged in electron processes.
Table I gives examples for Eq. (1). All methods which have been invented for the hadron
physics - analyticity methods, symmetries, etc. - can now be applied to the matrix elements

of the current operator (with some minor change). Therefore a systematic theory exists for

’*
the matrix elements (a) ) and (b) of Table I, while for the multiple processes (c) only special

*) Cp. the preceding lectures by P. Beckmann.
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models have been investigated. I shall not give a complete account of the systematic theory
but I do intend to explain the general ideas and especially to point to the differences be-

tween photoproduction and hadronic two body-processes.

Table I

Examples for the matrix elements of the current operator

matrix elements investigated by

(a) <N/ Ijul N> electron scattering
<N’ IJ'”I N> photoproduction of single pions

(b) <17N'|ju| N> photoproduction of n particles
<KY|j“| N> photoproduction of strange particles
<2m, N Ij“I N> multiple pion production

especially

(c) <pN |qu N> p production

< wN’ Ijul N> w production

II. KINEMATICS AND INTERMEDIATE STATES FOR THE TWO-—BODY PROCESSES

Let us start some brief remarks on the kinematics of the photoproduction of a

meson (m) and a baryon (B):

Q% B

K R
y + N> m (meson) + B (baryon) (2)
K+ P =Q+ P . (2a)

The last equation contains four-momenta of the involved particles such that the

different masses are given by

K2 =0, @2 = m®; P2 =M3 P2 =M2 . (2b)
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As usual we introduce the Lorentz invariant quantities:

s = (K+Py)® = W, W = total c.m.s. energy
t = (Q-K)®2 =m®-2KQ = n® - 2K(w - q cos ©) (3)
u=(P.~-K)® = M# - 2K(E2 + q cos @) ,
s+ t+u = MZ+ MZ+ nf
and where K% = LE;?%FJE = (c.m.s. momentum)® of the y + N system (3a)
¢ = |s- (M2+m)24”55_ Ot - m)* | = (c.m.s. momentum)® of the m + B system (3b)

(7] =4/a§-+nF = C.M.S. -energy of the meson

E: = /q® + M2 = c.m.s. energy of the final baryon (3c)
® = c.m.s. angle between meson and photon.

From these relations the "physical domain" in the s-t plane can easily be calculated; i.e.
these s,t points which can be realized by the photoproduction process (2). A necessary
condition is:

s2 (M+m)?; t<oO .

Different from the elastic scattering case,the value t = 0 cannot be reached for

finite s; compare Fig. 1 which illustrates the situation for pion photoproduction. This
4

fact has brought about some difficulties for the application of dispersion relations ) and

the Regge pole hypothesis"s).

All attempts for a detailed theoretical description of the dynamics of photoproduc-
tion start from analyticity properties7) of the photoproduction amplitude T which are assumed
to be valid like in other two-body processes though they have never been proved. These
assumptions maintain that T can be described by holomorphic functions in the physical s-t
domain, the structure of which is determined by singularities with a simple physical meaning:
their position and detailed properties can be traced back to the intermediate physical states
which are allowed by the general conservation laws. To get a complete system of these singu-

8
larities one must discuss the following three reactions at the same time

Yy +N->m+ B: s-channel (4a)
y +m>N+B: t-channel (4b)
vy +B->m+ N: u-channel . (4¢)

They are connected with each other by the crossing relation. Each process is named accord-

ing to the variable which describes its total c.m.s. energy.

At the present time it appears hopeless to take account of all intermediate states.

Even a more modest approach has not been carried through completely which consists in retain-

ing only the resonant intermediate states. Tables II through IV give the presently known

resonances which in principle can play a role in photoproduction:
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Table II

Intermediate states in the s-channel
(if the incoming photon is replaced by a pion the situation remains the same)

final state intermediate (resonant) state
a N N(940)
N Sf A(1238)
AN N(1480)?
or KZ N(1512)

N(1688) A(1920)

N(2190) A(2360)

V0

N(2700)

nN only N(I = %)
intermediate states

KA

s-channel (Table II) - All known isobars = non-strange baryon resonances can occur for the 7 N

and KX final state. For the production of nNand KA conservation of

isospin in the upper bubble allows only the I = Y% isobars.

Table III

Intermediate states in the u-channel

final state intermediate (resonant) states

7N all isobars
AN

A S A SEyp— - ——— p—

t— b \\W n N only I = %, - isobars

KA {A(ms) Ya(1405); Ya(1520); Ya(1815),

K2 2(1189) Yf(ljss); Yf(1660); Yf(1765).

u-channel (Table III)- For 7 N production all isobars can occur; in the nN caseonly I = 1/2

isobars are allowed, while for strange particle production all hyperon

states with strangeness -1 can occur.

In both cases the photon can be replaced by a pion without changing any result.

The deeper reason for this lies in the fact that the photon can be regarded as a mixture of an

isoscalar and an isovector particleg). This can be inferred directly from the Gell-Mann-

Nishijima relation:

Q=1 +Y/2 . (5)
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For a local field theory which is finally the basis of all our considerations we
deduce from Eq. (5) because of Q = fjo(x) d’x a decomposition of the current operator into an

isovector and an isoscalar component:
o o=3°+3 - (6)
The first term behaves with respect to isospin transformations like a neutral pion,which proves

our statement. Introducing Eq. (6) into the matrix element < f|ju[ N> one finds by coupling

the isospin of ju to the isospin of the initial nucleon,the isospin decomposition for the

photoproduction amplitude

1 3
p o), oB), (%) -
where T(o) originates in the isoscalar current and contains (in the s-channel) only the
(total) isospin I = % . The two other terms come from jX’ and belong to the isospin I = %
and I = 3é,respectively. For the production of the isoscalar n particles and for K + A only

1
T(o) and T(/é) are different from zero while for pion and KX production all three terms

contribute,

Table IV

Intermediate states in the t-channel for photoproduction
and pion-nucleon scattering

final state intermediate (resonant) states
+ + + + + +
7N 7 (140); p(763); A17(1090); B7(1215); A27(1310)
7°N
// . p°(763); w°(783); ¢°(1020); B°(1215)
7 n N
R -u
K'Y | KT494); KT(725); KT (891);  Kp(1215)
*
K° Y K°,K°,K‘(’:
mN-=>7N p; n2w(960); B; f°(1250); E(1410)7?

t-channel (Table 1IV) - Here conservation laws play an even more stringent role. Firstly we
have to distinguish between neutral and charged mesons to take charge
conservation into account. For the charged mode all charged meson re-
sonances can enter as intermediate states. For the neutral mode,on the

contrary, we have to pay attention to the charge conjugation invariance:

because the C parities of the photon resp. of the neutral pion and of
the n-particle are odd resp. even only meson resonances with odd C-
parity are possible intermediate states. Thus the following particles
are excluded: 7°; n°; neutral components of Al and A2,and finally the

f° particle.
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This last fact distinguishes the photoproduction of pions clearly from pion-nucleon
scattering that is indicated in the last line of Table IV. The allowed states.for 7-N scat-
tering are determined by their G parity; only even G parity states are allowed. The concept
of G parity can also be applied to photoproduction if the decomposition (6) is used. The

G operation
- im Iz
G=Ce

acts in the following way on the two components of ju:

Vs -t V3
= + 8
G Ju G JH (8a)
.S -1 .S
G G = - 8b
Jy 3o (8b)

where the odd behaviour of the electromagnetic current under C has been taken into account.
In the diagram of Table IV the current ju occurs only on the left hand bubble. Counting
also the G parity of the pion resp. thc n particle one finds the entries of Table V. Note,
for example, that the exchange of a p particle contributes only to the isoscalar part in

7 production and only to the isovector part in n production.

Table V

Contribution of the intermediate particles in the t-channel to the different
isospin components of the photoproduction amplitude for y+ N -» 7+ N.
For y+ N » n+ N the two lines have to be interchanged.

exchanged particle G contribution to

1 3 +
T, w; ¢, Al, A2 -1 T(/z) and T(/Z) resp. T(')

(isovector)

p; B +1 T(O) (isoscalar)

For a theoretical description of the photoproduction process one must know the
contribution of the different resonances. In the next section we start with qualitative

discussion.

III. RELATIVE IMPORTANCE OF THE DIFFERENT RESONANCES: QUALITATIVE DISCUSSION

The first criteria to answer this question can be found by looking at the position
of the resonances in the s-t plane: as a working principle we shall regard those resonances
as most important which lie nearest to the discusse kinematical pointa). Therefore each
resonance in the s-channel will become important if the variable s passes through the mass
value of the respective resonance. One encounters a usual resonance phenomenon. For the
other channels the importance of the resonances can be easily discussed with the help of
Fig. 2. Evidently the exchange of a pion should play an important role at least in the

forward direction. Now pion exchange is by C invariance only possible for production of



- 25 -

charged pions. We expect a marked difference between the cross-sections for charged and
neutral pions which indeed shows up in the experimental data. For the backward direction the
nearest singularity is due to the exchange of a nucleon in the u-channel. It must be taken
into account at any rate together with the pion exchange and the nucleon pole in the s-channel
to preserve gauge invariance (cp. section VIII). The contributions of these three poles can
be calculated completely by the formulae of (renormalized) perturbation theory once the pion-
nucleon coupling constant f2 resp. the kaon-hyperon coupling constants and the magnetic mo-
ments of the baryons are known. Figure 3 gives the results for the best known case: photo-
production of pions10 . Turning now to the role of the other mesonic resonances the situa-
tion is much more unclear. Especially the influence of the p meson is under vivi& discussion
in the present literature. In this section we only mention a reasoning using the Bronzan-Low
quantum number A"). This quantum number should be conserved in strong and electromagnetic
interactions as long as virtual baryon states can be neglected. Table VI shows the values of
A for the mesons in question and the result of the application of A conservation to the elec-
tromagnetic vertices of mesons: only » and the somewhat dubious Al particle can be coupled

to photon and pion (resp.n°). If one could rely on this argument only the exchange of pions
and very heavy subjects like Al is allowed for charged pion production. On the other hand,
in the 7° and  production,w exchange will presumably play a role. In connection with the

questionable A parity of the A2 resonance doubts have been raised against its applicability'zl

Table VI

Electromagnetic couplings of mesons allowed by A parity conservation
(V means allowed, - means forbidden.
Empty places are forbidden by other reasons. )

*
Y 7 n K p w ¢ Al A2 B k K KC

A parity + - - - + -+ = 2?2 + ?7 0+ -

yxx | v | -|v|=-|Vv]?]-

ynX - \ - A ? -

ykx | v |2 ]| -1V

We conclude this section with some remarks for very high energies (s » ).
s—-channel resonances should no longer be observed; they overlap completely if present at all.
On the other hand, the exchange of particles should become increasingly more important espe-
cially for particles with higher spin. We recall the well-known fact that the differ;ntial

3

cross-section due to the exchange of a spin j particle in the t-channel behaves like‘ ’



do 2j-2
wes 9)

for small momentum transfers t.

Therefore vector particles like p, w and ¢ are good candidates, even better, a spin
2 particle (perhaps A2 !). But it is generally believed that the s dependence of Eq. (9)
will be "damped" in some way in order to avoid conflicts with analyticity and unitarity'd).
This is achieved in the simplest way by replacing j by a "Regge trajectory” a(t) thus intro-
ducing a "moving spin" of the exchanged particle. Making the not very convincing assumption
that a(t) is a linear function of t with a slope given by proton-proton diffraction scatter-
ing one can draw some conclusions’s): according to Fig. 4, p, w and A2 have the largest ex-
ponents a(t) in the negative t region. The energy variation of the photopion cross-section

in the forward direction is therefore approximatively given by [because of a(0) = 0.5]

2[a(0)-1] N+
g% < s ~ i fory + p’ (10a)

“Nen

*
Strange particle production is determined by an analogous argument by K -exchange leading to

do 20 * -2 1

- K ~ . 10
Tl —§§ (10b)

For the backward direction the exchange of excited baryons must be considered. The A(1235)

trajectory seems to be the most important giving

do 2ab-2

WS ~ gg for pion and n-production , (10c)

*
while for strange particle production the Y;(1385) exchange suggests

do 1
Los (10d)

Of course all these formulae are guesses and describe only how the situation could be. For
the formal details of the application of Regge poles to photoproduction we refer to the

. 596 y15-18
literature’’°? ).

IV. MULTIPOLE ANALYSIS IN THE s-CHANNEL

In principle the s-channel resonances can be seen directly as maxima in the energy
dependence of the production cross-sections. For the lower resonances this is indeed the
case (see Fig. 5). The heavier isobars do not show up so clearly. Here the contributions
of the different resonant states overlap each other and there are also non-resonant terms.

To formulate a mathematical apparatus for such considerations we have to generalize the well-

known partial wave expansion

id¢t
Z(Zt +1) e sin 8¢ P¢ (cos 8) (11)
L

for the scattering of spinless particles for our case. Complications arise because of the
spins of photons and baryons. In the older treatments'g) also the zero mass of the photon
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introduces troubles. But the brilliant "helicity-formalism" invented by Jacob and
Wickzo) gives a simple solution for our problem. In this lecture we shall apply this
formalism directly to the photoproduction,referring to the original papers for its deeper

foundation.

We recall the basic definition: each spinning particle is described by its momentum

; and its spin component in the direction of p = helicity A:

|3, 2> . (12)
In general A can take the 2j+ 1 values
A= =Jyeee+t J (12a)
but for massless particles only
A==*3] (12b)

is allowed. The helicity does not change under rotations, but is reversed under space
reflection. Moreover, it is not Lorentz invariant. Therefore we shall use throughout the
c.m.S. system. The photoproduction process (2) for spin-zero mesons and spin VQ baryons can

be described by the following states (see Fig. 6):

a) Initial state (in the c.m.s. frame !):

|k, @i; Ay, Vg >
->
k = | com | = com.s. momentum of the incoming particles [cp. Eq. (3a)]
8, = initial angle (will be put equal to zero later on) (13)
A = helicity of the photon; A = % 1
vy = helicity of the incoming baryon; vy = % Yo o

Note that the photon has no A = 0 (longitudinal) component.

b) Final state:
|q’ ef; Va2 >
>
q = ch n | = com.s. momentum of the final particles [cp. Eq. (3b)]

@f = final angle

vs = helicity of the final baryon; v, = * %% .

The production amplitude

<q, 8; v2|T| k, 0; A, vy> (15)
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contains 8 functions of W and © resp. s and t (count all possibilities A = *+ 1, v, = * Y%,
v2 = * Y !) but only 4 are independent. Parity conservation ensures that the process with
Ay Vg3 Va and =A, =Vy; =-V2

are directly connected. One has only to apply a reflection on the production plane. There-~

fore we can restrict to

v = + vé (16)
and must consider the following 4 amplitude521)
+
H(s,t) = <q,0; va =+ %|T| k,0; A =21, vy = + %> (17a)
no helicity-flip amplitudes
+
3 (s,t) =<q,0; va =+ %|T| k,0; A =1, v, = =Y> (17p)

helicity-flip amplitudes.
By the way, these definitions can easily be generalized to virtual photons which
occur in inelastic electron scattering. One has only the additional possibility of a longi-

tudinal polarized photon: A\ = 0 and therefore two longitudinal amplitudes
H°(s,t) and &°(s,t) , (17¢)

which can be obtained from Eq. (15) by putting A = O.

In order to find the wanted partial wave decomposition one has to develop the states
(13) and (15) in terms of eigenstates of the total angular momentum. This can be easily done

because the helicity is a rotational invariant quantity. One gets

2J+1 J
la; Op5 vz > = /T [W; M, vy > v dy_, (@f) , (18a)
-] 2
J,M
and
2J+1 J
|x; 0,5 Ayvy > = Z|W; IM; Avg > —4;;—dM X = vy (6;) (18b)
22) J.M
where the known functions
-i@\]z J
<JM|e | 3,8 > = day, (9)

have been introduced and the energy dependence of the states has been indicated by the total

C.Mm.S. energy W,

Contrary to the usual situation the angular momentum states occurring in equations
(18a) and (18b) are not eigenstates of the parity operator. Instead one has the parity pro-
perty:

J-%
PIW; IM; vo> = = (-1) |W; M; -v, > for the m B state (19a)

J-Y%
PIW; M; N,uy > =+ (-1) |w; aM; -A, =vy > for the y B state , (19b)

where we have used the proper phase normalizations of the state vectors and have assumed:
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%k
negative parity for the meson and positive parity for the baryons ). (19¢)

Now parity eigenstates can be constructed in a simple way. Let us start with pion-baryon

states:

W; IM, 7> =7‘-§(|W; M, va > * |[W; OM, -va>) = [W; IM, > (20)
where the parity m is given by

J-Y.
pez (-1) def ot (20a)

Here we have in addition introduced the orbital angular momentum 1 of the 7 N system which is

formally defined by the second equation of (20a).

These state vectors (20) are the proper quantities to describe the isobars which by

definition have a well-defined spin and parity.

Repeating this procedure for the photon-baryon state one encounters a somewhat more

complicated situation. The appropriate eigenstates of 32 and P are

W; IM; m;A> = -715(“'; IM; A, vy =+ V> £|W; IM; =A, v = - Yo >) (21)

with
1

2 L
=% (=-1) =+ (-1) . (21a)

The parameter A in the l.he.s. of Eq. (21) no longer denotes the helicity of the
states but distinguishes between two different eigenstates belonging to the same total angular

momentum J and the same parity 7. Therefore: for given spin J and parity there are two possi=-

ble states of the yB system. Correspondingly we have two photoproduction amplitudes for

each isobar:

A'{’"(W) = <JM; w|T(W)|JIM; o; A> with X = *1 . (22)

*ok
The matrix elements on the r.h.s. are independent on M by rotational invariance .

These two amplitudes are usually characterized by the terms "electric and magnetic multipoles".

But these quantities are not directly given by Eq. (22). They are therefore introduced by a
consideration starting from the photon states only
|K,7»> . (23)

which describe,a single photon with momentum k and helicity A. Repeating the step leading

to Eq. (18) we arrive at eigenstates of the total angular momentum of the photon which we

characterize by the quantum numbers L, m*):

J -S4 =Sz
*) The general rule is given by Eq. (21): P|IM, M2 > = myma(=1) |IM, =Ny =22 >,
where s; and s; are the spins of the two particles.

#%) For electroproduction of mesons there exists for each J,m value a third longitudinal
amplitude with A = 0.

+) We use a small "m" to avoid confusion with M occurring in Eq. (18) ff.
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y L=1,2,ccom=-L, coo,r L

[Lyms A> with (24)
A=f1.

Now the electric resp. magnetic multipole states of order L are defined by (20)
IEL,m>=—'2-(IL,m;x=+1>+|L,m;-1>) (25a)
IML,m>=ﬁ(|L,m;+l>-IL.m;-|>). (25b)

They belong to the parifies (cp. footnote of p. 27,

(-l)L for the electric multipoles (26a)
- (-l)L for the magnetic multipoles . (26b)

To get angular momentum states for the photon-baryon system we couple to Egs. (25a)

and (25b) spin 'L states u, according to the well-known recipe

|M; EL> = ZE:(L,nu Y%, s|M)|EL, m> u (27a)
s with J =LtV .

| am; ML> =Z(L,m; Y., s|IM)|EL, m > u (27b)
m,s

These states are the basis for the usual definition of the electric and magnetic multipole

amplitudes. Using the m N states (20) the electric multipole amplitudes are given by

meson~-baryon fy-baryon

<JM; 1|T(W)| JM; EL> .

Because of parity conservation we find,using Eq. (20a) and Eq. (26a),

therefore by J = L * % only the matrix elements

<T =t + Vo, M L|T(W)|e + %, M; E(e+1)> =./(L+ I)(t+2)Et+(W) (28a)
(electric multipole of order L = L+ 1)
and
<T=t- Y, M t|TON)| ¢ - %, M5 Bt - 1)> = - SE(=1) E,_(W)

(electric multipole of order L = £ -1)

are different from zero.

*) Because of A>0 the value L = 0 is excluded by the analogue of Eq. (18).
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)

On the r.h.s. we have introduced conventional factors and a notation due to Feld®>’.
Observe that the index in Ey. does not coincide with the multipole order L ! Analogously we
have for the magnetic multipole amplitudes by parity conservation
L=1¢

and the non-vanishing matrix elements are given by

<J =t Y, M t|T(W)|e £ Y%, M, > =/t(¢+ 1) M, (W) (29)
(magnetic multipole of order L = ¢) .
In this case the index ! coincides with the multipole order.

It remains to establish the connection with earlier introduced amplitudes A{’"

[qu (22ﬂ . We shall not go into the details of the calculation but merely quote the re-

sult524):
A;‘]‘=£+‘/z,‘" - (¢_+_.2_L§£i.él (C+ 1,0 %,-%|t+Ye,r- %) E,
(30a)
N ___l‘(2‘2+‘ (o5 fo = YVelts Vo, n = o) My,
and
A{:z—‘/z,ﬂ - _S‘_'_‘Jé}i‘_') (t=-1,%5 Yo - %elt-"2sn-"%)E,_
(30b)

L )
e D@2 1) (00509, - Yl -Yeur- %) My _ -

[In both equations the parity 7 is given by Eq. (20a).]

Now we have written down all necessary definitions and formulae to find the wanted
+
expansion of the helicity amplitudes H+, &~ by a straightforward calculation. We give the
result in Table VII in an explicit form where all Clebsch-Gordan coefficients have already been

)zs).

worked out and the d;M’ functions expressed in terms of Legendre polynomials Py (cos ©

+ +
A great advantage of the amplitudes H™ and & lies in the fact that differential

cross-sections and polarizations can be expressed in a simple way. We give three examples:

a) The differential cross section for photons with circular polarization but unpolarized

baryons is given by
do”_ g ([gt]e + |o¥)") (51a)

while the cross-section for unpolarized y rays follows from

+ -
do _ 1 /do_ do_
m’z(aﬂ * dQ) . (51b)
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Table VIT

Multipole expansion of the helicity amplitude

+

-El 2 12y, do _ g -% 4 +% -
- d (w2« [87]%); p@) F = L m@TH + ¢TH)

H = -Jﬁ sineT(“, + w)[(uz)[s + M(“_')_] + t[M“_ - 5(“1)_]}

(t p2+ + (L+2) P2> ‘}H - M(t+1)- - Mt+ - E(t+1)-:l
(‘ Pyvs = (t+2) P2> LEH My My E(L+1)--:'

o)

S
mu;m N @
(7 <07 -0 °

H°=-—l—cosgv t+1)( P! ~ P/ L -1 SE where
J2 2 L+1 L L+ (L+1)=] ko s P2

i k2 = k& - k® is

L

the mass of the

.8 ) N .
- sin 3 Z(u. 1>< ‘s + Pt> [:Lt+ + L(L+1 )_‘}\/ ke virtual photon
L

QO

[Note: a factor Y, in Eq. (31a) has been cancelled because we use only four amplitudes

instead of eight !]

b) ‘The polarization P(8) of the final baryon which is perpendicular to the production

plane can be calculated from
p(e) 9 e W+ otH) (32)

+ +
c) For linearly polarized photons linear combinations of H™ resp. & occur. We describe
these photons by a polarization vector g which is perpendicular to the photon momentum '12 and

-> ->
has an angle ® with respect to - (k x q)

ek x q)

coscp:-l_]: _,I .
x q

Expressing 2 in terms of 21' which corresponds to the helicity states,one arrives by

simple algebra at the following amplitudes

1{(") 1 (H+ + i¢ . - 1q>)
€) == e - e ;
V2
. (33a)
1 + + 1P - - 19
3(e) == (2 e -3 e ) .
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The differential cross-section for linearly polarized photons is given by

%% 2" ﬂ(lﬂ('e’)lz + I<I>('e’)|2> . (33b)

For further use we collect in Table VIII the differential cross-sections for pure multipoles,

and in Table IX the cross section and polarization if only the values ¢ = 0 and 1 of the

angular momentum of the pion are important.

Table VIII

Angular distribution of photoproduction for different pure multipoles
(This distribution depends only on J and L but not
on the parity of the 7 N state.)

mN system multipole | matrix element g—g
AR, M1 M In |2
%, Sy El E,, lE_,I?
M1 M, [M +|2 (5-3 cos® @)
AP S s -- ---
E2 E, |E,,|? (1+ cos® @)
E1 E,_ |E, | (5-3 cos® ©)
%", D = -
S M2 M _ IMz_|2 (1+ cos® 9)
, M2 M, |Mz+lz (1+6 cos® ©~5 cos* @)
5/~ D ——— —_—
% E3 E,, IEz+l2 (5+ 6 cos® 6+ 5 cos* 9)
E2 E__ |l:‘.3_|2 (1+6 cos® @-5 cos* 0)
5, *
% M3 M, _ |M}_|z (5+ 6 cos® 6+ 5 cos* 6)
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Table IX
Differential cross—section and the polarization of the second baryt;n
including all multipoles with ¢ = 0,1

do

— 2
dQ._A+Bcos(9+Ccose
A=3[%n |2+ fE |2+ 0|7+ %[E |2+ refM* 0 _-3E )+3N_E |
Tk B o+ 1= 2154 1+ 1= 1+ 1= St
B =

9 opelE* -
kzkeLE°+ (M1+ M1-+3E1+)}

* *
c =E [-:yle”_Iz + 9/zll:-“_,,l2 -3Re {MH. (M1.. -3 E‘1+) -3M_ E1+D

I S
a=- klml}l (M, +2M_+3 EH,):I

do .
o P(6) = sin 6[a + b cos 8];

o
0]

. _
3 Elm Ed‘_ (MH’ +3 E”')_I

For linearly polarized photons one finds from Eqs. (33a) and (33b) for this case

do| _ do

= — + in? 2
a0 2 0| unpol . a sin® 6 cos® ¢

with

+ 1+

* *
a = - 3/2|MH|2 + ’/2IEH|2 - 3Re l:m‘_ (M, -E )+M EH_:| .

We stress the important rules which are contained in these results:

1) the angular distribution depends only on the spin J and the multipole order L
but not on the parity;

2) polarizations occur only if different multipoles interfere which leads to an

over-all factor sin 8;

3) the formulae are invariant under the simultaneous replacement of

8 +»7m1 -0, i.e. cos @ » - cos O; sin O > + sin 8

and of
E, by - (-1)‘131t
respe

M, by - (-1)‘1»1'i .

(By this rule the asymmetry coefficient B is due to an interference of different "parity"
multipoles.) This invariance based on parity conservation helps very much when discussing

the multipole expansion qualitatively.
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V. PHENOMENOLOGICAL DISCUSSION OF THE s-CHANNEL RESONANCES

According to the results of the last section each s-channel resonance with a given
spin and parity can lead to two different multipole amplitudes and we have to ask for each
isobar: which multipole resonates ? In this section we discuss the empirical evidence for
an answer to this question. In order to avoid the complications due to the near singularity
in the t-channel introduced by one-pion exchange we restrict ourselves to the production of
neutral pions. Figure 7 shows the coefficients of the angular distribution

%% - A+ Bcos® + Ccos® 9 +D cos® ©+E cos* © (34a)
for energies below 1 Cest). One clearly recognizes the maxima corresponding to the first
and second isobar,while the third 7N resonance (with EY = 1050 MeV) lies just outside the

region.

* . 3/ + _
1. A(1235) = Ny 3, with /A (E:Y - 350 MeV)

Here our question has been answered uniquely. The angular distribution can be well
represented by

5 -3 cos® 8 (34b)

with a small asymmetry coefficient B which goes through zero at resonance. Assuming the

spin-parity assignment §Q+ we immediately deduce with the help of Table VIII:

the magnetic dipole amplitude M1+ resonates at the A(1235) resonance .  (35)

Moreover one finds from experiment the behaviour

1 e
7)

for small energies. This agrees with the expected threshold law2

21+1
1+

for the expected value t = 1.

- sep 3/ -
2. N(1512) = N%z/z with 3% (EY = 750 MeV)

In this case the situation is not quite as clear. From the angular distribution
which is given again by Eq. (34) we already conclude that the spin must be % . If,in addition,
we again rely on the result of the detailed analysis of 7 N scatteringze) and accept the nega-

tive parity we are led to an
electric dipole Ez_ resonant amplitude. (36)

This assignment fits very well with the polarization measurements of the recoiling proton.
These have been done for several energies below 900 MeV for the c.m.s. angle 8 = 90°, In the

region of the first resonance the polarization is quite small29 ’

€ege P(%) = (14 * 6)% for EY = 320 MeV 9 (37)
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but approaching the second resonance it increases up to 60-80% and stays so in the measured
energy range (< 850 MeV) [cp. Fige. 83°)]. The small polarization can be understood from the
formula of Table IX: it is due to the interference of the small non-resonant amplitude E°+
with M1+. The large polarization between the first and the second resonance will be just
expected by the assignment (36); it is due to an interference between two resonant amplitudes

Ez_ and M1+
P(%) & -4 SmE_ M) . (38)

On the other hand, it has been argued that Eq. (36) is in contradiction with polarization

measurements in the process

Y + n - p + 1'[- y (39)

y*)

where one observes again a negative polarization31 H
P (g—) = - 0.26 ¥ 0.06 for E_= 715 NeV. (40)

These authorssi) expect a change of sign in the isospin I = 94 amplitude Ez_ if one
goes over fromy + p > 7° + p to Eq. (39) and arrivesat a contradiction to the experimental
result. This is indeed the case if the second resonance has an isovector character (cp.
Table X). In addition even in m N scattering the situation around the second resonance is

33,34
controversal”~* )

Table X

. ca s +,0 .
Isospin decomposition for m ’  and n production on nucleons

200 4 v (R) 2y g Ch) (o), ()

yrparen | 2@ sy %) vy 1Ry | g ) 4 1))

C a0 wy (R g () _ (o), o)

Y+n->17-+p ﬁ(T(o)—% T('/z)+%.l.(3/2)) ﬁ(T(o)_T("))

Y+p>n+p p(e) | o(%)

) _ (%)

Yy +n-=n+n T

2)

*) cp. J.J. Sakurai’>’.



- 37 -

3. N(1688) = N:}zs/z with %% (k,, = 1050 MeV)

This is the first isobar where presumably both possible multipoles, the electric
quadrupole E,_ and the magnetic octupole M}_,contribute appreciably. From the angular dis-
tribution (Fig. 7) one finds E< O which, according to Table VIII, indicates J = 54. On the
other hand, the cross-section in forward direction (see Fig. 9) has been found to be quite

56,37)

35
small . This can be understood if the ratio of Es_ and Ms_ is:

R=2=2, (41)

In this case the differential cross-section contains a factor sin? 8.

The argument for the positive parity is rather weakse).

Again the large observed
polarization is in favour of this assignment: it makes possible a large contribution to

P(ﬂ/2) because of an interference between the third and second resonance.

4. Higher isobars

The CEA results’a) on the pion photoproduction between 1 and 4 GeV show some
structures (Fig. 10) but it seems premature to conclude anything about the existence and

properties of isobars.

Concluding this section we remark that in the photoproduction of strange particles

Y +p- K+ + A, KO+ 2+ only the third and higher isobars can be seen directly. The experi-
mental results‘o) are too meagre to identify any resonance though the N(1688) lies in the
accessible region. But theoretical studies indicate that s-channel resonances below the
strange particle threshold and exchanges of resonances in the t- and u-channel play an impor-

tant role").

VI. DETAILED THEORETICAL DISCUSSION OF THE s-CHANNEL RESONANCES

The empirical evidence summerized in the last section shows maxima in the multipole
amplitudes of energies where also the m N scattering has a resonance. This is true at least
for the first three isobars. Qualitatively this can be understoed with the "compound
nucleus" picture taken over from nuclear physics“a). If the isobar can be understood as
such a compound system according to Bohr's independence assumption‘z) its properties should

be the same whether it is produced in m N or in ¥ N collisions,

For a more detailed theoretical development of these ideas the Watson Theorem has
played an important role‘3). For energies below the two-meson threshold it gives an exact
relation between the multipole amplitudes of a given order E'+, M|+ and the corresponding

meson-nucleon scattering amplitudes:

1 1 ist
ft+(s) =30 © sin 8§ L, refers to J = ¢ ¢t Ve o (42)

I+ =t

(I denotes the isospin).
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This connection follows from time reversal invariance and the unitarity of the S matrix under
the assumption that the only energetically possible states are the 7 N and y N systems and if

higher orders in the electric charge e are neglected.

For a given value of spin J, parity 7 resp. ¢ and isospin I,the § matrix can be

written in the form:

ﬂy YN
PN —
7N Sp, s A Ey, i M,
i Ef: s 14 40e . for s £ (Mg +2m)® . (43)
N
Y i M{t s e 1+ ..

Use has already been made of time reversal invariance from which the symmetry of the
S matrix follows“). St* denotes the S-matrix element for m N scattering with given ¢ and
J=1t %, (By the hel;city consideration of Section V one can prove that only one inde-
pendent scattering amplitude exists for each J, L !) The dots indicate Compton scattering
amplitudes which are of second order in e. The factors "i" have been introduced in accor-

dance with the definition S = 1 + iT,

The unitarity condition gives for the first line of Eq. (43):

oI
2 18(1

Isftl2 =18 e with real sii

tx =

neglecting second order terms in e. The orthogonality between the first and the second resp.

the first and the third line gives (retaining only the linear terms in e):

* I I* * I I*
Sys Bpp = Epp s S My, =M, .

- 45)

I+

o~ =
*
~ bt

By observing that the l.h.s. of these relations must be real one arrives at the equivalent
result:

. I oI

8,y 18,y

=t gl e Yyom, =t m,le 5L (46)

I
E,

h.o
The phases of the photoproduction amplitudes are equal to the corresponding scattering

phases up to a multiple of 7.

Returning now to the description of resonances we find that all dynamical theories

maintain: for resonances,not only the phase of the multipole amplitude is given by the

scattering amplitude but the multipole is proportional to f£+:

E}i(s) or M:t(s) =C f:t(s) for resonances , 47)
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where the factor C depends only weakly on the energy.

The most elaborate theory exists, of course, for the 3Q+ isobar. Here the propor-

tionality
/2( )-—-7—1‘/2(5) (48)
has been first proven in the static (Chew-Low—theory‘s))-

Here we have introduced the isovector magnetic moment of the nucleons

= Yeluy - un) = 2,35 55 (49a)

and the (renormalized) mN coupling constant

fz
= = 0.08 . (49p)

)

All other (1+) multipoles vanish, especially

E%(s) =0 (50)
1+ ¢

The physical reason for these results (46) and (47) can be found in large magnetic
coupling to the isovector magnetic moment which already gives the largest contribution to m°

production in the Born approximation (cp. Fig. 3). After the advent of relativistic disper

sion theory‘s) it was found that Eq. (46) is also consistent with the relevant dispersion

relations if all terms of order w/M are neglected.

Ceneral mathematical conditions which can lead to Eq. (45) have been discussed by

P. Stichel‘7). He introduces the frequently used "irreducible" amplii;ur.les‘9

f(s) M(s)
firr(s) = I+iqsfisi and Mirr(s) =1+ iqsf s) (51)

where we have dropped for a moment all indices. As long as Eq. (44) and Eq. (46) are
*
valid one has
f;rr(s) = Im Mirr(s) =0 ,

i.e. these functions are real up to threshold for two-particle production. But they can

have pole singularities if the denominator in Eq. (51) vanishes. Indeed,if we assume

f. (s) = x(s) [y(s): slowly varying near S0l , (52a)
irr s = Sp

we find a Breit-Wigner behaviour for the scattering amplitude:

(s)
f(s) = S_-To%m . (52b)

*) To prove the first result oneconveniently uses Im f(s) = q| £(s)|? which follows
from the reality of 8(s) in Eq. (42).
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Now the trivial relation

M. (s)
M(s) _ irr
- (53)

leads to

(s- So) Mirr(s)

M(s) = f(s) . (52¢)

y(s)
This formula provides us with a necessary and sufficient condition for the validity of
Eq. (47): Mirr(s) must have a pole at the same position sp:

I'(s)

Mirr(s) eyl T(s): slowly varying around so. (54)

3 3
Mf& evidently exhibits such a behaviour while E:% does not.

This last statement has to be modified somewhat for the semi-phenomenological
"isobar model" proposed by Gourdin and Salin‘g). The authors treat the unstable resonant

states N with the same Feynman rules as stable particles only replacing in the propagators

*
M = Mass
1 1

b
E-s Y W2_g_irm

with of the resonance.
T = width

In addition,one has to introduce a variety of coupling constants: for the YNN* and NN*ﬂ
vertices. Counting helicity states*) one finds for the y-coupling two parameters and for
the pion-coupling one parameter independent of the spin of N* (assuming, of course, spin 54
for Nso). For the spin % resonances the Rarita-Schwinger formalisnfi) has been used.

Thereby introducing the following interaction Hamiltonians

M- M
* = =L
H N n, Ty, 972 + hoe. (55)
H‘{NN* =e C Vs Y, A se %‘ WYHYS v, o"a"+ hec. (56)
m

where
¥ = nucleon spin or operator,
= m-meson operator,

M- electromagnetic potential.
The %~ particle has been described by four Dirac spinors Wu (0 = 0y eee, 3) obeying

the auxiliary conditions

By _aHy -
vy, =0y =0, (56a)
1)

thus reducing the arbitrary components to four. The authors5 obtain:

*) This can be done as in Section V using the Breit system.



A
i'_i___.l_. .):1.2(54.51)-—-———-—1 (57)
& otz \";/ = N N®_s-iT M
™
3 3 %*
M/z H E/z €1+
I e b PO & (58)
gk MZ-s-il M  ak M2 -s-il M
Y Y
with
_olehy [EtM S
M =% m \/E,+M {C' *Tn CZ} (58a)
m m
* _ —1eh |Ex+M (_ Eq+ M
Cov T % m_ JE, T R m Coy o (58b)

From a theoretical point of view the great number of parameters is a bad feature of
the model, especially if one varies also the width DY as the authors do. On the other hand,
the simple formulae of the model are convenient for practical calculation and can be easily

generalized for several isobars.

Taking the first three isobars into account, in addition to the Born approximation,
Salin found an over-all fit to the existing data (Fig. 11 a and b). The best fit parameters
lead to
o
1+ _
-7 = 0.045
M 2
1+

in a certain contradiction to Eq. (50).

2)

As has been stressed by Hohler® the model contains an over-simplication which we
like to mention because of its general significance. In the formulae used, the isobar makes
contributions only to the resonant amplitudes M1+ resp. E‘+. But we must expect an influence

on non-resonant multipole amplitudes for two reasons:

a) The isobar in the s-channel is in general a virtual off-shell particle and such par-
ticles with spin J> Y% are known to contain also lower spin values. This is due to the
53
failure of the subsidiary condition (56a) for virtual particles ). Relativity also allows

changes in parity which is brought about by the small components of the Dirac spinors;
b) The isobars can also occur in the u-channel.

Both effects are not small as shown by Hohler and co-workerssz) using the dispersion
relation approach. For an illustration we show in Fig. 12 the influence of the first isobar
on the E°+ electric dipole matrix element: (E°+);;. In fact, also Gourdin and Salin need
such an E°+ matri§ element which they introduce by+a so-called subtraction term whereby another
parameter enters . 'In their discussion of the m photoproduction these authors have of
course also taken account of the influence of one-pion exchange. This process will be dis-

cussed in the next section.

*) For a more complete discussion, cp. the seminar given by Professor Héhler.
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VII. THE ONE-PION EXCHANGE, GAUGE INVARIANCE AND THE COMPLETE BORN APPROXIMATION

Turning now to the t-channel we have at first to deal with the one-pion interme-
diate state. The connected one-pion exchange processes have been studied extensively for
54
inelastic hadronic processes . For photoreactions a new problem arises in this connection

which is due to the gauge invariance of the photoproduction amplitude.
Because of the continuity equation for the electric current Buju = 0 the matrix
element of Eq. (1) must obey the condition

K#< QQOI\lelono>=o . (59)

For a real photon we can replace Aﬂ in Eq. (1) by the four-vector eu of the photon

polarization so that each photoproduction amplitude can be written in the form
T = eH< "'ljul"' > . (60)

Incidentally this is true exactly to each order in a. Because of Eq. (59) we have
the rule: by replacing eu in the photoproduction amplitude by the photon four-momentum '

one must get zero.

Let us now go back to the one-pion exchange diagram. The application of Feynman

rules gives the following result (we have omitted the nucleon spinors for simplicity)

v"\e P
\ .
o
K 1
(-) u
3,70 e 26 Q“m;_tg”{s. (61)

where g2/4m = 15 is the usual pseudoscalar coupling constant and the isospin factor

5

a

= (-1i) Eaﬁz Tﬂ = 1/2[Ta73 ] (62a)

describes the fact that only charged pions can be exchanged. Replacing e” in Eq. (61) by
K* one gets
(-)

a

J e gys . (61)
Thus gauge invariance is violated in the one-pion exchange approximation. This result seems
plausible if one recalls that in this process a proton emitsa ﬂ+ changing into a neutron.

We have to take account of the current of the proton also to get a result which obeys charge
conservation, Therefore we write down the relevant contributions of the nucleon pole

diagram:
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/T

'\

The electric ¥ N coupling is usually described by erp which contains an orbital
)

current contribution e P”/M and a current due to the normal magnetic moment55 For our
purposes we need only the first so that we are led to
1 1+ 73 u 1+ 73 u 1
e 2¢ P + e 2¢" P =
BTa¥s e g 2 U 2 2p oy Sal®
(63)
u M et p
= egr J(°)+J(*) € P1u+€P2M ;) ____g T
53 Va a M-s M-u T M-s M-u !
where in addition to Eq. (62a) the isospin quantities
(o) (+) _ 1 _
3,0 =g 3 = el Ts + 13T ) = 8 (62b)

have been introduced which are different from zero also for the neutral pions. In accordance
with this fact the factor of J(°’+) in Eq. (63) vanishes if e is replaced by k“, while the
factor of J( -) just leads to a result which compensates Eq. (61'). [Looking for the origin
of the isospin factors in Eq. (63) we observe that J is due to first term in the electric
charge e l4-73/2 of the proton and thus describes the isoscalar part while J( ) due to T3
has an isovector character. ] These gauge properties can be expressed most conveniently

with the help of the "invariant"
Mo = 2ivys F“vP#Qv=2iyg(P-€Q-K-P‘KQ-G) , (64)

where
= Y% (P, + P;) and F*Y = KV - 'K

denote the antisymmetric tensor of the electric and magnetic field strength for a plane
wave photon. Therefore M, is an evident gauge invariant quantity. By an elementary cal-

culation (61) and (63) can be found to be proportional to M:

(o), ;(+) 1 (=) u-s ,
* {<Ja " e > (F - $)OF —u) o (2 - t)OF - 5)OF - u) } Mz . (63")

This result is contained in Table XII where the complete result of an evaluation of the pion
and nucleon pole diagrams can be found. In Fig. 3 we already have given the cross-sections
following from this result. I would like now to interrupt the formal theory and discuss a
very practical application of these consideratioﬁs. Several years ago S. Drell proposed
the diagram of Fig. 13 as a source of a high intense pion beam produced parallel to the

6)

incoming photon “. Evidently this one-pion exchange diagram again violates gauge invariance.



n- N _ S=2N| NC
wo>x

.R
=-~z..m..uzus-awo
1 1 1

(n = H)(S = )3 =)
S-n

n- W S-N| 2

- (n = H)(Ss- M) 39
1

n- N S-N| ¢
T T T %

a1
MNZ-d A dshe

= (GIMT -3+ d0-% + aF)she

a,
SA =
b %a:m A

MW= (2 dN -3 -dF)S, = N

a, n
bq Jgsite

= (3¢bYed-deb 5.4)sh1g

]

a.n
A .r:lmﬁ A

=37 SAt = Iy

SUOTINQTJIIUOD Judwou

oTj3useuw Snojewoue

JUSJIND [BITQIO OTJ}IITD

uoTINGTJIJUOD Judwour
9T39udew [BUIOU

cyge1 = M

s
£690°0 - = "¥ mo WHr)F = d PP - 20
uotjonpoadojoyd uord doj uorjewrxoadde udog = sural-ayod

IIX 31q9®el

a n.._v




=45 -

Stichel and Sch01257) have investigated a model where this lack can be remedied - quite
analogously to the way described above. They restricted themselves to a production of a
A(1235) isobar on the nucleon bubble (see Fig. 14) which they again describe by the Rarita-
Schwinger formalism [cp. Eqs. (55) and (56)]. Due to the derivative coupling in Eq. (55) they
have to calculate four diagrams (see Fig. 15) in order to arrive at gauge invariance. The
coupling of the new "catastrophic" diagram (III) follows from Eq. (55) by replacing o" by
ieAH. The evaluation for high energies (s - «) gives a remarkably large change relative to
the simple Drell diagram (Fig. 16).

VIII. DETAILED FORMULATION OF THE ANALYTICITY PROPERTIES

The decomposition for the nucleon and pion pole terms of Table XII which just give
the renormalized Born approximation is very convenient also in the general case. It can

therefore be proven that a photoproduction amplitude can in general be written as

4
T =z [AEO)(s,t) Ji") + A§+)(S,t) Ji+) + Ag—) Ji')]Mi . (65)

i=1

Accordingly we have for a specified charge mode four independent amplltudes in
agreement with the existence of four helicity amplitudes. The connection of H ’ @ with the
Ai- s is somewhat involved. One normally uses in an intermediate step the functions Fi and

jTi defined in Table XIII. With their help the helicity amplitudes can be calculated accord-
ing to Table XIV,

People trained in analyticity properties will suspect that the functions Ai(s,t) obey
a Mandelstam representation in the variables s, t and u. Unfortunately, gauge invariance again
lead to complications. Of course,we can only guess the validity of this representation.
But perturbation theory gives a good tool to guess the correct answer, Looking at Table XII
one observes that A(' Ast’o . A4i’°) have the expected simple pole behaviour, but A§t’°
looks different. Indeed it was in the A, amplitudes that gauge troubles occur. But a more

7)

detailed investigation by Ball has shown that the usual Mandelstam relation

s’ -s

1 3 p (s") °°l p. (u’)
Ai(s,t,u) = pole terms + ;'f ds’ + j

(M+m)? (M+m)? 4m®

a1 ) aar (s’ ,t') [ __pya(s’,u’) _ , u’ t')
+1r2fds dt is’-sitt’-t;+g jds du’ (s’ -s)(u -u)+ f dt du’ t(u ’
(66)

should be conjectured for i = 1, 3, 4 with pole terms given by Table XII. Each term in
Eq. (66) also carries the isospin indices (¥,0). On the other hand Ag"O) should obey a si-
milar relation with pole terms having only the more complicated form of Table XII and the
single dispersion integrals should be dropped. As usual one has to add crossing relations the

validity of which can be read off from Table XII for the pole terms:
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Fr = A+ (Wed) Ay - =22 (a5 -a) = BTW f;' 7
2(W-M) WM (Ez+M)2(E +M)"
t -1 ST W 132+1w‘/2 1
Foo= - A + (Wt M) Ay -m(l\z—h) =m<m> Fa 3
1
Fs = (W-M) Aot As-As - Br¥ f’ 7
W-M (E2+ M)2(Ey+ M) q
Yo
8 2
Fo = = (W+ M) Ao+ As - Ay =ﬁ-¥(§f%%> ra

Table XIII

The intermediate functions Fi res.p.}"i in terms of A:

(the isospin indices (0,*) must be added to each symbol)

H=-}—Esin8c05%(}"3+f;)
+ . 8 -
H.—.-251n§(.)?1+.}"z)+ﬂ

o1
n

* —'ﬁsin@ sin%(]“; -F)

27 = -2 cos 5 (Fy -F2) + 8

Table XIV

The connection between the ]': functions and the helicity amplitudes

These formulae differ somewhat from those given in

Ref. 15 because of a slight difference in the polari-
zation vectors E)‘ . We use 27‘ = =N V2 (&4 +2\e2)
(A = £ 1) where 22 lies in the plane defined by K and a.

where the upper sign holds for:

holds for: O0,+ and i = 2 resp.:

A

(

i

29 (s,t00) = £ A5y, 1,0) (67)

O,+ and i =1, 3, 4 resp.: - and i = 2 and the lower sign

-and i =1, 3, 4. A general proof of Eq. (67) can be

given with the help of the general crossing relations and the odd behaviour of j“ under

C conjugation. By well=known methodsa) one deduces from Eq. (66) one-dimensional dispersion

relations, For example, one has for fixed t:
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Al
i

t,0) - 1 [ ’ (£y0) J
(s,t) = pole terms + - J ds’ Im A (s’,t) i el B (68)
(M+m1r)2
where u = 2 M + m; -s-t.
)

energy region around the first isobar. Here one normally (following Chew et al.‘é)) approxi-

A recent evaluation of these relations has been performed by W. Schmidt58 for

mates the imaginary part in Eq. (68) by the contribution of the magnetic dipole matrix
3
eiement M1i. This leads with help of Tables VII, XIII and XIV to

t_ o*(s) Im M2(s) £.(s,t); Im A°
Im A} = C (s) Im M1+(s) fi s,t); Im Ai =0 (69)
with

fy =3 t-1+w(W+M); f = =3

(69a)

1
W+ M

f3=%(t—l)w—}ﬁ+w-w~m; fo = %(t-1) + w+2 W+2 M

¢t :‘/,( 2 >1— L T (69b)
t-1/qgk [(W+M)2-1]77

For M?%occurringin Eq. (69)3the approximation (48) was used and experimental
phase shifts were taken to calculate fii(s). The agreement with recent experimental
resultssg) on ﬂ+ production is fairly good especially for large angles (see Fig. 17a and b).
On the other hand, the Gourdin-Salin model‘g) gives a somewhat better fit to the same dataéo).
But one must keep in mind that the formulae (68) and (69) are different from the isobar model

and do not contain any free parameter.

We should remark finally that improvement of the relation (48) has been discussed
with dispersion relations6') but the gained numerical results have been criticizedsz). In
this treatment the possible influence of the exchange of a p meson (the w does not contribute
in ﬂ+ production) has been neglected. This is in accord with A-parity arguments of Sec-

tion IV. We discuss this problem in some more detail in the next section.

*
IX. THE ELECTROMAGNETIC COUPLING OF VECTOR MESONS )

At the last High-Energy Conference at Dubna, Professor Baldin called the determina-
tion of the coupling strength between the photon, the pion, and the vector mesons (p,w)
"a problem of the day"sz). Yet the results so far reported are rather conflicting. This
section reviews the evidence for the magnitude of the coupling constants gY"P and grﬂw' We
start with precise definition: the coupling between the photon, the pseudoscalar pion, and

. . . . . . 63
a vector particle can be written in a unique and gauge invariant way ):

*) In preparing this section the author has made use of the material presented by
H. Joos at DESY in December 1964.
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s
where Kp, A% are the four momenta of the photon and the vector meson, respectively. The
vector particle carries the index "u". In terms of this constant the decay width of p(w)

into m++y is found to be

g (w)

I‘p(w)->1r+'y'=2'—4—miw—-mp (l - (mﬂ/mp)2>3. (71)

Because of differences in conventional factors the best way to report values of the wanted

quantity is by this width.

To calculate the influence of the exchange of a vector particle on the single pion
production we need in addition the nucleon-p(®) coupling which contains a Dirac and a Pauli-

like term:

1 o Av .
<gp 51 Y“+ gp »2 2N pv
R B (72)

Using the well-known propagator of a vector particle

1 AL
4y
mz-t<gl“’ m? > '
o

one finds for the p-exchange diagram
g g
.7 R A L RS i) (73)
m mp-t Pt 2M o

(o)

Here we have used the invariants of Table XII. The occurrence of the isospin factor Jao
expresses the fact that the p exchange only contributes to the isoscalar current (cp. Sec-

tion III). For an @ exchange one has merely to change the index p into w and to replace

Jﬁo) by J§+) = Sas' (Because of Iw = 0 no dependence on 7 matrices arises,) In this treat-
ment we have regarded the vector particles as stable particles. This can be done better with
the aid of the Mandelstam representation1). Professor Hohler will discuss this subject in his
seminar, The major change which comes about consists of an extra constant term to Aao) [ the
factor of My in Eq. (73)]. Moreover a connection between the bracket in Eq. (73) and the
nucleon form factor is establisheds‘). The physical basis of this connection can also be

expressed in a simple model. By introducing a direct Y-p coupling



—49—

e €y (9)

& nz
30 ™ € e“(p) s (74)

one gets a contribution to the isovector electromagnetic form factors through the diagram

2
e m g 2
— P (g y +BLo AY ) .75 (75)
2yp m2=t Pyt M 2M  uv
p

where we have dropped the nucleon spinors. Originally one was inclined to identify Eq. (75)

directly with the isovector form factors thus being led to

g
—La2 o (K - Ki) = 3.7 . (76a)

&

If, on the other hand-one makes use of a two-pole fit to the form factors and identifies

6
Eq. (75) only with the p pole, recent results give s)
g 2
La2 x5, (76b)
&p 1
These values agree with the result from an analysis of nucleon-nucleon scatteringﬁs)
.2
g = 3026; g = 1201; = 3-7 . (77)
Pt P52 gp \
t]

Relying on this ratio, the contribution of p exchange to photoproduction contains only one
open parameter

g g
A= TR B,
8nmﬁ ’

which could be extracted from the experimental results on T production if all other contri-
butions are known. Unfortunately this supposition is not fulfilled. But the different
49,52,67) agree that A is small. To give an order of magnitude we quote the result

*
by A.I. Lebedev®’)*)

authors

T, gy < 0-1 MeV . (78)

*) Knowing also the absolute value of the p N coupling [see Eq. (77)] one can calculate
the radiative width of the p from A.
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This upper bound contradicts strongly with a recent result from the investigation of the
68
process

Y + p-*p° + p at 2 GeV .

Using the measured cross-section (13.2 pubarn) one finds with the one-pion exchange

model where in addition to Pp > 7y only the well-known 7 N coupling enters

T sy = 1065 MeV . (79)

This value is somewhat larger than

I‘p"’ﬂ‘Y‘ = 0.5 MeV »

deduced from MacLeod et a1.69) from the two-pion production at lower energies (1 GeV).

Turning now to the w coupling we expect from the A-parity argument given in
9
Section III a larger value of gwa. In fact for high energies3 neutral pions are produced

much more strongly than charged ones:
de® X (5-10) do”  for about 2 GeV .

Assuming that vector-meson exchange is responsible for this difference one has

indeed
<< .
g‘wrp gynw

It is clear from this short survey that much more information is wanted. For high
energies one needs more detailed experimental results. For low energies the theoretical

description of the "other" contribution should be improved’o).
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Figure captions

Kinematics for photoproduction.

Resonances in the s-t plane.

The Born approximation for the pion photoproduction.
The meson trajectories contributing to photoproduction.
Total cross-section for pion production up to 1 GeV.
Kinematics and helicities for photoproduction.

Angular coefficients for neutral pion production.

Polarization of recoil protons.

Differential cross-section for neutral pion production.
Excitation functions for neutral pion production up to 4 GeV.
Gourdin Salin fit to charged pion production.

Various contributions to the E°+ (electric dipole) amplitude.
The Drell diagram.

Drell process with isobar production.

The four diagrams for a gauge invariant treatment of the Drell
Gauge term corrections to the Drell diagram.

Excitation functions for charged pion production.

Angular distribution for charged pion production.

process.
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