4. Three-body properties
d(s,m?) = M(s)+
oM (s) 17D A2, m2, 5)D (A2, m2)
Interested in m?2 behaviour
4.1 Three-body unitarity

I, (my —1)?
\? > ®
®
> ®
I (m_ —1)?

diSCm2:9CD(3_|_,m2) = Cl>(8_|_,m3_)—¢(3-|—7m%) =
—1)2

2M (sy) [T A [0 (A2,m2)] — D(A2, m2)]

CD_|__|_ —Pd__ = (CD_|__|_ — Cb-}--) ‘I’ (Cb—i—— - CD——)

o dis,(:mQZQCID()\2 ,m2) —|—diSC>\2:4CD(>\2,m%)

Will get integral eqn for disCc_o>_qo®
We know discyo_,P (A2, m2) from subenergy
unitarity
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S vl :fv %

F(A\2,t(\?,x), m?)

diSCAz A P(A2,m2) =
2ip(A)M A FO(A2,m2)0(N2 — 4)

FO(A2,m?2) =5 [1] F(A2,t(\2,z),m?)da

Integral eqn disc,o_o®(sy,m?) =
20 (s1) [{™ 7D dA202ip(A2) M) FO(A2, m2)

F2aM(s4) [V ax2 A disc, gD (A2, m2)
Solve by iteration



First iterate is the inhomogeneous term:
oM (s 7D da2A 12ip(A2)M(A2) FO(A2  m2)

M(A?)A;&z,’ng)M(s)zw“)(/\?, 2,5) = BO2,m2, s)

%ﬁ
l—e
J=0 o(A2,m?) o8- -

So first iteration gives ,
disc)_ (s, m2) = 4i [/ dr2
F%\2 m2)p(A3)o (A3, mWD (A3, m3, 1)}
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Note: phase space = di‘z di — (A2, m2)p(\2)dA\2dz




All orders: W1 (A2 m2 s) — W(A\2,m2,s) where
W (A2, m2,s) = B(A2,m2,s)+

—1)2
2M (s) [V dp2 A (u2,m2, )W (A2, m2, 12)
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disc, o_q®(s4,m2) = 4i [{™7 7 dr2g
FOAZ,m2)p(A)o (AL, mP)W(AT,m3,s4)}

WCRERIC N

. S

21

The model satisfies THREE body unitarity!



But note:

(a) W should be symmetric in s <> A\2; not the
case for \2 < 0 bits — cut-off at A2 =0

(b) “rescattering series” not same as Feynman
graphs (apart from triangle)

In practice, especially within the context of an
isobar-like approach, we don’t focus on three-
body unitarity, but rather on “quasi two-body"
unitarity i.e. particle 4+ resonance scattering



4.2 Particle-resonance scattering

(s, m?2) = M(s)d(s,m?): M(s) has s > 4 cut
+ pole in sheet IT at s = sc. ¢(s,m?) has same
cut, but not the second sheet pole. Define
particle-resonance producl;cion amplitude by

2N\ — i (sc=s") .2
Qb(SC,m )— IImSH—>SCCg—2CD(S , TN )

T

we are interested in m? structure of ¢(sc, m?),
specifically identifying particle 4+ resonance branch
point at m? = (\/sc + 1)? and associated disc
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d(s,m?) = M(s) +
2 (=D dX2 A1 (A2, m2, 5) M (X2) (X2, m?)
1. Branch point at m? = (\/sc + 1)?
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As we continue down in m?2 through the
m?2 > 9 cut, the end-point of the A\2-contour
at A2 = (m — 1)? goes into the second )2
sheet across the \2 > 4 cut, and will hit the
pole at M2l = sc. Singularity at (m — 1)2 = sc
i.e. m? = (\/sc+ 1)%. Will see it is sq root
branch point (" woolly cut")



2. Discontinuity across woolly cut = difference
between two m?2-continuations which leave the
pole on RHS of A2 contour and on LHS of )2
contour. This difference is

S(sp.m3) — sy m2) = DM (sy) [
)\QA [M()\QH)gb()\QH ) M()\QH)qﬁ(}\QH,m%)]}
[.. ]—M(/\ﬁ)[qb(/\?“ JQF (A2, m2)]

+o (A2, %>[M(/\2H) M(/\EH)]

Last difference is 2wid(\21, m2)s(\2 — s0).
First difference is (A3, m7) — o(AZ,m?)

So disCuweP (54, m?) =
47TngM(S+)qb(sc,mz)Al(sc,mQ,S+)+

2M (sy) [ D dA2 A1 (A2, m2, s4)disCued (A2, m?2)
Another integral egn for the disc, but this time

the inhomogeneous term is not an integrall



First iteration is inhomogeneous term which is
[disCuwe® (s, m?)]| (1) =
47TngM(s+)qb(sc,m%)Al(sc,mQ,S+)

Keeping pole contribution on both sides,
[disCwed(sc, m2)](1) = 47ig2d(sc, m? ) A1 (sc, m?, sc)
Now recall that A1 /o is proportional to J =0

1 Sc

projection of RPE process f

Carrying out iteration to all orders,

[disCwed(sc, m2)] =
47ip(sc, m2)o(sc, m?)R(sc, m?l_, sc)

Yo-RVe=
i AN ° (\:):

a(sc,mz) =

{[m? — (/5c + 1)2][m? — (/sc — 1)?]}1/2/m?




Here R is the particle-resonance scattering

o (m)
amplitude ~—
R satisfies quasi two-body discontinuity

4i Q/_\) ° (ZD:

Substantial m2-dependence can be generated
in some cases, using truncated integration.
Could impact the extraction of resonance

pole positions.

Implementation of these woolly disc relations:
use effective K matrix/P-vector formalism,

with phase space o instead of p
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Summary

two-body unitarity + analyticity 4+ crossing
— linear single-variable integral equations
for isobar correction functions

“Mminimal”’ set of constraints

needs only two-body amplitudes

employs standard angular momentum de-
composition of IM

surprising (?) three-body structure included

now: include in exptal fits and compare
with other approaches (effective Hamilto-
nians, relativistic scattering formalisms)
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