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THREE LECTURES ON BARYON RESONANCES

M. Ferro-Luzzi,

Track Chambers Division,
CERN,
Geneva, Switzerland.

EIRST LECTURE

I. Introduction

Avowed purpose of this school is to give a theoretical bacliground
to young experimentalists., So, I don't know where the baryon resonsrces
come in, The art here is mainly at an experimental stage and the best
thing that most people could learn is how to deal with the experimental
data, Still, in order to comply with the above purpose, I will itry to skip
all or almost all of the experimental details and concentrate on vwhat
remains: the results and their meaning, Theoretical interpretations of
baryon resonances as such, particularly when it comes to quantitative
predictions, are rather slkimpy, Detailed calculations do not exist and the
predictions of the various symmetry schemes are somewhat flexible, The
reason for all this is vrobably that much more information has to he put
together on the experimental side before realistic calculations cri be
performed, What remains, then, and what I will try to present here, is a
phenomerological description of these resonances and some genernl recipe on
how they can be studied, The emphasis will be on methods rather than on
systematics, Special cases will be discussed only when illustrative ol a
certain procedure, Although the bibliography will contain as much as
posgible of the relevant literature, these lectures have no pretence of
offering an updated review of baryon resonances, Ixamples of the latter
do come out regularly once a year and those interested are referred to them,
Finally, I should mention that most of the examples and approzches
discussed are related to the work of the CHS groupl during these last few

years and should not be taken as the most objective and unbiased view of

the subject,
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Since there are only three lectures, the best approach is to start as
quickly as possible, The plen of the lectures can be understood from the
table of contents, The first subject to be treated will be the hyperon
resonances; along with them, the basic definitions and necessary formalism

will be recalled,

II, Production and formation experiments

I suppose that everybody here is already familiar with the quantum
numbers of the elementary and not-so-elementary particles, Tor those who
aren't, the Rosenfeld tablesz) wiil provide an exhaustive collection of such
and other numbers, Hyperon resonances have in common a baryon number B = 1

3)

and a strangeness S different from zero. Convenient historical symbols
are A for S = -1 and isotopic spin I =0, £ for S = =1 and I =1, & for
S==2and I = 1/2, Q for 3 =<3 agnd I =0, A generic symbol Yx is also
frequently used to denoe any hyperon resonance, Additional conventions do
exist, identifying the ~~lar rnomentum J and perity P of the particles?)but
their usefulness is stronsly limited by the very lack of knowledge existing

in many cases about those numbers,

There are mony possible ways of presenting the knmown hyperon resonances,
from a simple table ol magsses to a sophisticated (and often unwarranted)
collection of SU(3) multiplets perhaps even arranged along Regge-trajectories.
4)

In fige 1 the representation chosen ’ has the advantage of exhibiting the
nost relevant experimental features while avoiding any specific theoretical
point of view, All recsonably well established S = =1 resonances are here
plotted on a "mass" versus "JP" diagram, When the latter quantity is not
known, a vertical line replaces thc point. Open circles indicate uncertainty
in J‘P attribution or resonance existence., The horizontal bars indicate the
full width T of the resonances, Only A and I type of resonances are shown,

no other types being kno'm at present,
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Fig, 1

The following features are worth digressing on:
a) Points and lines are crowded towards low masses; it looks like resonances
fade away with increasing mass, This is a simple reflection of the fact that
the low mass region has been studied first and more thoroushly. A few years
ago the whole map would have been just as unpopulated as its present high
mass region,
b) The values of J seem to increase with mass, Perhars some physical
reality hides behind this, Still, it is a fact that resonances with high J
are more easy to detect, particularly at high energy.
¢) The width also becomes larger with increasing mass, Here again one
should keep in mind that a good energy resolution, such as is necessary in
order to detect narrow resonances, is increasingly lacking when going up in

energy.

Let us now quickly review the methods and techniques for finding and
studying these resonances, Figs., 2 and 3 show two examples of what is known
as a "production" type of experiment: the oldeéts) and one of the most

recents) , respectively, The general procedure consists of investigating
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the spectrum of effective mass of two (fig. 2) or more particles (fig, 3)
emitted in certain reactions, All enhancement not explainable in terms of
kinematics (for example "phase-space") or statistical fluctuations is assumed
to come from the decay of a resonance, its height being related to the
production rate and its mass spread to its width, Ambiguities in inter-
pretation arise when several resonances are simultaneously produced, as in
the overlap region of the plot of fig. 2 and in the more complicated
combinations possible for most of the reactions of fig, 3. The sketches of
fig., 4 show how a 3-particle final state (the simplest in this type of

experiment) can originate from three distinct resonant configurations,

o
\\ ,ﬁ \\ //I \\ /2

o '
o~ 2 ~. -}

3

Fig. 4

It is clear from just these examples how anything more then an attribution of
mass, width and isospin must heavily depend on specific assumptions on the
final state interactions of the particles present, on the production
mechanism and other possible effects which are usually far from well under-
stood, This is reflected on the rarity of meaningful JP determinations
achieved through these experiments, Reférence 7 discusses in detail the
methods devised for measuring spin and parity of resonances "produced" in the
above manner., It should be noticed, finally, that, in addition to the above
mentioned problems, these types of experiments as performed in practice cre

usually very rmch limited by lack of statistics.

The situation of the S = =2 resonances, shown in fig. 5, exemplifies
dramatically the difficulties of the "production" experiments; only the

latter are indeed available in this case, The resonances are ruch fewer,
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uncertain and little is known about their quantum numbers. The statistical

limitations are here much more severe than for the S = -1 case, This can be
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seen, for example, in the collection of data from a large experimente)

reproduced in fig. 6. One can imagine, of course, that there is a natural
lack of these resonances; still, it may be more likely that thevexperimental
difficulties are such as to hinder both their identification and the

determination of their quantum numbers.
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Turning now to the other possible approach - the one referred to as
"formation" - fig 7 shows a schematic parallel between this and the previous
approach, The advantage here is that no third partner is around to confuse
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things; the limitation, that only those resonances which are sufficiently
well coupled to the experimental systems used in the "formation" can be
studied., Apart from the problems introduced by the "background" (reactions
not proceeding through thé resonant state), a gtudy of the angular distribu-
tions of the final state provides all the information necessary to determine
~ the quantum numbers of the decaying state, Figs., 8 and 9 give two examples,
one very earlyg), the other more recentloz of how the formation of resonances
may appear in practice, The process in fig, 8 shows one aspect of the
formation of A(1520) via K p collisions. The resonance is here seen to decay
into the Im mode: Z+n-, 2-u+ and Zono. The formation is superposed to a
sizeable background of non-resonant processes. The resonance being in a 3/2”
state and the background in a predominantly 1/2  state, the change in dif-
ferential cross section when traversing the resonant energy is quite drastic.

A detailed analysis of this change and the related variations in the other
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channels (K p, K n, Aﬂ+ﬂ-) allows a complete identification of the resonance ’,
Although by today'!s standords the experiment would not be considered as
statistically very wich, the information provided was sufficient to pinpoint
all the relevant quantwa numbers and branching ratios of the resonance,

Pige 9 shows, for a similar situation, how even a simple but accurate measure-
ment of the total KN cross sectknyokseparated into its two isospin components)
can already yield an impressive amount of useful information on resonances
whose Eﬁ branching fraction may be as small as a few percent, Mass, width,
isospin and the product (7 + l/2)x where x is the elastic branching fraction
(the "elasticity" of the resonance), is the information obtainable through
this type of-measurements. Any further information, like JP and branching '

fraction into different channels, requires additional measurements of the

type mentioned in connection with fig, 8.

Before ending this hurried survey of the methods to identify resonances,
one more possibility is worth mentioning., It may happen that the decay
products of resonances occurring in formation experiments are themselves
other resonances which then decay according to their owm mode, I'ig, 10 shows
exarples of this mixed "formation - production” behaviour: case (a) has

11)

actually been observed °, (b) is a possibility which for the moment needs more



- 443 -

CHAIN - DECANY OF RESOMANCES

o Exam rQe [

() K-F —s 3 (11¢0)

|
v

A(s20) «x

4

KN | Im ART

&) K-‘; - A(1%¢0 7

!

T (160) ¢ T

18

A (1405) *T0

4

Ix
Pig., 10

statistics to be confirmecil' 2). Apart from the folkloristic side, these
phenomena are quite useful. Angular correlations directly connected with
the JP of the various resonances will be present throughout the decay chain;
if the statistics are sufficient and the resonances are well=behaved (widths
small, backgrounds low, etc,) then these correlations can be ensily exploited
to determine the unlmown JP values, Thic was the case for example (a) of
fig. 10, where the known information was the 3 of A(1520) and the unimowm
was the JP of 2(1760). Fig,11 is an excerpt from ref.l1 showing the evidence
for 2(1760) formation and subsequent decay into A(1520). A discussion of

the angular correlations and the details of the analysis can be found in the

above reference,

IITI, Partial wave decomposition

From now on we shall concentrate on the "formation" type of experiments
and, more in general, on what is called a "partial wave analysis", A brief
review of the most relevant formulae ccnnected with this analysis is in order

first, so as to lay the ground for the next lecture, In an accelerated
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course such as this there is clearly no time to go into derivations or
comprehensive discussions of the formalism outlined below, I will simply
list the main results and will convey a visual impression of how and from
where they come out, Mull treatments can be found practically in any of the

available textbooks or lecture notes (see, for example, refs, 4 and 13).

Referring first to the simpler case of a spinless particle incident on
a spinless target, Tigs. 12 to 14 recall how the incident beam can be thought
of as a plane wave, how the latter can be expanded into an infinite sum of
spnerical waves corresponding to all possible values of the orhital angular
momentum &, how the effect of the target can be represented by a "phase shift"
and an "absorption" of the outgoing spherical waves, how finally the scattered
wave can be factorized into a radial term and a term depending only on the
scattering angle ¢, The latter is called "scattering amplitude" and its
components are products of Legendre polynomials %(bos #) times complex
numbers called "partial wave amplitudes", It is the knowledge of these

partial waves which is sought in the analyses discussed in the next lecture.
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Thus, accordins to its energy dependence, the tth partial wave will be
lobelled as "resonant" or as "background" or as a mixture of the two., It is
then important to examine in some more detail how the partial waves are
related to the observable quantities, What can be measured, in practice, is
the flux of scattered norticles in a certain direction, normalized to the

flux of incident particles; this is what is called "scattering"cross section.
Fig, 15(a) shows the connection between the partial waves and the "scattering"
or "elastic" cross section in the differential and integrated form, %Yhen the
finai state particles are not the same as in the initial state, then the
partial waves describing the phenomenon are those referring to the "absorption"
or "rcaction" processes, In a manner analogous to that of Fig, 15(a) one can
show that the flux of the absorbed part of the incident wave, again normalized
to the incident flux, is related to the "absorption" or "reaction" cross
section through the expression of fig, 15(b). Due to the‘unitarity require-
ments, the two cross sections, elastic and reaction, must be related to one
another., The connection, as can be seen in fig. 15, is through the absorption

parameter n, Unitarity requires that n2 should not exceed 1, Notice that the
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reaction cross section should be understood as the sum over all possible

reaction channels; one can, of course, subdivide n into as many abcorption
parameters, n,, as there are reaction channels, with the unitarity condition
becoming then E ni £ 1, The relation between o

el
in fig., 16 for different values of the phase shift 8, ¥rom the sbove results

and cr is given graphically

and the scattering amplitude in fig. 14 one can easily put together the so-
called "optical theorem" (fig, 17). The latter is quite useful becouse it
connects our unknown partial wave amplitudes to an easily measurable quantity,

the total cross section,

The next three firsures, from 18 to 20, provide the extension to the
case of a spin O particle incident on a spin 1/2 target, This is our

| practical case of interest, applying to 7N and KN scattering. A straight-

forward extension, valid for the integrated cross sections is shown in fig,.18

and concists in replacing the statistical factor 2¢ + 1 with J + 1/2 and

introducing for each value of ¢ a partial wave amplitude q: correspording to

J=10t + 1/2 and another T; corresponding to J = ¢ - 1/2. The extension of

the differential cross section to this case is not straightforward and
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requires the steps indicated very briefly in fig. 19. A new quantity directly
measurable is also introduced in this case; the polarization'ﬁ. Absent in
the spinless case (see fig., 20: '1‘: = T; gives g(?) = 0, thus P = 0), the
polarization becomes an additional piece of information when dealing with

7N and KN scattering,

We have now in our hands all the practically useful relations
connecting partial waves (Ti) and measurable quantities (do/dR, P). Tven
before writing down explicitly the expression, one can already see that, no
matter how skillful one is when solving the problem, the above formulae
present certain properties which impede a complete solution, Referring to
fig. 21, one can see that, under what is called a "Minami transformation",
the differential cross section remains unchanged and the polarization changes
sign. But this is also what happens under a "complex-conjugation trans—
formation, so that the combined application of (a) and (b) leaves all our
measured quantities as they are, while turning the amplitudes into the complex
conjugate of their Minami transform. This is more embarrassing than it may
look at first sight, because it is equivalent to saying that the parity of
all our partial waves is undefined, thus depriving us of what seemed like a
very good tool for finding out the spin and parity of the resonances.
Fortunately there is something else that comes to help here. Let us suppose'
that the energy available in the centre of mass is just above threshold for
the reaction to occur (it may be elastic scattering or an absorption process);
then the above embarrassment of choice between, say, ¢ = 0 and ¢ = 1 is much
less severe because all possible dynamical considerations point to the lower
value of ¢, Thus we may feel reasonably sure that S-waves predominate near
threshold (and this, for example, has been verified in all the detailed
studies of low energy-iﬁ and ©N interactions)., It goes by itself that, once
one amplitude is identified, then it suffices to follow that amplitude
throughout its energy variation in order to have always a fixed reference
point for the other amplitudes, In this connection, fig. 22 shows a possible
behaviour expected for the partial waves near threshold; this is the

"effective-range expansion", based on dynamical assumptions and valid only
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at low energies. An amplitude, for example, which follows the prescriptions
of fig, 22(b) will have a different energy dependence according to its

¢ =value and, although at a certain moment the effective range approximation
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will no more be valid, the knowledge of this amplitude in its early develop-
ment provides a natural basis for its continuation at higher energies., One
should not neglect the possibility, on the other hand, that different
threshold behaviours are also possible., The example in fig, 23 shows that,
at least for the Kfp + A 7 reaction near threshold, a resonant S-wave
behaviour fits the data better than the S-wave predictions of a zero-
effective=-range expansion, A P-wave behaviour is not excluded either;
however, the complete absence of S-waves (as required by the differential
cross sections which are isotropic in the whole energy region, thus excluding

S-P interference)is not a very likely situation. Thus the preference to a
14)

resonant S-wave when explaining the data™ ‘.
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IV, Breit-Wigner resonance formula

This brings up the last item of this lecture: the behaviour of
resonant partial waves, The term, as applied until now, was used rather
loosely and it is nov time to see what we mean, In fig., 24 two examples are
outlined of how the Breit-Wigner resonance formula can be simply derived4).
The formula arrived at, although not relativistic, is good enough for most
present-day applications, In any case, it should not be extended too far
from resonance (no more than a couple of widths, say)., The energy dependence
of the width itself introduces another source of controversy; we shall come
back to this point later, Ior the moment let us neglect the energy
dependence and assume I constant, Under the above assumptions, it is easy
to visualize the energy behaviour of a Breit-Wigner resonant amplitude,

Fig. 25 shows how this amplitude describes a circle in the complex plane and
how the size of the circle is related to the "elastic" or "reaction"

branching fraction of the resonance, The relation is more apparent in
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fig, 26, where three typical cases are given for the elastic chonnel:
x = 1 (maximum elasticity), x = 1/2 (maximum reaction), X = 1/4 (small
elasticity, small reaction). The corresponding circles shrink progressively

(from the maximum, called "unitary circle", with unit diameter, to one having

im
im
im
2 h! 2
n
AN 7%
T
1
oRe Re

xs1 l"'! lt'ﬁ

Fig., 26

a diameter of 1/4). At is interesting to notice that, while the resonant
amplitude will always go along a circle, the behaviour of the phase shift &
and absorption varemeter n as a function of energy (fig. 27) is instead very
different according to the different cases, Although the information

contained by the two representations

is clearly the same, the above 10 'O
%0
example speaks much in favour of o

the complex plane representation

S deg)?
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As was already vointed out at the beginning (figs. 7 to 9), the most
obvious menifestation of a resonant amplitude can usually be found in the
shape of its cross section, Fig. 28 shows what to expect from the latter on

the basis of the previous formulae., Elastic, reaction and total cross
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Fig, 28

sections all vary with energy in the same manner, the size of their
respective enhancements being in the ratio of 12 : x(l - x) T X, uince x

is always smaller thon 1, a notable consequence is that looking for resonant
enhancements in the elastic cross section is in principle more difficult than
in the total cross section. However, there are other considerations - like
the size and shape of thc backsround - which must be taken into account before

acreeing with the ahove simple conlusion,

Finally, one word cbout the energy dependence of the width, i, 29
shows the two muin approaches to this problem, It should be stressed that,
in most practical caseg, the difference between the two is well bevend the

experimental accuracy; furthermore neither case is approrriate enouch when

too far away from the resonance.
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SECOND LECTURE

V. Partial wave analysis of the ﬁﬁ system

We cen now go bacikk to our subject, i.e., hyperon resorances and how to
study them, The most accessible experiment in order to "form" hyperon
resonances is to scatter K mesons on protons, This has been done with both
counters and bubble chambers, up to energies of ~ 3 GeV/b, i.e, masses of the
Eﬁ'system of 2.6 GeV, The two techniques are complementary: the total and
elastic cross section (with or without a polarized target) being measured
better and more easily with counters, the other channels being fully exploited

only with bubble chambers,

#ie, 30 shows an early collection (circa 1962) of total cross section
1
data 2 resulting from various experiments, Quite outstanding is a

pronounced enhancement ne»r 1300 MeV, ascribed then to the formation of a

T I [ 1 1 ] ] ! T

CHAMBERLAIN et al(99) | COUNTER
(""‘“ 1162 ) ¥4 COOK et ol IOQ) EXPTS

BASTIEN ond BERGE(98) BUBBLE
CHAMBER

60 *
WATSON etol. (13)

o (K=p)

o(K=n) ]
- Tl (K-‘P) ]

L —zato
1600 1800 2000 2

M (KN) MeV

Fig, 30

resonance, A(1820)., We have already seen in fig. 9 how rmch better known this
momentum region is nowadays amd how many more resonances have come up when the

same neacurements were repeated with better accuracy and statistics., Ve
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shall see now that even the situation represented in fig. 9 is still in-
adequate for a full understanding of the phenomena taking place in this
region, In order to do so, we shall examine in deteil the procedure and
results of a partial wave analysis of the Eﬁ system in the recion of the
above enhancementl) Pig, 31 shows what reactions one has to deal with in

this energy region, Notice that the analysis in the form described below
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Fig. 31

has only been performed on the 2-body processes, the remaining reactions
being either too scerce for a meaningful interpretation or too complicated
for this simplified approach, To have an idea of the behaviour of the data
in our and other momentum regions, let us examine figs, 32 and 33. They
give the momentum dependence of the ratio between cross section o ard 4mA2
(the "geometrical factor in the formilae of fig, 18) for the two elastic
channels, The arrows indicate the position of the better established
resonances (as identified by this and other experimentsls) ), the full
circles refer to the data of this experiment, It is interesting fo notice

how fuhdamentally different is the "background" behaviour of these two
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channels, In the Eon case the resonances are superposed to an almost
constant and small background, they are clearly distinguishable and a more
accurate study of this cross section may well uncover some yet unknown
structure, The background for the K-p case is,instead,of a quite different
nature: it is large and appears to be growing steadily with increasing
momentum, This is clearly not the best channel to look into when hunting for

small resonant structures,
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Turning now to the partial waves, the starting point is the expression
of do/dR in fig., 20, Yriting it explicitly in terms of partiacl waves
gives the formula of Tig, 34. It is possible and convenient to expand this
formula in a series of Legendre polynomialsy the coefficients of the
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expansion can be calculated a&d tabulations exist connecting tien with
the partial wave amplitudes T,., The same operation can be performed on

f(do/ﬁQ) (fig. 35% except that here the most convenient expansion is one
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in terms of associated Legendre polynomial of the first order, Here also

the coefficients of the expansion can be calculated or read outfrom existing
tabulations, Fxactly the same expansions can be performed on the
experimental differential cross sections (fig. 36) and we finally end up with
experimental coefficients An andABn to be compared with the expressions

FROM ANGULAR DISTRIBOTIONS TO LEGENDRE CORFFICIOMTS
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involving the desired vpartial waves (see some examples of these in figs, 34
and 35)., Fig. 37 shows how some of the angular distributions look and

fig. 38 gives the experimental coefficients of their Legendre polynomial
expénsion as a function of the incident ¥ momentum, These coefficients
(and thcse of the other reactions) are the data and from them we shall try
to extricste the partial waves, It should be mentioned that the procedure
of going through the Legendre coefficients is by no means universal; the
connection with the partianl waves can be made directly through the
differential cross sections, comparing the experimental values of dd/dQ,
subdivided in convenient intervals of cos ¢, with the corresponding
expressions of fig. 34 and 35 with Pn and Pi evaluated at the central value
of cos @ for the interval in question. The advantage of using the Legendre
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coefficients, although criticizable as statistically less sound, lies mainly
in the intuitive appreciation they allow for the behaviour of the partial
waves, appreciation which is totally lost in the other approach, Thus the
behaviour of a certain coefficient as a function of energy can be easily

related to the nature of the partial waves contributing to it.

As an example, let us consider the data of fig., 38, The conspicuous
enhancement of Ao near 1 GeV/c tells us that something must be resonant in
this neighbourhood, On the other hend, any of the partial waves could be
responsible for the enhancement (Ao N 2(P§ + D;) + 3(D§ + Fé) +

1
veese)e DBut A_, together with the higher coefficients, is consicstent with

zero, thus impgying that waves with J > 5/2 are absent or at least negligible
in this region, A5 is inctead different from zero; with the maximum value
of J being limited tfo 5/2, the expression of A5 as a function of the partial
waves is particularly simple: A = -1:?-9 Re (D; + Fg). Thus the fact that

A5 shows a sudden and large negetive excursion conveys that either D5 or FS A
must be both present and at least one of them quickly varying. Remembering
novw the properties of a resonant amplitude in the elastic channel as
illustrated in fig. 25, one can explain the enhancements in Ab and AS as for
position, magnitude and shape by simply assuming that both D5 and FS are
resonant at about the same energy, The above qualitative argument is
further stengthened by the behaviour of the other elastic chanmel, Krb a»be
(a different combination of the same isotopic spin amplitudes; see fig. 40
below), In this way one can also show that the resonant D5 and F5
amnlitudes must be in different states of isotopic spin ( the excursion of
b in K'p » K'p having opposite sign than that in Kp -+ Kn), There are
considerations of backeround which have been left out of this simplified
discussion and we also have neglected the information coming from the other
coefficients, Still the above conclusionsl7) are valid and borne out by

the quantitative analysis discussed below, It goes by itself that the same
type of considerations are much more difficult, if not impossible, when
staring at the differentisl cross sections themselves (fig, 37). There,
rather, one may well be tempted into invoking phenomena such as '"baryon

exchange" (look at all those backward peaks v..) Or some other unnecessarily
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involved mechanism which may not offer as simple and as consistent a picture

as that in terms of resonant partial waves in the direct chonnel,

Proceeding with the partial wave analysis, fig, 39 shows what one
knows or suspects (from previous experiments, qualitative considerations of

the type indicated above, personal prejudices etc...) about the amvlitudes
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present near 1 GeV/e, This list needs further to be enlarged in order to
meke space for the two possible isotopic spin stotes of the ¥ p system, The
isotopic spin composition of the channels considered in the snalysis is
given in fig, 40 together with a quick reminder of how it was obtained., e
~ are now ready to investigate the energy dependence of each amrliimde; from
now on, the assumptions, simplifications and procedures are all specific to
the problem in question and refer only to the particular approach adopted

in ref, 1.

As it will be more clear later on, there isn't enough experimental
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information to solve the problem at each momentum, One is instead obliged to
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assume a certain momentum dependence of the amplitudes and then try to solve
over many momenta at the same time, Three explicit parametrizations are
shown in fig., 41, together with the number of unknowns recuired by each one
of them, The parametrization indicated as (¢) has not really been used;

it is mentioned here only as a warning against such a simple minded approach,
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The correct way of adding up a background and a resonance with the same

quantum numbers is more complicated, as can be seen for exémple in fig, 42
which shows the elastic case on],'y15 . The parametrizations of fig, 41

are now imposed on the waves of fig. 39 according to the known or suspected
character of these waves, Different

. P ey 2.7 W
combinations of resonant and backe BT (E TR ) Hilt - o)

ground are then tried until a satis=- 2kImT,
factory solution is eventually reached

and one is reasonably sure that alter-

native possibilities do not exist,

How this is done in practice can be

followed through firs. 43 and 44,

First, our 16 waves are parametrized 2Red
as (for example) in the manner listed

at the left of fig, 43. In the same

fisure one can also see how many data
are available for each chonnel and at
each momentum, It immedintely appears
that only in the cose of the An reaction is there an equal number of data

and unknowns (an overall undetermined vhase brings dovn the 16 :m unlmowrs

2

to 15), Thus our gsysten of equations (each data point is an eqwation) ic

€&

largely underconstrained; a solution momentum by momentum is cleoxly
impossible, The situation instead looks differert when we count the Tree
variables of our narametrization: already 3 different momenta are cuflicient
in order to have more eguations than unknowns, The momenta avcilrile in the
experiment are about 20, spread out over some 400 leV/e (corresronding to

~ 200 eV in centre of mass energy). The system is thus well overconstrained
and the existence of a colution depends only on the validity of the
hypotheses and the relizbility of the data, It is also clear that such a
large amount of computation cannot be carried on by hand; the flow diasran
in fig, 44 shows the main steps followed in a commiter searc: for the hest
golution, Tre methiod used is that of finding the perameter: corrennonding

s 2 .
to a minimum of X ; onre could, alternatively, use a maximum~likeliliood
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method or other approaches, Without going into the details of the computer
search and of the various combinations of resonant and backoround waves
attempted, it suffices to say that the system of equations can indeed be
satisfactorily solved and the minimum -X2 found to be in f00d agreement with
that expected, This shows that the parametrization employed, with all its
approximations and arbitrariness, is an acceptable representation of what

is going on in reality,

Let us now look at the results, Fig. 45 shows how the two elastic
channels are fitted under the above conditions, The total cross cection
(not shown) is also fitted simultaneously. This example, referrins only to
the elastic amplitudesl) , gives a minimum -x2 of 350 for 346 data points

and 39 free parareters, i.e. a

confidence level of better than 1
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Figs, 47 and 48 show the amplitudes obtained from the analysis of the other
An overall fit to all the channels at once (KN, Am, Ixm) has also
been performed with results in good agreement with those of the separate

chamels,
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Before leaving the subject,
it should be pointed out that the
successful outcome of the above
approach may be attributed, in
great part, to the relative
simplicity of the region examined,
The partial waves are present in
limited numbers and their
behaviour as a function of energy
is apparently not very peculiar,
That the same approach should also
be valid at other (hisher) momenta

remains to be seen, As an example,
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- 1
fig, 49 shows the total KN cross section between 2 and 3 GeV/c 9) e The

resonant enhancements are here minuscule when compared to those near 1 GeV/c.
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Furthermore, one knows that partial waves up to J = 11/2 and hisher are
definitely important at these momenta20'21). Last, but not least, the
considerable decrease in cross section for all the important two-body channels
has the practical effect of reducing the statistics available in reasonably

economic experiments,

VI, Partial wave snalvsis of the pion-nucleon system

As compared to the iﬁ; a study of the mN system at equivalent energies
is in principle much easier, First of all, pions have been around much
longer than kaons and their low energy interaction has had the time to be
studied extensively and conclusively, Then, they are considerably cheaper
than kaons, thus affording better and more detailed measurements. IFinally,
they are much less prolific than kaons as for possible final states. The
above reasons (and others) have substantially contributed to the advanced

state of the partial wave analysis of this system and, consequently, of
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the knowledge of baryon resonances with S = O,

Fig, 50 summarizes the state of these resonances; all candidates

have been plotted even if in some cases (open circles) there is uncertainty
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about their existence, Figs. 51 and 52 illustrate the exverimental
situation showing, by way of example, a compilation of the total cross
section322 . Differential cross sections of the elastic channels have also
been measured and with comparable accuracy., Finally, polarization
measurements have been performed over quite a large range of momenta, as
shown in fig. 5323). It should be pointed out that the great majority of

the data collected has been obtained via counter experiments,

Let us see now what has been done for the partial wave analysis of
this system, Only the elastic channel has been thoroughtly analysed, the
study of inelastic processes like AK, ZK, etc... being still in a very early
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stage. The main difference with respect to the -IZN system is that here we
have enough data at each momentum setting to afford an energy-independent
partial wave analysis, Without going into a detailed description of the
unknown quantities and the available equations, it is enough to say that
the knowledge of polarization, total cross section and differential cross
sections for the elastic channels available in 1t+p and u-p scattering

At each momentum

this system can be solved using methods of the same type as those mentioned

provides us with an overconstrained system of equations,

for the oy case, One usually ends up with several solutions (i.e, several
sets of partial waves which fit equally well our system of equations) for
each one of the rmomenta considered. Up to this point the method is more or
less general; the only differences which exist in practice between the
various analyses are on the way in which the data are chosen or the
particular procedure adopted to obtain the fitted amplitudes, From here on,
The problem is that, having

a set of possible solutions, we must decide which is the good one,

instead, there is more freedom as to what to do,

Fig, 54 outlines the simple procedure used in the first analysis of
this type which successfully yielded a wealth of unexpected new

ENERGY - IODEPENDENT PARTIAL WAVE AMNALYISIS (SACLAY GROULP )
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resonance824). The ' good solutions are here chosen by requiring that they
satisfy the maximum possible "continuity" as a function of energy., How to
define this "continuity" is of course the problem, This was solved by hand
(or rather by eye) in the analysis of ref., 24; referring to fig, 54, one
should keep in mind that the operation of smoothing out the energy
dependence of the amplitudes must be done simultaneously over all amplitudes
(each one of them represented by two quantities: phase shift and absorption
parameter or, alternztively, real and imaginary part). Thus one should
imagine that the plot of Tf vs E in fig, 54 represents in reality a whole
series of graphs where each point corresponds to arother point in o different
graph, A certain degree of arbitrariness is undoubtedly implicit in this
procedure; on the other hand, the absence of amny particular model for the
energy dependence of the amplitudes (what one could call a "theoretical
prejudice") may well compensate for the above subjectivity. Fig., 55 shows
- some of the results of this analysis,
The points (if one can see them)
represent the amplitudes chosen at each
energy; the curves are an additional
smoothing out of the results, suggesting
the most likely trajectory described by

the amplitudes as a function of energy.

The arbitrariness mentioned above
can be somewhat reduced if e more
impartial computer-controlled method is
introduced at the "second step" of

fig. 54 when imposing continuity. This

23)

has been done in another analysis

which otherwise is not very different

Fig. 55

from the precedirg one. The continuity
criterion takes tre form of a "shortest possible path" over a certzin energy
interval, of conditions on the derivatives between adjacent enecrry settings,

etc, Fig, 56 shows one of the resulting amplitudes, As compared to the
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same in fig, 55 the points are less scattered but the curve is almost

identical.

R R ) Let us now examine a different
‘ ; and more sophisticated approach to
the problem of selecting our good
solutions, Instead of simply
requiring a smooth energy dependence
of the amplitudes without invoking

any specific pattern, one can demand

that the energy dependence should be
such as to satisfy in the best

possible way certain conditions

. petween the real and imaginary part
Fig, 56 of the amplitudes called "dispersion

relations", A discussion of dispersion relations is well outside the scope

of the precent lectures; a good place to find a description of this

technique, particularly in connection with partial wave analysis, is the ser-

ies of lectures of ref. 25, Fig, 57 gives a very sketchy swmary of the
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forrulae used in the analysis of ref, 26, The main point is that from the
general expression (which does not have a form that can easily be exploited
for the purpose mentioned above) ome obtains, through the magic of something
called "conformal mapping", two expressions valid separately for the real
and imaginary part of the amplifudegzs). The gn(E) and hn(E) in these
expressions are known functions of the energy and the summation over n,
which in principle should go to «, can be truncated at some value N, The

. sunmation  over "poles" is also finite, with M usually small, The early
arbitrariness in energzy dependence is now reduced (not eliminated) and, in
addition, a comnection is established between the previously uncorrelated

real and imaginary part of each amplitude.

A1l this wealth of fresh information does not come completely free,
of course, Without raising doubts as to the basic validity of dispersion
relations, their practical use does necessarily imply a series of
approximations, assumptions and other mundane involvements which can indeed
be questioned. Thus, for example, one may have preferred more (or less)
poles, a different order of approximation in the sum over n, a stronger (or
weaker) effect of the lonm=range forces, etc... All this should not be
taken as a detraction of the method but rather as a warning against possible
biases which (just because they are much more subtle than those of the
rudimentary procedures described previously) may indeed still linger on

even in these aseptic surroundings.

Fig, 58 shows schematically what may have been the approach used in
this methodzs) (no official detailed description is available as yet). that
is referred to as "free parameters" are the coefficients a of fige 573
the "order of complexity" refers to the number of coefficients (N) and voles
(M), The "iteration" procedure involves the re-calculation of the
amplitudes directly from the data starting each time from the previously
obtained "correctedf amplitude Tcorr and its error,

The results, shown as solid curves in fig, 59, are spectacular, All
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the inaesthelic wirgles of the previous solutions have disappeared and, if
nature is indeed smooth, there is no doubt that this is the smoothest

representation, 34311, it moy be that in some case the solutions are too
smooth , As in the case of Su";“which canbe compared with that in ficsz, 55

and 56 the small secordary loon ie cone, Perhaps it shouldntt,

Fig, 59
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On the other hand, the procedure seems to be very valuable when trying
to meke sense of small amplitudes, Thus, for example, look at D33 in fig. 60.
Here the open circles are from the best solution of ref.24 ; there is
1little doubt that the full circles and the curves (from ref.26) malze more

sense than the foimer. Similarly, one can see in fig, 61 a collection of
' emall amplitudes24) wnere the

first approach (solid curves) would
demand such an erratic behaviour
that one is instinctively tempted
in trusting the more disnified

path described by the second
approach (dotted curves). All this,

if correct, would speak very rmch

in favour of the second method in

spite of its added cormplications

and possible biases,

T.“_ (M )

Fig, 60
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THIRD LLCTURE

VII, Applications to SUS}}

Now that we know how and where to look for baryon resonances, we may
perhaps wonder why we are doing it and whether it is really worth the effort.
So many of them already exist on the market that the mere pleasure of a
search and analysis may not be a reward by itself any more, We may then go
one step further and try to see if the theoretical models that have been
proposed make sense or not, This, of course, could have been done much
éarl:i.er (and indeed it wa327)) but it is only at present that we dispose of
a sizeable body of information and that meaningful tests can be done.

The simplest level of model predictions is offered by su(3), I will
assume here that everybody is already familiar with at least the more
fundamental aspects of this theory. In what follows we shall concentrate
on the existence and requirements of the baryon "multiplets": how many can
be made up, what is their composition and how well do the branching fractions
of their members agree with the predictions, This lecture follows very
closely the articles of ref, 28,

A multiplet is usually proposed when a sufficient number of particles
is found, all with the same J'P and with masses such as to obey, within broad
limits, some so-called "mass law", Corrections on the mass values deriving
from "mixing" with other multiplets are sometimes taken into account.
Finally, one can check that the decay modes of the members of the multiplet
are in agreement with the assumption that there is only gne "coupling
constant" characteristic of the miltiplet in question. It is particularly
the latter point which is worth insisting upon; indeed, the fact that a
mass happens to be correct may well be a coincidence due to the large variety

of resonances existing throughout the mass spectrum.

An additional self-consistency check, which is quite useful in this
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identification procedure, is offered by the different decay modes that the
same resonance can have, Let us see, for example, what this means, We are
already familiar with the isotopic spin requirements for the various charge
combinations of the same decay mode of a resonance, Thus, for example, an
I = 0 resonance decaying into Iz will distribute itself equally into 2+u-,
2°1;°, 2-z+; an I =1 resonance will not go into Zouo, etc,.s The relative
rates are given by Clebsch-Gordan coefficients, as everybody knows, What

is less evident (and indeed it demands the validity of SU(3) and the
attribution to a definite mltiplet) is that one can also do the same
calculation to see how many times for example, the resonance decays into

In and how many times into An, The relative importance of the various decay
modes are given by Clebsch-Gordan coefficients of SU(3), which are available
in several tabulations (for example in ref., 29 and 30), These coefficients,
on the other hand, do not tell us the whole story. We must remember that
the particles into which the resonances decay may have masses quite different
from each other; so we must introduce a "phase space" factor to take this
into account, Furthermore, when the orbital angular momentum of the system
is different from zero, there will be centrifugal barrier effects which must

also be considered.

All this is explicitly written out in fig, 62, which gives the formula
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used in ref, 28 for the case of singlets and decuplets, The partial width T
measures the rate of a certain decay mode, p is the phase space factor,

B, is the centrifugal barrier factor of fig. 29, (MN / MR) is put in to
normalize things, The factor 32 we can call "coupling constant™ and it

is this which should remain constant for all the members of the game
multiplet,

Fig, 63 shows the Clebsch-Gordan coefficients for the most familiar
decay modes of hyperon resona.nceBBO). Here the symbol Y stands for hyper-

charge (B + S), I and I_ for magnitude and third component of the isotopic

3
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Let us now make a tour of the most reliable multiplets and see if
and how the relation in fig, 62 is satisfied in practice, In fig, 64 we see
the well-known 3/ 2+ decuplet and a rather hypothetical 7/ 2+ decuplet which,
through some stretch of imagination, can also be thought of as the Regge-re-
currence of the first. The numbers given as branching fractions (in this and

the following figures) come out only partly from ref., 2; full details can
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be found in ref, 28, The most likely candidates for singlets are those in
fig., 65 (a possible choice for Regge-recurrences) plus A(1405) with its main
decay mode into Im,

Now, instead of contemplating the above arrangements and congratulating
ourselves for having found so many resonances with the correct spin-parity
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and mass value, we can do something more and see if the 16 branching
fractions associated with these resonances make sense or not, This is
shown in fig, 66 where the value of g2 (and its error) as obtained through
the formula in fig 62 is plotted for each one of the above decay modes,
Right away we can see that, even taking into account the errors, there are

serious discrepancies between the values of 52 inside each mltiplet., Even
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the 3/ 2+ decuplet, that most respectable and famous multiplet, gives values
of g° differing as mich as a factor 2. It is clear that if we start
questioning also thig multiplet, then we may as well give up the whole idea
and do something else., Instead, let us blame ourselves for the inadequate
connection between T and g2 and let us consider discrepancies of this order
of magnitude a's unavoidable and quite acceptable, Having thus broadened
our tolerance, we can then inspect fig, 66 with a different eye. The
coupling constants are in satisfactory agreement within multiplets and
actually even between different multiplets, This agreement is certainly
not trivial and we are then encouraged to proceed with our simple formla

towards more questionable multiplets,

In order to do =o, and having exhausted all the reasonably well-
established singlets and decuplets, we must modify slightly the previous
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formla 8o as to adapt it to the octet case, Fig. 67 recalls that there are

two possible octets to be considered and that what one sees in reality is a
mixture of the two., Thus the expression relating the coupling constant to
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the observed partial width must now contain a linear combination of the
coupling constants (gd and gf) for the two octets, Fig. 68 shows the new
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expression and how, from it, one can only obtain a set of straight lines in
the g 4 &r plane, The knowledge of only one partial width is clearly
insufficient for determining &3 and &s separately. On the other hand, if
more partial widths are available, the problem can be solved (or better
"fitted", because at a certain point there will be more constraints than
unknowns), Alternatively, when this occurs, we have a way of knowing if
the members of the octet in question were indeed well matched, The
probability that this could happen by chance for a random set of resonances
is admittedly very remote,

Let us now see if all this works in practice, Fig, 69 gives some
examples of Clebsch-Gordan coefficients valid for the octets, again from
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ref, 30, Figs, 70 and 71 illustrate the case of the 1/2  nonet, Those
branching fractions which have been measured appear to be in rather good
agreement with the predictions of a single d and f coupling constant, This
is indicated by a common crossing area (the dark spot of fig. 71) in the
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83 8¢ plane, The bars across the straight lines indicate the uncertainty
due to the experimental input., The convention followed throughout is that
the thinner a line is, the more uncertain is the corresponding branching

fraction.

Figs, 72 and T3 show the situation of what is currently believed to
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be the 3/2” nonet. There are problems here (see ref, 28 for details) but a
reasonable crossing area can still be found, A valid question, at this
point, is how sure can one be that the crossing area is where it has been
drawn and not somewhere else. As it is evident from fig, 73, there are
other possibilities which are not necessarily less likely than the one
chosen, There is not much of an answer to this, except that, when more and
more accurate branching fractions become known,then the above uncertainty
is guaranteed to disappear. This,however,brings up another point which is of
interest in the choice of the crossing area. The dotted lines labelled

CHS or KS in fig, 73 mark the boundaries of the allowed crossing regions;
that is, only a part of the 830 8¢ plane is available for this region and
we can exploit this constraint when trying to decide between alternative

choices,

How this comes about is detailed in ref, 31. Until now we have never
considered the information conveyed by the phase of an inelastic amplitude
at resonance, Remember fig. 25, where we saw that the elastic amplitude at
resonance is purely imaginary and positive, whereas the inelastic amplitude
can be either positive or negative, This means that the phase of the
inelastic amplitude with respect to the elastic can be either o° or 1800.
This can be immediately related to the sign of the product of the elastic
and the inelastic coupling constants as shown in fig, 74, Now, if we have
a way of measuring the relative phases of a set of resonances (and this
comes out from the analyses discussed in the second lecture) and if one of
these resonances happens to require a definite sign for the product of its
coupling constants, then we also have a useful inequality on the coupling
constants for the resonances in question, Referring to fig, 75, we see
that from the relative phase of the Am decay mode of certain resonances we
can limit the allowed region of the 837 8f plane to the shaded areas3l).

In the same way, the Im decay mode of these and other resonances contributes
the information collected in fig. 7628 « It is from these considerations
that one produces the dotted boundary lines in fig, 73 and following,
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The last four figures, from 77 to 80 show the status of the remaining
octets, The same type of considerations is valid here as in the previous

cases, The detailed discussion of these results is left to ref, 28

The general conclusion that one derives from this exercigse is that,
remarkably enough, the bulk of the data examined agrees rather well with the
model in question. At the same time there are also discrepancies, here and
there, which are serious enough to cast doubts on the correctness of either
some specific multiplet pomposition or the experimental information employed.
In all cases the exercise is quite useful. It shows where the experimental
information needs a more careful treatment and also provides a guide to whdch

could be the most meaningful experiments to perform in the future,
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