SUs AND SUs SYMMETRY OF STRONG INTERACTIONS

L. Van Hove,
Theory Division, CERN.
(Lecture notes by F.0. Weyer-Menkhoff)

The aim of these lectures is to present the SUs and SUs classification schemes for
the strongly interacting particles, the so-called hadrons. These symmetry schemes, based on
group theory, are a generalization of the very successful isospin formalism introduced by
Heisenberg (1932), and Cassen and Condon (1936) in order to account for the similarity of
proton and neutron. SUs was proposed by Gell-Mann and Ne'eman in 1962 and combines isospin
and hypercharge, while SU¢ combines SUs and ordinary spin. SU¢ originates from Sakita,
Radicati and Giirsey.

The lectures present the methods used in formulating and calculating the symmetry
properties, and illustrate them on the most significant predictions, mass formulae, magnetic
moments of baryons and meson-baryon interaction. Our treatment of SUs will be limited to the
non-relativistic case, The attempts at relativistic extensions, which are very far from
being satisfactory, will not be reviewed. Our treatment is elementary and examples of simple
calculations are given. A selected list of references is given at the end of the lecture

notes.

I. SUs SYMMETRY

1. Three-dimensional spinor calculus, the group SU5

and its representations

The formalism is a straightforward generalization of the two-dimensional isospinor
calculus. A third component is added to the isospinors, so the basic element in SU; is a set

of three complex numbers &4 (a = l,2,3) called covariant spinor:

§<§’> (1)

A linear transformation is given by the 3x 3 matrix u acting on the covariant spinors;

€& =ué (2)
which means
! uj ui uP &
gy )= 3 v ou? 2 (3)
1 2 3
'3 3 3 u3 f’
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or, written for the components of the spinor,

Ea =uiés . (4)

Summation over repeated upper and lower indices is understood here and throughout the lecture

notes.

Besides the covariant spinors we define the contravariant spinors n* (a = 1,2,3)

with the index in the upper position and the spinor written as a line
n=_("nn) . (5)
They shall transform in such a way that
né = n"&q (6)

be an invariant. This fixes the transformation law of the contravariant spinor:

n'Ey = e = ' tuiE (7
hence
n® = n'%f (8)
and finally
nt e = pflumt) (9)

A general tensor is a quantity §Z;Y with arbitrary numbers of covariant (lower) and
contravariant (upper) indices. { follows the covariant transformation law (4) for all lower

indices and the contravariant transformation law (9) for all upper indices.,

Veo v al ? ’ [J'l)/ —. u ) )
giﬂY-- - CQEY =u, ug u$ ces ga,ﬁ,Y’.’ (u ‘)u'(" 1)v"‘ . (10) )

which will be written in shorthand notation

{>¢'="u(w)e . (11)
U(u) describes a linear transformation acting on (.

For our purpose of particle description we limit the transformations to the group SUsx
which is the group of linear, unitary, unimodular transformations in three dimensions.
The matrices u have to satisfy the two conditions:
. . Lt HBY _ Y B _ (g
1. u is unitary: uu=1, or (u )auﬁ = 8, where (u )a = (u )ﬁ’
+: Hermitian conjugate

*: complex conjugate

1 a=x

unit matrix SY =
a 0 a# vy

2. u is unimodular: det u = 1.
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The tensors which are left invariant by the group SU; are

1f =
o = { 0 for a 2 g

1 for afy = 123, 231, 312
€apy = | =1 for oy = 213, 132, 321 (12)
0 otherwise
apy _
¢ oy

Proof:

a) 8§ is left invariant under every linear transformation

ag > 5&5 = uzlsg:(u")ﬁ, = U§,(0—1)ﬁ =B

4 a
al ﬁ’ Y,
[ -
b) upy ~ Sapy = Vo U Yy Sarpry’
’ ’ !
5‘23 = Ll:x uz UI anﬁ,YI =det u =1
! ! 7 ’ ! !
PR - e —u®WB WY (- = - ! .
By = ug Uy Uy €grgiyr = Yy ug Uy (-1) €argiyt apy
‘ _ ‘ : i i 4 = .e.d.
So €123 = 1 and eaﬁY is fully antisymmetric, therefore eaﬁY EaﬂY qe.e.d

The condition that u is unitary leads to the fact that the Hermitian conjugate of a
covariant spinor éa

£ = (t) (13)

which is written with an index in upper position, transforms according to the contravariant
transformation law (4).

(Remark: Note that Hermitian conjugation involves complex conjugation and inter-
changing lines and columns.)

Proof:
The relation
PR
fa = uafﬁ
becomes by complex conjugation
ri Bk
ga - ua fﬁ L4

Hence, using (13)

/4

f a___u+

ﬁa§+ﬂ = (u")gg*ﬂ = §+ﬁ(u"); qee.d,
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The Hermitian conjugate of the general tensor (10) is

*
e HVeo o
g;ﬁ??. = (gaﬁy...> ‘ (14)

It is covariant in u, v... and contravariant in a, 8, Ye.. . In the SUs classification,
particles are associated with certain tensors, antiparticles with the respective Hermitian

conjugate tensors,

Using the invariant tensors (12) one can, in an invariant way, from a given tensor
construct other tensors with a smaller number of indices, This provides a simple method for

the reduction of tensors, Tensors which cannot be reduced further can be shown to form the

irreducible representations of the group SUs. (The proof of this important fact will not be

given here,) The general principle of reduction of a tensor & is to construct a tensor n
with a smaller number of indices, its elements being linear combinations of the elements of (.
This has to be an invariant operation in the sense that the reduction procedure applied to

£’ = U(u)¢ [see (11)] must lead to n’ = U(u)n.

The means of reduction are the invariant tensors (12), with which one has in general

three possible ways of reducing a tensor.

1. One forms a trace between an arbitrary upper and an arbitrary lower index

b .o = Veo
CZ;Y = ';;};r def Mgy.. ° (15)

2. One picks out the antisymmetric part relative to two arbitrary contravariant indices

(here ¥ and A) and replaces the two indices by a covariant one (here a’)

KAl . = Moo
Caﬁy.. €atkh def "a’apy.. ° (16)

3. The same as 2) with interchanged roles of contravariant and covariant indices

K\deo K'aBf _ _Kk'khu..
CaﬁY.. € def nYoo (17)

All these reductions are invariant, Let us show this for case 2).

Transform the reduced tensor:

" NTHR - u.. a! ﬁ ¥ Ueo -
gaﬁy.. €alkn def a " afYe. > ua’"auﬁuy" M55 B Y (u™ )~" ‘

Reduce the transformed tensor by means of the "transformed ¢ tensor" which is allowed since €

. . . - K
is an invariant tensor. Use (u 1)% « = %

[U Sugu

~ A~

a By P20 e o u® (@ = 0¥ u® 71 N d
uauﬂuY..[g»&ﬁ?{,” ak)\] g, (u )TI“ u, uuﬁu .e &"EF?" (u ),II. qee.d.

A

X .. -1 -1 -1 a ® k .
F%n (u )‘;? (u )~ (u )~..:\x[u u Uy e&-,m]

X &

e £

<=2
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A tensor is called irreducible when every reduction (15), (16), or (17) gives zero.

The characteristic properties of irreducible tensors follow from the reduction recipe:
1. full symmetry in all upper indices

Vieo

[T
= etc.
€ apy.. = Sapy..
2, full symmetry in all lower indices
HVe o HVe o
= etc.
Capye. = Cpay..
3. vanishing trace
AV o -
CaﬁYo. =0 °

Because of 1) and 2), condition 3) means that every trace vanishes. The number of independent
components of a tensor is called its dimension . In the following list of the simplest
(lowest dimensional) irreducible tensors the dimension is found by subtracting from the number
of components the number of equations which come from the condition of irreducibility. These

irreducible tensors form the irreducible representations of SUs (the representations are

denoted by their dimension, with bars to distinguish inequivalent representations of the same

dimension; all tensors are subject to conditions 1), 2), and 3) above):

§a representation 3
& " 3
¢ap " 6
P " T
éh " 8
Sapy " 10
gy . T
&8 " 15
74l " 15
44 " 27
eg;;; " 64

Representation 3 is formed by the Hermitian conjugate tensor to representation 3. It is also
important to note that representations 3 and 3 are inequivalent in the sense that there is no
linear transformation of 3 onto 3 which is invariant for the group. The same holds for the
other pairs of representations having the same dimension, like 6 and E, 10 and TB, etc,

HV e

afy with m (n) upper (lower) indices has the

In general, the irreducible tensor {

dimensions

(m+1)(n+1) (’“;“n) .

The Hermitian conjugate of a representation is obtained by exchanging m and n. If m = n the

representation is selfconjugate (e.g. 8 = 8, 27 = 57).



-6 -

The direct product of two irreducible rcpresentations can be decomposed into a sum
of irreducible representations. To do this we have to reduce the product of two irreducible

tensors, For example, the product 3x 3, realized by the product tensor
. ' =
§a §ﬁ def gaﬁ

may be decomposed into a symmetric and an antisymmetric parts;

sym anti _ 1 1
ap = Cop *lag "2 (gaﬁ"'gﬁa) *2 <§aﬁ- §,ea> .

anti
¢

sym
4 o8

is already irreducible, it belongs to representation 6 (see list). is separated

out by the reduction 7).

ofy _ eanti - ofy - ¥
S € “Sqp "€ et ¥ -
Yo, o . . z . s anti 1 Y
¢ is irreducible and belongs to representation 3. One easily verifies gaﬂ = /éeaﬁyw s SO

anti

that ¢Y and § are equivalent representations (i.e. related by a one-to-one, linear,

invariant rel:fion). The reduction just obtained is written
33 = 6+3 . (18)
Other reductions ére
3x3 = 1+8 (19)
3x6 = 8+ 10 (20)
8x8 = 1+8+8+10+10+27 (21)
10x10 = 1 +8+27+64 . (22)

Formula (21) will be derived as an example to show in detail the reduction

procedure:

a) Decomposition into symmetric and antisymmetric part

fa '7/31 -;-'<§ZIT)§I +§g:"z:> "'% <§2/r"[331 - ‘fglnzl)

al

23)
= oM ey (
def ‘a’B’ " Ta'p’

] (¢) is symmetric (antisymmetric) for simultaneous permutation of upper and lower indices,

b) Reduction of ¢

Invariants are ohtained by taking complete traces, which can be done in two ways:

alﬁ:l al 1
Q s = €7, . nﬁ, = 0 (& and n are traceless because they
a’p o' B are irreducible)

lal

(PIZI‘BI = gg:na: d:f (fn) . (24)



Decompose ¢ as follows

ap ~op

¢a’ﬁ' = ¢a,ﬁ,-+a8 Sﬂ,-be N (25)

p ﬁl a’

where a and b are so chosen that both complete traces of 5 are zero. This fixes the co-

efficients a and b, and one finds

~Z€ﬁl =9 /iﬁl +L§'ﬂ salagl iﬁgﬂl 8‘31851 . (26)

6 may have single traces which leave two indices unsaturated, thus leading to an octet

representation, One finds

~aﬂ

aﬁ’ =0
3 = o JGm o L), 55f -—[e o+ €fn%, - Falem) 5 ] GO

(27)

(fn)ga, is called the D coupling octet formed with the two tensors ¢ and n. We extract the
octet part out of $

$§€ﬁl = ?p’g‘?ﬁ, +C$z€v3‘gl +d$g;l 351 . (28)

The coefficients ¢ and d are fixed by the condition that 5 has all single traces equal to
zero. One gets

b ~q
ER R VR JGOLLIEE JC L (29)

Ir z would have a part antisymmetric in a and 8, this part would be antisymmetric in @’ and B’
too, since $ is symmetric for the simultaneous permutation of upper and lower indices. So we
can find this part by simultaneous antisymmetrization of upper and lower indices

~anti\Y’ ~af  alply!

<(p >Y = Cop s . (30)

¥e now make use of the important identity

Q
eﬁYea,ﬁ,Y aa,ag,aY,+s‘8 ,+3*,6ﬁ,a$, aﬁ,ag,sy sg,sYsY sg,s e, .

(31)

BI

Inserting it into (30) we get zero for every summand because of the deltas and the fact that
$ has no traces unequal to zero, So $ is symmetric in upper and lower indices, that means it

is in representation 27.

c) We now have to reduce the antisymmetric part ¢ from (23). The complete traces are zero

oF -
Yag =
aﬁ - =0

Yga aﬂ ’



The single traces lead to one octet:

ot/3 -
aﬁ' =0
o1 ﬂ = ’% (f;lﬂﬁ" 6577;:) d:f "% (fﬂ)gﬁl . (32)

(fn)gﬁ, is called the F coupling octet formed with the tensors £ and n. We again separate

b8,

lﬁl a’'p’ +my ﬂ 2 n¢av Sp (33)

a’v ﬁ' v "ol

where the coefficients m and n are fixed by the condition that % must have all single traces
vanishing. One finds

o8 _ op

bargr = Vo0 +6 ﬁ,(fn) - Sa,(éfn)m, . (34)

% is antisymmetric for simultaneous permutation of upper and lower indices. If we make the

‘leﬁl = ';' < alﬁl +'¢ﬁ > 5 < al,aﬁ, a?ﬂ' > (35)

the first term is symmetric in the upper indices and therefore antisymmetric in the lower

decomposition

indices. The second term is antisymmetric in the upper indices and therefore symmetric in

the lower ones. Without loosing information we may therefore contract the first (second) term
[N~ Y 2V} —

with ea By (eaﬂy)’ which gives parts belonging to representation 10 (10), because the result-

ing tensor is fully symmetric.

Proof:
Try to find an antisymmetric part and use (31), all traces of ¥ vanishing.

1 ~Ba 1500 B
-2-<$g€ﬁ,+¢€,ﬂ,> eaﬁ B eﬁ'{'v‘o'

One finds zero. For example

We end up with the result (21)

8x8 =1+8+8+10+10+27 .

2, The main multiplets of hadrons

The connection of SUs with physics is established through the fact that elementary
particles are usefully represented by irreducible SUz tensors. The particles classified up
till now are represented by tensors belonging to the irreducible representations 8, 10, TB,
and the trivial representation 1 (the scalar). One should remember, however, that not all of
the known resonances could yet be assigned to multiplets, and that not all quantum numbers of
the already classified resonances have been established with certainty. [Note added in proof:
we do not mention hereunder the X, meson of mass 959 MeV. It is believed to be a 0 unitary

singlet and has only small mixing with the n meson. )
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We shall write particles belonging to one multiplet in the same order as one writes

the corresponding tensor elements. This is analogous to the condensed form of writing proton

()
()

In order to obtain the tensor belonging to a given particle, one has to replace the

and neutron as an isodoublet:
- (P .
(%)

symbol of that particle by one and the symbols of all other particles by zero. The normali-

zation will be throughout such that for each particle the corresponding tensor verifies

+afee LY _ Yoo =
S 7 T Z |, 12 =1 - (36)
apy

1/2+ baryon octet Cﬁ (a labels the lines, B \he columns)
A° 2° L
BB Z p
- o o}
& - r &L o (57)
ol R0 -24°
. =
3/2+ baryon decuplet ;m
Mass
%+ )
= N =N_ - N2 = N*~ 1237 MeV
L1114 L1412 3 Ci22 > $222 37 Me!
Y Y;° Y
C113 =‘;}.1;3 C423 = T/LE-; L2235 = _’\E_ 1385 MeV
(38)
%0 ok
f133 = ":r—}-; L2353 = -33— 1533 MeV

{333 = Q 1680 MeV
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0~ meson octet §§

o o
3%'*%5 at -
IB = a i-lo. {°
Ca T %W N (39)
- =0 —2q°
K K 3
1~ meson singlet ¢8 and 1~ meson octet §€
wo _g?_ + k4
=2 K
vz f
B8 - - ﬂg_ po 320
Ca P 6 % K (40)
K o =2Wo
V6

The meaning of wg is as follows: the observed vector mesons «° and ¢° both have the

cquantum numbers I =Y = 0, It is possible therefore to form coherent superpositions wg and ¢ :

I wo > = sin @ I w® > = cos 9 I 9° > } (1)
41

| 9o > = cos @ ] w® > + sin @ ’ 9° >

| ° > = °

sin ¢ | wo > + cos ¢ I ¢3 >
} (42)

o : o
|<p >=—cosﬁlwo>+sin'3l‘~f’o>

It appears that if one chooses an appropriate mixing angle ¢ the superposition wg belongs to °
the octet and ¢8 forms an SUs; singlet. From experiment the angle ¢ comes out to be
approximately (see Section 5):

cos ¢ =

9~ 35°; sin & = (43)

win
.

1.
V3’

Using these values of sin ¢ and cos ¢ it is possible to place all nine vector mesons

into one tensor, Add the octet and the singlet

P, BB
V3 8oc']'ga

) o
(where the first term is the diagonal tensor representing the singlet) and convert ¢, and wg

into ¢° and «° by using (41) and (43). One finds the very simple form

W’ +p p+ K
V2
- W 0®
0 -_:EfL Ko (44)
He —%0

K K 9°
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Note that this tensor has a non-vanishing trace. Remember that 3° and . w°® are the
physical particles, so nature has chosen not to form particles belonging to a singlet and an
octet, respectively, but a special mixture of them., SU¢ symmetry will provide an explanation
for this fact.

The antiparticles of the particles in a multiplet are represented by the Hermitian
conjugate tensor elements. Thus, antibaryons are in 8 = 8 for spin parity v@+, and in 10 for
7&+. For the 0 and 1~ mesons, particles and antiparticles are in the same multiplets, which

consequently are self-conjugate (1 = 1, 8 = 8).

3. Infinitesimal transformations -

Operators for isospin and hypercharge

From general principles of quantum mechanics it is known that any observable is
represented by a Hermitian operator. We can introduce such operators acting on the tensor
indices. Some of them will represent isospin and hypercharge. Let §:g" be an irreducible

tensor and hg an arbitrary 3x 3 matrix. We define the linear transformation

£ =a(n)¢ (45)
by the formula
SRS PO L P LN S LA S (26)
Bee = hy a’Be. TR PaB! Bes ' aB.. &’

If the matrix h is Hermitian, A(h) is Hermitian too, as is easily verified if one remembers

that the scalar product of two tensors of the same representation is defined by

< |n>= {;??"n:é:. . 47)

We give the proof for two indices:

* p ' * * nN¥ ’
<8 | n> = 03 rﬁ{(A;){j] £ (03 -8 ) ol (&) nﬁ—(;’i) ' o
=< | am> .
An arbitrary 3x 3 matrix hﬁ can be written as a linear combination of nine matrices (v“)hg,

where (vy)hﬁ is defined as having the element 1 in the vth column and uth line, all other

elements being zero

(u)pp _ 5vsf (48)
a au

For these nine matrices one defines nine transformations, { -» {’/ = A:{, simply by

inserting the special matrix (48) into the equation (46). Thus,

A=A <(”“)h> = A (SZsﬁ . (48a)
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In terms of the nine transformations A: every transformation A(h), by using the

identity
o = nhslsh (49)
may be written in the form
Aéﬁ) = A@saaﬁ = hn . . (50)

The action of the transformation A is easily understood: as far as a lower index is concerned

th line in the posxtmn of the vt line, all other lines are put to zero. As far

A puts the u
as an upper index is concerned, A puts the vth column in the position of the uth column, all

other columns are set zero.

if hg is a Hermitian matrix with vanishing trace, then [1 +ieA(h)] is an
infinitesimal transformation of the group SUs;, and conversely. Indeed, let ueSU; be an
infinitesimal transformation:
_oeal . af
u =8 +ien = . (51)

The necessary and sufficient conditionsthat det u = 1 and u = unitary are respectively

Sp h = 0 and h Hermitian,

Proof':
’ ! 7
Note:- (u=')% = 8% -ien® .
a a [0 4
u+ = u!
( +)a' =% = 5% - jen™® = Sa'-iehm'
Uy = Ugr = 0qr= 1Ry, =0, a
}
- -1 a'__ 04 -
= (u )a =8, -ich
y\h'=h

det u = u,ugu'{ e

<81 + iehy ) <82 + 1sh2> (83 +1€h3> aBy

{8?858 +18, 8'3 h3 +13p83€h1 +18Y8?ehg} . €

oy

1+ie (h3+h}+h3) =1

£ X\ Sph=0 .
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AH this is calculated to first order in €. By using (10) and (11), and (45) and (46) it is
immediately seen that for infinitesimal u as in (51) one has

U(u) = 1 +ien(h) , (51a)

1t being the unit transformation.

Corresponding to the eight linearly independent matrices h with vanishing trace
there are eight linearly independent transformations (51a). As will be seen later [Eq. (62)]
they form representation 8 of SUs (this representation, formed by the infinitesimal trans-
formations of the group, is usually called the adjoint or the regular representation),

One usually chooses, following Cell-Mann, the following basic h matrices (dots stand for 0):

e SES
x< xs=(g )
i)

The operators for isospin and hypercharge are the operators A(h) for the following

- @ ¢ e
> ee o * tem
~
' NG NG

T . .

e ® ‘:J '?’

O\I-Il.-o/ n it

N N
we (S . beo
]
> e o o o
«
n o|!' o o0
N— N
G- - -
g
.
.

special choices of h:

. . N DU
Isospin I = A(hIi), hIi =5 N3 1=1,2,3 (52)

Hypercharge : Y = A(hy); h. =—\s . (53)

Here the composite structure of SUs is seen, In the first and second line and column of xi
one has the Pauli matrices representing isospin, The third line and column refer to hyper-

charge, Thus, isospin and hypercharge commute because As commutes with Ay 2, 3.

The operator for the electric charge is

Q- A(hg) (54)

DI

where

h = 0

Wl=

)\.3+

=
<
=

in accordance with the relation of Gell-Mann and Nishijima

Q = 1Is +‘-§ . (56)
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With these operators the assignments of isospin and hypercharge for the particles in
the multiplets (37~ 40) may be checked. For example, the hypercharge of the proton is

verified to be one:

TCRI I

Another example is the calculation of the fractional electric charge 7;, -7;, —7@

LN}
N
1
TIN

L3N )
N2

of hypothetical particles which would be associated with the representation 3, the so-called

quarks.

4. Transformation of operators under SUs

Let {4 and {, be two irreducible tensors, and let u be a transformation of 3Us.

It transforms {, and ¢, into
£ = U(u)gas 84 = U(u)ge o (57)
We define the effect of u on an operator A to be A - A/, where A’ verifies
<G |lAJas>=<t Al (58)

for arbitrary {; and (5. Using unitarity of U(u) one finds

<f AL >=<U)E | A | Uu) g

1]

<l Ut () A U) | gy >=<l | A G >

A A’ = U(u) A U (u) (59)

where
U='(u) = U(u™') . (60)

The application of the transformation law (59) to the operator A(h) defined in (45)

gives

A(h) > U(u) A(h) U™ (u) (61)
which we state to be equal to

U(u) A(h) U-'(u) = A(uhu™?) , (62)

where

-1 /3 _ K\ -1 ﬂ

(uhu )a = uahK(u s . (63)

To prove (62) one applies the operators proposed to be equal [UAU and A(uhu™')] to a

tensor and czrries out the transformations U(u) and A, (11) and (45).
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The application of the transformation law (59) to the nine operators A: [see (50)]
gives

U(u) AZ U=t (u) = (u"‘)z AM . (64)

Proof:

Use the definition of AZ, see (48) and thereafter
uA’u-t = ua (aZsﬁ) Ut = Aélz,b‘l;,'aﬁl(u" )g,> = A<ul;(u")€> .
With help of (49) the right-hand side of (64) can be written
(u“)z Az\u; = u;(u"’)z AZ; = AG:Z(u")ﬁ> g.e.d.
For subsequent use we want to define a further operator A’(h) which is linear in h
but quadratic in Aﬁ
Af(n) = hﬁAZA; . (65)
For this operator again we find the transformation law
U(u) A7(h) UT"(u) = A’ (uhu™t') . (66)
Proof:

uAty-?

0Cw) - WY (Uut) - U(u)> 2% 0w = 8 [ucu) 4% U(u"):‘ I:U(u) 2 U(u“)]

L]

ﬁ - 1631 Y' Y - Y’I all a _ o - [ Y” all _ , -
h(u)8" Y, (uY,(u DY) %, = [ua”h'g(u " ]Aﬁ,A &) = Ar(uhatt)

5. Mass splitting operator.

Mass formula of Gell-Mann and Okubo

Particles in the same isospin multiplet show almost the same mass. The small mass

splittings can probably be accounted for entirely in terms of electromagnetic interaction.,

In contrast thereto, the mass splittings inside an SUs multiplet are very large.
The mass values nevertheless give great support to the SU; symmetry scheme. This is due to

the fact that they appear to have simple group theoretical properties.

The mass splitting is attributed to a so-called semi-strong interaction, which, in

contrast to the SUs invariant very strong interaction, is not SUs invariant. How it trans-

forms under SUs is guessed on the basis of the experimental fact that the masses depend only
on the hypercharge.. (We neglect electromagnetic mass differences.) One therefore tries the
simple assumption that the mass splitting operator AM, which is responsible for the mass
splittings, transforms like the hypercharge operator, This assumption turns out to be

remarkabiy successful. We proceed with the precise formulation of the properties of Al,
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We demand the existence of a class of operators AM(h) which is defined over all
traceless 3x 3 matrices hﬁ, is linear in h, and transforms according to

U(u) MM(h) U='(u) = AM(uhu-?') . (67)

That is, AM(h) obeys the same transformation law as do the operators A and A’ defined above.
All these operators transform under SU; like the traceless matrix hg, i.e, like the octet
representation of SUs, It is assumed that the mass splitting operator AM is the member
MM(Ag) of the class. From (53) we know indeed that As gives the hypercharge (the factor V3

is immaterial).

If the symmetry scheme SUs is to make sense, the symmetry violating semi-strong
interaction has to be small compared with the very strong symmetry conserving interaction.
Therefore, we expect to get the actual mass splittings from a first order perturbation cal-
culation, This will be found to work, In first order perturbation we have to find the

eigenvalues of the operator AM
<l | M| gy>=< | M) [ &> (68)

i.e. to diagonalize the matrix (68) taken between irreducible tensors, Before deriving in

this way the famous Gell-Mann-Okubo mass formula, we make a few general comments.

In the case of the pseudoscalar meson octet AM should be regarded as an operator
which gives the splitting among the squared masses. There is no really convincing theoretical
explanation of this fact, it simply turns out empirically that the masses squared rather than
the masses themselves fit the mass formulaf{ For the other multiplets the formula applies

equally well to masges or squared masses,

For the baryon octet and decuplet the mass formula derived in a moment holds very
well., The precision -is of the order of a few percent, the mass splittings themselves being
of the order of 10- 30%. For the pseudoscalar mesons the predictions are less well satisfied,
but the relative splittings are also much large;*{ In all cases the discrepancy between pre-
dictions and experimental masses gives an estimate of the importance which second order
perturbation effects of AM may have. One concludes that these effects must be, very roughly,
a factor 10 or 20 smaller than first order splittings. We now proceed with the mathematical

derivations,
Consider the matrix element
<& | mu(n) | gy > (68a)

of which (68) is a special case. It is left invariant if {;, {- and h are all transformed by
a transformation U(u) from SUs. Indeed, because of (67), the operator AM(h) undergoes a trans-
formation which leaves the matrix element invariant, namely (59). Since the matrix element

(68a), as far as indices are concerned, is of the structure
+ e " LY LI
RN AR (69)

we have to construct invariants out of expressions like (69). An invariant is obtained by

contracting all indices with the help of the invariant tensors & and €, (12). We deal first

*) Note added in proof: this difficulty can be resolved by mixing 7 and Xo.(see note p. 8).



-17 -

with the case that {4 and {, belong to the same multiplet, i.e. have the same numbers of
upper and lower indices, The number of upper indices in (69) is then the same as the number
of lower ones. Because of identiy (31) all contractions can be done with §. Remembering

that {; and {, are traceless, one is left with three posibilities:

RN (AR S (LA AR R [ (70)

(This invariant gives zero when the trace of h vanishes.)

20 (@DE Y (G (71)
50 (Ghge s wl, (@ (72)

If {4 and {, possess only lower or only upper indices (case A), it is possible only

to construct one of the two invariants [(71) for only lower - (72) for only upper indices] .

If ¢, and {, possess both lower and upper indices, both the invariants (71) and (72)

can be constructed (case B),

So the invariant matrix element (68) has to be a linear combination of the invariant
(70) » and

in case A) - one other invariant (71) or (72)

in case B) - the two other invariants (71) and (72).

The same argument now holds for two matrix elements:

<l | Ah) | ¢y >and < & | A(h) | &y > (73)

because A(h) and A’(h) transform as AM(h). In case A, (70) and any one of the invariants (73)
are linearly independent; in case B, (70) and both invariants (73) are linearly invariant;

this is easily checked because A and A’ are known explicitly. Consequently:

Case A - The one existing invariant (71) or (72) may be expressed by the invariants
Ry <le | &y >and < Lo | A g > (74)

or as well by the invariants

a
a

W <l | ¢y >and < & | A Ly > (75)

thus leading to

<o | M(n) | &y >

1

cohy < &z | &4 > vy <82 | AR) | L4 > (76)

cchl < g2 | L4 > +ci <& | (M) | &4 > (77)

where co, C4, co and ¢4 are constants independent of h and of the members {, and {, of the

multiplet considered (their values can change from multiplet to multiplet).
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Case B - Both invariants (73) are needed to eliminate the two invariants (71) and (72), thus

leading to

<o | Mi(h) | Ly >=dohy<Ca | Co>vdi <l [ AR [0y >wde <l [ M0 | Ch >,

(78)

where do, dy and d, are again constant within each multiplet.

We now turn to the calculation of the mass splittings, i.e. we put h = Ag and
remember that AM = AM(Ag) is the mass splitting operator. Formula (76) gives with h = Ag

<l | M| g >=cp<le M) [La>=ci VB<la | Y] >=0cy V35 Y ’
£281 84

(79)

[for Y see (53)]. Because of (74) this is sufficient to deal with case A. The relevant
example is the baryon decuplet (38). All mass splittings inside the decuplet are expressed
in terms of one constant; the mass differences are equal from line to line in (38). This is
in excellent agreement with the observed masses. Using this formula it was possible to pre-
dict the mass of the then unobserved €, and to predict that it decays only through weak

interactions, These predictions are now confirmed,

To treat case B, we first want to express A’(Ng) in terms of the operators

12 412412 and Y

hy = 75 e (53)

A (ny) = (hy)ﬁ A;Afr‘_ = % (aYa? + 2Ya2 - 20Y22) = —;-AEA:‘(-A‘{A; (80)
M) = Y = (hy)ﬁ A% = % (A! + 22 - 203) =-;- Az- A2 (81)
~ A= %Az-v (82)

Lo = Alhg) = (hy )5 8% = 5 (a1 +) (83)
Lo ee e s i/2(05 - A0) (84)

Is = ¢ o ¢ o o s o o ooz % (A} - A2) (85)
[1)2 = 12412412 = %A‘ijAj- }: (A} +22)% (86)

(Our index convention is i,j = 1,2 and a,8,y = 1,2,3.)
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Add and subtract special terms:

a2 _ v e s 1 3,y Lis,s 1Y 342
1] = 5 Ay SAsAL-5 MAs+ 5A3A3 4(AY A3)? . (87)
Use the commutator
/ 4
[:Ag,, A; ]: sg,Ag- s;A;, . (88)

Equation (88) can be proved directly by using the definition of Ag [see (50)].
A;AX = AIA; + [A;, AX:] = A‘{A;+ 3A3 - Az . (89)
Put (89) and (82) into (87) and solve for
AXA?{ ,

insert this into (80), It follows that

/ I Y 2_Y2
A (hy) a AaAY+b<Ay> + cY+(I 7 )
where a, b, and c are constants. We put this into the mass equation (78) with the result

2
<L | M| L>=ar <l (ﬁ+1§+ﬁ-%>

Lo >+b' <l | Y| &>+ <l ly> ,

(90)

a’, b’, c’ are constants independent of the members {; and {, of the multiplet. The operator

“representing the total mass (or the total mass squared) has the form
M = Mo +AM (91)

where My is the SUs invariant part with a common value for all members of a multiplet, and AM
is the mass splitting operator as before. From (90), replacing the operators on the right-

hand side by their eigenvalues, we obtain the Gell-Mann-Okubo mass formula relating the mass

of a multiplet member to its hypercharge and isospin

2
m.=ao<[(I+|)-YT>+boY+co ’ (92)

ao, bo, Co are constants within the multiplet.

Let us apply (92) to the baryon octet, Using the four masses of the four isospin
multiplets involved (N, A, Z, Z) one can eliminate the three constants in (92) and one

relation between the masses is obtained

1 1
5@N+mz> = z(“v%) - (93)

The analogous relation for the octet of pseudoscalar mesons [use masses squared, cf. paragraph

after (68)] reads (remembering my = mK)

2 _1(2 2
m = 4<,‘T+5mn> . (94)
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The analogous relation for the octet cf vector mesons gives

_1
m, _Z(np+3 < o8 M| w8 >> . (95)

We used again the masses themselves. The last term in (95) is the mass expectation value’
of the I = Y = O octet member wj. With vector mesons we have an example of "mixing", in the
sense that the operator AM has also a non-vanishing matrix element between different multi-
plets, namely the element < wg IAMI ¢8 > between w3 and the singlet o%. Of course,

< w IMDI ¢3 > vanishes. As we show presently, consideration of this matrix element and of
(95) allows us to determine from the experimental masses the mixing angle ¢ appearing in (41)
and (42). By the same token,SUs predicts no mass relation between the nine vector mesons.,

Such a relation, i.e. the value of &, will be predicted by SUs.

The operator M in the Y = I = O subspace spanned by wd >, l @8 > is given by the
matrix

<wd M| wd> <wd [M]| 9S>

[o] (o] (o] [o] (96)
< Qo [M | wo > < Qo |LI[ 9o >
Mo + S U
- - (97)
U mo=- &
The relative phase between ] w§ > and l @3 > may be chosen in such a way that
<wg M| 90 >=<095 [M|ws > = u = real, (98)

a relation already used in (97). Recall that M is hermitian, The eigenvalues of the matrix

(97) are

my 2 =mo ¥ [8%+p® (99)

They are the known masses of the physical particles

my = m(Po; my = mwO . (IOO)

The parameter mo +8 = < 9 IM | w8 > is known from the mass formula (95), mp and 62 + u® follow
from (99). Since one knows all matrix elements of (97) it is then possible to find the

eigenstates (for example, the w°)

<mo+8 u ><si 19>=[m0_ ,82+u2:| <sin ﬁ>’ (101)
u mo = 8 cos ¢ cos ¢

(the - sign has to be taken in the eigenvalue because m o < m¢o). This simple calculation
leads to the angle ¢ ~ 35° mentioned in (43).

=
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An experimental check of this result is possible by an independent determination

of the octet and singlet parts in the physical particles «° and ¢°. Consider the transitions
w® > virtual y; ¢° » virtual ¥ (102)

which control, for instance, the rare decay processes

£
£ denotes a charged lepton (electron or muon), The matrix element for this process would be

[ &° o5 . (103)

<y | A“I 0><0]3j o200

u

The electric current operator ju transforms under SUs like the operator of the electric
charge, see (54), i.e. like an octet member (for more details see next paragraph). Since the

matrix element
0

<0 iy lgpeo? (104)

or ¢
is SU; invariant, we have to construct an invariant out of

an octet (the electric current ju),
a singlet (the vacuum 0), and
a mixture (42) of octet and singlet,

namely the physical particles w® or @o.

An invariant is obtained only when the matrix element (104) picks out the octet part from the

physical particles w°, ¢°. It follows

<0 | j” | @ >= sin® <0 | j# | w8 >

<oy, le>

-cos @ < 0 | i, | w§ > .

Therefore, the ratio of the two decay rates (102) will be

R(w® » £*27)  sin?? ~ Y1
R(¢° » £%%47)  cos?o % 2

.

This ratio has not yet been measured.,

6, Electromagnetic properties. U spin

The basic consideration leading to predictions of the electromagnetic properties of
the particles grouped in irreducible tensors is the same as in the case of mass splittings.
One knows the transformation law for the electric charge and electric current, since they are

operators in the octet representation. This is shown by (54), (61) and (62) for the charge
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operator Q. One assumes that similarly the electromagnetic current operator j# is a
special case j# = j#(hQ) of an operator depending linearly on a traceless matrix hg, with the

usual transformation law
Uu) j, (0) U(u™") = j, (uhu™) .

Therefore, the matrix element
<t |3, g > (105)

is an invariant, under SUs, and one constructs invariants out of the parts forming the matrix
element (105). As in the case of the mass splitting, the number of linearly independent
invariants is zero, one,or two. An example of application of the method was given at the end

of the preceding section,

A very convenient tool to discuss electromagnetic properties is the reclassification
of particles by means of a quantum number called U spin, introduced by Lipkin, The idea

behind it can be described as follows.

The isosnin ? commutes with Y, so all particles in the same isospin multiplet have
the same properties as far as Y is concerned. The U spin is now constructed to play with
respect to Q the same role as I plays for Y. Thus, the operators 6 will commute with Q, the
electric charge. Therefore, all particles in the same U-spin multiplet will have the same

electromagnetic properties.

Consider the special SUs transformation

Uo=<111> (106)

For a covariant spinor it gives a circular permutation of the components

£*£'=w€;<§;>*<§3> (107)

s £2

and, as is easily verified, it satisfies

uohyuS' = uo % ug! = - xQ . (108)

Hence, the transformation U(uo) = U, corresponding to uo transforms the hypercharge in the

opposite of the charge
UoYU? = = Q . (109)
The transformed of the isospin I1,2,3

U1,2,3 =Uo I4,2,3 Us' (110)
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is by definition the U spin, It has the same commutation rules as the isospin

|:Ui, UJ. ]: wk (iyj,k = circ.perm. of 1,2,3)

and commutes with the electric charge.

Instead of using Y and I3, one can now classify particles by means of the commuting

additive quantum numbers

Q = 13+-;-Y }
. (111)
U; =':l§ I3+%Y

The two classifications for the baryon octet and decuplet are given in the diagrams on p. 24.
The isospin multiplets are found on the lines Y = const, the U=-spin multiplets on the lines

Q = const. The only complication arising is the Y = I = Q = Us = O pair of particles
occuring in the octet. The physical particles are A° and %° with isospin O and 1, respecti-

vely. The eigenstates of total U spin are, for U spin 0 and 1, respectively, given by

o _ o _ l 0 lz o
Ay = Uoh® = -5 A% -2 2 }
(112)
z°—uz°—-‘5—A°-lz°
u - ° T2 2

As an example of SUs predictions for electromagnetic properties we discuss the
magnetic moments of the baryon octet. In addition to the eight magnetic moments u , Hpo Hyo
p2+, uzo, uz_, yEo, uE_, one must consider the transition moment uAE between A° and 2°, which

> determines the £° lifetime for its main decay IR A°‘+Y. Because of time-reversal invariance,
ﬁ-all nine quantities are real, and uAE describes both transitions A°¢«— Z°, The predictions

can be grouped as follows:
a) Using (56), isospin invariance,and the fact that Y is an isoscalar, one obtains

Mg+ + Hp= = 2050 . (113)

b) From U-spin invariance of strong and electromagnetic interactions one has

“2.*. = /Jp
How = Hyp—
. 11
u,:lo = [JEO = IJ[\ 7 ( 4)
= u
u =0

c) From SUs invariance, especially (109) and (112)

uy = - u(Y) (115)
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where yﬁ?) is the contribution of the hypercharge to the A magnetic moment. From (56)
1 1 (y
nA=ug’)+2,#X) , (116)
where yﬁ?3) is the isospin contribution to Hye Since A is an isoscalar and Is an isovector,

this latter contribution vanishes, and (115) becomes
My == 20, . (117)
u

Equation (112) gives

[
A, Sz P Y4 Bgo v o > (118)

We have enough equations to express all pu's in terms of two of them, This was predictable
since the representation 8 to which the electric current belongs occurs twice in the reduction
of the antibaryon-baryon combination 8x 8. Expressing all p's in terms of the proton and

neutron moments one finds

#E+=Hp

ho =2, = - 200 =-2p._ =p > (119)
=0 A % V3 A n °
Uz—=#3—='ﬂn-up

The experimental value of uA agrees with this prediction within the large experimental error
(2 30%) (see bibliography). By similar methods one can derive SUs predictions for electro-
magnetic mass differences, which are of second order in the electromagnetic interaction,
The most interesting one is the formula given by Glashow and Coleman

My =M Mgy = Moo + Mo =Moo = 0 (120)
which is well verified by experiment. One can also combine mass splitting effects due to

electromagnetic and semi-strong interactions.

The U-spin formalism can be profitably used for many other cases. An example is
the photo-excitation of octet baryons leading to the baryon resonances in the decuplet.

The relevant matrix element is
. K v
<baﬁ,{l3#x[bu> s
where ju is the electromagnetic current. ju is .an invariant for U spin, hence the transition
v
b

> b
u apy
interaction processes,

must conserve U spin. U spin is also very useful in the discussion of strong
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7. Coupling between baryons and pseudoscalar mesons

Let pg and bg be the traceless tensors representing the 0 meson and baryon octets,
respectively. We want to write down the most general b b’ p interaction which is SUs
invariant, b transforms under SUs as the Hermitian conjugate tensor b+. With b* and b’

the following octets can be constructed

(b b’)’B = b;ﬁbay b+Yb,'{ﬁ (121)
(b+b')ga = ;ﬁb'ﬂbwbj{ﬁ ;Bﬁbwb{{ (122)

[see (32) and (27)]. The most general invariant b b p interaction has the form
+1\8 + \B a
|:f(b b!)p, +d(® DD Py - (123)
The two terms are called F-type and D-type couplings, respectively. Experiment gives rough

indications on the value of the f/ﬂ ratio, It appears to be of the order

<
~

<1 . (124)

il =
=

Similarly, if Aaﬁy is the fully symmetric tensor representing the baryon decuplet,
the most general SUs; invariant b A p interaction is given by
ﬁB pY a5¢
Bovs Py . (125)
Hence, there is only one coupling constant governing all decays A = b+p. Experiment does

not agree too well with this prediction.

II. SUe SYMMETRY

The SUe¢ symmetry scheme was developed by Sakita, Radicati and Girsey. The idea is
to combine ordinary spin and SUs symmetry. This is a concept going back to the Wigner
theory of supermultiplets in nuclear physics. [Wigner (1937) combined spin and isospin of
the nucleon, introducing the group SU,. ] Only in the non-relativistic limit is it possible
to separate the angular momentum of a particle into a spin and an orbital momentum part in an
invariant way, independent of the co-ordinate system. It is for this reason that SU¢ has to
be regarded as a non-relativistic theory. Despite many attempts, very little success has

been met in the direction of relativistic extensions of SUsg.

1. Non-relativistic spin and the group SU,

Following Pauli, non-relativistic spin is described by tensors in two-dimensional
unitary space, the corresponding group being SUz. As is well known, this group is locally

isomorphic to the three-~dimensional rotation group SUs; it is its covering group.
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The covariant spinors are

x=<§;) : (126)

and the SU, transformations are

J

x> x'=ux or x!s= ujXg (i,j =1,2)
. (127)
uu=1, detu=1 |,
The contravariant spinors
n= (o', 7°) (128)
transform as
_ . i i
ns ' = m; gt = p)(u ‘)j . (129)
The Hermitian conjugate x+ of x with components
+ i *
(xM* = (x;) - (130)

transforms contravariantly,

The general tensor xk%" follows the transformation law (127) for each covariant

index, and (129) for each contravariant index, in the same manner as in SUs [see (10)].

The invariant tensors are

s = 1 for i=j
i 0 for iZj
(131)

1 for i=1, j=2

{ 0 for i=j
-1 for i=2, j=1

The reduction of tensors is carried out, as was shown for SUs;, with the invariant
tensors (131). There are three ways of reducing a tensor, i.e., of reducing its number of

indices:
a) use the Si (i.e. form a trace);
b) use the €I (i.e. take the antisymmetric part with respect to two lower indices);

c) use the eij (i.e. take the antisymmetric part with respect to two upper indices).

The irreducible tensors are the ones which give zero for évery reduction, They
have the properties specified already in Chapter I-1: All their traces vanish, and they are

fully symmetric in upper and lower indices,

Because of the dimension two a further simplification arises: one can raise lower

indices, or lower upper indices, with the help of the tensor elJ or €.., respectively:

1]
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kfo.o Koo im _ ~mkd..

KEow |, Kt = X" 132

ijee XlJ.. xJ.. (132)
Kf..  Kki.. ~..

Xijeo > Xije. " Skm = Xmij.. (133)

Because of this fact all irreducible tensors with the same total number of indices (upper and
lower) are equivalent to each other, i.e. can be transformed linearly into each other in SU,

invariant way. Thus, a complete set of inequivalent irreducible tensors is given by

Xiy..in; fully symmetric in (iq...in) . (134)

The dimension of (134), i.e. its number of independent components, is n+1, Expression (134)
represents spin s = n/2, with its 2s+ 1 = n+ 1 possible orientations.

For spin 1, (134) specializes to the symmetric tensor Xij' One can use equivalently
the traceless mixed tensor

ni = Xei® € n; =0 . (135)

Verify that the traceless condition [2nd equation (135)] implies and is implied by the
symmetry of Xij' This holds for arbitrary number of indices.

2, The group SUg

We now introduce indices which combine spin and SUs;

i =1,2 is the spin index
A= (i,a) { @ = 1,2,3 is the SUs index ] . (136)
A= 1,.-6

The basic elements of the SUg scheme are six-dimensional covariant spinors

t=<:) . (137)

The contravariant spinors are
s = (s'..s%) . - (138)

The transformations are given by 6x 6 matrices, which act on the spinors (137) and (138) in the

same manner as in SUp and SUs;
A= Uaty (139)

sgh s sB(u")g . (140)
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The general tensor tggé' is transformed covariantly, see (139), with respect to the lower
indices, and contravariantly, see (140), with respect to the upper indices [see (10)]. 1Its

Hermitian conjugate is defined as in (14)
%
t+ABC.. - tDE..
DE.. B ABC. . ¢
The invariant tensors are

B _ 1 for A=B
8 _{Ofor A#B (141)

(142)

AjedAg € fully antisymmetric
€ = € .
A1 . IA6

€100 = 1

Again one carries out the reduction of tensors by means of the invariant tensors (141) and

(142). Due to the higher dimension now there are four reduction procedures:

a) use the Si (i.e. form a trace);

coe

b) wuse the € (i.e. take the antisymmetric part with respect to four or more
lower indices);

c) use the € (i.e. take the antisymmetric part with respect to four or more

upper indices);

d) decompose into summands with definite symmetry character in upper and/br

lower indices,

In the cases of SU, and SUs,point (d) was done automatically by means of contractions with e.
Now it has to be done separately. Only (a), (b) and (c) reduce the number of indices:

(d) does not, but separates a tensor in an invariant way in tensors with a smaller number of
independent components. For example, it is seen that tAB cannot be treated according to
procedures (a), (b), or (c). Its reduction according to (d) is

) =) ()
tap = tap ttap’c tag T2 (taBTtRa) ¢

There are two cases which are at present important for physics, the tensors

B
tA and tABC .

We give their reduction:

1. Only reduction (a) applies to tﬁ. It separates the traceless part

B _1.B.C B 1 B,C
ty = KSAtc+<tA‘88Atc> (143)
written as
6x6 =1+35 . (144)

The first term represents the invariant tensor §. The second one, 35, is the traceless

tensor which has 35 independent components.
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2. tABC has 216 elements. Only the procedure (d) can be applied. The symmetry classes

existing for three indices are:

i) t:BC - fully symmetric in A, B and C, has 56 independent components;
it therefore belongs to representation 56;
ii) t:BC = fully antisymmetric in A, B and C, has 20 independent components;

belongs to representation 20;

iii) tKBC - of mixed symmetry, with the following characteristic properties:
it is antisymmetric in A and B
m m
tasc =~ tBac ’

and the sum over the circular permutations gives zero

m

m m
tasc*tecatteas = O -

tm has 70 independent components and belongs to representation 70.

s
The most general tensor t can be decomposed in a sum of one fully symmetric tensor t , one

ABC
fully antisymmetric ta, and two distinct tensors of mixed symmetry t™ and t/™. So one

writes

6x6x6 =20+56+70+70 . (145)

Verify that the total number of dimensions is correct.

3. SUg multiplets of hadrons

We consider a covariant SUg spinor, its index written in the form (136)

t. (146)

i,a
J
i

and ug, where v
belougs to SU, and acts only on the spin indices, while u, belonging to SUs, acts only on the

i is the spin index, a the SUs index. Now we apply two transformations v

SU; indicess

, (147)

b, -t = vidPt
1a la 1 Q

JB

where i,j = 1,2 and a,B8 = 1,2,3,. This is a special type of SU¢ transformation w

B
1 =
ty >t = wAtB (148)
with
B_yi (149)
wy = Viua 9

where A = (i,a) and B = (§,8).

It is clear that such direct products of SU, transformations with SU; trans-

formations form a subgroup G of SUg

sUz (X) sUs a3r & € SUs . (150)
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The dimension of G is 3x 8, smaller than the dimension 35 of SUs. It is clear that assuming
SUe invariance of the very strong interactions will lead to predictions which go beyond the

SU, and the SU; invariance predictions,

The SUe¢ spinor or "sextet" tA ("sextet" because it belongs to representation 6) is
seen to transform under the subgroup G as a doublet for spin (one index) and as a triplet for

SUs (one index). This SU. ®) SUs structure of the sextet is usually written in the form

6 =(2,3) . (151)

We proceed to the tensor mﬁ, which, if traceless, forms the irreducible
representation 35 of SUg. What is its physical content in terms of SU, and SU5? To find
out we have to reduce this tensor with respect to the subgroup G. The tensor is

B _ _iB .. A da _ ., i,]
my = myy with my=m = 0; "y

1,2 '
1,2,3 ] : (152)

Reduction with respect to SU,: one extracts a part with vanishing trace, which gives a
singlet corresponding to spin 0, and leaves a traceless part, i.e, a triplet corresponding to

spin 1, We write this out

i _ Jﬂ__ J kﬁ 1 J kB
mia-< mi- 3 8m +281mka . (153)
spin 1 spin 0

Reduction of these two parts with respect to SUs: the spin 0 part has automatically a

vanishing trace for SUj;
13 K8\, ca_ 1§ ke
( 5 Biml ) 8ﬁ =3 Bimka =0 , (154)

so it is an SUj octet. The spin 1 part still has a non-vanishing SUs trace. By separating

it we obtain an SU; singlet and an SU; octet.

ig J kg8 Jﬁ_Jkﬂ S RN 'l DR RV '
<1 81ka> [( -3 % ) 35aJY:|+38a iy (155)

J o)
SU5
singlet

N
SUsz octet

In analogy to (151) we write the result (153) and (155) in the form
35 = (3,8) +(3,1) + (1,8) . (156)

The first number in each bracket refers to the spin, the second to the SUs representation.
We find that representation 35 has exactly the SU, C) SUs; content needed to accommodate the 8
pseudoscalar mesons and the 9 vector mesons classified in SUs [see (39) and (40)]. This is

the first appealing property of SUsg. Note that in (156) the dimensions come out correctly:

35 =3x8 +3x1 +1x8 ,
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Now we examine the irreducible tensor bABC of representation 56

b fully symmetric in A,B,C (157)

ABC = Pia, jg,ky
and, most remarkably, we will find that it accommodates exactly the baryon octet and decuplet,
The reduction of (157) with respect to G is

_ s m
Pagc = Xac * XaBc * (158)

where xch is the part fully symmetric in spin and SU; indices separately, and XAEC is the
rest. Consider the fully symmetric part of (157) with respect to the spin indices: it is
the expression

s 1
b, . ==| b, . b. . b o s b . b Lo s L. .
iy jBsky 6|: 1a,3,8,ky+ Ja,k,B,ry'"' ka,1p,JY+ ia,kﬁ,JY+ ka,Jﬂ,1Y+bJa,1ﬁ,kY]

(159)

Since bypc is fully symmetric for exchange of pairs (ia), (jp), (ky), b° is symmetric not
only in the Latin spin indices but in the Greek SU; indices as well, So,

S S
Pia,ipiley = ¥aBC - (160)

With respect to SU,, belongs to representation 4 (spin ?Q). With respect to SUs,

s s

XaBc XABC
with three lower indices belongs to representation 10 (see the list of representations in
Chapter I-1), Hence, the SU, X) SUs structure of x° is (4,10) and it can accommodate the

spin ?; baryon decuplet.

m
The rest y. .

Xia, iB,ky
For reasons of simplicity we now omit in most equations the SUs indices. The fully symmetric

is of mixed symmetry. We first consider the SU, behaviour,

part in i, j,k has already been extracted, so symmetrization has to give zero

m —
Xijk =0 ., (161)

pern (i,j,k)

Since i, j, and k can take only the values 1 and 2, the antisymmetrization has to give zero

too, because always two of the three indices i,j,k are equal,
p m
;ﬂ (-1 Xijk =0 , (162)
I
perm (iy.j:k)

(where p = parity of permutation). From (161) and (162) it follows that the sum over the

even permutations as well as the sum over the odd permutations are zero

. m _ m _

even perm (i,j,k) odd perm (i,j,k)
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xm can have mixed symmetry only in i,j,k. Instead of x?jk we consider three spin 7Q parts:

ij m N

€7X;jk der %k

ij m _

ij m
€ Xli def §k P

Instead of x ik we may also write the equations (164) with the original tensor b ~Since

ABC
the € iJ only affects the antisymmetric part, the addition of the fully symmetric XABC (158)
does not change the values of {,n,¢.

Ck’ e and §k are linearly dependent

g +n +&, = el ( y x?jk )= 0 (165)
[

even perm

that is, there are only two linearly independent spin 7; parts in bABC' This was predictable
since combination of 3 spins 7; gives spin }Q only twice, We may reverse the equations (164)

by multiplication with eij and renaming of indices, which gives

m
odd perm

the last term being zero because of equation (163).

We replace xm by b in (164) and insert (164) into (166):

m| mn m

€ b Bxiao‘jﬁ’kY

€ii€ Pna,ngky* ki€ Pno,ig,my* € ia,mg, ny . (167)

The three terms on the left-hand side are essentially the same because of full symmetry of b

for exchange of pairs of indices

mn =M
no, jp3,my - my,na, jg

. (168)
LU - em
ia,mB,ny mB,ny,ia
In other words they are all expressible in the single tensor
mn
€ bng,ng,ky (169)

What is the SUs; character of this tensor? Formula (169) contains only the antisymmetric

part in m and n, Hence, it has to be antisymmetric in a and . Therefore no information
aﬁY !

is lost if we contract these two indices with an SUsz € , giving
m L OB = Y’
¢ nbma,nﬁ,k'{ € e 2 Y - (170)
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The V2 is introduced for later convenience, see (173). Ve now prove that the SU; trace of
]

¢k,‘; is zero, so that (170) is an SUs octet. We have

s

Y _ m apy
¢k$Y =€ nbma’nﬁkae (171)

eapY picks out the antisymmetric part in a, 3, ¥. Due to the symmetry of b in A, B, C, this
part is antisymmetric in m, n, k, too. This however is zero, as we saw in (162), because of
the dimension 2 of SU,. Hence, (171) vanishes. Equation (170) can be inverted by means of
(31). The result is

mn -1 !
¢ ma,nS, Ky V2 Eaﬁy’¢kgy

Putting this into (167) gives
m 1

1 y! ] ﬁl al
Xia, jB,ky = ﬂs[ i3y syt kiSyapr¥isp * Sikpyarfiza | (172)

where the coefficient is such as to give the same normalization for Xm and ¢

2 T 2
7 | Xpe | = > AN (173)

A,B,C Ky, 8

']
Since ¢k'$ is a spin 7; octet, the same property holds for xm. ¥e now have the total
3
SU. (® SUs content of 56:

56 = (4,10) +(2,8) (174)
which indeed allows allows the accommodation in 56 of the baryon octet (37) and decuplet (38).

SU¢ symmetry can bé used to make predictions going beyond those of SUj;, with the
restriction, however, that it has to be applied to non-relativistic situations. Much work has
been done recently on relativistic extensions of SUg. All schemes proposed have the proper&y
that the higher symmetry is violated by the terms containing the energy-momentum of virtual
particles in intermediate states (at least when the number of virtual particles is two or more),
and it is quite unclear at present what the validity of the corresponding relativistic theories

may be,

Predictions on mass formulae are unambiguous in one case only: the baryon 56-plet,

for which one obtains a mass formula going beyond (92):

m = aog +bo¥+cCo (I(I+l)-% Y2>+ do J(J+1) , (175)

where J is the spin, and ao, bo, Co and do are constants in the 56-plet. This formula is well

verified. For mesons one can, with some ad hoc assumptions, derive the relation

K™ Mg = M T (176)

which is also in good agreement with the facts. Also the mixing angle (43) between w and ¢
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can be derived from the theory. The idea is to use a new SU, subgroup of SUe defined by

tia for i
t. > t! ={ X .
ia ia vthja for i

1,2; a
1,2; a

1,2
5 (177)

("™ quark spin" group of Lipkin). As seen from (44) the physical wo is invariant for this

subgroup, whereas the physical ¢o belongs to its representation 3.

Most further predictions of SU¢ symmetry deal with the strong, electromagnetic and

weak interactions of baryons. Some of them are given in the next section.

4o SUg predictions for baryon interactions

‘The interactions of baryons with mesons, photons and leptons all involve a baryon

vertex of form b b’. The SU¢ structure of the most general b b’ system is

IRIC?
+ ATB/C bine - (178)

b
The basic assumption made is that (with one exception referring to vector mesons, see below)
all interactions mentioned above involve the part of (178) which belongs to the adjoint
representation 35 of SUg. This is supposed to hold in the non-relativistic limit.

Expression (178) contains 35 only once, namely in the form

B_ ,+CD, _1.B( 4D,
ty =P e 38A<b bECD> . (179)

We shall give the predictions resulting from the above basic assumption for the case .
of the baryon octet. (The cases of the decuplet couplings and of the octet-decuplet transi-
tions can be treated in the same manner.) Since ghe baryons are then contained in XZBC’

see (158) and (172), we may insert the latter equation into (179). Using the special case

where spin and SU; dependences factor out in ¢,

YI _ . Yl
Yoy = Mt Sy | (179a)

and introducing the abbreviation

n'n = n“nls (¢ = gg“zﬁ
we get
-~
B _ 1 3.+ +p 2\
t ===| 38y n'n' - (L7C7)
< A >octet ISI: o e Fa

> . (180)

For the F and D couplings see (32) and (27).
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Take first the baryon meson coupling corresponding to the transitions b&<— b’ +m.

In the non-relativistic limit, the 0  and 1~ meson couplings

iobysb’, -i¢”BY”b' (181)

take the limiting forms

2%1) vo- (b 3b'), oob™b , (182)
with ¢, ¢u the 0-, 1~ meson fields,and m the baryon mass supposed to have a unique value.
3‘are the Pauli spin matrices, so that the actual spin is ?@31 Units are such that h = ¢ = 1,
(182) suggests taking the spin O part of (180) for the vector meson coupling, and the spin 1
part for the 0 meson couplirg. The latter is given by the second and third lines of (180)
and therefore gives the value %@ to the f/d ratio defined in Chapter I-7. The vector meson
couplings are given by the first line of (180); they affect the 1 meson octet only and are
of F type (as is usually beliéved to be the case on theoretical grounds). If one decides
somewhat arbitrarily to attribute the same norm to (33‘$¢)/2mb and ¢o, one can calculate the 1~
meson coupling strength from the 0  meson coupling constant by using the ratio 9& between the
coefficients of the first and second lines of (180). In doing such a calculation one uses
the identity

+i_,

n " n!

. . .
(- geintn =@ 3n). (B)] (183)

1

which follows from the usual definition of the Pauli matrices
01 0 ~-i 1 0
o’1"<«|0>) 0—2_<i 0>! 0—3"<0_1>' (184)

The result of this calculation is compatible with our rough knowledge of vector meson couplings.

The coupling of the vector meson singlet ¢§ with the baryons falls outside
representation 35, as is clear if one notes that in the non-relativistic limit this coupling

is a singlet both for spin and for SUs; this coupling involves the baryon invariant

b+ABC

by (185)

ABC
and has an independent coupling strength. One can construct additional arguments, however, to
derive this coupling from (180). They, in fact, state that the ppgo, nngo couplings vanish

(p = proton, n =neutron, go = physical ¢ meson), because pp and nn are invariant for the sub-

group (177) (no SUs; index 3 appears in the corresponding bABC) whereas ¢o is not.

Finally, the last line of (180) is not involved in the meson-baryon coupling
discussed here; it could be used to describe baryon coupling to a 0  meson which would be an

SUs singlet, possibly the Xo meson of mass 960 MeV.

Although the physical applicability of the non-relativistic limit is doubtful in this
case, one could repeat the above considerations for the 5b&é->n1transitions. The spin
properties of the baryon vertex are now reversed in the non-relativistic limit; 0  mesons
become coupled to the spin O part of (180), and the 1 mesons to the spin 1 part. It seems

impossible to check the resulting predictions against experimental facts.
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The coupling of baryons to the electromagnetic field is also assumed to involve
exclusively the irreducible tensor (179). This is a natural assumption because the electro-
magnetic current, being conserved, is naturally included in the adjoint representation of the

symmetry group. The electric charge in terms of SUs is given by the éperator (54) with

B8 % 2 0 .
h =2 ..(X) = 0 =Y 0 . (186)
Q Q o 0 0 15
The baryon electromagnetic coupling is given by the contraction
a ,Jip
3xQ13 tiy - (187)

The factor 3 is justified later. Expression (187) contains a spin 0 part (obtained by taking
the trace over i,j) which should describe the electric charge of the baryons, and a remaining
part of spin 1 describing the magnetic moment. This identification is easily verified for

spin vé baryons by taking the electromagnetic interaction

- 1 -
- 1 — - 7
1ebyub A# +374Db <Yva Yyyy) b avAu , (188)

(e = electric charge; « = anomalous magnetic moment) and reducing it to the non-relativistic
limit

b b Ao~ <'2':%'+" ) (b b7) « (UxR), As = iAo (189)
b

with the same notation as in (182).

Taking into account the factor 3 in (187) the baryon charges obtained in this way
are identical to the charges given by the Gell-Mann-Nishijima formula. This is immediately
verified from (187) and (179) for the baryon decuplet. The same verification is obtained
from (187) and (180) for the octet; it relies in this case on the important fact that, for
the charge operator A(A,) and more generally for any operator A(h) as defined in (45), the

matrix element < { | A(h) | £’ >, when { and {’ are octet members, takes the form
g ptr B
hg(¢7¢ Vg, (190)
corresponding to F-type coupling; this form indeed occurs in the spin O part of (180).

The spin 1 part of (187), when used to describe the magnetic moments, allows us to
express the magnetic moments for all baryon octet and decuplet states, as well as all transition
moments, in terms of a single one of these quantities, The most obvious ratio to calculate in
order to test this prediction is ”n/”p’ the ratio of neutron to proton magnetic moments,

The result is

2
= - & 191
#n/up 3 (191)
in excellent agreement with experiment (un = - 1,91, “p = 2,79 in proton magnetons e/2mp).

An SUg¢ analysis of electromagnetic mass splittings has also been carried out.

It is not discussed here,
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Leptonic weak interactions of baryons can be discussed along the same lines.

The matrix element of the weak current between spin Y. baryons b and b’

. _ vV A
<b|Jplb'>-<leu+J#|b'> (192)

has the well~known non-relativistic limit (we neglect mass differences)

for u=1,2,3

vector current: <b | jv | b’ > = ° + (193)
: u ifvb b’ for u=4

-fAb‘“&’b' for u=1,2,3

o for el (194)

axial vector current: < b I jﬁ l b’ > = {

This is identical to the non-relativistic limit of iB(fVYﬁ-FfAYuYs)b- Experimentally, for

b = p and b’ = n, one has
£,/fy = 1.2 . (195)

In SUg, one postulates that in the non-relativistic limit i < b | jZ | b’ >and <b | | b’ >
become respectively proportional to the spin O and spin 1 parts of a matrix analogous to (187):

xw/‘; I8 (196)

ia
where Xw; is an SUs matrix of the form proposed by Cabibbo

O cos ¢ sin ¢

w=lo o 0 . (197)
0 o0 0

The angle ¢ is known from experiment to have a value ¢ 2 0.26 radians, Among the resulting
predictions we find from (180) that the vector leptonic coupling to baryons is of F type (as is
expected from the conserved vector current hypothesis), that the axial vector has the d/? ratio
% (which is in good agreement with the experimental value of 1.7% 0.35), and that the ratio
fA/fv is (4+6)/(3%x 2) = Y5 instead of (195). The latter result is obtained by introducing

in (180) the p*n coupling matrices

(p"n)p = (o) = (198)

o = O

o © ©

o © O
.

One cannot claim, however, that the sign of fA/fV is predicted from theory; only the absolute
value is. Many other predictions are possible and have been worked out; for example, the

amplitudes of all neutrino reactions of type
V+b > £ +b¥ (199)

where b and b* are members of the baryon octet and decuplet, respectively, and £ is a charged

lepton.
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An SUg¢ treatment of non-leptonic decays of hyperons has been carried out. It is not

presented here,

5. Definition of quarks

In view of the great success of SU; and SUg, the problem has been raised of whether
particles might exist which would belong to the lowest representations of these groups.
These particles would have spih 7; and form an SUs triplet. Gell-Mann has called them cuarks,
From the Gell-Mann-Nishijima relation (54-56) fheir charges would be

Yy = V5o = Vs in representation 3 (quarks)
- ?g, 7;, }Q in representation 3 (antiquarks).
Mesons could be regarded as bound states of a quark and an antiquark, and baryons as bound

states of three quarks., This would imply that quarks have baryon number 9@. ixperimentally,

no quarks have been found so far.
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