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I. SCATTERING BY 4 CENTRAL POTENTIAL

1. Thase shift analysis

In this section we give a short review o1 the scattering of a particle
by a fixed centre of force described by a potential V(r). (PFor a more

detailed account see e.g.: L. Schiff, Juantum iiechanics).

The problem of elastic collision between two particles (with masses
my,M ) is easily reduced to the scattering of a single particle (with "reduced
mass" ¢ = mymeAm +me)) by a potential V(r), by considering the relative

motion of the two particles.

#e shall use, in general, the coordinate system of the centre of

mass of the two particles.

The incident particle (moving along the z axis in the positive
direction) is described by a plane wave elkz; the scattered particle is
described, at & great distance from the scattering centre, by an outgoing

spherical wave
ikr

f(ﬁ) L}: ]

where £{9) is the scattering amplitude (¢ is the angle between the z axis
and the direection of motion of the scattered particle; r is the distance of
the particle from the scattering centre); thus, the complete solution of the

stationary Schridinger equ: tion

2
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V4 Vir)y = By (1)

™

is represented, at large distances from the scattering centre, by the

asymptotic form
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The solution of Lg. {4) can te sxpanded in terms of the Legendre

polynomials Pg(oos 8

N
e

P.{cos &) (z

L H

vhere 4, (r) is ths solution of the radial Schrédinger cguation

a2 r e+ 1)1
i v - u() - LR i = 0 (L)
with
SuUR 2uv{ o
k? = 52 B U( ) = rr-Hntz
A i

In the case of a potential with a finite range R, the u,'s have the asymptotic

behaviour (for r »> k):

1 . 1 .
uﬁ(r) > 8, = sin (kr- 3 tm+d,) (5)

wherc the guantity 5, (which depends, in general, on the energy E) is the
phase shift for the scattering in the state of angular momcntum £. The
gencral asymptotic form of the solution Tg. (4) can then be written as

Hr,8) > 1= T a, sin (er=Lw 4 6,) P, (cos 9). (8)

I =0 [ i

We have now to chosc the gLantities a, in such a way that the two expressions

Egs. (2) and (6) coincide. Using the expansion

Oikz _a
~kr
L

Zi“(2¢+1) sin (kr—-jZ-E*.rr) Pt(cos #) (7)

we can write

7863/p/cm
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) eikr ’ iiem
£{6) Sp = () - &7 =

15 T

= — ) 4 -
=¥ b3 Lég sin (kr

1
r =0

5
5T+ 63) - ig(2£+-1) sin (kr- %EW)J Pg(cos §)

from which the foliowing relations are casily derived:

8, = 1f (204 1) 10

(8)
£(8) = o 3
" Ek

0

(2041) (**%€- 1) P, (cos 5) . (9)

The formula Eq. (9) solves the problem of expressing the scattering amplitude
in terms of the phase shifts 6£.

We shall sometimes use the notation

£f(8) = £ (20+1) fg{k) Pe(cos o) (10)
£=c
where
2idy 18y .
_& -1 _e sin &¢
£,(6) = 5% = - (11)
represents the scattering amplitude of the ¢-th partial wave.
The differential cross-section is given by
do _ 2
9 < |2(9)| (12)

and the total cross-section is obtained by integration over all the angles:

i

o(k) = 21r./|f‘(ﬁ)|2 sin @ a9 :% I (2t+1) sin® &, .

=0
° : (13)
It is easy to derive from Egs. (8) and (13) the relation
In £(0) = £ o(k) (1)
L :
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This relation beticen the total cross-section and the forward scattering

amplitude is known as "optical theorem®.
¥

2. Determination of the phase shif'ts

The determination of the phasc shifts depends on the specific
form of the potential V(r). We arc intercsted here in the gencral pro-
perties of the phasc shifts velid for a votential of finite range R; we -

refer again to textbooks, such as Shiff, fer detailed analyses.

The radiel solution of Eq. (&) for r > R (in this region V(r) = 0)
can be written as;

ug(r>RJ = cos 5€-j£(kr) + sin 8, . né(kr) (15)
where jﬁ and n, are the spherical Bessel and Neuman functions. The phase
shifts are determined by joining at the boundary r = R the wave function

and its first derivative, i.e. by Joining the logarithmic derivative of the
wave function., We write:

ug
r=R

g (0) = = (2) (16)

where the quantity gﬂ(k) is R times the logarithmic derivative of the wave
function valid inside the potential region cvaluated at r = R, Clearly

g depends on the form of the potential; but we shall consider it here as

a given paramcter.

Suppose now that kR << 1; in this casc we can use the asymptotic

expressions
Jo(x) ® mmmimmm g (x) % (x< <1) (17)
X

in the above relations Eqs. (15) and (16). We obtain in this way:

2 £44
tg 6£ =a, = (.(k;{.) N (18)
(2e+ 1)1 (26~1)18
with
kL (19)
ClibPDF - wivw.fastio.com A, = o e -

n . A


http://www.fastio.com/

For a regular behaviour of Xy, te 6£ decrcases strongly with the
increasing anguler momentum ¢.  For very small values of kR, we may
negleet all the terms except the first. In this approximation (equivalent

to keep only the S weve) onc gots:

tg B0 = Bo ¥ ack (20)
and
£(8) » ap 3 O % Lbwee? . (21)

Thon, for small velocity, the scattering is igotropic, and the cross-section
is indepoendent of the encrgy. The same rcsult is obtained for the low-

enargy scattering by an iupenetrable sphere of radius R = wo e

3. Rescnance scattggggg

We have assumed, in the provious section, that for very small kR
the guantities «, arc also small. This is obviously not true in thc special
&
case

g, (i) = ~(c+1) (22)

L

In this case ty b, goes to infinity and 6, =n/2 at the value k = Kp

We can oxpand gﬁ(k) for values of k close to ky (or equivalently
for valucs of the cnergy & closc to B = R xh/ 2u):

g (;) T —(t+1) + (ER <1ﬁ£> (23)

R
We can thon re-write %o, (18) as
r /2
tg &, = 'f‘:‘? (2L)
R
with
. 2(kr)" H*!

¢ ( ) ng-m] =

HpP Wiy fagt 01
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This behaviour corresponds to a resopance which occurs in ths

ER ey

scattering of “o-o-il Lartisl vive at th: en .
<7 vt e 7 . - . < e
I o wrdte Tor e total orosg=zoots or
ao
-
= ¥ T,
. <
L =C
“ - T o~ T el i, o T s R N
ve ses that frr 4 cloco o LR the Tlartial wave cross-seotiont oL hooemes:
: ;

[e—y

oLt} B A F UL SN ¢/ S (26)

It is clear that 2% the rescrencs B = E . reachss the mesdnum valne
R* 3

' - A
C, T e i s
g o (284 1) (27)
st
which is ceiled th: geometrical velue. Tho quantity O ie¢ the width of
the resonance; ot B = B % /2 the cross-siction decrsases to 75 o' the
.

maximum valus.

vl

L, Grarhical revresentetion

e

ve give hers e graphicel rejresuntation for the scettering amplitude

given by Ty, (11), which can also bo written as

£00) < TR (28)

]_I
<
P
=
o
g2}
[0
et
| et
Q
il
jo
oM
I
{
i._J
b}
<
=
)
3
o

In f;i = =i (ﬁg)

Re £ =k cot §, {30)

the first of which corresponds to tne "unitarity" of the S matrix, (see

following).

7863/p/ on
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In the casc of a resonance in the { partial weve, we get from

Lg. {(24):

nwﬁy‘z ——— (31 )

It is easy to show thet the quantity

7, (k) = kf,(x) = R (32)
v cot 63- i

1s represented by a circle in the complex plane of Fi (Im F, versus Re Fﬁ).

¢
In fact, by writing

€ = cot 6&

x =ReF, ==é-,-,_=i-_=1-

y =1Im FE = ??%fT
we get

x* = (1-y)y

which 1s the equation of a circle with centre at the point x = 0, y = }E,
and radius = /> (see Fig. 1). For € = const, one gets straight lines of

equation: y = % x.

In the case of a resonance ¢ is given by

¢ =% (E,-8) . (33)

At the resonance I = ER; € =0, x

E>EB: €<0. The point x =y = C corresponds to 8, = 0ym,0an (We

0, ¥y =1; forE <« ER: € > 0; for
assume &, = 0 as E » 0). Thus, 2s the energy E passes through Ep» the

representative point on the circle in Fig. 1 passes through the point

Xx =0, ¥y =1 in an anticlockwise sense.

Fiﬁ' /l,
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1. Bcatforing of & spin-0 particle by a syin-% parcicle

e e c e

Wo generalizc now the provious results t6 the ease in which <tbe

particles have spins diffurent from zero, and the potential depends on the
spin orientation, =s c.g. in the case of the spin-ort:it notontial,

In this case the sclution of the Schridingsr equation can be

. . M . .
expanded in terms of the elgenstatesé;Ji(ﬁ,@) of J, M, ¢ (J is the totel
angular momentum and M is its ¢ anponent along the z axis):

o9

1 . I't'T \
#(x,9,9) = =y uy ()25, (0,0 . (34)
3
it .
Thgék}z are expressed in terms of the usual spherical harmonics Y?, and
the spin eigenfunctions X?S:

i

1:(0) = mz Cys(3M5mm ) X5 ¥7(5,0) (35)

sz

where 'the CES'S are tne Clebsch-Gordan cocfficients (m,ms arc the z componcents
of ¢ and 8).

The radial Schrddinger equation is now

Q-i HJ . -!-sz-UJ E(r) - {—(-th—-ll-WuJ PR o . (36)
Ar? L b 3 r R

We consider here the simple case in which the two particles
have spin zero and svin Y%; for a given valuc of £, the total angular
momentum J can have the two values J = £ Y% and the potential splits into
two terms (we assume U, U, 4 ;
‘ ( : £+/2,£’£ b=, 8’
not depend on J, the results of the preccding sections remein unchanged) .

clearly, if <the potential does

Since for the ineident weve m = 0 (there is symmetry around the

. . o 1 .
z axis), the z convoncnt of the total angular mementum ig M = m = + % in

7863/p/cm
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the initial stete, and then it will be always 11 = = Y, On the other hand,
if the incident particle has a given m. o=+ Yo, the outgoing particle can

have both valucs i’ = + Ve, m = - Yo

The asymptotic wuve function can then be written as follows:
o\ ikz o eikr 5
bary (8 9) » <ﬁ> e <ﬁ>'wﬂ £(8,9) +( >m;“ g(8,9)  (37)

where we have used the notation o = Xﬁ: B = XV/ The quantity g is
called spin-flip amplitude, and f non spin-flip amplitude. These amplitudes

determine the difforcntial cross=-scetion

L=t (0,017 + g (5,0)]° . (38)

The asymptotic form of the general solution is given by Eq. (34)
with

1 1 —1 = +1
uJ,i(r) > a5, sin (kr sim+ BJ,ﬁ) s, (I =t2%) (39)
In this specific case we give the explicit expressions for the’ jJ ¢°
A .
fﬁ-}-“/z
-V 1 L+ 1
2 - . 4}
é‘;-‘/a T LY \/2”1 S

;\j

£ ~1
5T P

Using again the expansion Eg. (7), written in the form

oikz _ 4 (207 1) it sin (kr_.%ﬁﬂj YE (40)

kr
onc obtains by comparison of Egs. {37) and (34):

{ ! R
a, 1 , = |t il 0t
t+/a,b Al L4+

(41)

a 94 . :—\/l;T‘Z— ib 6165-1/295
£~/@,¢
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£oaty = yTT=e sin &y - (43)

it is clecr that the differential cross-scction does not depend
on the anglc ¢, By integration over all the angles one can obtair the

total cross-scotion

P S d S-E . ';2 . -
o = Zofi(ﬁ+ 1) sin 6£+7é + ¢ sin bg-}éi}

£
=)

= AT 21 (J+ %) sin® &

5l

R

J, b °

This formula can be easily extended *o the ecnorel case in which
Y &

the two particles have sping 5¢ and sg. The result is the following

L | T
O'::tgz| (2S1+?) (282+1)i

) ElR s 2 +
e Zq (2T + ') 8in 6£,J,S (45)

L. _ J, v

where 8§ is thce tetal spin (§ =

These resulis can be applied to the case of a resonance oecuring

at a particulsr valuc of 7.

+ .
2. Bxamplc: the v p scaticring at lov ERErgyY

We consider herc as an example the 7 ¢ scatturing st low-srergy

o ..
(7 kinetic energy up to = 200 TieV).

Assuming that only the S and P wives are imvortant and that the

higher waves can be neglected, we got from Bq. (42):

63/ v/ cn
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-~ 1] -

1
== | f f {
f k [ o e T (2 A * 1,}2) cos 9]
, ) (46)
N - : 1
g =1 (f‘“-gy2 th/z) sin & e”7 ,
The differential cross-scetion is
do _ 1 2
o (A+B cos & + C cos® @) (47)
with
= |f 2 f - f 2
A | * ‘/2 l * 1, %Z 13 3/2 l
= 2Re ™* 2f + f :
B 2Re Io:yz ( ‘-:3/2 1:1/2) (118)
C = 3|f ® 4+ 6Re f* 5, f |
3| i3 3/2 | ¢ 1 :3/2 1 1/2
In the case of pure P_v/ (¢ =1, J =3%) state, which is the
2
state of the well-known resonance in 1T+p at > 200 MeV, one has
A= |f 2 B=0, C=3r 5|2
£l B0 oesle
and the differential cross-section is
do _ : :
a0 = £, 3,17 (143 cos® 0) . (49)

The angular distribution is then symmetric around ¢ = /2 for the pure
P_v/ resonant stata., The prescnce of the S wave and its interference
2

with the P:'V wave gives rise to the asymmetric term
2

O3

5 = e ¥ f .
B cos B &Rufzi%cosﬁ

This is, in fact, the wxperimental featurc.

7863/p/cm
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Pe Elastic und inclastis

Yo call inclastic a collision which rroducus a change in the

nature or in the number oFf tho ceiliding pariviclos. axartics of inclastic

collisions buticon clemeptory perticles asc the fcllowing: K—4-p = E++~W+,
w-+-p Sl S LN In general, several finsl statos arc possible for

a given initiel stats., For vXample, considering only thoe two particle
states, the initial systum K +  can g0 into the final stetes: K"+-p,

Ko+ n, L0+ 77, Sewt, %+ 7% Each differont stote is calied a diffcrent
channel, ‘

— e e

Tho asymptotie form of the wave function of the systom of the

two coliiding particles will be & sum of 4ifforent terms, cuch ropresenting
& possible channcl. Amongst thesc terms there is always, in particular,

a term corresponding to the clastic scattering. In addition there is, of

course, a term describing the particles beforo the collisions.

For the moment we consider only the global cffeot of the inelastic
Processes, specifically on the clastic sezttering, a2nd devote
Section IV 4o the astudy of sopare  inclactic chahne's. We considor, for

the sake of simplicity, spin-zero particles.

The asymptotic exrressions of +he radial functions ug(r) are
now modified vith respect to the pure clastic case. The expression (5)
can be considercd as the sun of an ineident and outgelng waves with the
same amplitudes. In the prescnt case, since several chennels arc rrescnt
in the final states, th: amplitude of the finel cutgoing wavc must be less
than that of the ingoing wavec. We write then:
ej.(kr~ Voim) O-i(l«:r- Yo L)
u, () ¥ e (50)
‘ 2iler

where a, is in general a complox quantity, with modulus less than unity;
1A -

. . id, -
it can be vritten as: a, = m, ¢ ¢ (66,n£ real numburs).
i

7863/v/cm
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The asymptotic cxprossion of the weve functicn #(r,?) is then

given by

ilkr~ Yain)  ~i(ke- Yain)
. x. © - &

#(r,8) = 3 3% (2041) e B (c08 9). (51)
< 2ikr

Using the same procedurc of Section I.1, onc can find by comparison of

Kgs. (2) and (54);

with
o:e—‘! nzelﬁe-"n
£, (k) = = e (52}
2ik 2ik
The total elastic cross-scction is given by:
.6{) 2
s PPN, T
== I (2¢ - = = o e e
T =2 z (24 1) |1 «, = ? (2¢+ 1)| ” - (53)

The total inelastic cross-section {for all possible final states
of the particles) can slso be expresscd in terms of the quantities Aye
Fer each value of ¢ the intonsity of tho outgoing wave is reduced by the
ratio |a£|2 < 1 with respect to the intensity of the ingoing wave. This
reduction is entircly due to ineclastic scattering:

ﬂ

%H:Ez%(%+1)U-I%F:q%§(%+1)0~@). (54)

Obviously, for n, =1, o, becomes identical to Eg. (13), and o, , vanishes.

We note that only v, contains the complex turm a, (while T
contains only +he modulus Iaﬂl): this corresponds to the fact that in the

elastic scattering the incident and outgoing veve arc cohcerent,

It is easy to check that the optical theorem expressed by Bg. (44)

holds for the total cross scction cfot = GEE%‘Oin

wwvw fastio.com L 1c L.
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i o (Lil _(in _— ‘o
Lot us denote by Gé Ty 0077 the verias in Ees. (53 and (54) ang
define
ey g
- o) (AT I 21¢ [}
" \_i = 1(‘-—@(\: /”/ ( ’:. - ! \' T - I i 4 ' - ! :
(56
. . n) Y. N -
¢ :'@G“' Zia T o= -5t
in A ! ( of
For a given value of 6, Kcl can Lo crprezsad in torms of Ki v e plot o
< 1

Plg. 2 K . wversus Kir for a for tyrieal

P

el
valuce of §.. The boundary (&, = 0
4+ 4

6. = 7/2) corrcaponds to the minimum and

“

maximum valuus of thoe clastic eross-

section, as o function of the inclastic

one. orn. =1, ¥ caches the maxi-
£i6; ..
mum value |o” T4 412 Gmiic K, =0

.0

L
(pure slastic scatturing). The maximum
velue of K. is obtaincd for n, = O
i
(complete abaorﬂtl ny: in this casc

KC:-l = hin = 1.

_
The previous results can be gencralized to the case of spin diffore

ent from zero, (scc ¢.g. Blatt and Loisskont, Thooructicel Nuclear Physics,

bel

% - N - . 4
Chapter VIII). Us ually a channel is charscterized 2iso by o givern value of
the total spin g - 31 + 52 (we nete thoe seestering without a change of 8§

is cohgggng); this channcl has the statistics1 weight

| . .- AL . 57)
’ (2o4 -+ 1/‘ (2._)? -i- A!\ (J

[€3

&

For given velues of 5 and J the elastic and inclastic cross-scotions

are given by:

d45
T 7 2J+ 1 N iz
O’el(s,d) :kz ;’S;? /}' "Sdéi—' oc{:;‘.(s,d);o (58>
—/ i
L..{;":IJ_'Sl
J S
5 A - 2 [ eg)
Gin(u;J) = k"a o544 /—d (-r, ' LGEE,(S,u)l ) \/9,
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where one has to take into account that the orbital angular momentum £/ din
the final state can be different from the corresponding value ¢ in the
initial state, for given values of J end S {thc conservation of parity implies

that { 2nd ¢/ differ by ar even number).

The total cross~scctions for a given 8§, 0&1(3), Gin(s) are cbtaincd
by summing Gél(S’J)’ Gin(S,J) over all the values of J.  For unpolarized
beams onc has to sum over all possible values of §, multipiying 051(3)’
oin(S) by the statistical weight g(©).  The results obtained in this way

arc the complete generelizetion of the formulac Eqs. (53) and (54).

2. Scaticring by a black sphere

Wle consider here, as an cxample, thc scattering by a "black" sphere,
i.e. a sphere which absorbs all the particles which strike on it. We con-
sider the case in vhich the wave length of tho ineident particle 1/k is

much smaller than the radius R of the spherc.
Thesc assumptions car be exprossed as follovs:

a, =0 for ¢ £ kR (no outgoing wave)

a2, =1 for £ > kR (no scattcring)

t

From Egs, (53) and (54) one gets

f
“max X

[s)) = g = If‘z \ | (2¢C+ 1) = E2 \\ (2£+ 1) e sz" (60)
el in k / k Lo
I=0 f==z

Both the clastic and inclastic cross-scctions are ecqual to the geometrical

cross—-section. The clestic scettering, which is called shadow_scattering,

is due to the diffraction effects which occur at the cdge of the target.

The scattering angles of this diffraction scattcring are rather small and of
the order of E;;X >~ (k&)™ ; the differential cross-scotion presents a very

narrow peak in tne forward direction.

We can give some cstimate of the shaps of the diffraction peak.

The scattering amplitude £{¢) is purc imaginary, as onc can sec from Egq. (52)

CM»PY9865/@/$ﬁam>com
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gﬂlc”.X

£(8) = A '(2e+1) P (cos @) .
ZkL 2

(61)

For small anglcs ond lerge values of { one can write
P,(cos ¢) ~ Jo(¢ sin )
and the scattering amplitude,
becomes

by replacing the sum over ¢ by an integral, £(8)
kR

Im £(8) x 215{ /2£J0(£ sin 9)d¢ = —C
Q

3 J1 (kR sin 9) . (62)
A . .
T Al The behaviour of Im £(8) versus & is
represented in Fig., 3. The value at
”\\ # = 0 is given by
_ lim R, kR sin 9\ _ wp?
In £00) = 450 <sin 8 2 )‘ Fi
\ a8 given also by the optical theorem
‘., Eq. (55).
\
\
\

The first zero of Jy (kR sin @)
is at & ~ 3.8/,

Pt

N
Fig. 3
-

%}
IV. MULTI-CHANNEL FORIALISH

Ths scatteriqﬁ matrix
ez 2L VOIING, MALriX

We hcve considered in the previous chapter the case of multi-
channel processes, end we have examined in particuler the elastic channeli.
We present here a

nore general approach, which allows us to obtain the cross-
sections Y'or the transition from
final channel.

-
[&h

given initial channel %o a differcnt
7863/p/cm
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We consider, for the sake of simplicity, only two spin-zero particles
in each channel.

The asymptotic weve Tunction describing the relative motion of the
two perticles in o given channel 1, with orbital angular momentum ﬁi’ is

represented by

ii

e'i(kir“ falym) 8 ei(kir— vaﬁiﬂ);)e (63)

This expression represents the ingoing and outgoing spherical waves in the
same channcl 1. it corresponds to the {~th term of Bq. (51) with a,

replaced by Sii'

However, with an ingoing wave in the channel i, there will be
outgoing waves also in 211 the other different charnels which are open (a
channel 1is said to be open when the available energy is greater than its

threshold).  The outgoing wave in the f channel is written as

vy g CHlgme g (64)

The ratio of the flux of the outgoing wave in the channel T to

the incident plare wave flux giver the cross-sectien

R N CUPE I AT L (65)
i - Lo
1

This formula is valid for i # f3 1in order to obtain the scattersd wave
in the elastic charnel, wec have to subtract from the outgoing wave in

Eq. (63) the i~th term of tho outgoing part of the plane wave Eq. (6):

(is1)  ,,, Tolg.q 12 66
o, (26, +1) ].{::,II- s.. 1% . (66)
e

s . ~s_. 1% . (67)
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The complex guantitics Bos (1,f£ =1, 2, ... n; n = nusber of

n
channcls) can be crdored in om nx n matrix 8, whiech is cclicd the scattering

matrix:

- e e

We quete here two important propertics of the 3 matrix {for the proof sco
2.8+ ¢ Blatt and Voisskopf):

. . . + oL e s C :
1) Sis a unitary matrix: S5 = 1 {$ i5 the hormitian conjugate of S:
+ y
S.. = 8% ).
1] Ji
2) Sisa symmetrical matrix: 8 =8 (§ is the transposed mwetrix of 3:
g.. :S..)-
ij Ji

The first property is connceted with tho censervation of flux, the second

with time reversal invariznce.
TRl IDVArlance

In the case of onc channel, the S matrirz, which reduces to onec

element, can be written, using the first propercy:

3. = ozia‘g (68)

.

vhere 6£ is the usual phase shift. In fact, thc cross-scction Eg. (67)
with Eq. (68) becomes:

i .
o, = I;" (2¢+1) sin” &,

B
< L4

vhich agrees with the formula Tg. (13).

In the casc of two chenncls, using both unitarity and symmetry,

the 8 motrix can be written as follaws

. N
| y _estt) Wil RICISE 5§2)){
S_ = \ ‘T (69)
i , .ol2)
N 1(55‘)+ &g’*)) \z:.,csE |
IVQ- My ¢ ‘ J
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3
where the quantitics 651', 652), n, ere resl.  In this casc Eg. (67) gives:
. o (1)
i3 : T, 2id;
Gi(f ):(2(,-}-1)%1("?7126 E L2
i
i-f T
o L (s ) L (1 )
i

which agrec with the results cbiained in Egs. (53) and (54).

For morc than two channels, the situation is wmuch more complicated.
Sincc the S matrix is unitary and symmetrical, the number of indepcndent

real parameters in the case of n channels is Yan (n+ 1).

We closc this scetion by giving, without proof, a gencral expres-
sion for thc differcntial cross-section, by which onc can evaluate the

engular distribution for a reaction of particles with spin:

(i-f) (2%.)”" | e

do i S —

T = el Vo Vha(ai,+ 1) C,

a0 (2s1i+ 1)(2szi+ 1)/ ! - £58;(J,m_ ;0,m i) .
8;58, 1,44, 4p

(70)

The 5 metrix depends, in this casc, for a given total angular momentum J,
on the total spin g - §1+"§2 and angular mcmenta fi’gf of the initial and
final chernnels.

2. The scattering amplitude and the reaction metrix

It is usceful to introduce twe other matrices, besides the S matrix.
We define a matrix T, vhica is the generalization of thc scattering amplitude
for & muiti-channel system, by:

1 1
S :6.+2ikéngT . (71)
i i f

i T i
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In the matrix notation:

] b
S =1+21 k/2 m/z

—
-~d
]

o

or
where k is & dicgonal metrix.
In Germs of the clements Tfi’ the cross-section Rg. {67) becomes

k

2 f L
A (20, + 1) £ |z, |7 (7)
1

vi
Onc sees immediatcly that, in thc case of ono channel, T coincides with the
scattering amplitude

2id;
e .-=1 :
L 2ik (75)

The expressions Egs. (63)and (64), by use of Eq. {71), can be
replaced by
3 ~ . !
0 Ly, S e

o {r)= 8y i Tpy T (76)

‘

which is a gencralization of tho i~th “erm of Zg. (2). The cxpression
Eq. (76} represents thon an incident wave of unit amplitude in the i channel,

together with an outgoing wave of amplitude T.. in the f channel.

fi
The situation in which the outgoing weves are regleced by standing

waves (for all channels) is described by

(i-1) sin (kfr- 7§£fW) cos (kfr— }Qﬁfﬁ)
(I‘) = 6 . + K . . . (7?)
ip fi kfr £ kfr

$

The quantitics Ko, are the ciements of s matrix K, callcd the reaction matrix.

It is possible to snow that the fcllowing relation holds between

the matrices T and K

7863/¢/cm
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or, equivalently:

T =K - ik . (79)

We will show that the definition Eq. (77) leads to the relation
Eq. (78) in the perticular casc in which only the § waves arc present in all

channels, (see also: R.H. Dalitz: Strangce particles and strong intoracticns;

£

Oxford University Press, 1962).  For S waves, Eq. (76) and (77) become:

. sin k.r iker
i-sf f e 1
R R (50)
b .
. in k. .r cos k_r
L (isf) _ e S b Kp
* (r) = bg; Tk T Kas TRE (81)

The wave function #(r) satisfics the following condition at r = O:

(r@(iﬁf)> =Ky = DKy By = DKy, [;L @<i*£):}r:0. (82)

r
dr
r=c

This is 2 lincar condition which is valid for all channels i, and thersforc
it is valid for any linear combinaetion of i(qu). Since the @'s form a
a complete sct, we can write in gencrel the rclation Eq. (82) for any wave

(i-f)

function, in particuler for the ¥ given in Eq. (80). In this way, one

gets:

Tpy 7 ? Kpp (8,5+ 1k, ;) (83)

or in matrix notation

T = K (1+ ikT)

which is equivalent to Eg. (78).

7863/p/cm
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By means of Egs. (72 end (78) we can also express the K matrix in

terms of the S metrix:

(1-8) (1+3)7 k% . (84)

It is easy to show that, since the S metrix is unitary and symmctric, e
s s ‘s -+ . . s s .
X matrix is hermitian (K = ¥ ) and symmetric, i.c. it is a real motrix,
0f course, the number of paremeters in both matrices is the same, and given

bylérﬂn+1)fm~m1ncmmmﬂsyﬁwm

In the onc channel case, using ®q. (42) we gct:

_ 1o S
K£ "k cot 6£ ' (85)

We consider now a two channel system, limiting oursclves to

5 waves.  Following Dalitz (sce above refercnce), we write:

. h\
o i
k=t f (86)
vhere a,8,y are rcal quantities.
For an incident S wave in channel 1 we have
11 8in kd,I‘ 3j.kq]:‘
LIJ( g )(I’ = e e o T11 'EJ -
T
. 87
('*2)( ) =T Qlkzr (87)
b4 r)o= Tay = .
The epplication of the condition Bq. (83) to (88) and (87) gives:
T11 = g (1+ik1 T11) + i,ﬁkz T21
(88)
Ter = £ (i+dky Tyy) + ivke Toq
from which one gets
A
. S 8
T = 3R (69)

with

Cl \7)5!19{I03,/pﬂ@ Wy . fastio.com
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_ ikp 2
A= + T iy (90)
and
Ty = =*T=ﬂ*=wﬁwfn=*a«~—vr*= . (91)

(1= ikey) (1= ikeA)

My ht | ] . i i&
From Tigs. (69) end (73),using 2 complcx phase shift o® = ne”, one can

write

from which it follows

ky cot & = % . (92)

The camplex quantity A is called the scattering length for

channel 1. At low energy A can be considered independent of the energy.
This approximation applied by Dalitz (secc Rev.Mod.Phys. 33, 471 (1961)) to

the study of the Kﬁp interactions at low energy, corresponds to a zcro

effective range. This nomenclature is taken from the effective range theory
for one channel scattering; which is well known in Nuclesr Physics (see -
Blatt and Weisskopf, Chapter II). In this case one expands k cot § in

powers of k%:

—

k cot & = = + By (927)

o
N
5

The first term "a" is n constent which gives the cross-section at zero

encrgy (o, - hma®): it is called scattering length. The guantity mwhich

depends only on the form of the potential, is called effective range.

An expansion simil:r to Eq. (92) is porformed for the metrix
K’ (which for one chamncl coincides with k oot §) in the case of multi-
channel processcs. nis approximation, with effcctive range different
from zero, has bcen applied, for instance, to the K—p interactions (sce Ross

and Shaev, Ann.Phys. 9, 391 (1960)).

We go back nov te the two channcl system, vhose K matrix is given
in Egq. (86). For an inecident 8 wave in channel 2. we have, in analogy

with Eq. (87):

&/ fastio.com
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.'2_1 \ PRy
@k il ’(r) = T12 ——
,
. (92}
I ]
r kér 2z - .
In a similar way, one gets:
h] 1 1
e S TIYRGE 7 ke ot =g (%)
with
x 2
- lk1§
S B Yo ;o (95)
and
1!12 - B (96)

(1= ikia) (1- ik.B)
One can prove, by comparison, that the relation Ty, = T2y is satisfied.

The corresponding cross-sections are evaluated by means of Eq. (7).

3+ . The reduced reaction matrix

We have considered in the previous section only open channels.

It is instructive to include in our consideraticn the case of a closed channel.

Going back to the two channel example, suppose that the energy at
which we consider the process is below the threshold for channel 1. e
can still use the expressions Egs. (94) and (96) for the amplitudes in chamnsl
2, provided we now take ke, pure imaginary: we take ky = ilk;|, 80 that the
wave fuiction W(2+1)(r) behaves like o 51T .pg is always finite, The

amplitude Tz: is again given by

-1 -1

T2z = B - ik (97)
. 2 .
with B =y~ LELLQT-_ . (98}
14-|k1:a :

7863/p/cm
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These considerations can be extended to thc case of n channels,
by writing

~

Ka ﬁ
K= 1% 99
Lﬁ Y ( )
with
Fa -
o = 4 5Kﬁa) : Kz 2 Kox ... Kzn
~ K13| i A - L] -
B = : Y =
ﬁ = (1{12 1{13 b e K1n) . . e s s s N
K1n} i Xnz  Xns Knn
s \\

Suppose again that the channel 1 is closed (one can extend these considera-
tions to the case of more channels closed, replacing a by an mx m matrix,

and £ by an mx n matrix). Then, for the T matrix which contains only the

open channels, one gets the same formal relation Eq. (97):

T, =K, -ik (100)
with

o 1
Ke=v =B Il 559z 8 - (101)

The matrix Kr’ which is called reduccd reaction matrix, plays the role of

a K matrix for the open channels, since the expression (100) has exactly
the same form as Egq. (79). The expression (101) relates the elements of

Kr te all the elements of K, connecting in this way the open with the closed
channels.

L. Resonances in a multi-channel system

Fe extend now the formula Eq. (31) obtained for the resonant one-

channel scattering amplitudc to the case of many channels.

For the sake of simplicity, we consider a system of n channels

all open, and replace the K and T matrices by

K/ :k%2 Kky2

(102)
T = kvé T kV2

ClibPD www fastio.com
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The following considerztions hold also ii° Lhere are some closed channels:
one has simply to replsce the K and T matrices. by the reauced Kr and. Tr

matrices (see also: Daiitz, Strange particles, etc.).

The X' matrir can be diagonalized by the eirenvalue eguation

=1

K o> = (cot 64) FER (103)

The eigenvalues (cot Ga)_' are all real, since K’ is real and-symmetric.
The same set of zizenstates la> diagonalizes also the T matrix, as one can
see from Eq. (78):

—1 »
Tla> = (cot 8a=1) la>= 6™ gin sgla> . (10k)

The matrix elements To; siven in Egs. (74) and (79) correspond, however, to
the representation <f‘]T|i> for the T matrix, where |i>:}’f> are the
momentum eigenstates in the i,f channels. Since the eigenstates |a> form

a complete orthogonal set, onc can write for cach channel

|i>:§ Cia|“> (105)

where the coefficients Cia are also real and satisfy the condition

E Cia Uh = dqp . (106)

By means of Egs. (104}, and (105) one gets

T - flis = ‘ -
T), = <Pl |i> _azﬂcfﬁ Csy <7 |a>
’ (107)
Sz, o ot gy s o g ot i
T2 fe Vic N

Suppose now that one of the elgenvalues of K’/ becomes infinite
at the energe E = Eps iee. that 8 passes through /2 at E,.  In analogy
with the situation examined in the one channcl case, we say that the

amplitude T%i has a rcsonance &t the enerry ER' If this resonance is

7863/p/cm

ClibPD www fastio.com


http://www.fastio.com/

isolated, or in other .ords if the other phase shifts 85 (a # R) are small

arcund EP’ one can write approximetely jn this region

! x.niﬁgi:igih . (1¢8)
i ™ cot BR- i

In the same region we can meke a linear approximation for cct BR and write,

in analogy with Ey. (24):

cot &y ¥ % (ER- E) . (109)

L= L] |V

Then, we get

o Cop Cin /2

£i *ER-E-iI‘/z'

(110)

If we define:
_ 2
Pi = CiR T
since by Eq. (106):

T, =T
; 1

the resonant amplitude can also be written as;

1 1
1 Vo Ve
V2 T T

T, = (111}
i Ep-E - i T/2
The cross-section is obtained by mezns of Eqs. (74) and (102):
. r.r
ggl*f) s ool (20, 41) ——ete (112)
i N

This is the Breit-Wigner formula, valid for isolated resonances. The

guantities Pi’rf are the partial widths for the i,f channels: they are in
general funetions of the cnergy.
The graphical representation described for the amplitude Eq. (32)

can be extended to the present multi-channel casc, Defining:

7863/p/cu
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VI, T ,
X - -rﬂ.f,f_:._,.., . ('{? -
i I ’ e
the amplitude (111) can be re-written as
X
g} .
At S 3)
tey T ; (113

€
X =Re TL, = X, ~— (14!
£ Fi €2 4 4 (114)
1
- ! = R it
¥y = Im Tf. Xfi o
from which we get
= (X =) ¥ (115)

which is the equation of a eircle of radius R = Vo X%i and ccntre at x = 0,

y =Y Xps»  The situation is described
g graphically in Fig. 4 wherc we have

.ﬂﬁ\\\///? =Lonsn considered a fu: different values for Xfi;

. L clearly for Xfi = 1 one ; cts the limiting

caz: valid for one channel. The lines

€ = const are elso here the straight

lings y = 1/« ~,

Befor: closing this scetion, we want to point out that the rescnances

in a multi-channel system can be originated in twe different Ways:

1) The comslete reaction matrix & can have a nolec at a roal value ER
of the energy, in the scnce that cach ¢lement of T has a nole at ER“ In
this case thoe rocononce is jroscnt in all the channels end it appsars in

all the reactions.
An eoxapic is given by the P7, resvnance of the 7= N systom, which
2

. i : . B ) .
appears also in .c photoproduction procuss ¥+ p > 7 +n (7 + 1) and in the

7863/ em
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Compton scattering v+ p - v+ p (these processcs can, in fact, bo easily
related by multi~channel forialism: (sec c.g. Geli-iann and Watson, Ann.
Rev. of Wucl.Sci. 4, 213 (1954)).

2) A pole cen be tenerated at Eé in the reduced reaction matrix Kr
by its connection with a closed channcl. This pole does not appear, in
general, in the complote I matrix, One example is given by Eq. (94), with

B given by Eg. (98). B goes to infinity for
1+ alki | =0 (116)

k2 cot a2 passes through zero and & resonance appears in channel 2.

Suppose now that the (closed) channel 1 is wveakly coupled with
channel 2 (£ > 0). Th: condition Eq. (82) gives in tois case

(151) _ & (11)
(g Dpmo = | 5 (19 (117)
r=0
which coincides with Eq. (116) in the case of a bound state.

We can interpret such a resonance in channcl 2, as due to the effect
of a strong interaction below threshold in channcl 1. If the coupling

between the two chamnels were rigorously zerc, therc would be a tound state

in channel 1; in fact, it is a virtual bound .tatc, since it can go into

the open channcl 2

V. REGGE POLES

1. Regge poles in potcntial scattering

We again consider scattering by a central potcntial and go back
to expression Fo. (10), which we re-write here giving cxplicitly the depcnd-

ence on the cnergy I and on z = cos &

f(z,5) =% (2¢+1) £,(8) Pi(z} . (118)
{=c -

7863/p/cm
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It is possible to transform thc sum over ¢ into an integrel,
considering ¢ as a continuous comnlox variablo (Somwr ola-dimson trans-

formation):

Ay 7)) - & L%liﬂll (L BY P (=p) - y
£(z,R) = 5| o TOGE) I’?L( z) . (119)

The partial wave anplitude fE(E) has been replaced by £{A,E) and \ replaces

the discrete variable 2. The integral is performed in the convlex A-plane
along the wath € woken around tho

fA - N reel axis (closed at infinity), as

shown in Fig, 5.

In order 4o prove that the two

s T —
(; o 3 3 T — expressions Egs. (118) and (119) are
=~ R indeed the same, we use the Chauchy
Re A . .
theorcm, which states that the integral
ef a meromorphic function along a
Fia ) closed path (in the clockwise sensec)

is cqual to (27i) times the sum of the
residues of the poles which are included in the path.  Tor instance, in
the case of only sne pole at z = z, inside +he ciosed rocgion, one has for

the analytic functicn £(z):

f

9:—"_(_%1 iz = 2mi #(g0) .
/ Z~ Zn ’

One sees that the cxoression Eg. (119) has poles at all the integral values

of M= ¢ =0, ... {sin 7¢ = 0), (other vossiblc poles of £(N,E) on the

real axis have to be excluded by the rath). Around one of these poles,

the integrand can be written as

i+ 1) £00,E) P, (-3)

S ——————

(—1)‘: or (A= &)

and the rasiduc is

L (og (T, 2

g (264 1) fi\I.) PL(,J;
which gives back the formula Eq. (148).
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we consider the cxpression Lg. (119), but we take now the path

C’ represcnted in Fig., 6, where the re@lus of the semi-circle tends to infinity.

T
.

-~

~

LN
v \
o

\

|
F g b PN |
‘_j i i ~ ] RQ‘- 7\
W | /
- / !
e

The poles on the real axis for integer A are now outside the path, so that
the integral along the new path €/ will be equal to (27i) times the residues

of the eventual poles of £(A,E). Assuming that therc arc n such poles at

A (1 =1, ... n), we can write in general

n 2}..-1- .
2f ar) o £(%,E) Py (-2) 4 :z( = 1-) %) P, (-2) (120)

sin wh
Cf

where the ¢; are the residues of £(X,E). It has becn proven (sec e.g.
T. Regge, in the Proc. of the 1961 Herceg Novi Summor School) that for a
rather gencral class of potentials (supcrposition of Yukawa potentials),
the integral over tae semi-circle at infinity vanishes, so that Eq. (120)

can be re-written as:

Y i
(2he 1) . i (27\+__,l e
2 /951n A £(,®) Px( z) dz -/ =i £{\,E) Pl( z) dh
C Yt
(121)
(21 +1) 5 (e)
=D By, ()
and by usc of Eyg. (119):
"/”zgwl (22, + 1) ¢y (E)
f(st) = / sin .n.';\- f(.)\,h) P)\‘("Z) an :; sin TI.-'K. P}\.i ("Z) .

ClibPD www fastio.com
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Lt hes also boun proved that oo coces oD UGN 1o da v P30 o194
half plane of N, and thoir number is limitea, The sosition of sush polegn,

virieh arc called Regpo 2odes, depends on the cnergy: lj{E),

In order to clarify the neaning of such voles, wo 2nnsider tho
contribution of a singlc Resge pole on the scattoring amplitude, bty writin-
simply:

£{3E) x (24 1) =Bl ¢ . 123)
SRS gin WXTE) ME (123)
If ore projects out from £(z,E) the partiai vev- emplitude 7,(E), one
obtains

i

1 e, iz = 1 LAE) +1) o(E)
£4(7) = /f( B B e s e e, ()

-1

Suppose now that at [ = = Ep: Re l(ER) = ¢ and In R(ER) is small; around
E, we can then expand Re X(E) as follows:

Re (E) ~ ¢ (‘1-5%> (E~ &) (125)
E:ER
and Eq. (124) becomes
<p(E )
Gher ¢
T (E- E )+—1 ImAE )
By

By comparison of this relation with the formula Ry, (31) for a
resonant amplitude, we sec that Eq. {126) can be interpreted as describing

a resonance in tohe {~-th pertial wove ot the CRUTLY ER and with the width

P=2Im ?\(ER /( i&.‘il:)

E:ER

7863/ p/cm
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It is interesting to note that in Eg. (31) where { is a real
integer, the resonance appears as a pole in the scattering amplitude at the

complex energy

On the other hand, in Eq. (126) the resonance appears, for a real value of

the energy, as a pole at the complex value of A:

x(ER) =¢ +iIm 1(ER) .

In general, the quantity A(E) moves with the energy on the complex A-plane,
describing a trajectory (Regge trajectonx). We can say that a Regge pole

represents a resonance whenever A(E) goes close to real integral values (.
One sees that a Regge pele can then connect different resonances occurring
at different values of ¢{. When the energy becomes negative, one can show

thaet Im A = 0, and to an integral value of A there corresponds a bound state.

2. Classification of the elementary particles on Regge trajectories

The concepts related to the Regge poles, derived in potential
theory, have been extended to the strong interactions of the elementary
particles by Chew and Frautschi (Phys.Rev.Lett. 8, 41 (1962)). Their con-
jecture is that all buryons and mesons (stable and unstable) are associated
with Regge poles (poles of an S matrix which describes the strong interactions)
which move on the complex angular momentum plane as functions of the energy
(A represents now the complex values of the spin J of the particle). The
trajectory of a particular pole is characterized by a set of guantum numbers

(isotopic spin, hypercharge, etc.) and by the evenness or oddness of the

physical values of J for mescons and J- Y» for baryons. Below the threshold
for the lowest channel with the given set of guantum numbers, one has:

Im A = 0. The stable and unstable particles occur when Re (ER) = J, where
E, is the rest energy of the particle. The quantity Im A # 0 gives the
width for an unstable particle, according to Eq. (117).
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Using these conjectures, all the strongly interacting particles
can be classified on Regge trajectories. We report in Figs. 7 and 8 the
Chew-Frautschi plot (Re A is drawn versus the squared mass) a8 given by

Rosenfeld (Proc. of the 1962 Int.Conf. on High-Energy Physics at CERN).

All the trajectories corresponding to the known particles lie
below a trajectory which passes through J = 0, ¢ = 0: this corresponds
to the limiting trajectory consistent with the unitarity and analyticity
of the S matrix. The physicel state on this trajectory at J = 2 has been
attributed to the £* meson (-7 resonance at ~ 1250 MeV).
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3« High energy behaviour of the cross-sections

We will briefly consider here the implications of the Regge

conjecture to the high-energy behaviour of the cross-sections.

We use here an invariant notation for the scattering amplitudes
and the related variables (see also: G. Chew, in "Dispersion Relations",
1960 Scottish University Summer School). It is clear that two independ-

ent kinematical variables are sufficient for the scattering process

A+3B » A’ + B! (1)

which we represent graphically in
Fig. 9. The two variebles can be
taken, for example, as the momentum
k and the secattering angle # in the
C.l. system: The following set of
ka variables is useful (we use the
metric k = (ko,ik)):

8 = (ky+k2)? = (ki+ké)?
t = (ke~k{)? = (ko= k$)* {128)
u = (ky=kf)® = (ko= K{)?

In the case of ldentical particles (with mass u) they can be written as;

s = L(k*+ %)
t = -2k? (1= cos ®) (129)
u = -2k* (1+ cos 8)

Of course only two of these variables are independent; in fact, the following
relation holdas

s+t+u = 4 . (130)
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For the reaction (I), s represents the s.ucred cnergy in the c.a.
system (s> 0), and t the squared momentum transier (tg 0). The invariant
scattering amplitude is defined by a function A(s,t), which is related to
the usual scattering anplitude f£(k,$) by
A(s,t) = V3

£{k,8) {131)

The process
A+ A - B4+ B! (11)

where A/,B stand for the antiparticles of A',B, is represented by the same

graph of Fig. 9, if one considers kg, k{ = -k{ as ingoing, end k4, ke = -ke
as outgoing four-momenta. In this case one has:
t o= (pr+pl)® = b(g®+u%)
(132)

~-2¢% (4~ cos 8) .

s = (pt=p2)°

The variable t has now the role of the squared energy (t>0), and s of the
squared momentun transfer {sg 0) in the c.m. system for the recction (I1);

q and 3 are the corresponding momentum and scattering angle.

The invariant scattering amplitude for the process (II) is again
given by the function A(s,t) in which the rcles of the variables s,t have

been interchanged with respect to the reaction (I). ve can say that the

same amplitude 4(s,t) represents
variables s,t are delined in the

and {132).

We assume now that the
behaviour in the physical region

analogy with Eq. (123):.

A{s,t) =

with

7863/p/cm
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the two reactions (I) and (II) when the

twe different physical regions Egs. (129)

scattering amplitude has a Regge vnole

for the reaction (IT). e write, in

—BLE)

prpy €y Pk(t)(—cos &) (133)

ool (134)
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and including in (%) torms which it is uot necessary W specify here (for
more deteils and other refcorernces soo: drell, Proo. eof the 1962 Int.Conf. on
igh-Energy Physics 2t CERV, ~age 897}.

The sone amplitude describes the reaction (1)
For large values of s (high-enersy for the renciion (1))
asymptotic expansion for the Legendre polynomials (P.(z

z) and write:

The scattering amplitude becomes

Als,t) ~ gé%lﬁéﬁ%ﬁ sl(t) >~ a(t) Sk(t) (136)

and the differential cross-section for the reaction (I) can be written as:

i 2 -
s ila(e)]r SO (137)
By use of
cos ¢ = 4 - th?’-tm Y| + %‘t; (138)
apt =g &

one can also write

Mk Sﬂ(h(t)'f)

. (139)

.
al
The optical theorem allows us to evaluate the totel cross-section (t = 0in

the forward dircetion):

Thor ¥ 50 In Als,0) ¥ 167 In als) M (140)

The cxperimental indication that the total cross-sections becoue

constant at very high-encr.y implies:

NG R (1L1)

7863/p/cm
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This 1s equivalenty to acsuming the existence of a Regge pole which dominates
all the amplitudes ot very high energics; this bolz correswonds to the
higher trajectory (Pomeranchuk trajsctory) considercd in the vrevious section.

Near t = 0 we can cxpand N(%) and, assuming that Eq. (141) holds, we get

AME) > 1+n{0)t . (442)

The differential cross-section Eq. (439) for s all t (tg 0) can be written:

i 3
Fxt6n la(ry]? oM lo)ttos 2 (11:3)
Theoretical conjectures lead te A/{0)> 0. Then, since t is negative, one

sees that the differential cross-scction prescnts a forward peak which

decreases exponentially with t and shrinks with increasing Gnergy.

It is interesting to compare this behaviour with the diffraction
peak obtained in the case of scattering Ly a black sphere. From Eq. (62)

we get:
. Bumang) (ti)
For small angles onc gets from Eq. (138):

2F sin §/2 = k9 = V-t

and Eq. (1L4) can be re-written for large s, in the form

g%-k 7 %Q;ég%iil !2 . (145)

For reascnablc values of R(R x~ 1 fermi) and small values of t, this formula

can be approximated by

do _ 7R® [/ R\, .
3t T T pr! <2> ‘t_‘ . (146)

7663/p/cn
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We see that in this case the forward peak decreascs exponentially, but it

is independent of the Gnergy.

The behaviour given by Eg. (143)

Regge pole hypothesis which, however,

is a particular feature of the
dogs not secw to be exhibited by the
cxperimental results, at lezst at the evailable cnergies (B ~ 20 GeV).

Maybe the asymptotic behavieur given by tne leading Regge polw will
appeer in the experiments only at higher encrgics

7863/0/on
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