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a b s t r a c t

In this report we explore the remarkable connections between light-front dynamics, its
holographic mapping to gravity in a higher-dimensional anti-de Sitter (AdS) space, and
conformal quantum mechanics. This approach provides new insights into the origin of a
fundamental mass scale and the physics underlying confinement dynamics in QCD in the
limit of massless quarks. The result is a relativistic light-front wave equation for arbitrary
spin with an effective confinement potential derived from a conformal action and its
embedding in AdS space. This equation allows for the computation of essential features of
hadron spectra in terms of a single scale. The light-front holographic methods described
here give a precise interpretation of holographic variables and quantities in AdS space
in terms of light-front variables and quantum numbers. This leads to a relation between
the AdS wave functions and the boost-invariant light-front wave functions describing the
internal structure of hadronic bound-states in physical space–time. The pion is massless
in the chiral limit and the excitation spectra of relativistic light-quark meson and baryon
bound states lie on linear Regge trajectories with identical slopes in the radial and orbital
quantum numbers. In the light-front holographic approach described here currents are
expressed as an infinite sum of poles, and form factors as a product of poles. At large q2 the
form factor incorporates the correct power-law fall-off for hard scattering independent of
the specific dynamics and is dictated by the twist. At low q2 the form factor leads to vector
dominance. The approach is also extended to include small quarkmasses.Webriefly review
in this report other holographic approaches to QCD, in particular top-down and bottom-up
models based on chiral symmetry breaking. We also include a discussion of open problems
and future applications.
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1. Introduction

1.1. Motivation

Quantum Chromodynamics (QCD), the SU(3) color gauge field theory of quarks and gluons, is the standard theory of
strong interactions. High energy experiments, such as the deep inelastic electron–proton scattering pioneered at SLAC [1],
which revealed the quark structure of the proton, and continued at DESY [2] to extremely short distances, have shown
that the basic elementary interactions of quarks and gluons are remarkably well described by QCD [3]. Yet, because of its
strong-coupling nature, it has been difficult to make precise predictions outside of its short-distance perturbative domain
where it has been tested to high precision. Unlike QuantumElectrodynamics (QED), the fundamental theory of electrons and
photons, the strong couplings of quarks and gluons at large-distances makes the calculation of hadronic properties, such as
hadronmasses, a very difficult problem to solve, notwithstanding that the fundamental QCD Lagrangian is well established.
In particular, one has no analytical understanding of how quarks and gluons are permanently confined and how hadrons
emerge as asymptotic states in this theory [4]. In fact, in the limit of massless quarks no scale appears in the QCD Lagrangian.
The classical Lagrangian of QCD is thus invariant under conformal transformations [5,6]. Nonetheless, the quantum theory
built upon this conformal theory displays color confinement, a mass gap, and asymptotic freedom. One then confronts a
fundamental question: how does themass scale which determines themasses of the light-quark hadrons, the range of color
confinement, as well as the running of the coupling appear in QCD?

Euclidean lattice methods [7] provide an important first-principle numerical simulation of nonperturbative QCD. How-
ever, the excitation spectrum of hadrons represents a difficult challenge to lattice QCD due to the enormous computational
complexity beyond ground-state configurations and the unavoidable presence ofmulti-hadron thresholds [8]. Furthermore,
dynamical observables inMinkowski space–time are not obtained directly from Euclidean space lattice computations. Other
methods, as for example the Dyson–Schwinger equations, have also led to many important insights, such as the infrared
fixed-point behavior of the strong coupling constant and the pattern of dynamical quark mass generation [9–12]. In prac-
tice, however, these analyses have been limited to ladder approximation in Landau gauge.

A problem, common to all realistic relativistic quantum field theories, is especially flagrant in QCD: the only known
analytically tractable treatment is perturbation theory, which obviously is not the most appropriate tool for solving a
strongly interacting theory with permanently confined constituents. In fact, according to the Kinoshita–Lee–Nauenberg
theorem, which applies to any order of perturbation theory, a description of confinement using perturbative QCD is not
possible in a simple way [13,14]. Thus, an important theoretical goal is to find an initial approximation to QCD in its strongly
coupled regime relevant at large distances, which is both analytically tractable and can be systematically improved. In fact,
even in weakly interacting theories, like QED, there is a need for semiclassical equations in order to treat bound states. The
Schrödinger and Dirac equations play a central role in atomic physics, providing simple, but effective, first approximations
of the spectrum and wave functions of bound states which can be systematically improved using the Bethe–Salpeter
formalism [15] and including corrections for quantum fluctuations, such as the Lamb shift and vacuum polarization. A long-
sought goal in hadron physics is to find a simple analytic first approximation to QCD, analogous to the Schrödinger equation
of atomic physics. This task is particularly challenging since the formalismmust be fully relativistic, give a good description
of the hadron spectrum, and should also explain essential dynamical properties of hadrons. There are several indications
that such a goal might well be within reach:

(i) The quarkmodel, basedmainly on the Schrödinger equationwith relativistic corrections is qualitatively very successful
(see e.g., [16], Sect. 14).

(ii) There are striking regularities in the hadronic spectra, notably Regge trajectories [17,18], which show a linear relation
between the squared mass and the intrinsic angular momentum of hadrons (see e.g., [19,20]).
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(iii) There exists a convenient frame-independent Hamiltonian framework for treating bound-states in relativistic theories
using light-front quantization. It is based on the front-form or relativistic dynamics [21], where initial conditions are
specified in the light-cone null-plane x0 + x3 = 0, not on the usual initial conditions at equal time, x0 = 0.

As an effective theory, we expect also that the resulting model incorporates underlying symmetries of the QCD Lagrangian.

1.2. The AdS/CFT correspondence and holographic QCD

The search for semiclassical equations in QCD obtained a strong advance some 15 years ago by the Maldacena
Conjecture [22]. Roughly speaking, the conjecture states that a quantum gauge field theory in 4 dimensions corresponds to
a classical gravitational theory in 5 dimensions. In this type of correspondence the higher-dimensional gravitational theory
is referred to as the holographic dual, or gravity dual, of the lower-dimensional quantum field theory. Holographic ideas
in physical theories have their origin in the seminal work of Bekenstein and Hawking in the 1970s [23,24], which led to
the surprising conclusion that black holes are thermodynamic systems which radiate at a temperature which depends on
the size of the black hole. The most unusual aspect of black-hole thermodynamics is that the entropy of a black hole is
proportional to the area of its horizon, contrary to the typical situation in non-gravitational systems, in which entropy is an
extensive quantity proportional to the volume of the system. The maximal entropy of a system is a measure of the number
of degrees of freedom in that system, so the distinction between gravitational and non-gravitational systems appears to
limit the number of degrees of freedom of a gravitational system to that of a non-gravitational system in one fewer spatial
dimension. This idea was formalized as the holographic principle, which postulates that a gravitational system may indeed
be equivalent to a non-gravitational system in one fewer dimension [25,26].

The AdS/CFT correspondence between gravity on a higher-dimensional anti-de Sitter (AdS) space and conformal field
theories (CFT) in a lower-dimensional space–time [22], is an explicit realization of the holographic principle, and it remains
a major focus of string theory research. This correspondence has led to a semiclassical gravity approximation for strongly-
coupled quantum field theories, providing physical insights into its nonperturbative dynamics. In practice, it provides an
effective gravity description in a (d + 1)-dimensional AdS, or other curved space–time, in terms of a flat d-dimensional
conformally-invariant quantum field theory defined on the AdS asymptotic boundary, the boundary theory. In the semiclas-
sical approximation, the generating functional of the quantum field theory is given by theminimum of the classical action of
the gravitational theory at the 4-dimensional asymptotic border of the 5-dimensional space [27,28]. Thus, in principle, one
can compute physical observables in a strongly coupled gauge theory in terms of a weakly coupled classical gravity theory,
which encodes information of the boundary theory.

In the prototypical example [22] of this duality, the gauge theory is N = 4 supersymmetric SU(NC ) Yang–Mills theory
(SYM), the maximally supersymmetric gauge field theory in four-dimensional space–time. The gravitational dual is Type
IIB supergravity or string theory [29],1 depending on the gauge coupling and the number of colors NC , in a direct product
of five-dimensional AdS space–time and a five-sphere: AdS5 × S5. If g is the gauge coupling of the Yang–Mills theory, then
in the limit NC → ∞, with g2NC ≫ 1 but finite, the limit of large ’t Hooft coupling, g2NC , ensures that the space–time
geometry has curvature R much smaller than the string scale 1/l2s so that classical gravity is a good approximation. A small
curvature R, thus implies a large AdS radius R, R ∼ 1/R2, where R = (4πg2NC )

1/4ls [22]. Since the gauge coupling g and
string coupling gs are related by g2

= gs, the limit NC →∞ ensures that the string coupling is small, so that stringy effects
decouple.2

Anti-de Sitter AdSd+1-dimensional space–time is themaximally symmetric d+1 space with negative constant curvature
and a d-dimensional flat space–time boundary. In Poincaré coordinates x0, x1, . . . , xd, z ≡ xd+1, where the asymptotic
border to the physical four-dimensional space–time is given by z = 0, the line element is

ds2 =
R2

z2

ηµνdxµdxν − dz2


, (1.1)

where ηµν is the usual Minkowski metric in d dimensions. The most general group of transformations that leave the
AdSd+1 differential line element invariant, the isometry group SO(2, d) has dimension (d + 1)(d + 2)/2. In the AdS/CFT
correspondence, the consequence of the SO(2, 4) isometry of AdS5 is the conformal invariance of the dual field theory.
Five-dimensional anti-de Sitter space AdS5 has 15 isometries, which induce in the Minkowski-space boundary theory the
symmetry under the conformal group Conf


R1,3


with 15 generators in four dimensions: 6 Lorentz transformations plus 4

space–time translations plus 4 special conformal transformations plus 1 dilatation [31]. This conformal symmetry implies
that there can be no scale in the theory and therefore also no discrete spectrum. Indeed, N = 4 supersymmetric SU(NC )
Yang–Mills theory is a conformal field theory.

The AdS/CFT correspondence can be extended to non-conformal and supersymmetric or non-supersymmetric quantum
field theories, a duality also known as ‘‘gauge/gravity’’ or ‘‘gauge/string’’ duality, which expresses well the generality of the
conjectured duality. In particular, it is important to note that the conformal invariance of the prototypical example, N =4

1 A brief discussion of holographic top-down duality with string theory is given in Section 7.
2 A recent review of large NC gauge theories is given in Ref. [30].
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supersymmetric SU(N) Yang–Mills theory in 3 + 1 dimensions, is not required for the existence of a higher-dimensional
gravity dual, and one can deform the original background geometry, giving rise to less symmetric gravity duals of confining
theories with large ’t Hooft coupling g2NC [32,33]. For example Polchinski and Strassler considered amodification of N = 4
Yang–Mills theory which includes N = 1 supersymmetry-preserving masses for some of the fields (the N = 1 chiral
multiplets), and they describe the gravity dual of this theory in a certain limit of scales and ’t Hooft coupling [32]. The
nonvanishing masses break the conformal symmetry, and the resulting theory is confining at low energies. Another way to
arrive at a non-conformal theory is to consider systems with nonvanishing temperature [34–37], where one coordinate is
compactified. Yet another example is the Sakai–Sugimoto (SS) model [38,39], based on a specific brane construction in Type
IIA string theory [29]; however since it is similar to finite temperature models, it is neither conformal nor supersymmetric.
The SS model is notable in that it is confining and contains vector mesons and pions in its spectrum from the breaking of
SU(Nf )× SU(Nf ) chiral symmetry. We will describe this model in Section 7.

The AdS/CFT duality provides a useful guide in the attempt to model QCD as a higher-dimensional gravitational theory,
but in contrast with the ‘‘top-down’’ holographic approach described above, which is to a great extent constrained by the
symmetries, no gravity theory dual to QCD is known. The boundary (four-dimensional) quantum field theory, defined at the
asymptotic AdS boundary at z = 0, becomes the initial state of the higher-dimensional gravity theory (the bulk theory).
However, to construct a dual holographic theory starting from a given quantum field theory in physical flat space–time, one
would require in addition to the boundary conditions — the boundary theory, precise knowledge of the dynamical evolution
in the bulk. Therefore, for phenomenological purposes it ismore promising to follow a ‘‘bottom-up’’ approach, that is to start
from a realistic 4-dimensional quantum field theory and look for a corresponding higher dimensional classical gravitational
theory which encodes basic aspects of the boundary theory.

QCD is fundamentally different from the supersymmetric Yang–Mills theory occurring in theMaldacena correspondence.
In contrast with QCD, where quarks transform under the fundamental representation of SU(3), in SYM all quark fields
transform under the adjoint representations of SU(NC ). The conformal invariance of SYM theories implies that the β-
function vanishes and, therefore, the coupling is scale independent. On the AdS side, the conformal symmetry corresponds
to the maximal symmetry of this space. The classical QCD Lagrangian with massless quarks is also conformally invariant in
four dimensions where its coupling gs is dimensionless. A scale, however, is introduced by quantum effects, and therefore
its conformal invariance is broken and its coupling depends on the energy scale µ at which it is measured. We may
compute the scale at which g2

s (µ)/4π becomes of order 1, as we follow the evolution of the coupling from high energy
scales. This roughly defines the scaleΛQCD which signals the transition from the perturbative region with quark and gluon
degrees of freedom to the nonperturbative regime where hadrons should emerge. This mechanism is know as ‘dimensional
transmutation’, whereby the conformal symmetry of the classical theory is anomalously broken by quantization, thus
introducing a dimensionful parameter, the mass scaleΛQCD.

QCD is asymptotically free [40,41], so at high energies it resembles a rather simple scale invariant theory. This is in
fact one important argument for the relevance of anti-de Sitter space in applications of the AdS/CFT correspondence to
QCD. For high energies or small distances the small coupling gs allows one to compute the corrections to scale invariance.
This is certainly not the case in the infrared regime (IR), for distances comparable to the hadronic size, where perturbation
theory breaks down. There is however evidence from lattice gauge theory [42], Dyson–Schwinger equations [43,44], and
empirical effective charges [45], that the QCD β-function vanishes in the infrared. In a confining theory where the gluons
have an effectivemass ormaximalwavelength, all vacuumpolarization corrections to the gluon self-energy should decouple
at long wavelengths [9]. Thus, from a physical perspective an infrared fixed point appears to be a natural consequence
of confinement [46]. In fact, the running of the QCD coupling in the infrared region for Q 2 < 4λ, where

√
λ represents

the hadronic mass scale, is expected to have the form αs(Q 2) ∝ exp

−Q 2/4λ


[47], which agrees with the shape of the

effective charge defined from the Bjorken sum rule, displaying an infrared fixed point. In the nonperturbative domain soft
gluons are in effect sublimated into the effective confining potential. Above this region, hard-gluon exchange becomes
important, leading to asymptotic freedom. The scale Λ entering the evolution of the perturbative QCD running constant
in a given renormalization scheme, such as ΛMS , can be determined in terms of the primary scheme-independent scale
√
λ [48]. This result is consistent with the hadronic flux-tubemodel [49] where soft gluons interact so strongly that they are

sublimated into a color confinement potential for quarks. It is also consistent with the lack of empirical evidence confirming
constituent gluons at small virtualities [50,51]. At higher energy scales, Q 2 > 4λ we expect the usual perturbative QCD
(PQCD) logarithmic dependence in αs from the appearance of dynamical gluon degrees of freedom.

The relation between the dilatation symmetry and the symmetries in AdS5 can be seen directly from the AdS metric. The
line element (1.1) is invariant under a dilatation of all coordinates. Since a dilatation of theMinkowski coordinates xµ → ρxµ
is compensated by a dilatation of the holographic variable z → ρz, it follows that the variable z acts like a scaling variable
inMinkowski space: different values of z correspond to different energy scales at which ameasurement is made. As a result,
short space- and time-like intervals map to the boundary in AdS space–time near z = 0.3 This corresponds to the ultraviolet
(UV) region of AdS space.

3 As quark and gluons can only travel over short distances as compared to the confinement scale Λ−1QCD , the space–time region for their propagation is
adjacent to the light-cone [52].
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A large four-dimensional interval of confinement dimensions xµxµ ∼ 1/Λ2
QCD maps to the large infrared region of AdS

space z ∼ 1/ΛQCD. In order to incorporate the mechanisms of confinement in the gravity dual the conformal invariance
encoded in the isometries of AdS5 must be broken. In bottom-up models the breaking of conformal symmetry is introduced
by modifying the background AdS space–time at an infrared region of the geometries which sets the scale of the strong
interactions. In this effective approach, one considers the propagation of hadronic modes in a fixed effective gravitational
background asymptotic to AdS space, thus encoding prominent properties for QCD, such as the ultraviolet conformal limit
at the AdS boundary at z → 0, as well as modifications of the AdS background geometry in the large z infrared region to
describe confinement.

On the other hand, in models based on string theory — top-down models, the space–time geometry is dictated by the
corresponding brane configuration and may be quite different from AdS5 [38,39,53]. A comparison of the predictions of
AdS/QCDmodels in various space–time backgrounds appears in Ref. [54]. The result of such a comparison is that, for a wide
class of background space–time geometries, naive predictions based on five-dimensional AdS models (ignoring quantum
corrections) are the most accurate. One of the reasons for the phenomenological success of models based on the AdS
geometry might be that they capture a conformal window in QCD at the hadronic scale [46].

A simple way to obtain confinement and discrete normalizable modes is to truncate AdS space with the introduction of a
sharp cut-off in the infrared region of AdS space, as in the ‘‘hard-wall’’ model [55], where one considers a slice of AdS space,
0 ≤ z ≤ z0, and imposes boundary conditions on the fields at the IR border z0 ∼ 1/ΛQCD. As first shown by Polchinski and
Strassler [55], the modified AdS space provides a derivation of dimensional counting rules [56–58] in QCD for the leading
power-law fall-off of hard scattering beyond the perturbative regime. The modified theory generates the point-like hard
behavior expected from QCD, instead of the soft behavior characteristic of extended objects [55]. On AdS space the physical
states are represented by normalizable modes ΦP(x, z) = eiP·xΦ(z), with plane waves along Minkowski coordinates xµ to
represent a physical free hadron with momentum Pµ, and a wave function Φ(z) along the holographic coordinate z. The
hadronic invariantmass PµPµ = M2 is found by solving the eigenvalue problem for the AdSwave functionΦ(z). This simple
model fails however to reproduce the observed linear Regge behavior of hadronic excitations inM2, a featurewhich is typical
to many holographic models [59,60].

One can also introduce a ‘‘dilaton’’ background in the holographic coordinate to produce a smooth cutoff at large distances
as in the ‘‘soft-wall’’ model [61] which explicitly breaks the maximal AdS symmetry. In this bottom-up approach to AdS
gravity, an effective z-dependent curvature is introduced in the infrared region of AdS which leads to conformal symmetry
breaking in QCD, but its form is left largely unspecified. One can impose from the onset a viable phenomenological confining
structure to determine the effective IR modification of AdS space. For example, one can adjust the dilaton background to
reproduce the correct linear and equidistant Regge behavior of the hadronic mass spectrum M2 [61], a form supported
by semiclassical arguments [62]. One can also consider models where the dilaton field is dynamically coupled to gravity
[63–68]. In one approach to AdS/QCD [69–71], bulk fields are introduced to match the SU(2)L× SU(2)R chiral symmetries of
QCD and its spontaneous breaking, but without explicit connection with the internal constituent structure of hadrons [72].
Instead, axial and vector currents become the primary entities as in effective chiral theory. Following this bottom-up
approach only a limited number of operators is introduced, and consequently only a limited number of fields is required to
construct phenomenologically viable five-dimensional gravity duals.

1.3. Light-front holographic QCD

Light-front quantization is the ideal relativistic, frame independent framework to describe the internal constituent
structure of hadrons. The simple structure of the light-front (LF) vacuum allows an unambiguous definition of the partonic
content of a hadron in QCD and of hadronic light-front wave functions (LFWFs), the underlying link between large
distance hadronic states and the constituent degrees of freedom at short distances. The QCD light-front Hamiltonian HLF
is constructed from the QCD Lagrangian using the standard methods of quantum field theory [73]. The spectrum and
light-front wave functions of relativistic bound states are obtained from the eigenvalue equation HLF |ψ⟩ = M2

|ψ⟩. It
becomes an infinite set of coupled integral equations for the LF components ψn = ⟨n|ψ⟩ in a Fock-state expansion, i. e. in
a complete basis of non-interacting n-particle states |n⟩, with an infinite number of components. This provides a quantum-
mechanical probabilistic interpretation of the structure of hadronic states in terms of their constituents at the same light-
front time x+ = x0 + x3, the time marked by the front of a light wave [21]. The constituent spin and orbital angular
momentum properties of the hadrons are also encoded in the LFWFs. Unlike instant time quantization, the Hamiltonian
eigenvalue equation in the light front is frame independent. In practice, thematrix diagonalization [73] of the LFHamiltonian
eigenvalue equation in four-dimensional space–time has proven to be a daunting task because of the large size of thematrix
representations. Consequently, alternative methods and approximations are necessary to better understand the nature of
relativistic bound states in the strong-coupling regime of QCD.

To a first semiclassical approximation, where quantum loops and quark masses are not included, the relativistic bound-
state equation for light hadrons can be reduced to an effective LF Schrödinger equation by identifying as a key dynamical
variable the invariant mass of the constituents, which is the measure of the off-shellness in the LF kinetic energy, and it is
thus the natural variable to characterize the hadronic wave function. In conjugate position space, the relevant dynamical
variable is an invariant impact kinematical variable ζ , which measures the separation of the partons within the hadron at
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equal light-front time [74]. Thus, by properly identifying the key dynamical variable, one can reduce, to a first semi-classical
approximation, the multiparton problem in QCD to an effective one dimensional quantum field theory. As a result, all the
complexities of the strong interaction dynamics are hidden in an effective potential U(ζ ), but the central question — how
to derive the confining potential from QCD, remains open.

It is remarkable that in the semiclassical approximation described above, the light-front Hamiltonian has a structure
which matches exactly the eigenvalue equations in AdS space. This offers the unique possibility to make an explicit
connection of the AdS wave function Φ(z) with the internal constituent structure of hadrons. In fact, one can obtain the
AdS wave equations by starting from the semiclassical approximation to light-front QCD in physical space–time — an
emergent property of this framework. This connection yields a relation between the coordinate z of AdS space with the
impact LF variable ζ [74], thus giving the holographic variable z a precise definition and intuitive meaning in light-front
QCD.

Light-front holographic methods were originally introduced [75,76] by matching the electromagnetic current matrix el-
ements in AdS space [77] with the corresponding expression derived from light-front quantization in physical space–time
[78,79]. It was also shown that one obtains identical holographic mapping using the matrix elements of the energy–
momentum tensor [81] by perturbing the AdS metric (1.1) around its static solution [82], thus establishing a precise
relation between wave functions in AdS space and the light-front wave functions describing the internal structure of
hadrons.

The description of higher spin in AdS space is a notoriously difficult problem [83–90], and thus there is much interest in
finding a simplified approach which can describe higher-spin hadrons using the gauge/gravity duality. In the framework
of Ref. [61] the recurrences of the ρ and its daughter trajectories are obtained from a gauge invariant AdS Lagrangian.
In the light-front holographic approach, where the internal structure, and notably the orbital angular momentum of the
constituents, is reflected in the AdS wave functions by the LF mapping, wave equations with arbitrary integer and half-
integer spin can be derived from an invariant effective action in AdS space [91]. Remarkably, the pure AdS equations
correspond to the light-front kinetic energy of the partons inside a hadron, whereas the light-front interactions which build
confinement correspond to the modification of AdS space in an effective dual gravity approximation [74]. From this point of
view, the non-trivial geometry of pure AdS space encodes the kinematical aspects and additional deformations of AdS space
encode dynamics, including confinement, and determine the form of the effective potential U from the precise holographic
mapping to light-front physics. It can also be shown that the introduction of a dilaton profile is equivalent to a modification
of the AdS metric, even for arbitrary spin [91].

It is important to notice that the construction of higher-spin modes given in Ref. [61] starts from a gauge invariant action
in AdS and uses the gauge invariance of themodel to construct a higher-spin effective action. However, this approach which
is based in gauge invariance in the higher dimensional theory, is not applicable to light-frontmapping to physical space–time
which incorporates LF partonic physics in the holographic approach. In contrast, for light-front mapping the identification
of orbital angular momentum of the constituents with the fifth dimensional AdS mass, in principle an arbitrary parameter,
is a key element in the description of the internal structure of hadrons using light-front holographic principles, since hadron
masses depend crucially on it.

1.4. Confinement and conformal algebraic structures

In principle, LF Hamiltonian theory provides a rigorous, relativistic and frame-independent framework for solving
nonperturbative QCD and understanding the central problem of hadron physics — color confinement. For QCD(1 + 1) the
mass of the mesons and baryon eigenstates at zero quark mass is determined in units of its dimensionful coupling using the
Discretized Light Cone Quantization (DLCQ) method [92,93]. However, in the case of 3 + 1 space–time, the QCD coupling
is dimensionless, so the physical mechanism that sets the hadron mass scale for zero quark mass is not apparent. Since our
light-front semiclassical approximation [73] is effectively a one-dimensional quantum field theory, it is natural to apply
the framework developed by de Alfaro, Fubini and Furlan (dAFF) [94] which can generate a mass scale and a confinement
potential without affecting the conformal invariance of the action. In their remarkable paper, published some 40 years ago,
a hint to the possible appearance of scale in nominally conformal theories was given [94]. This remarkable result is based on
the isomorphism of the algebra of the one-dimensional conformal group Conf


R1

to the algebra of generators of the group

SO(2, 1) and the isometries of AdS2 space. In fact, one of the generators of this group, the rotation in the 2-dimensional space,
is compact and has therefore a discrete spectrum with normalizable eigenfunctions. As a result, the form of the evolution
operator is fixed and includes a confining harmonic oscillator potential, and the time variable has a finite range. Since the
generators of the conformal group have different dimensions their relations with generators of SO(2, 1) imply a scale, which
here plays a fundamental role, as already conjectured in [94]. These considerations have led to the realization that the form
of the effective LF confining potential can be obtained by extending the results found by dAFF to light-front dynamics and
to the embedding space [95].4 These results become particularly relevant, since it was also shown recently that an effective
harmonic potential in the light-front form of dynamics corresponds, for light quark masses, to a linear potential in the usual

4 Harmonic confinement also follows from the covariant Hamiltonian description of mesons given in Ref. [96].



8 S.J. Brodsky et al. / Physics Reports ( ) –

Fig. 1.1. An effective light-front theory for QCD endowed with an SO(2, 1) algebraic structure follows from the one-dimensional semiclassical
approximation to light-front dynamics in physical space–time, higher dimensional gravity in AdS5 space and the extension of conformal quantum
mechanics to light-front dynamics. The result is a relativistic light-front quantum mechanical wave equation which incorporates essential spectroscopic
and dynamical features of hadron physics. The emergence of a mass scale and the effective confining potential has its origins in the isomorphism of the
one-dimensional conformal group Conf


R1

with the group SO(2, 1), which is also the isometry group of AdS2 .

instant-form [97,98]. Thus, these results also lead to the prediction of linear Regge trajectories in the hadron mass square
for small quark masses in agreement with the observed spectrum for light hadrons.

The remarkable connection between the semiclassical approximation to light-front dynamics in physical four-
dimensional space–time with gravity in a higher dimensional AdS space, and the constraints imposed by the invariance
properties under the full conformal group in one dimensional quantum field theory, is depicted in Fig. 1.1 and is central
to this report. We shall describe how to construct a light-front effective theory which encodes the fundamental conformal
symmetry of the four-dimensional classical QCD Lagrangian. This construction is endowed with and SO(2, 1) underlying
symmetry, consistent with the emergence of a mass scale. We will also describe how to obtain effective wave equations
for any spin in the higher dimensional embedding space, and how to map these results to light-front physics in physical
space–time. The end result is a semiclassical relativistic light-front bound-state equation, similar to the Schrödinger equation
in atomic physics, which describes essential spectroscopic and dynamical features of hadron physics.

1.5. Other approaches and applications

A completely different approach to an effective treatment of nonperturbativeQCD,which, however turns out to be closely
related to holographic QCD is a ‘‘meromorphization procedure’’ of perturbative QCD. In fact, it has been shown [99] that the
hard wall model corresponds to a procedure proposed by Migdal [100,101], whereas the soft wall model has been related
to the QCD sum rule method [102] in Refs. [103,104] (see also Appendix F). Other approaches to emergent holography are
discussed in [105–112].

We also briefly review other holographic approaches to QCD, in particular top-down and bottom-up models based on
chiral symmetry breaking. Top-down models, such as the Sakai–Sugimoto model, are derived from brane configurations
in string theory, whereas bottom-up models, such as the hard or soft-wall models, are more phenomenological and
are not derived from string theory. Each of the models discussed in this review include degrees of freedom which are
identified with Standard Model hadrons via their quantum numbers, and predictions of holographic models for QCD
observables may be compared to experiment and to other models, often with remarkable quantitative success [113,114].
The domain of small coupling in QCDwould require, however, quantum corrections beyond the semiclassical approximation
[115].

A particularly interesting application of the holographic ideas is to high-energy small-angle scattering in QCD, usually
described by Pomeron exchange [116] which carries the vacuum quantum numbers. The gauge/string duality provides a
unified framework for the description of the soft Regge regime and hard BFKL Pomeron [117]. The gauge/string framework
can also be used to compute strong coupling high-energy oderon exchange [118], which distinguish particle anti-particle
cross sections and thus carries C = −1 vacuum quantum numbers. The gauge/gravity duality has also been applied to
deep inelastic scattering (DIS), first discussed in this context in Ref. [77]. We will not discuss in this report these interesting
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applications, but refer the reader to the original articles cited here.5 Neither shall we discuss in this report applications of
the gauge/gravity duality to strongly coupled quark–gluon plasma observed in heavy ion collisions at RHIC and CERN, also
an important subject which has attracted much attention.6

Another interesting topic which we only touch upon in this report is holographic renormalization [127]: the relation
between the flow in the holographic coordinate in AdS space and the renormalization group flow of the dual quantum
field theory [128].7 Thus, the description of the large-scale behavior should be independent of the ‘‘microscopic’’ degrees
of freedom (quarks and gluons) of the ultraviolet boundary theory and expressed in terms of ‘‘macroscopic’’ infrared
degrees of freedom (hadrons). As a result, the interaction potential of the effective infrared theory should retain universal
characteristics from the renormalization group flow. For example in hadronic physics the universality of the Regge
trajectories, but this universal behavior should also be relevant to other areas.

A number of excellent reviews on the AdS/CFT correspondence are already available. We refer the reader to the Physics
Report by Aharony, et al. [131], the TASI lectures by Klebanov [132] and by D’Hoker and Freedman [133] for some early
reviews. For more recent discussions of holographic QCD see the reviews in Refs. [134–137].

1.6. Contents of this review

The report is organized as follows: in Section 2 we describe important aspects of light-front quantization and its multi-
parton semiclassical approximation. This leads to a relativistic invariant light-front wave equation to compute hadronic
bound states in terms of an effective potential which is a priori unknown. We also discuss how the semiclassical results are
modified by the introduction of light quark masses. We show in Section 3 how a specific introduction of a scale determines
uniquely the form of the light-front effective confinement potential, while leaving the action conformally invariant. We also
describe in this Section the relation of the one-dimensional conformal group with the group SO(2, 1), and the extension
of conformal quantum mechanics to light-front physics described in Section 2. In Section 4 we derive hadronic AdS wave
equations for arbitrary integer and half-integer spin. We give particular care to the separation of kinematic and dynamical
effects in view of the mapping to LF bound-state equations. We perform the actual light-front mapping in Section 5, and
we compare the theoretical results with the observed light meson and baryon spectra. In Section 6 we carry out the
actual LF mapping of amplitudes in AdS to their corresponding expressions in light-front QCD. We describe form factors
and transition amplitudes of hadrons in holographic QCD. We also give a comparison with data and we discuss present
limitations of the model. In Section 7 we present other approaches to holographic QCD, including bottom-up and top-
down gauge/gravity models. We present our conclusions and final remarks in Section 8. We include a discussion of open
problems and future applications. In particular, we point out a possible connection of our effective light-front approach
with holographic renormalization flows to AdS2 geometry in the infrared and its one-dimensional conformal dual theory. In
Appendix Awegive a brief introduction to Riemannian geometry andmaximally symmetric Riemannian spaces. In particular
we exhibit the connection between the conformal group in one dimension, SO(2, 1), and AdS2. In Appendix Bwe give a short
collection of notations and conventions. We present in the Appendices C and D several more technical derivations, relevant
for Sections 3 and 4 respectively. We describe in Appendix E the light-front holographic mapping of the gravitational form
factor of composite hadrons. In Appendix F we discuss the relation of the generating functional of the boundary conformal
field theory and the classical action in the 5-dimensional gravity theory [27,28] for fields with arbitrary integer spin, both in
the soft- and the hard-wall models. In Appendix G some useful formulæare listed. In Appendix H we describe an algebraic
procedure to construct the holographic light-front Hamiltonians corresponding to the hard and soft-wall models discussed
in this report for bosons and fermions [138]. Finally in Appendix I we describe the equations of motion of p-form fields in
AdS.

2. A semiclassical approximation to light-front quantized QCD

Light-front quantization is the natural framework for the description of the QCD nonperturbative relativistic bound-
state structure in quantum field theory in terms of a frame-independent n-particle Fock expansion. The central idea is due
to Dirac who demonstrated the remarkable advantages of using light-front time x+ = x0+x3 (the ‘‘front-form’’) to quantize
a theory versus the standard time x0 (the ‘‘instant-form’’). As Dirac showed [21], the front-form has the maximum number
of kinematic generators of the Lorentz group, including the boost operator. Thus the description of a hadron at fixed x+ is
independent of the observer’s frame, making it ideal for addressing dynamical processes in quantum chromodynamics. An
extensive review of light-front quantization is given in Ref. [73]. As we shall discuss in this and in the next two Sections, a
semiclassical approximation to light-front quantized field theory in physical four-dimensional space–time has a holographic

5 Other interesting applications of the gauge/gravity correspondence include, but are not limited to, high-energy pp and pp̄ scattering [119,120], high-
energy photon–hadron scattering [121], compton scattering [122–124] and polarized DIS [125].
6 For a review see Ref. [126] and references therein.
7 For a review of holographic renormalization, see for example [129,130].
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dual with dynamics of theories in five-dimensional anti-de Sitter space. Furthermore, its confining dynamics follows from
the mapping to a one-dimensional conformal quantum field theory [95].

Quantization in the light-front provides a rigorous field-theoretical realization of the intuitive ideas of the parton
model [139,140] formulated at fixed time x0 in the infinite-momentum frame [141,142]. Historically, the prediction of
Bjorken scaling in deep inelastic scattering [143] followed from a combination of the high energy limit q0 → i∞ with the
infinite momentum frame P →∞, introduced in [141], using the usual definition of time; i.e., the instant-form. The same
results are obtained in the front-form but with complete rigor; e.g., the structure functions and other probabilistic parton
distributions measured in deep inelastic scattering are obtained from the squares of the light-front wave functions, the
eigensolution of the light-front Hamiltonian. Unlike the instant-form, the front-form results are independent of the hadron’s
Lorentz frame. Ameasurement in the front form is analogous to taking a flash photograph. The image in the resulting picture
records the state of the object as the front of a lightwave from the flash illuminates it, consistentwith observationswithin the
space-like causal horizon ∆x2µ < 0. Similarly, measurements such as deep inelastic electron–proton scattering, determine
the structure of the target proton at fixed light-front time.

In the constituent quark model [144,145] the minimum quark content required by the hadronic quantum numbers
is included in the wave functions, which describe how hadrons are built of their constituents. In the conventional
interpretation of the quark model, the main contribution to the hadron masses is supposed to arise from the explicit
breaking of chiral symmetry by constituent quark masses. Typical computations of the hadron spectrum generally include
a spin-independent confining interaction and a spin-dependent interaction, usually modeled from one-gluon-exchange in
QCD [146]. The partonmodel and the constituent quarkmodel provide, respectively, a good intuitive understanding ofmany
high- and low-energy phenomena. In practice, however, it has been proven difficult to reconcile the constituent quarkmodel
with QCD, and the best hope tomake a connection between both approaches is provided by light-front dynamics. In fact, the
original formulation of QCD was given in light-front coordinates [147,148] and the idea to derive a light-front constituent
quark model [149] also dates to the same time. The physical connections of the front-form with the constituent model is
a reason to hope that light-front quantization will eventually provide an understanding of the most challenging dynamical
problems in QCD, such as color confinement [150].

Just as in non-relativistic quantum mechanics, one can obtain bound-state light-front wave functions in terms of the
hadronic constituents from solving the light-front Hamiltonian eigenvalue problem. The eigenstates of the light-front
Hamiltonian are defined at fixed light-front time x+ over all space within the causal horizon, so that causality is main-
tained without normal-ordering. In fact, light-front physics is a fully relativistic field theory but its structure is sim-
ilar to non-relativistic theory [21], and the bound-state equations are relativistic Schrödinger-like equations at equal
light-front time. Because of Wick’s theorem, light-front time-ordered perturbation theory is equivalent to the covari-
ant Feynman perturbation theory. Furthermore, since boosts are kinematical, the light-front wave functions are frame
independent.

In principle, one can solve QCD by diagonalizing the light-front QCD Hamiltonian HLF using, for example, the discretized
light-cone quantization method [73] or the Hamiltonian transverse lattice formulation introduced in [151]. The spectrum
and light-front wave functions are then obtained from the eigenvalues and eigenfunctions of the Heisenberg problem
HLF |ψ⟩ = M2

|ψ⟩, which becomes an infinite set of coupled integral equations for the light-front components ψn =

⟨n|ψ⟩ in a Fock expansion [73]. This nonperturbative method has the advantage that it is frame-independent, is defined
in physical Minkowski space–time, and has no fermion-doubling problem. It has been applied successfully in lower
space–time dimensions [73], such as QCD(1+ 1) [92,93]. In practice, solving the actual eigenvalue problem is a formidable
computational task for a non-abelian quantum field theory in four-dimensional space–time. An analytic approach to
nonperturbative relativistic bound-states is also vastly difficult because of the unbound particle number with arbitrary
momenta and helicities. Consequently, alternative methods and approximations are necessary to better understand the
nature of relativistic bound-states in the strong-coupling regime.

Hadronic matrix elements and form factors are computed from simple overlaps of the boost invariant light-front wave
functions as in the Drell–Yan–West formula [78,79]. In contrast, at ordinary fixed time x0, the hadronic states must be
boosted from the hadron’s rest frame to a moving frame — an intractable dynamical problem which involves changes in
particle number. Moreover, the form factors at fixed time x0 also require computing off-diagonal matrix elements and
the contributions of currents which arise from the instant vacuum fluctuations in the initial state and which connect to
the hadron in the final state. Thus, the knowledge of wave functions alone is not sufficient to compute covariant current
matrix elements in the usual instant form. When a hadron is examined in the light front in the Drell–Yan frame [78,80],
for example, a virtual photon couples only to forward moving quarks and only processes with the same number of ini-
tial and final partons are allowed. A quantum-mechanical probabilistic constituent interpretation in terms of wave func-
tions is thus an important property of light-front dynamics required for both the constituent quark model and the parton
model.

In axiomatic quantum field theory the vacuum state is defined as the unique state invariant under Poincaré
transformations [152]. Conventionally it is defined as the lowest energy eigenstate of the instant-form Hamiltonian. Such
an eigenstate is defined at a single time x0 over all space x. It is thus acausal and frame-dependent. In contrast, in the front
form, the vacuum state is defined as the eigenstate of lowest invariant mass M2 at fixed light-front time x+ = x0 + x3.
It is frame-independent and only requires information within the causal horizon. Thus, an important advantage of the LF
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Fig. 2.1. Dirac forms of relativistic dynamics: (a) the instant form, (b) the front form and (c) the point form. The initial surfaces are defined respectively
by x0 = 0, x0 + x3 = 0 and x2 = κ2 > 0, x0 > 0.

framework is the apparent simplicity and Lorentz invariance of the LF vacuum. In contrast, the equal-time vacuum contains
quantum loop graphs and thus an infinite sea of quarks and gluons.

2.1. The Dirac forms of relativistic dynamics

According to Dirac’s classification of the forms of relativistic dynamics [21], the fundamental generators of the Poincaré
group can be separated into kinematical and dynamical generators. The kinematical generators act along the initial
hypersurface where the initial conditions (the quantization conditions) are imposed. The kinematical generators leave
invariant the initial surface and are thus independent of the dynamics; therefore they contain no interactions. The dynamical
generators are responsible for the evolution of the system (mapping one initial surface into another surface) and depend
consequently on the interactions.

In his original paper Dirac [21] found three forms of relativistic dynamics8 which correspond to different parameteriza-
tions of space–time and which cannot be transformed into each other by a Lorentz transformation. The three forms of Dirac
are illustrated in Fig. 2.1. The instant form is the usual form where the initial surface is the surface defined at x0 = 0. In
the front form (discussed above) the initial surface is the tangent plane to the light-cone x0 + x3 = 0 – the null plane, thus
without reference to a specific Lorentz frame. According to Dirac [21], it is the ‘‘three dimensional surface in space–time
formed by a plane wave front advancing with the velocity of light’’. In the third form, the point form, the initial surface is
the hyperboloid defined by x2 = κ2 > 0, x0 > 0, which is left invariant by the Lorentz generators. Each front has its own
Hamiltonian and evolves with a different time, but the results computed in any front should be identical, since physical
observables cannot depend on how space–time is parameterized.

The Poincaré group is the full symmetry group of any form of relativistic dynamics. Its Lie algebra is given by the well
known commutation relations

[Pµ, Pν ] = 0, (2.1)
[Mµν, Pρ ] = i (gµρPν − gνρPµ) ,
[Mµν,Mρσ ] = i (gµρMνσ

− gµσMνρ
+ gνσMµρ

− gνρMµσ ) ,

where the Pµ are the generators of space–time translations and the antisymmetric tensor Mµν of the generators of the
Lorentz transformations.

In the instant form the Hamiltonian P0 and the three components of the boost vector K i
= M0i are dynamical generators,

whereas the momentum P and the three components of angular momentum J i = 1
2ϵ

ijkM jk are kinematical. In the front
form [154,155], the dynamical generators are the ‘‘minus’’ component generators, the Hamiltonian P− and the generator
M−1 = K 1

− J2 and M−2 = K 2
+ J1, which correspond to LF rotations along the x and y-axes.9 The kinematical generators

are the longitudinal ‘‘plus’’ momentum P+ and transverse momentum P i. The boost operators are also kinematical in the
light-front: M+1 = K 1

+ J2 and M+2 = K 2
− J1, which boost the system in the x- and y-direction respectively, as well

as the generator 1
2M
+−
= K 3 which boost the system in the longitudinal direction. Finally, the z-component of angular

momentum M12
= J3, which rotates the system in the x − y plane is also a kinematical operator, and labels the angular

moment states in the light front. In the point-form the four generators Pµ are dynamical and the six Lorentz generatorsMµν

kinematical. The light-front frame has the maximal number of kinematical generators.

8 Subsequently Leutwyler and Stern [153] found two additional forms for a total of five inequivalent formswhich correspond to the number of subgroups
of the Poincaré group.
9 The± components of a tensor are defined by a± = a0 ± a3 , and the metric follows from the scalar product a · b = 1

2


a+b− + a−b+


− a1b1 − a2b2

(see Appendix B).
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2.2. Light-front dynamics

For a hadron with four momentum Pµ = (P+, P−, P⊥), P± = P0
± P3, the mass-shell relation P2

= M2, where
PµPµ = P+P− − P2

⊥
, leads to the dispersion relation for the LF Hamiltonian P−

P− =
P2
⊥
+M2

P+
, P+ > 0. (2.2)

This LF relativistic dispersion relation has several remarkable properties. The square root operator does not appear in
(2.2), and thus the dependence on the transverse momentum P⊥ is similar to the non-relativistic dispersion relation. For
massive physical hadronic states P2 > 0 and P0 are positive, thus P+ and P− are also positive. Furthermore, since the
longitudinal momentum P+ is kinematical, it is given by the sum of the single-particle longitudinal momentum of the
constituents of the bound state. In fact, for an n-particle bound state with particle four momentum pµi =


p+i , p

−

i , p⊥i

,

where p2i = p+i p
−

i − p2
⊥i = m2

i , we have

p−i =
p2
⊥i +m2

i

p+i
, p+i > 0, (2.3)

for each constituent i. Thus

P+ =
n
i

p+i , p+i > 0. (2.4)

On the other hand, since the bound-state is arbitrarily off the LF energy shell we have the inequality

P− −
n
i

p−i < 0, (2.5)

for the LF Hamiltonian which contains the interactions.
The LF Hamiltonian P− is the momentum conjugate to the LF-time coordinate, x+ = x0 + x3. Thus, the evolution of the

system is given by the relativistic light-front Schrödinger-like equation

i
∂

∂x+
|ψ(P)⟩ = P−|ψ(P)⟩, (2.6)

where P− is given by (2.2). Since the generators P+ and P⊥ are kinematical, we can construct the LF Lorentz-invariant
Hamiltonian HLF = P2

= P+P− − P2
⊥
with eigenvalues corresponding to the invariant mass PµPµ = M2

HLF |ψ(P)⟩ = M2
|ψ(P)⟩. (2.7)

As one could expect, the eigenstates of the LF Hamiltonian HLF are invariant since the LF boost generators are kinematical.
Consequently, if the eigenstates are projected onto an n-particle Fock component |n⟩ of the free LFHamiltonian, the resulting
light-front wave function ψn = ⟨n|ψ⟩ only depends on the relative coordinates of the constituents. Thus, an additional
important property of the light-front frame for a bound state is the separation of relative and overall variables.

Since p+i > 0 for every particle, the vacuum is the unique state with P+ = 0 and contains no particles. All other states
have P+ > 0. Since plus momentum is kinematic, and thus conserved at every vertex, loop graphs with constituents with
positive p+i cannot occur in the light-front vacuum. Because this also holds in presence of interactions, the vacuum of the
interacting theory is also the trivial vacuum of the non-interacting theory. However, one cannot discard the presence of zero
modes, possible background fields with p+ = 0, which also lead to P+ = 0 and thus can mix with the trivial vacuum. The
light-front vacuum is defined at fixed LF time x+ = x0 + x3 over all x− = x0 − x3 and x⊥, the expanse of space that can be
observed within the speed of light. Thus the frame independent definition of the vacuum

P2
|0⟩ = 0. (2.8)

Causality is maintained since the LF vacuum only requires information within the causal horizon. Since the LF vacuum is
causal and frame independent, it can provide a representation of the empty universe for quantum field theory [156,157]. In
fact, the front form is a natural basis for cosmology because the universe is observed along the front of a light wave.

2.3. Light-front quantization of QCD

We can now proceed to relate the LF generators to the underlying QCD Lagrangian in terms of the dynamical fields of
the theory. In the light-front, the Dirac equation is written as a pair of coupled equations for plus and minus components,
ψ± = Λ±ψ , with the projection operatorΛ± = γ 0γ±. One of the equations does not have a derivative with respect to the
LF evolution time x+, and it is therefore a constraint equation which determines the minus component ψ− in terms of the
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dynamical field ψ+ [73,158]. Likewise, the dynamical transverse field A⊥ in the light-cone gauge A+ = 0 has no ghosts nor
unphysical negative metric gluons.

Our starting point is the SU(3)C invariant Lagrangian of QCD

LQCD = ψ̄

iγ µDµ −m


ψ − 1

4G
a
µνG

aµν, (2.9)

where Dµ = ∂µ− igsAa
µT

a and Ga
µν = ∂µA

a
ν−∂νA

a
µ+gscabcAb

µA
c
ν , with


T a, T b


= icabcT c and a, b, c are SU(3)C color indices.

One can express the hadron four-momentum generator Pµ = (P+, P−, P⊥) in terms of the dynamical fields ψ+ and A⊥
quantized on the light-front at fixed light-front time x+, x± = x0 ± x3 [73]

P− =
1
2


dx−d2x⊥


ψ̄+ γ

+
m2
+ (i∇⊥)2

i∂+
ψ+ − Aaµ (i∇⊥)2 Aa

µ


+ gs


dx−d2x⊥ ψ̄+γ µT aψ+Aa

µ +
g2
s

4


dx−d2x⊥ cabccadeAb

µA
c
νA

dµAeν

+
g2
s

2


dx−d2x⊥ ψ̄+γ+T aψ+

1

(i∂+)2
ψ̄+γ

+T aψ+ +
g2
s

2


dx−d2x⊥ ψ̄+γ µT aAa

µ

γ+

i∂+

T bAb

νγ
νψ+


. (2.10)

The first term in (2.10) is the kinetic energy of quarks and gluons; it is the only non-vanishing term in the limit gs → 0.
The second term is the three-point vertex interaction. The third term is the four-point gluon interaction. The fourth term
represents the instantaneous gluon interaction which originates from the imposition of light-cone gauge, and the last term
is the instantaneous fermion interaction [73]. The integrals in (2.10) are over the null plane x+ = 0, the initial surface, where
the commutation relations for the fields are fixed. The LF Hamiltonian P− generates LF time translations

ψ+(x), P−

= i

∂

∂x+
ψ+(x),


A⊥, P−


= i

∂

∂x+
A⊥(x), (2.11)

which evolve the initial conditions for the fields to all space–time.
The light-front longitudinal momentum P+

P+ =


dx−d2x⊥

ψ̄+γ

+i∂+ψ+ − Aaµ (i∂+)2Aa
µ


, (2.12)

and the light-front transverse momentum P⊥

P⊥ =
1
2


dx−d2x⊥


ψ̄+γ

+i∇⊥ψ+ − Aaµ i∂+ i∇⊥Aa
µ


, (2.13)

are kinematical generators and do not involve interactions.
The Dirac fieldψ+ and the transverse gluon fieldA⊥ are expanded in terms of particle creation and annihilation operators

as [73]

ψ+(x−, x⊥)α =

λ


q+>0

dq+
√
2q+

d2q⊥
(2π)3


bλ(q)uα(q, λ)e−iq·x + dλ(q)Ďvα(q, λ)eiq·x


, (2.14)

and

A⊥(x−, x⊥) =

λ


q+>0

dq+
√
2q+

d2q⊥
(2π)3


a(q)ϵ⃗⊥(q, λ)e−iq·x + a(q)Ďϵ⃗ ∗

⊥
(q, λ)eiq·x


, (2.15)

with u and v LF spinors [159] and commutation relations
b(q), bĎ(q′)


=

d(q), dĎ(q′)


= (2π)3 δ(q+ − q′+) δ(2)


q⊥ − q′

⊥


. (2.16)

a(q), aĎ(q′)

= (2π)3 δ(q+ − q′+) δ(2)


q⊥ − q′

⊥


. (2.17)

Using the LF commutation relations given above and the properties of the light-front spinors given in Appendix B, we
obtain the expression of the light-front Hamiltonian P− in the particle number representation

P− =

λ


dq+d2q⊥
(2π)3

q2
⊥
+m2

q+


bĎλ(q)bλ(q)+ (interactions), (2.18)

where, for simplicity, we have omitted from (2.18) the terms corresponding to antiquarks and gluons. We recover the LF
dispersion relation q− = (q2

⊥
+m2)/q+ for a quark or antiquark in absence of interactions and the dispersion relation for the

gluon quanta q− = q2
⊥
/q+, which follows from the on shell relation q2 = m2 and q2 = 0 respectively. The LF time evolution
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Fig. 2.2. Overall and relative partonic variables in a hadronic bound state.

operator P− is thus conveniently written as a term which represents the sum of the kinetic energy of all the partons plus a
sum of all the interaction terms. The longitudinal and transverse kinematical generators are

P+ =

λ


dq+d2q⊥
(2π)3

q+ bĎλ(q)bλ(q), (2.19)

P⊥ =

λ


dq+d2q⊥
(2π)3

q⊥ bĎλ(q)bλ(q), (2.20)

and contain no interactions. For simplicity we have also omitted from (2.19) and (2.20) the contribution of the kinetic terms
from antiquarks and gluons.

2.3.1. Representation of hadrons in the light-front Fock basis
An important advantage of light-front quantization is that a particle Fock expansion can be used as the basis for

representing the physical states of QCD. The light-front Fock representation is thus an interpolating basis projecting the
hadronic eigenstate onto the Fock basics of free on-shell partonic constituents. The complete basis of Fock-states |n⟩ is
constructed by applying free-field creation operators to the vacuum state |0⟩ which has no particle content, P+|0⟩ = 0,
P⊥|0⟩ = 0. A one-particle state is defined by |q⟩ =

√
2q+ bĎ(q)|0⟩, so that its normalization has the Lorentz invariant form

⟨q|q′⟩ = 2q+(2π)3δ(q+ − q′+) δ(2)(q⊥ − q′
⊥
), (2.21)

and this fixes our normalization. Each n-particle Fock state |p+i , p⊥i, λi⟩ is an eigenstate of P+, P⊥ and J3 and it is normalized
according to

p+i , p⊥i, λi
p′+i , p′⊥i, λ′i = 2p+i (2π)

3 δ

p+i − p′+i


δ(2)

p⊥i − p′

⊥i


δλi,λ′i

. (2.22)

We now proceed to the separation of relative and overall kinematics by introducing the partonic variables kµi =
k+i , k

−

i , k⊥i

according to k+i = xiP+, p⊥i = xiP⊥i+k⊥i, where the longitudinal momentum fraction for each constituent is

xi = k+i /P
+ (see Fig. 2.2). Momentum conservation requires that P+ =

n
i=1 k

+

i , k
+

i > 0, or equivalently
n

i=1 xi = 1, andn
i=1 k⊥i = 0. The light-front momentum coordinates xi and k⊥i are actually relative coordinates; i.e., they are independent

of the total momentum P+ and P⊥ of the bound state.
The hadron state is an eigenstate of the total momentum P+ and P⊥ and the total spin projection Sz . Each hadronic

eigenstate |ψ⟩ is expanded in a complete Fock-state basis of noninteracting n-particle states |n⟩with an infinite number of
components. For example, a proton with four-momentum Pµ = (P+, P−, P⊥) is described by the expansionψ(P+, P⊥, Sz) =

n,λi

  
dxi
 

d2k⊥i
 1
√
xi
ψn(xi, k⊥i, λi)

n : xiP+, xiP⊥ + k⊥i, λi

, (2.23)

where the sum is over all Fock states and helicities, beginning with the valence state; e.g., n ≥ 3 for baryons. The measure
of the constituents phase-space momentum integration is 

dxi

≡

n
i=1


dxi δ


1−

n
j=1

xj

, (2.24)

 
d2k⊥i


≡

n
i=1


d2k⊥i
2(2π)3

16π3 δ(2)
 n

j=1

k⊥j

. (2.25)

The coefficients of the Fock expansion

ψn(xi, k⊥i, λi) =

n : xi, k⊥i, λi

ψ , (2.26)

are frame independent; i.e., the form of the LFWFs is independent of the total longitudinal and transverse momentum P+
and P⊥ of the hadron and depend only on the partonic coordinates: the longitudinal momentum fraction xi, the transverse
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momentum k⊥i, and λi, the projection of the constituent’s spin along the z direction. The wave function ψn(xi, k⊥i, λi)
represents the probability amplitudes to find on-mass-shell constituents i in a specific light-front Fock state |n⟩ with
longitudinal momentum xiP+, transverse momentum xiP⊥ + k⊥i and helicity λi in a given hadron. Since the boundary
conditions are specified in the null-plane, the ability to specify wave functions simultaneously in any frame is a special
feature of light-front quantization.

Each constituent of the light-frontwave functionψn(xi, k⊥i, λi) of a hadron is on its respectivemass shell k2i = m2
i , where

kµi k
µ

i = k+i k
−

i − k2
⊥i, thus each single particle state has four-momentum

kµi =

k+i , k

−

i , ki

=


k+i ,

k2
⊥i +m2

i

k+i
, ki


, for i = 1, 2 . . . n. (2.27)

However, the light-front wave function represents a state which is off the light-front energy shell, P− −
n

i k
−

i < 0, for a
stable hadron. In fact, the invariant mass of the constituents in each n-particle Fock state is given by

M2
n =

 n
i=1

kµi
2
=

 n
i=1

k+i
  n

i=1

k−i

−

 n
i=1

k⊥i
2
=

n
i=1

k2
⊥i +m2

i

xi
, (2.28)

and is a measure of the off-energy shell of the bound state, withM2
n in general different from the hadron bound-state mass

PµPµ = M2.
The hadron state is normalized according to

ψ(P+, P⊥, Sz)
ψ(P ′+, P′

⊥
, Sz
′

)

= 2P+(2π)3 δSz ,Sz′ δ


P+ − P ′+


δ(2)

P⊥ − P′

⊥


. (2.29)

Thus, the normalization of the LFWFs is determined by
n

 
dxi
 

d2k⊥i

|ψn(xi, k⊥i)|2 = 1, (2.30)

where the internal-spin indices have been suppressed.
The constituent spin and orbital angular momentum properties of the hadrons are also encoded in the LFWFs

ψn(xi, k⊥i, λi)which obey the total orbital angular momentum sum rule [160]

Jz =
n

i=1

Szi +
n−1
i=1

Lzi , (2.31)

since there are only n − 1 relative angular momenta in an n-particle light-front Fock state in the sum (2.31). The internal
spins Szi are denoted as λi. The orbital angular momenta have the operator form

Lzi = −i

∂

∂kxi
kyi −

∂

∂kyi
kxi


. (2.32)

Since the total angularmomentum projection Jz in the light front is a kinematical operator, it is conserved Fock state by Fock
state and by every interaction in the LF Hamiltonian. In the light-cone gauge A+ = 0, the gluons only have physical angular
momentum projections Sz = ±1 and the orbital angular momentum of quark and gluons is defined unambiguously [73].

2.4. Semiclassical approximation to QCD in the light front

Our goal is to find a semiclassical approximation to strongly coupled QCD dynamics and derive a simple relativistic
wave equation to compute hadronic bound states and other hadronic properties. To this end it is necessary to reduce the
multiple particle eigenvalue problem of the LF Hamiltonian (2.7) to an effective light-front Schrödinger equation, instead
of diagonalizing the full Hamiltonian. The central problem then becomes the derivation of the effective interaction, which
acts only on the valence sector of the theory and has, by definition, the same eigenvalue spectrum as the initial Hamiltonian
problem. For carrying out this program in the front from, one must systematically express the higher-Fock components as
functionals of the lower ones. This method has the advantage that the Fock space is not truncated and the symmetries of the
Lagrangian are preserved [161]. The method is similar to the methods used in many-body problems in nuclear physics to
reduce the great complexity of a dynamical problem with a large number of degrees of freedom to an effective model with
fewer degrees of freedom [162]. The same method is used in QED; for example, the reduction of the higher Fock states of
muonium µ+e− to an effective µ+e− equation introduces interactions which yield the hyperfine splitting, Lamb shift, and
other corrections to the Coulomb-dominated potential.

In principle one should determine the effective potential from the two-particle irreducible qq̄→ qq̄ Greens’ function for
a pion. In particular, the reduction from higher Fock states in the intermediate states would lead to an effective interaction
U for the valence |qq̄⟩ Fock state of the pion [161]. However, in order to capture the nonperturbative dynamics one most
integrate out all higher Fock states, corresponding to an infinite number of degrees of freedom – a formidable problem. This
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is apparent, for example, if one identifies the sum of infrared sensitive ‘‘H’’ diagrams as the source of the effective potential,
since the horizontal rungs correspond to an infinite number of higher gluonic Fock states [163,164]. A related approach for
determining the valence light-front wave function and studying the effects of higher Fock states without truncation has
been given in Ref. [165].

We will describe below a simple procedure which allows us to reduce the strongly correlated multi-parton bound-state
problem in light-front QCD into an effective one-dimensional problem [74]. To follow this procedure, it is crucial to identify
as the key dynamical variable, the invariant mass M2

n (2.28), M2
n = (k1 + k2 + · · · kn)2, which controls the bound state. In

fact, the LFWF is of-shell in P− and consequently in the invariant mass. Alternatively, it is useful to consider its canonical
conjugate invariant variable in impact space. This choice of variable will also allow us to separate the dynamics of quark and
gluon binding from the kinematics of constituent spin and internal orbital angular momentum [74].

For an n-Fock component ψ (k1, k2, . . . , kn)we make the substitution

ψn (k1, k2, . . . , kn) → φn

(k1 + k2 + · · · kn)2


, mq → 0. (2.33)

Using this semiclassical approximation, and in the limit of zero quarkmasses, the n-particle bound-state problem is reduced
effectively to a single-variable LF quantum mechanical wave equation [74], which describes the bound-state dynamics of
light hadrons in terms of an effective confining interaction U defined at equal LF time. In this semiclassical approximation
there is no particle creation or absorption.

Let us outline how this reduction is actually carried out in practice. We compute M2 from the hadronic matrix element
⟨ψ(P ′)|PµPµ|ψ(P)⟩ = M2

⟨ψ(P ′)|ψ(P)⟩, expanding the initial and final hadronic states in terms of their Fock components
using (2.23). The computation is simplified in the frame P =


P+,M2/P+, 0⃗⊥


where HLF = P2

= P+P−. Using the
normalization condition (2.22) for each individual constituent and after integration over the internal coordinates of the
n constituents for each Fock state in the P⊥ = 0 frame, one finds [74]

M2
=


n

 
dxi
 

d2k⊥i
 n

a=1


k2
⊥a +m2

a

xa


|ψn(xi, k⊥i)|2 + (interactions), (2.34)

plus similar terms for antiquarks and gluons (mg = 0). The integrals in (2.34) are over the internal coordinates of the n
constituents for each Fock state with the phase space normalization (2.30). Since the LF kinetic energy has a finite value
in each Fock state, it follows that the LFWFs of bound states ψn(xi, k⊥i) have the small momentum fraction-x boundary
conditions ψn(xi, k⊥i)→ (xi)α with α ≥ 1

2 in the limit xi → 0 [166].
It is useful to express (2.34) in terms of n−1 independent transverse impact variables b⊥j, j = 1, 2, . . . , n−1, conjugate

to the relative coordinates k⊥i using the Fourier expansion [167]

ψn(xj, k⊥j) = (4π)(n−1)/2
n−1
j=1


d2b⊥j exp


i
n−1
k=1

b⊥k · k⊥k


ψn(xj, b⊥j), (2.35)

where
n

i=1 b⊥i = 0. We find

M2
=


n

n−1
j=1


dxj d2b⊥j ψ∗n (xj, b⊥j)

n
a=1


−∇

2
b⊥a +m2

a

xa


ψn(xj, b⊥j)+ (interactions), (2.36)

where the normalization in impact space is defined by
n

n−1
j=1


dxjd2b⊥j

ψn(xj, b⊥j)
2 = 1. (2.37)

The simplest example is a two-partonhadronic bound state. Ifwewant to reduce further the dynamics to a single-variable
problem, we must take the limit of quark masses to zero. In the limitmq → 0 we find

M2
=

 1

0
dx


d2k⊥
16π3

k2
⊥

x(1− x)
|ψ(x, k⊥)|2 + (interactions)

=

 1

0

dx
x(1− x)


d2b⊥ ψ∗(x, b⊥)


−∇

2
b⊥


ψ(x, b⊥)+ (interactions), (2.38)

with normalization 1

0
dx


d2k⊥
16π3

|ψ(x, k⊥)|2 =
 1

0
dx


d2b⊥ |ψ(x, b⊥)|2 = 1. (2.39)

For n = 2, the invariantmass (2.28) isM2
qq̄ =

k2
⊥

x(1−x) . Similarly, in impact space the relevant variable for a two-parton state
is ζ 2
= x(1− x)b2

⊥
, the invariant separation between the quark and antiquark (see Fig. 2.3). Thus, to first approximation, LF
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Fig. 2.3. Relative q− q̄ variables in impact space for a pion bound state.

dynamics depend only on the boost invariant variableMn or ζ , and the dynamical properties are encoded in the hadronic LF
wave function φ(ζ )

ψ(x, ζ , ϕ) = eiLϕX(x)
φ(ζ )
√
2πζ

, (2.40)

where we have factored out the longitudinal X(x) and orbital dependence from the LFWF ψ . This is a natural factorization
in the light front since the corresponding canonical generators, the longitudinal and transverse generators P+ and P⊥ and
the z-component of the orbital angular momentum Jz are kinematical generators which commute with the LF Hamiltonian
generator P−. From (2.39) the normalization of the transverse and longitudinal modes is given by

⟨φ|φ⟩ =


dζ φ2(ζ ) = 1, (2.41)

⟨X |X⟩ =
 1

0
dx x−1(1− x)−1X2(x) = 1. (2.42)

To proceed, we write the Laplacian operator in (2.38) in polar coordinates (ζ , ϕ)

∇
2
ζ =

1
ζ

d
dζ


ζ

d
dζ


+

1
ζ 2

∂2

∂ϕ2
, (2.43)

and factor out the angular dependence of the modes in terms of the SO(2) Casimir representation L2 of orbital angular
momentum in the transverse plane. Using (2.40) we find [74]

M2
=


dζ φ∗(ζ )


ζ


−

d2

dζ 2
−

1
ζ

d
dζ
+

L2

ζ 2


φ(ζ )
√
ζ
+


dζ φ∗(ζ )U(ζ )φ(ζ ), (2.44)

where L = |Lz |. In writing the above equation we have summed up all the complexity of the interaction terms in the
QCD Hamiltonian (2.10) in the introduction of the effective potential U(ζ ) which acts in the valence state, and which
should enforce confinement at some IR scale, which determines the QCD mass gap. The light-front eigenvalue equation
PµPµ|φ⟩ = M2

|φ⟩ is thus a light-front wave equation for φ
−

d2

dζ 2
−

1− 4L2

4ζ 2
+ U(ζ )


φ(ζ ) = M2φ(ζ ), (2.45)

a relativistic single-variable LF quantum-mechanical wave equation. Its eigenmodes φ(ζ ) determine the hadronic mass
spectrum and represent the probability amplitude to find the partons at transverse impact separation ζ , the invariant
separation between point-like constituents within the hadron [75] at equal LF time. This equation is an effective two-
particle wave equation where an infinite number of higher Fock states [161] and retarded interactions are incorporated
in the light-front effective potential, which acts on the valence states. In practice, computing the effective potential from
QCD is a formidable task and other methods have to be devised to incorporate the essential dynamics from confinement.
The effective interaction potential in (2.45) is instantaneous in LF time x+, not instantaneous in ordinary time x0. The LF
potential thus satisfies causality, unlike the instantaneous Coulomb interaction appearing in atomic physics.

If L2 < 0, the LF Hamiltonian defined in Eq. (2.7) is unbounded from below ⟨φ|PµPµ|φ⟩ < 0, and the spectrum contains
an infinite number of unphysical negative values of M2 which can be arbitrarily large. As M2 increases in absolute value,
the particle becomes localized within a very small region near ζ = 0, if the effective potential vanishes at small ζ . For
M2
→ −∞ the particle is localized at ζ = 0, the particle ‘‘falls towards the center’’ [168]. The critical value L = 0

corresponds to the lowest possible stable solution, the ground state of the light-front Hamiltonian. It is important to notice
that in the light front, the SO(2) Casimir for orbital angular momentum L2 is a kinematical quantity, in contrast to the usual
SO(3) Casimir L(L+ 1) from non-relativistic physics which is rotational, but not boost invariant. The SO(2) Casimir form L2
corresponds to the group of rotations in the transverse LF plane. Indeed, the Casimir operator for SO(N) is L(L+ N − 2).

If we compare the invariant mass in the instant form in the hadron center-of-mass system, P = 0, M2
qq̄ = 4m2

q + 4p2,
with the invariant mass in the front form in the constituent rest frame, pq + pq̄ = 0 for equal quark–antiquark masses,10

10 Notice that the hadron center-of-mass frame and the constituent rest frame are not identical in the front form of dynamics since the third component
of momentum is not conserved in the light front (see Ref. [97] and references therein).
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we obtain the relation [97]

U = V 2
+ 2


p2 +m2

q V + 2 V

p2 +m2

q, (2.46)

where we identify p2
⊥
=

k2
⊥

4x(1−x) , p3 =
mq(x−1/2)
√
x(1−x)

, and V is the effective potential in the instant form. Thus, for small quark
masses a linear instant-form potential V implies a harmonic front-form potential U at large distances. One can also show
how the two-dimensional front-form harmonic oscillator potential for massless quarks takes on a three-dimensional form
when the quarks have mass since the third space component is conjugate to p3, which has an infinite range form ≠ 0 [97].

Extension of the results to arbitrary n follows from the x-weighted definition of the transverse impact variable of the
n− 1 spectator system [75] given by the LF cluster decomposition

ζ =


x

1− x

 n−1
j=1

xjb⊥j
, (2.47)

where x = xn is the longitudinal momentum fraction of the active quark. One can also generalize the equations to allow for
the kinetic energy of massive quarks using Eqs. (2.34) or (2.36) as discussed in Section 2.4.1 below. In this case, however,
the longitudinal mode X(x) does not decouple from the effective LF bound-state equations.

2.4.1. Inclusion of light quark masses
The noticeable simplicity of the transverse single-variable light-front wave equation derived from the bound-state

Hamiltonian equation of motion in Section 2.4 is lost when we consider massive quarks, as longitudinal LF variables have
to be taken into account as well. In the limit of massless quarks the scheme is very concise and unique: in the semiclassical
approximation the underlying conformal symmetry of QCD determines the dynamics (Section 3) and there is an exact
agreement of the AdS equations of motion and the light-front Hamiltonian (Section 4). However, as we will discuss here,
the inclusion of small quarkmasses can still be treated in a simple way following the semiclassical approximation described
above.

As it is clear from (2.46), the effective light-front confining interaction U has a strong dependence on heavy quarkmasses
and consequently in the longitudinal variables.11 However, for small quarkmasses — as compared to the hadronic scale, one
expects that the effective confinement interaction in the quark masses is unchanged to first order. In this approximation
the confinement potential only depends on the transverse invariant variable ζ , and the transverse dynamics are unchanged.
The partonic shift in the hadronic mass is computed straightforwardly from (2.34) or (2.36)

∆M2
=


n

 
dxi
 

d2k⊥i
 n

a=1

m2
a

xa
|ψn(xi, k⊥i)|2

=


n

n−1
j=1


dxj d2b⊥j

n
a=1

m2
a

xa

ψn(xj, b⊥j)
2

≡


ψ

a m2
a

xa

ψ

, (2.48)

where ∆M2
= M2

− M2
0 . Here M2

0 is the value of the hadronic mass computed in the limit of zero quark masses. This
expression is identical to the Weisberger result for a partonic mass shift [170]. Notice that this result is exact to first order
in the light-quark mass if the sum in (2.48) is over all Fock states n.

For simplicity, we consider again the case of a meson bound-state of a quark and an antiquark with longitudinal
momentum x and 1− x respectively. To lowest order in the quark masses we find

∆M2
=

 1

0

dx
x(1− x)


m2

q

x
+

m2
q̄

1− x


X2(x), (2.49)

using the normalization (2.42). The quark masses mq and mq̄ in (2.49) are effective quark masses from the renormalization
due to the reduction of higher Fock states as functionals of the valence state [161], not ‘‘current’’ quarkmasses, i.e., the quark
masses appearing in the QCD Lagrangian.

As it will be shown in Section 6, the factor X(x) in the LFWF in (2.40) can be determined in the limit of massless quarks
from the precise mapping of light-front amplitudes for arbitrary momentum transfer Q . Its form is X(x) = x

1
2 (1− x)

1
2 [75].

This expression of the LFWF gives a divergent expression for the partonic mass shift (2.49), and, evidently, realistic effective

11 This connection was used in Ref. [169] to construct a light-front potential for heavy quarkonia.
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two-particle wave functions have to be additionally suppressed at the end-points x = 0 and x = 1. As pointed out in [138],
a key for this modification is suggested by the construction of the light-front wave functions discussed above. It relies on the
assumption that the essential dynamical variable which controls the bound state wave function in momentum space is the
invariant mass (2.28), which determines the off-energy shell behavior of the bound state. For the effective two-body bound
state the inclusion of light quark masses amounts to the replacement

M2
qq̄ =

k2
⊥

x(1− x)
→

k2
⊥

x(1− x)
+

m2
q

x
+

m2
q̄

1− x
, (2.50)

in the LFWF in momentum space,ψqq̄ (x, k⊥), which is then Fourier transformed to impact space. We will come back to this
point in Section 5 for the specific models dictated by conformal invariance. The longitudinal dynamics in presence of quark
masses has also been discussed in Ref. [171].

In the next Section we will show how the form of the effective confinement potential is uniquely determined from the
algebraic structure of an effective one-dimensional quantum field theory, which encodes the underlying conformality of the
classical QCD Lagrangian. In subsequent Sections we will discuss the connection of effective gravity theories in AdS space
with the light-front results presented in this section.

3. Conformal quantummechanics and light-front dynamics

As we have emphasized in the introduction, conformal symmetry plays a special, but somehow hidden, role in QCD.
The classical Lagrangian is, in the limit of massless quarks, invariant under conformal transformations [5,6]. The symmetry,
however, is brokenbyquantumcorrections. Indeed, the need for renormalization of the theory introduces a scaleΛQCD which
leads to the ‘‘running coupling’’ αs


Q 2

and asymptotic freedom [40,41] for large values of Q 2, Q 2

≫ Λ2
QCD, a mechanism

conventionally named ‘‘dimensional transmutation’’. But there are theoretical and phenomenological indications that at
large distances, or small values of Q 2, Q 2

≤ Λ2
QCD, where the string tension has formed, the QCD β-function vanishes and

scale invariance is in some sense restored (see for example Ref. [76] and references therein). Since we are interested in
a semiclassical approximation to nonperturbative QCD, analogous to the quantum mechanical wave equations in atomic
physics, it is natural to have a closer look at conformal quantum mechanics, a conformal field theory in one dimension.
De Alfaro, Fubini and Furlan [94] have obtained remarkable results which, extended to light-front holographic QCD
[74,95], give important insights into the QCD confining mechanism. It turns out that it is possible to introduce a scale in the
light-front Hamiltonian, by modifying the variable of dynamical evolution and nonetheless the underlying action remains
conformally invariant. Remarkably this procedure determines uniquely the form of the light-front effective potential and
correspondingly the modification of AdS space.

3.1. One-dimensional conformal field theory

Our aim is to incorporate in a one-dimensional quantum field theory— as an effective theory, the fundamental conformal
symmetry of the four-dimensional classical QCD Lagrangian in the limit of massless quarks. We will require that the
corresponding one-dimensional effective action, which encodes the chiral symmetry of QCD, remains conformally invariant.
De Alfaro et al. [94] investigated in detail the simplest scale-invariant model, one-dimensional field theory, namely

A[Q ] =
1
2


dt

Q̇ 2
−

g
Q 2


, (3.1)

where Q̇ ≡ dQ/dt . Since the action is dimensionless, the dimension of the field Q must be half the dimension of the ‘‘time’’
variable t , dim[Q ] = 1

2dim[t], and the constant g is dimensionless. The translation operator in t , the Hamiltonian, is

H =
1
2


Q̇ 2
+

g
Q 2


, (3.2)

where the field momentum operator is P = Q̇ , and therefore the equal time commutation relation is

[Q (t), Q̇ (t)] = i. (3.3)

The equation of motion for the field operator Q (t) is given by the usual quantum mechanical evolution

i [H,Q (t)] =
dQ (t)
dt

. (3.4)

In the Schrödinger picture with t-independent operators and t-dependent state vectors the evolution is given by

H|ψ(t)⟩ = i
d
dt
|ψ(t)⟩. (3.5)
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Using the representation of the field operators Q and P = Q̇ given by the substitution Q (0) → x, Q̇ (0) → −id/dx we
obtain the usual quantum mechanical evolution

i
∂

∂t
ψ(x, τ ) = H


x,−i

d
dx


ψ(x, t), (3.6)

with the Hamiltonian

H =
1
2


−

d2

dx2
+

g
x2


. (3.7)

It has the same structure as the LF Hamiltonian (2.45) with a vanishing light-front potential, as expected for a conformal
theory. The dimensionless constant g in the action (3.1) is now related to the Casimir operator of rotations in the light-front
wave equation (2.45).

However, as emphasized by dAFF, the absence of dimensional constants in (3.1) implies that the action A[Q ] is invariant
under a larger group of transformations, the full conformal group in one dimension, that is, under translations, dilatations,
and special conformal transformations. For one dimension these can be expressed by the transformations of the variable t

t ′ =
αt + β
γ t + δ

; αδ − βγ = 1 , (3.8)

and the corresponding field transformation

Q ′(t ′) =
Q (t)
γ t + δ

. (3.9)

As we show in Appendix C, the action A[Q ] (3.1) is indeed, up to a surface term, invariant under conformal transformations.
The constants of motion of the action are obtained by applying Noether’s theorem. The three conserved generators

corresponding to the invariance of the action (3.1) under the full conformal group in one dimension are (Appendix C):

1. Translations in the variable t:

H =
1
2


Q̇ 2
+

g
Q 2


, (3.10)

2. Dilatations:

D =
1
2


Q̇ 2
+

g
Q 2


t −

1
4


Q̇ Q + Q Q̇


, (3.11)

3. Special conformal transformations:

K =
1
2


Q̇ 2
+

g
Q 2


t2 −

1
2


Q̇ Q + Q Q̇


t +

1
2
Q 2, (3.12)

where we have taken the symmetrized product of the classical expression Q̇ Q because the operators have to be Hermitian.
Using the commutation relations (3.3) one can check that the operators H,D and K do indeed fulfill the algebra of the
generators of the one-dimensional conformal group Conf


R1

as it shown in Appendix C:

[H,D] = i H, [H, K ] = 2 i D, [K ,D] = −i K . (3.13)

The conformal group in one dimension is locally isomorphic to the group SO(2, 1), the Lorentz group in 2+1 dimensions.
In fact, by introducing the combinations

L0,−1 =
1
2


a H +

1
a
K

, L1,0 =

1
2


−a H +

1
a
K

, L1,−1 = D, (3.14)

one sees that the generators L0,−1, L1,0 and L1,−1 satisfy the commutation relations of the algebra of the generators of the
group SO(2, 1)

[L0,−1, L1,0] = i L1,−1, [L0,−1, L1,−1] = −i L1,0, [L1,0, L1,−1] = −i L0,−1, (3.15)

where L1,i, i = −1, 0 are the boosts in the space direction 1 and L0,−1 the rotation in the (−1, 0) plane (see Appendix A.2.3).
The rotation operator L0,−1 is compact and has thus a discrete spectrum with normalizable eigenfunctions. Since the
dimensions of H and K are different, the constant a has the dimension of t . In fact, the relation between the generators
of the conformal group and the generators of SO(2, 1) suggests that the scale a may play a fundamental role [94]. This
superposition of different invariants of motion, which implies the introduction of a scale, opens the possibility to construct
a confining semiclassical theory based on an underlying conformal symmetry.
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Generally one can construct a new ‘‘Hamiltonian’’ by any superposition of the three constants of motion

G = uH + v D+ w K . (3.16)

The new Hamiltonian acts on the state vector, but its evolution involves a new ‘‘time’’ variable. To determine the action of
the generator G (3.16) on the state vector, we consider the infinitesimal transformation properties of the generators H , D
and K given by (C.14) in Appendix C

e−i ϵ G|ψ(t)⟩ = |ψ(t)⟩ + ϵ(u+ vt + wt2)
d
dt
|ψ(t)⟩ + O(ϵ2). (3.17)

Thus, we recover the usual quantum mechanical evolution for the state vector

G|ψ(τ)⟩ = i
d
dτ
|ψ(τ)⟩, (3.18)

provided that we introduce a new time variable τ defined through [94]

dτ =
dt

u+ v t + w t2
. (3.19)

Likewise, we can find the evolution of the field Q (t) from the combined action of the generators H , D and K . Using the
Eqs. (C.15) in Appendix C we find

i [G,Q (t)] =
dQ (t)
dt


u+ vt + wt2


− Q (t)

1
2

d
dt


u+ vt + wt2


. (3.20)

and thus the Heisenberg equation of motion

i [G, q(τ )] =
dq(τ )
dτ

, (3.21)

where the rescaled field q(τ ) is given by

q(τ ) =
Q (t)

(u+ v t + w t2)1/2
. (3.22)

From (3.3) it follows that the new field also satisfies the usual quantization condition

[q(τ ), q̇(τ )] = i, (3.23)

where q̇ = dq/dτ .
If one expresses the action A (3.1) in terms of the transformed fields q(τ ), one finds

A[Q ] =
1
2


dτ

q̇2 −

g
q2
−

4uω − v2

4
q2

+ Asurface

= A[q] + Asurface, (3.24)

where Asurface is given through (C.17). Thus, up to a surface term, which does not modify the equations of motion, the action
(3.1) remains unchanged under the transformations (3.19) and (3.22). However, the Hamiltonian derived from A[q],

G =
1
2


q̇2 +

g
q2
+

4 uw − v2

4
q2

, (3.25)

contains the factor 4uw − v2 which breaks the scale invariance. It is a compact operator for 4uw − v2 > 0. It is important
to notice that the appearance of the generator of special conformal transformations K in (3.16) is essential for confinement.
This stresses the importance of the total derivative modifying the Lagrangian under the special conformal transformation
(see (C.3)).

We use the Schrödinger picture from the representation of q and p = q̇: q→ y, q̇→−id/dy,

i
∂

∂τ
ψ(y, τ ) = G


y,−i

d
dy


ψ(y, τ ), (3.26)

with the corresponding Hamiltonian

G =
1
2


−

d2

dy2
+

g
y2
+

4uω − v2

4
y2

, (3.27)

in the Schrödinger representation [94]. For g ≥ −1/4 and 4 uw − v2 > 0 the operator (3.27) has a discrete spectrum. It
is remarkable that it is indeed possible to construct a compact operator starting from the conformal action (3.1), without
destroying the scale invariance of the action itself.
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We go now back to the original field operator Q (t) in (3.1). From (3.22) one obtains the relations

q(0) =
Q (0)
√
u
, q̇(0) =

√
u Q̇ (0)−

v

2
√
u
Q (0), (3.28)

and thus from (3.25) we obtain

G(Q , Q̇ ) =
1
2
u

Q̇ 2
+

g
Q 2


−

1
4
v

Q Q̇ + Q̇ Q


+

1
2
wQ 2

= uH + vD+ wK , (3.29)

at t = 0. We thus recover the evolution operator (3.16) which describes, like (3.25), the evolution in the variable τ (3.18),
but expressed in terms of the original field Q . The change in the time variable (3.19), required by the conformal invariance
of the action, implies the change of the original Hamiltonian (3.2)–(3.29).

With the realization of the operator Q (0) in the state space with wave functionsψ(x, τ ) and the substitution Q (0)→ x
and Q̇ (0)→−i d

dx we obtain

i
∂

∂τ
ψ(x, τ ) = G


x,−i

d
dx


ψ(x, τ ), (3.30)

and from (3.29) the Hamiltonian

G =
1
2
u

−

d2

dx2
+

g
x2


+

i
4
v


x

d
dx
+

d
dx

x

+

1
2
wx2. (3.31)

The field q(τ ) was only introduced as an intermediate step in order to recover the evolution equation (3.21) and the
Hamiltonian (3.25) from the action (3.1) with variational methods. This shows that the essential point for confinement and
the emergence of a mass gap is indeed the change from t to τ as evolution parameter.

3.2. Connection to light-front dynamics

We can now apply the group theoretical results from the conformal algebra to the front-form ultra-relativistic bound-
state wave equation obtained in Section 2. Comparing the Hamiltonian (3.31) with the light-front wave equation (2.45)
and identifying the variable x with the light-front invariant variable ζ , we have to choose u = 2, v = 0 and relate the
dimensionless constant g to the LF orbital angularmomentum, g = L2−1/4, in order to reproduce the light-front kinematics.
Furthermorew = 2λ2 fixes the confining light-front potential to a quadratic λ2 ζ 2 dependence.

For the Hamiltonian G (3.31) mapped to the light-front Hamiltonian in (2.45), i.e., u = 2, v = 0 andw = 2λ2 one has

G = −
d2

dx2
+

g
x2
+ λ2x2

= 2

H + λ2K


, (3.32)

and the relation with the algebra of the group SO(2, 1) becomes particularly compelling. From the relations (3.14) follows
the connection of the free Hamiltonian H , (3.2) with the group generators of SO(2, 1)

L0,−1 − L1,0 = aH. (3.33)

The Hamiltonian (3.32) can be expressed as a generalization of (3.33) by replacing L0,−1 − L1,0 by L0,−1 − χL1,0. This
generalization yields indeed

L0,−1 − χL1,0 =
1
4
a(1+ χ)G, (3.34)

with

λ =
1
a2

1− χ
1+ χ

, (3.35)

in (3.32). Thus the confining LF Hamiltonian

HLF = −
d2

dζ 2
+

g
ζ 2
+ λζ 2. (3.36)

For χ = 1 we recover the free case (3.33), whereas for−1 < χ < 1 we obtain a confining LF potential. For χ outside this
region, the Hamiltonian is not bounded from below.

This consideration based on the isomorphism of the conformal group in one dimension with the group SO(2, 1) makes
the appearance of a dimensionful constant in the Hamiltonian (3.36), derived from a conformally invariant action, less
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astonishing. In fact, as mentioned below Eqs. (3.14) and (3.15), one has to introduce the dimensionful constant a ≠ 0 in
order to relate the generators of the conformal group with those of the group SO(2, 1). This constant a sets the scale for the
confinement strength λ2 but does not determine its magnitude, as can be seen from (3.35). This value depends on a as well
as on the relative weight of the two generators L0,−1 and L1,0 in the construction of the Hamiltonian (3.34).

Since the invariant light-front Hamiltonian is the momentum square operator, HLF = P2
= P+P− − P2

⊥
with the

LF evolution operator P− = ∂
∂x+ , it follows from the identification of G (3.31) with the LF wave equation (2.45) and the

Hamiltonian evolution equation (2.6), that in the LF frame P⊥ = 0 the evolution parameter τ is proportional to the LF time
x+ = x0+ x3, namely τ = x+/P+, where P+ = P0

+ P3 is the hadron longitudinal momentum. Therefore, the dimension of
τ is that of an inverse mass squared, characteristic of the fully relativistic treatment.

In the original paper of de Alfaro et al. [94] and subsequent investigations [172,173], the aim was not so much to obtain
a confining model, but rather to investigate conformal field theories. The use of the compact operator L0,−1, constructed
inside the algebra of generators of the conformal group, served mainly to obtain a normalizable vacuum state in order to
make contactwith quantum fields operating in a Fock space. In this sense, the parameters u, v andw played only an auxiliary
role. In the context of the present review, one is however primarily interested in the dynamical evolution in terms of the
new variable τ , which turns out to be proportional to the light front time x+ = x0+x3, therefore the dimensioned parameter
w plays a physical role12; namely, that of setting the hadronic scale in the LF potential.

In their discussion of the evolution operator G de Alfaro et al. mention a critical point, namely that ‘‘the time evolution is
quite different from a stationary one’’. By this statement they refer to the fact that the variable τ is related to the variable t
by

τ =
1
√
2w

arctan

t

w

2


, (3.37)

a quantity which is of finite range. Thus τ has the natural interpretation in a meson as the difference of light-front
times between events involving the quark and antiquark, and in principle could be measured in double parton-scattering
processes [95]. Thus the finite range of τ corresponds to the finite size of hadrons due to confinement.

To sumup, the dAFFmechanism for introducing a scalemakes use of the algebraic structure of one dimensional conformal
field theory. A newHamiltonianwith amass scale

√
λ is constructed from the generators of the conformal group and its form

is therefore fixed uniquely: it is, like the original Hamiltonianwith unbroken dilatation symmetry, a constant ofmotion [94].
The essential point of this procedure is the introduction of a new evolution parameter τ . The theory defined in terms of the
newevolutionHamiltonianGhas awell-defined vacuum, but the dAFF procedure breaks Poincaré and scale invariance [172].
The symmetry breaking in this procedure is reminiscent of spontaneous symmetry breaking, however, this is not the case
since, in contrast with current algebra, there are no degenerate vacua [172] (the vacuum state is chosen ab initio) and thus a
massless scalar 0++ state is not required. The dAFF mechanism is also different from usual explicit breaking by just adding
a mass term to the Lagrangian [174].

3.3. Conformal quantum mechanics, SO(2, 1) and AdS2

The local isomorphism between the conformal group in one-dimension and the group SO(2, 1) is fundamental for
introducing the scale for confinement in the light-front Hamiltonian. In fact, the conformal group in one dimension Conf


R1


is locally isomorphic not only to the group SO(2, 1), but also to the isometries of AdS2.13 Using Table A.1, one can see explicitly
the equivalence of the generators of AdS2 isometries at the AdS2 boundary, z = 0, with the representation of the conformal
generators H , D and K in conformal quantum mechanics given by (C.14) in Appendix C. In the limit z → 0 we have:

H =
iR
a
∂

∂t
, (3.38)

D = i

t
∂

∂t
+ z

∂

∂z


→ it

∂

∂t
, (3.39)

K =
ia
R


t2 + z2

 ∂
∂t
+ 2zt

∂

∂z


→

ia
R

t2
∂

∂t
. (3.40)

In the equation above a is the dimensionful constant required to establish the isomorphism between the generators of the
conformal group Conf (R1) and the generators of SO(2, 1) given by (3.14), and R is the AdS2 radius; a priori two independent
scales. Comparing with Eq. (C.14) we find that the generators are indeed identical, if the scales are also identical. Thus
H = i∂t , D = it∂t and H = it2∂t provided that a = R.

In the next Section, we shall derive bound-state equations for hadronic states from classical gravity in AdS space, where
the confinement arises from distortion of this higher dimensional space. Wewill see there that themethod discussed in this
Section fixes uniquely the modification of AdS space and not only the form of the light-front confinement potential.

12 This possibility was also shortly discussed in general terms by dAFF [94].
13 The isomorphism of the algebra of generators of the group SO(2, 1) and the isometries of AdS2 space is the basis of the AdS2/CFT1 correspondence [173].
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4. Higher-spin wave equations and AdS kinematics and dynamics

In this Section we derive hadronic bound-state wave equations with arbitrary spin in a higher-dimensional space
asymptotic to anti-de Sitter space.We give first an introductory derivation of thewave equations for scalar and vector fields.
We then extend our treatment to higher spin using AdS tensors or generalized Rarita–Schwinger spinor fields in AdS for all
integer and half-integer spins respectively. Our procedure takes advantage of the Lorentz frame (the local inertial frame).
Further simplification is brought by the fact that physical hadrons form tensor representations in 3+ 1 dimensions. In the
present approach, the subsidiary conditions required to eliminate the lower-spin states from the symmetric tensors follow
from the higher-dimensional Euler–Lagrange equations of motion and are not imposed. It turns out that the AdS geometry
fixes the kinematical features of the theory, whereas the breaking of maximal symmetry from additional deformations of
AdS space determines the dynamical features, including confinement. It will be shown that a strict separation of the two is
essential in light-front holographic QCD.14

We briefly review in Appendix A the relevant elements of Riemannian geometry useful in the discussion of anti-de Sitter
space and applications of the gauge/gravity correspondence, and in Appendix D we discuss technical details useful for the
derivation of integer and half-integer wave equations in holographic QCD.

4.1. Scalar and vector fields

The derivation of the equation of motion for a scalar field in AdS is a particularly simple example. As mentioned in the
introduction, in order to describe hadronic states using holographic methods, one has to break the maximal symmetry of
the AdS metric, which is done by introducing a scale via a dilaton profile depending explicitly on the holographic variable
z. For the sake of generality we mostly work in a (d+ 1)-dimensional curved space, and for all direct physical applications
we take d = 4. In Section 4.2.1 we shall also consider the breaking of maximal symmetry by warping the AdS metric.

The coordinates of AdSd+1 space are the d-dimensional Minkowski coordinates xµ and the holographic variable z. The
combined coordinates are labeled xM =


xµ, z = xd


with M,N = 0, . . . , d the indices of the higher dimensional d + 1

curved space, and µ, ν = 0, 1, . . . , d− 1 the Minkowski flat space–time indices. In Poincaré coordinates (Appendix A.2.2),
the conformal AdS metric is

ds2 = gMNdxMdxN

=
R2

z2

ηµνdxµdxν − dz2


. (4.1)

Here gMN is the full space metric tensor (A.57) and ηµν = diag[1,−1 · · · − 1] the metric tensor of Minkowski space. For a
scalar field in AdS spaceΦ(x0, . . . , xd−1, z) the invariant action (up to bilinear terms) is

S =
1
2


ddx dz

√
g eϕ(z)


gMN∂MΦ∂NΦ − µ

2Φ2 , (4.2)

where g =
 R
z

2d+2
is the modulus of the determinant of the metric tensor gMN . At this point, the AdSd+1 mass µ in (4.2)

is not a physical observable and it is a priori an arbitrary parameter. The integration measure ddx dz
√
g is AdS invariant,

and the action (4.2) is written in terms of simple derivatives, since the derivative of a scalar field transforms as a covariant
vector field. For ϕ ≡ 0 the action is also AdS invariant, but the dilaton background ϕ(z) effectively breaks the maximal
symmetry of AdS (see A.2). It is a function of the holographic variable z which vanishes in the conformal limit z → 0. As
we will show below, it is crucial that the dilaton profile is only a function of the variable z. This allows the separation of
the overall movement of the hadron from its internal dynamics. In AdS5, this unique z-dependence of the dilaton allows
the description of the bound-state dynamics in terms of a one-dimensional wave equation. It also enable us to establish
a map to the semiclassical one-dimensional approximation to light-front QCD given by the frame-independent light-front
Schrödinger equation obtained in Section 2.

The equations of motion for the fieldΦ(x, z) are obtained from the variational principle

δS
δΦ
=

1
√
g eϕ

∂M


√
g eϕgMN ∂L

∂(∂NΦ)


−
∂L

∂Φ
= 0, (4.3)

from which one obtains the wave equation for the scalar field
∂µ∂

µ
−

zd−1

eϕ(z)
∂z


eϕ(z)

zd−1
∂z


+
(µR)2

z2


Φ = 0, (4.4)

where ∂µ∂µ ≡ ηµν∂µ∂ν .

14 A more detailed discussion of the procedures discussed here is given in Ref. [91].
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A free hadronic state in holographic QCD is described by a plane wave in physical space–time and a z-dependent profile
function:

Φ(x, z) = eiP·xΦJ=0(z), (4.5)

with invariant hadron mass PµPµ ≡ ηµνPµPν = M2. Inserting (4.5) into the wave equation (4.4) we obtain the bound-state
eigenvalue equation

−
zd−1

eϕ(z)
∂z


eϕ(z)

zd−1
∂z


+
(µR)2

z2


ΦJ=0 = M2ΦJ=0 (4.6)

for spin J = 0 hadronic states.
As a further example, we also derive the equations of motion for a vector field ΦM(x, z). We start with the generalized

Proca action in AdSd+1 space

S =


ddx dz
√
g eϕ(z)


1
4
gMRgNSFMNFRS −

1
2
µ2gMNΦMΦN


, (4.7)

where FMN = ∂MΦN − ∂NΦM . The antisymmetric tensor FMN is covariant, since the parallel transporters in the covariant
derivatives (A.14) cancel. Variation of the action leads to the equation of motion

1
√
g eϕ

∂M
√

g eϕgMRgNSFRS

+ µ2gNRΦR = 0, (4.8)

together with the supplementary condition

∂M
√

geϕgMNΦN

= 0. (4.9)

One obtains from (4.8) and the condition (4.9), the system of coupled differential equations15
∂µ∂

µ
−

zd−1

eϕ(z)
∂z


eϕ(z)

zd−1
∂z


− ∂2z ϕ +

(µR)2

z2
−

d− 1
z2


Φz = 0, (4.10)

∂µ∂
µ
−

zd−3

eϕ(z)
∂z


eϕ(z)

zd−3
∂z


+
(µR)2

z2


Φν = −

2
z
∂νΦz .

In the conformal limit ϕ→ 0we recover the results given in Ref. [175]. In the gauge defined byΦz = 0, the equations (4.10)
decouple and we find the wave equation16


∂µ∂

µ
−

zd−3

eϕ(z)
∂z


eϕ(z)

zd−3
∂z


+


µR
z

2

Φν = 0. (4.11)

A physical spin-1 hadron has physical polarization components ϵν(P) along the physical coordinates. We thus write

Φν(x, z) = eiP·xΦJ=1(z)ϵν(P), (4.12)

with invariant mass PµPµ = M2. Substituting (4.12) in (4.11) we find the eigenvalue equation
−

zd−3

eϕ(z)
∂z


eϕ(z)

zd−3
∂z


+


µR
z

2

ΦJ=1 = M2ΦJ=1, (4.13)

describing a spin-1 hadronic bound-state.

15 Φz denotes the dth coordinate,Φz ≡ Φd .
16 Technically we impose the condition Φz = 0 since physical hadrons have no polarization in the z direction. If µ = 0 in the Proca action (4.7) this can
be viewed as a gauge condition.
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4.2. Arbitrary integer spin

The description of higher-spin fields in pure AdS space is a complex, but relatively well known problem [83–90].17
The treatment of higher-spin states in the ‘‘bottom-up’’ approach to holographic QCD is an important touchstone for this
procedure [91], but it requires a simplified and well defined framework to extend the computations to warped spaces18
asymptotic to AdS. For example, the approach of Ref. [74] relies on rescaling the solution of a scalar field Φ(z), Φ(z) →
ΦJ(z) =

 z
R

J
Φ(z), thus introducing a spin-dependent factor [74,176]. The approach of Karch, Katz, Son and Stephanov

(KKSS) [61] starts from a gauge-invariant action in a warped AdS space, and uses the gauge invariance of the model to
construct explicitly an effective action in terms of higher-spin fields with only the physical degrees of freedom. However,
this approach is not applicable to pseudoscalar particles and their trajectories, and their angular excitations do not lead to
a relation with light-front quantized QCD, which is the main subject of this report. The treatment described in this report
relies on the approach of Ref. [91], which starts from a manifestly covariant action for higher spin states in a warped space
asymptotic to AdS.

Fields with integer spin J are represented by a totally symmetric rank-J tensor fieldΦN1...NJ . Such a symmetric tensor also
contains lower spins, which have to be eliminated by imposing subsidiary conditions, as will be discussed below. The action
for a spin-J field in AdSd+1 space in the presence of a dilaton background field ϕ(z) is given by

S =


ddx dz
√
g eϕ(z) gN1N ′1 · · · gNJN ′J


gMM ′DMΦ

∗

N1...NJ
DM ′ΦN ′1...N

′
J
− µ2Φ∗N1...NJ

ΦN ′1...N
′
J
+ · · ·


, (4.14)

where
√
g = (R/z)d+1 and DM is the covariant derivative which includes the affine connection (Appendix A.1.1) and µ is

the AdS mass. The omitted terms in the action indicated by · · · , refer to additional terms with different contractions of the
indices.

Inserting the covariant derivatives in the action leads to a rather complicated expression. Furthermore the additional
terms from different contractions in (4.14) bring an enormous complexity. A considerable simplification in (4.14) is due to
the fact that one has only to consider the subspace of tensors Φν1ν2···νJ which has no indices along the z-direction. In fact, a
physical hadron has polarization indices along the 3 + 1 physical coordinates, Φν1ν2···νJ , all other components must vanish
identically

ΦzN2···NJ = 0. (4.15)

As will be seen later, the constraints imposed by the mapping of the AdS equations of motion to the LF Hamiltonian in
physical space–time for the hadronic bound-state system at fixed LF time, will give further insights in the description of
higher spin states, since it allows an explicit distinction between kinematical and dynamical aspects.

As a practical procedure, one starts from an effective action, which includes a z-dependent effective AdSmassµeff (z) [91]

Seff =


ddx dz
√
g eϕ(z) gN1N ′1 · · · gNJN ′J


gMM ′DMΦ

∗

N1...NJ
DM ′ΦN ′1...N

′
J
− µ2

eff (z)Φ
∗

N1...NJ
ΦN ′1...N

′
J


. (4.16)

Again, for ϕ ≡ 0 and a constant mass term µ, the action is AdS invariant. The function µeff (z), which can absorb the
contribution fromdifferent contractions in (4.14), is a prioriunknown. But, as shall be shownbelow, the additional symmetry
breaking due to the z-dependence of the effective AdS mass allows a clear separation of kinematical and dynamical effects.
In fact, its z-dependence can be determined either by the precise mapping of AdS to light-front physics, or by eliminating
interference terms between kinematical and dynamical effects [91]. The agreement between the two methods shows how
the light-front mapping and the explicit separation of kinematical and dynamical effects are intertwined.

The equations of motion are obtained from the Euler–Lagrange equations in the subspace defined by (4.15)

δSeff
δΦ∗ν1ν2···νJ

= 0, (4.17)

and

δSeff
δΦ∗zN2···NJ

= 0. (4.18)

The wave equations for hadronic modes follow from the Euler–Lagrange equation (4.17), whereas (4.18) will yield the
kinematical constraints required to eliminate the lower-spin states.

The appearance of covariant derivatives in the action for higher spin fields, (4.14) and (4.16), leads to multiple sums and
rather complicated expressions. As shown in [91] (see also Appendix D), these expressions simplify considerably if one does
not use generally covariant tensors but goes intermediately to a local inertial framewith Lorentz (tangent) indices. The final

17 The light-front approach can be used advantageously to describe arbitrary spin fields in AdS. See Refs. [86,89].
18 With warped spaces we denote curved spaces which deviate from AdS spaces either by a dilaton term or by a modified metric.



S.J. Brodsky et al. / Physics Reports ( ) – 27

expression for the equation of motion for AdS fields with all polarizations in the physical directions is derived from (4.17)
and one obtains (Appendix D.1.1)

∂µ∂
µ
−

zd−1−2J

eϕ(z)
∂z


eϕ(z)

zd−1−2J
∂z


+
(mR)2

z2


Φν1...νJ = 0, (4.19)

with

(mR)2 = (µeff (z)R)2 − Jz ϕ′(z)+ J(d− J + 1), (4.20)

which agrees with the result found in Refs. [74,176] by rescaling the wave equation for a scalar field. As will be shown in
Section 5 mapping to the light front implies that the quantitym is independent of the variable z (see Eq. (5.4)).

Terms in the action which are linear in tensor fields, with one or more indices along the holographic direction, ΦzN2···NJ
(see Appendix D), yield from (4.18) the results [91]

ηµν∂µΦνν2···νJ = 0, ηµνΦµνν3···νJ = 0. (4.21)

These are just the kinematical constraints required to eliminate the stateswith spin lower than J from the symmetric tensors
Φν1ν2···νJ .

The conditions (4.21) are independent of the conformal symmetry breaking terms ϕ(z) and µ(z) in the effective action
(4.16); they are a consequence of the purely kinematical aspects encoded in the AdS metric. It is remarkable that, although
one has started in AdS space with unconstrained symmetric spinors, the non-trivial affine connection of AdS geometry gives
precisely the subsidiary conditions needed to eliminate the lower spin states J − 1, J − 2, . . . from the fully symmetric AdS
tensor fieldΦν1...νJ .

In order tomake contact with the LF Hamiltonian, one considers hadronic states withmomentum P and a z-independent
spinor ϵν1···νJ (P). In holographic QCD such a state is described by a z-dependentwave function and a planewave propagating
in physical space–time representing a free hadron

Φν1···νJ (x, z) = eiP·xΦJ(z) ϵν1···νJ (P), (4.22)

with invariant hadron mass PµPµ ≡ ηµνPµPν = M2. Inserting (4.22) into the wave equation (4.19) one obtains the bound-
state eigenvalue equation

−
zd−1−2J

eϕ(z)
∂z


eϕ(z)

zd−1−2J
∂z


+
(mR)2

z2


ΦJ(z) = M2ΦJ(z), (4.23)

where the normalizable solution of (4.23) is normalized according to

Rd−1−2J

∞

0

dz
zd−1−2J

eϕ(z)Φ2
J (z) = 1. (4.24)

One also recovers from (4.21) and (4.22) the usual kinematical constraints

ηµνPµ ϵνν2···νJ = 0, ηµν ϵµνν3···νJ = 0. (4.25)

One sees that the wave equation (4.4) and (4.11) for the scalar and vector field, respectively, are special cases of the
equation for general spin (4.19) with the mass (4.20). In the case of a scalar field, the covariant derivative is the usual partial
derivative, and there are no additional contractions in the action; thus µeff = µ = m is a constant. For a spin-1 wave
equation, there is one additional term from the antisymmetric contraction, and the contribution from the parallel transport
cancels out. It is also simple in this case to determine the effective mass µeff in (4.16) by the comparison with the full
expression for the action of a vector field which includes the antisymmetric contraction (see Eq. (4.11)). Thus for spin-1, one
has µ = m and (µeff (z)R)2 = (µR)2 + z ϕ′(z)− d.

In general, the AdS mass m in the wave equation (4.19) or (4.23) is determined from the mapping to the light-front
Hamiltonian (Section 5). Since m maps to the Casimir operator of the orbital angular momentum in the light front (a
kinematical quantity) it follows that m should be a constant. Consequently, the z-dependence of the effective mass (4.20)
in the AdS action (4.16) is determined a posteriori by kinematical constraints in the light front, namely by the requirement
that the massm in (4.19) or (4.23) must be a constant.

The relation (4.20) can also be derived independently a priori, if one demands that the kinematical effects from AdS and
the dynamical effects due to the breaking of maximal symmetry are clearly separated in the equations of motion [91]. In
general, the presence of a dilaton in the effective action (4.16) and the quadratic appearance of covariant derivatives lead to
a mixture of kinematical and dynamical effects. However, by choosing the appropriate z dependence of the effective mass
µeff(z) the interference terms cancel. This requirement determines µeff (z) completely and one recovers (4.20).

In the case where the maximal symmetry of AdS is not broken by a dilaton, ϕ(z) = 0, no z-dependent AdS mass is
necessary, and one can start with a constant mass term in (4.16). This is the case in the hard-wall model, where dynamical
effects are introduced by the boundary conditions and indeed no mixing between kinematical and dynamical aspects does
occur.
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Fig. 4.1. g̃00(z)/R for a positive dilaton profile ϕ̃(z) = λz2/3.

4.2.1. Confining interaction and warped metrics
As an alternative to introducing a dilaton term into the action (4.16) in order to break the maximal symmetry of AdS

space, the approach presented in this section allows one to equivalently modify the AdS metric by a J-independent warp
factor

g̃MN = e2ϕ̃(z)gMN , (4.26)

where gMN is the metric tensor of AdS in Poincaré coordinates (Appendix A.2.2). The effective action is then given by

S̃eff =


ddx dz

g̃ g̃N1N ′1 · · · g̃NJN ′J


g̃MM ′DMΦ

∗

N1...NJ
DM ′ΦN ′1...N

′
J
− µ̃2

eff (z)Φ
∗

N1...NJ
ΦN ′1...N

′
J


, (4.27)

where

g̃ = (R eϕ̃(z)/z)d+1 and the effective mass µ̃eff (z) is again an a priori unknown function.

The use of warped metrics is useful for visualizing the overall confinement behavior by following an object in warped
AdS space as it falls to the infrared region by the effects of gravity. The gravitational potential energy for an object of mass
M in general relativity is given in terms of the time–time component of the metric tensor g00

V = Mc2

g̃00 = Mc2R

eϕ̃(z)

z
; (4.28)

thus, onemay expect a potential that has a minimum at the hadronic scale z0 ∼ 1/ΛQCD and grows fast for larger values of z
to confine effectively a particle in a hadron within distances z ∼ z0. In fact, according to Sonnenschein [177], a background
dual to a confining theory should satisfy the conditions for the metric component g00

∂z(g00)|z=z0 = 0, g00|z=z0 ≠ 0, (4.29)

to display the Wilson loop-area law for confinement of strings.
The action with a warped metric (4.27) and the effective action with a dilaton field (4.16) lead to identical results for

the equations of motion for arbitrary spin (4.23), provided that one identifies the metric warp factor ϕ̃(z) in (4.26) and the
effective mass µ̃eff (z)with the dilaton profile ϕ(z) and the massm in (4.23) according to

ϕ̃(z) =
ϕ(z)
d− 1

, (4.30)


µ̃eff (z)R

2
=


m2
+ Jz

ϕ̃′(z)
d− 1

− Jz2Ω̃2(z)− J(d− J)

e−2ϕ̃(z), (4.31)

where Ω̃(z) is thewarp factor of the affine connection for themetric (4.26), Ω̃(z) = 1/z−∂z ϕ̃ (for more details see Ref. [91]
and Appendix D.1.2). As an example, we show in Fig. 4.1 the metric component g̃00/R for the positive profile ϕ̃(z) = λ z2/3.
The corresponding potential (4.28) satisfies Eq. (4.29) which leads to the Wilson loop-area condition for confinement. This
type of solution is also expected from simple arguments based on stability considerations, since the potential energy should
display a deep minimum as a function of the holographic variable z [178].

4.2.2. Higher spin in a gauge invariant AdS model
In their seminal paper [61] Karch et al., introduced the soft wall model for the treatment of higher spin states in AdS/QCD.

They also started from the covariant action (4.14), in d = 4 dimensions, but in addition demanded that it is invariant under
gauge transformations in AdS5

ΦN1···NJ → ΦN1···NJ + δΦN1···NJ , (4.32)
δΦN1···NJ = DN1 ξN2···NJ + DN2 ξN1···NJ + · · · ,
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where ξN2···NJ is a symmetric tensor of rank J − 1. In order to achieve gauge invariance, the genuine AdS mass µ in (4.14)
must be z-dependent in order to cancel terms in the gauge-transformed action, arising from the affine connection in the
covariant derivatives DN .

The assumed gauge invariance of the equations of motion allows one to simplify the action (4.14) considerably: one first
chooses a gauge in whichΦz··· = 0. This choice does not fix the gauge uniquely, but there still exist nontrivial tensors ξ̃N2···NJ
which leave this condition invariant, i.e., for which

δΦz,µ2···µJ = Dz ξ̃N2···NJ + · · · = 0. (4.33)

One can show that invariance of the action under these gauge transformations demands for the rescaled fields

Φ̃µ1···µJ =

 z
R

2J−2
Φµ1···µJ , (4.34)

and the following form of the action [61]

SKKSS =
1
2


d4x dz eλz

2

R
z

2J−1

ηNN
′

ηµ1µ
′
1 · · · η

µJµ
′
J ∂NΦ̃µ1···µJ ∂N ′Φ̃µ′1···µ

′
J
. (4.35)

Applying the variational principle (4.17) and introducing z-independent spinors, such as the spinors in (4.22), one obtains
the KKSS equation of motion

−
z2J−1

eλz2
∂z


eλz

2

z2J−1
Φ̃J(z)


= M2Φ̃J(z). (4.36)

The comparison of (4.36) with (4.23) for ϕ(z) = λz2 and d = 4 shows that the structure is the same, but m = 0 and
the J dependence of the exponents of z are completely different. The phenomenological consequences of the differences,
especially concerning the sign of λ will be discussed in the next Section. In contrast with the method presented in
Section 4.2.1, the dilaton cannot be absorbed into an additional warp factor in the AdS metric in the treatment based on
gauge invariance [61] discussed in this section.

4.3. Arbitrary half-integer spin

Fieldswith half-integer spin, J = T+ 1
2 , are conveniently described by Rarita–Schwinger spinors [179],


ΨN1···NT


α
, objects

which transform as symmetric tensors of rank T with indices N1 . . .NT , and as Dirac spinors with index α. The Lagrangian
of fields with arbitrary half-integer spin in a higher-dimensional space is in general more complicated than the integer-spin
case. General covariance allows for a superposition of terms of the form

Ψ̄N1...NTΓ
[N1...NTMN ′1...N

′
T ]DMΨN ′1 ...N

′
T
,

and mass terms

µΨ̄N1...NTΓ
[N1...NTN ′1...N

′
T ]ΨN1...N ′T

,

where the tensors Γ [··· ] are antisymmetric products of Dirac matrices and a sum over spinor indices is understood. The
maximumnumber of independent Diracmatrices depends on the dimensionality of space. As a specific example, we present
in Appendix D.2.2 the case of spin 3

2 .
In flat space–time, the equations describing a free particle with spin T + 1

2 are [179]
iγ µ∂µ −M


Ψν1···νT = 0, γ νΨνν2···νT = 0. (4.37)

Because of the symmetry of the tensor indices of the spinorΨν1···νT and the anti-commutation relation γ µγ ν+γ νγ µ = 2ηµν ,
the relations in (4.37) imply the subsidiary conditions of the integral spin theory for the T tensor indices (4.21)

ηµν∂µΨνν2···νT = 0, ηµνΨµνν3···νT = 0. (4.38)

The actual form of the Dirac equation for Rarita–Schwinger spinors (4.37) in flat space–time motivates us to start with
a simple effective action for arbitrary half-integer spin in AdS space which, in the absence of dynamical terms, preserves
maximal symmetry of AdS in order to describe the correct kinematics and constraints in physical space–time.

We start with the effective action in AdSd+1

SFeff =
1
2


ddx dz

√
g eϕ(z)gN1 N ′1 · · · gNT N ′T


Ψ̄N1···NT


iΓ A eMA DM − µ− ρ(z)


ΨN ′1···N

′
T
+ h.c.


, (4.39)

including a dilaton term ϕ(z) and an effective interaction ρ(z) (see also Refs. [180,181]). In (4.39)
√
g =

 R
z

d+1
and eMA is

the inverse vielbein, eMA =
 z
R


δMA . The covariant derivative DM of a Rarita–Schwinger spinor includes the affine connection
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and the spin connection (Appendix A.1.3) and the tangent-space Dirac matrices obey the usual anticommutation relation
Γ A,Γ B


= 2ηAB. For ϕ(z) = ρ(z) = 0 the effective action (4.39) preserves the maximal symmetry of AdS space. The

reason why one has to introduce an additional symmetry breaking term ρ(z) in (4.39) will become clear soon. Similarly to
the integer-spin case, where the subsidiary conditions follow from the simple AdS effective action (4.16), it will be shown
below that the action (4.39) indeed implies that the Rarita–Schwinger condition given in (4.37), and thus the subsidiary
conditions (4.38), follow from the non-trivial kinematics of the higher dimensional gravity theory [91].

Since only physical polarizations orthogonal to the holographic dimension are relevant for fields corresponding to hadron
bound states we put

ΨzN2...NT = 0. (4.40)

The equations of motion are derived in a similar way from the effective action (4.39) as in the case of integer spin [91].
Since the covariant derivatives occur only linearly, the expressions are considerably simpler [91]. The equations of motion
follow from the variation of the effective action

δSFeff
δΨ̄ν1ν2···νJ

= 0, (4.41)

and

δSFeff
δΨ̄zN2···NJ

= 0. (4.42)

One then obtains the AdS Dirac-like wave equation (Appendix D)
i

zηMNΓM∂N +

d− zϕ′ − 2T
2

Γz


− µR− R ρ(z)


Ψν1...νT = 0, (4.43)

and the Rarita–Schwinger condition in physical space–time (4.37)

γ νΨνν2 ... νT = 0. (4.44)

Although the dilaton term ϕ′(z) shows up in the equation of motion (4.43), it actually does not lead to dynamical effects,
since it can be absorbed by rescaling the Rarita–Schwinger spinor according to Ψν1...νT → eϕ(z)/2Ψν1...νT . Thus, from (4.43)
one obtains

i

zηMNΓM∂N +

d− 2T
2

Γz


− µR− R ρ(z)


Ψν1...νT = 0. (4.45)

Therefore, for fermion fields in AdS a dilaton term has no dynamical effects on the spectrum since it can be rotated
away [182]. This is a consequence of the linear covariant derivatives in the fermion action, which also prevents a mixing
between dynamical and kinematical effects, and thus, in contrast to the effective action for integer spin fields (4.16), the
AdS mass µ in Eq. (4.39) is constant. As a result, one must introduce an effective confining interaction ρ(z) in the fermion
action to break conformal symmetry and generate a baryon spectrum [138,180]. This interaction can be constrained by the
condition that the ‘square’ of the Dirac equation leads to a potential whichmatches the dilaton-induced potential for integer
spin.

The Rarita–Schwinger condition (4.44) in flat four-dimensional space also entails, with the extended Dirac equation
(4.45), the subsidiary conditions for the tensor indices required to eliminate the lower spins [91]. The results from the
effective action (4.39) for spin- 32 are in agreement with the results from Refs. [183,184] (Appendix D.2.2).
Warped metric

Identical results for the equations of motion for arbitrary half-integer spin are obtained if one starts with the modified
metric (4.26). One finds that the effective fermion actionwith a dilaton field (4.39) is equivalent to the corresponding fermion
action with modified AdS metrics, provided that one identifies the dilaton profile according to ϕ̃(z) = ϕ(z)/d and the
effective mass µ̃(z)with the mass µ in (4.39) according to µ̃(z) = e−ϕ̃(z)µ. Thus, one cannot introduce confinement in the
effective AdS action for fermions either by a dilaton profile or by additional warping of the AdS metrics in the infrared. In
both cases one requires an additional effective interaction, as introduced in the effective action (4.39), with ρ(z) ≠ 0.

5. Light-front holographic mapping and hadronic spectrum

The study of the internal structure and excitation spectrum of mesons and baryons is one of the most challenging
aspects of hadronic physics. In fact, an important goal of computations in lattice QCD is the reliable extraction of the excited
hadronmass spectrum. Lattice calculations of the ground state of hadronmasses agree well with experimental values [185].
However, the excitation spectrum of the light hadrons, and particularly nucleons, represent a formidable challenge to lattice
QCD due to the enormous computational complexity required for the extraction of meaningful data beyond the leading
ground state configuration [186]. In addition to the presence of continuous thresholds, a large basis of interpolating operators
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is required since excited hadronic states are classified according to irreducible representations of the lattice, not the total
angularmomentum. Furthermore, it is not simple to distinguish the different radial excitations by following the propagation
ofmodes in the euclidean lattice because of the identical short distance behavior of radial states. In contrast, the semiclassical
light-front holographic wave equation (2.45) describes relativistic bound states at equal light-front time with an analytic
simplicity comparable to the Schrödinger equation of atomic physics at equal instant time, where the excitation spectrum
follows from the solution of an eigenvalue equation. Also, it is simple to identify the radial excitations in the spectrum as
they corresponds to the number of nodes in the eigenfunctions.

The structure of the QCD light-front Hamiltonian (2.7) for the hadron bound state |ψ(P)⟩ formulated at equal light-
front time is similar to the structure of the wave equation (4.23) for the J-mode Φµ1···µJ in AdS space; they are both frame
independent and have identical eigenvalues M2, the mass spectrum of the color-singlet states of QCD. This provides the
basis for a profound connection between physical QCD formulated in the light front and the physics of hadronic modes in
AdS space. However, important differences are also apparent: Eq. (2.7) is a linear quantum-mechanical equation of states
in Hilbert space, whereas Eq. (4.23) is a classical gravity equation; its solutions describe spin-J modes propagating in a
higher-dimensionalwarped space. In order to establish a connection between both approaches, it is important to realize that
physical hadrons are inexorably endowedwith orbital angularmomentum since they are composite. Thus, the identification
of orbital angular momentum is of primary interest in making such a connection. As we discuss below, this identification
follows from the precise mapping between the one-dimensional semiclassical approximation to light-front dynamics found
in Section 2 and the equations of motion of hadronic spin modes described in Section 4. Furthermore, if one imposes
the requirement that the action of the corresponding one-dimensional effective theory remains conformal invariant (see
Section 3), this fixes uniquely the form of the effective potential; and, as we will show below, the dilaton profile to have
the specific form ϕ(z) = λz2. This remarkable result follows from the dAFF construction of conformally invariant quantum
mechanics [94,95] and themapping of AdS to light-front physics. The resultant effective theory possess an SO(2, 1) algebraic
structure, which, as we shall discuss in the present Section, encodes fundamental dynamical aspects of confinement and
reproduces quite well the systematics of the light-hadron excitation spectrum.

In the usual AdS/CFT correspondence the baryon is an SU(NC ) singlet bound state ofNC quarks in the large-NC limit. Since
there are no quarks in this theory, quarks are introduced as external sources at the AdS asymptotic boundary [37,187]. The
baryon is constructed as an NC baryon vertex located in the interior of AdS. In this top-down string approach baryons are
usually described as solitons or Skyrmion-like objects [188–190]. In contrast, the light-front holographic approach is based
on the precise mapping of AdS expressions to the light front in physical space–time. Consequently, we will describe in this
review physical baryons corresponding to NC = 3 not NC → ∞. In fact, the light-front approach to relativistic bound-
state dynamics corresponds to strongly correlated multiple-particle states in the Fock expansion, and we may expect that
the large number of degrees of freedom, required to have a valid description in terms of a semiclassical gravity theory,
would correspond to the very large number of components in the large n-Fock expansion [95]. The enormous complexity
arising as a result of the strong interaction dynamics of an infinite number of components and Fock states is encoded in
the effective potential U . To a first semiclassical approximation, this confining potential is determined by the underlying
conformal symmetry of the classical QCD Lagrangian incorporated in the effective one-dimensional effective theory. As it
turns out, the analytical exploration of the baryon spectrum using gauge/gravity duality ideas is not as simple, or as well
understood yet, as themeson case, and furtherwork beyond the scope of the present review is required. However, aswe shall
discuss below, even a relatively simple approach provides a framework for a useful analytical exploration of the strongly-
coupled dynamics of baryonswhich gives important insights into the systematics of the light-baryon spectrum using simple
analytical methods.

5.1. Integer spin

An essential step is the mapping of the equation of motion describing a hadronic mode in a warped AdS space to the
light front. To this end, we compare the relativistic one-dimensional light-front wave equation (2.45) with the spin-J wave
equation in AdS (4.23), and factor out the scale (1/z)J−(d−1)/2 and dilaton factors from the AdS field as follows

ΦJ(z) =

R
z

J−(d−1)/2

e−ϕ(z)/2 φJ(z). (5.1)

Upon the substitution of the holographic variable z by the light-front invariant variable ζ and replacing (5.1) into the AdS
eigenvalue Eq. (4.23), we find for d = 4 the QCD light-front frame-independent wave equation (2.45)

−
d2

dζ 2
−

1− 4L2

4ζ 2
+ U(ζ )


φ(ζ ) = M2φ(ζ ), (5.2)

with the effective potential in the front form of dynamics [191]

U(ζ , J) =
1
2
ϕ′′(ζ )+

1
4
ϕ′(ζ )2 +

2J − 3
2ζ

ϕ′(ζ ). (5.3)
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The AdSmassm in (4.23) is related to the light-front internal orbital angular momentum L and the total angular momentum
J of the hadron according to

(mR)2 = −(2− J)2 + L2, (5.4)

where the critical value L = 0 corresponds to the lowest possible stable solution. Light-front holographic mapping thus
implies that the AdS mass m in (4.23) is not a free parameter but scales according to (5.4), thus giving a precise expression
for the AdS effective mass µeff (z) in the AdS effective action (4.16). For J = 0 the five dimensional AdS mass m is related
to the orbital angular momentum of the hadronic bound state by (mR)2 = −4 + L2 and thus (mR)2 ≥ −4. The quantum
mechanical stability condition L2 ≥ 0 is thus equivalent to the Breitenlohner–Freedman stability bound in AdS [192].

5.1.1. A light-front holographic model for mesons
The simplest holographic example is the truncatedmodel of Polchinski and Strassler whereas the confinement dynamics

is included by the boundary conditions at 1/ΛQCD [55]. This ‘‘hard-wall’’ model was introduced to study high-energy fixed-
angle hard scattering of glueballs using the gauge/gravity duality in confining gauge theories [55]. It was then realized
by Boschi-Filho and Braga [193,194] that this simple model could be used advantageously to compute the glueball mass
spectrum and obtain results which compare favorably with more elaborated computations based, for example, on lattice
QCD [195,196] or supergravity in an AdS blackhole geometry background [197–199] using the AdS/CFT correspondence. The
hard-wall model was extended by two of the authors of this report to light hadrons in Ref. [200], where it was shown that
the pattern of orbital excitations of light mesons and baryons is well described in terms of a single parameter, the QCD scale
ΛQCD. In Refs. [69–71] it was shown by different authors, including another of the authors of this report, how to construct
a five-dimensional holographic model which incorporates chiral symmetry and other properties of light mesons, including
quark masses, decay rates and couplings (see Section 7.2).

In the light-front version of the hard-wall model [75], the holographic variable z corresponds exactly with the impact
variable ζ , which represents the invariant measure of transverse separation of the constituents within the hadrons, and
quarks propagate freely in the hadronic interior up to the confinement scale. This model provides an analog of the MIT bag
model [201] where quarks are permanently confined inside a finite region of space. In contrast to bag models, boundary
conditions are imposed on the boost-invariant variable ζ , not on the bag radius at fixed time. The resulting model is a
manifestly Lorentz invariant model with confinement at large distances, while incorporating conformal behavior at small
physical separation. The eigenvalues of the LF wave equation (2.45) for the hard-wall model (U = 0) are determined by the
boundary conditions φ(z = 1/ΛQCD) = 0, and are given in terms of the roots βL,k of the Bessel functions: ML,k = βL,kΛQCD.
By construction, the hard wall model has a simple separation of kinematical and dynamical aspects, but it has shortcomings
when trying to describe the observed meson spectrum [200,176]. The model fails to account for the pion as a chiral M = 0
state and it is degeneratewith respect to the orbital quantumnumber L, thus leading to identical trajectories for pseudoscalar
and vector mesons. It also fails to account for the important splitting for the L = 1 a-meson states for different values of J .
Furthermore, for higher quantum excitations the spectrum behaves as M ∼ 2n + L, in contrast to the Regge dependence
M2
∼ n + L found experimentally [202,203]. As a consequence, the radial modes are not well described in the truncated-

space model. For example the first radial AdS eigenvalue has a mass 1.77 GeV, which is too high compared to the mass of
the observed first radial excitation of the meson, the π(1300).

The shortcomings of the hard-wall model are evaded with the ‘‘soft-wall’’ model [61] where the sharp cutoff is modified
by a dilaton profile ϕ(z) ∼ z2. The soft-wall model leads to linear Regge trajectories [61] and avoids the ambiguities in
the choice of boundary conditions at the infrared wall. From the relation (5.3) it follows that the harmonic potential is
holographically related to a unique dilaton profile, ϕ(z) = λz2 provided that ϕ(z)→ 0 as z → 0. This choice follows from
the requirements of conformal invariance as described in Section 3, and leads through (5.3) to the effective LF potential19

U(ζ , J) = λ2ζ 2
+ 2λ(J − 1), (5.5)

which corresponds to a transverse oscillator in the light-front. The term λ2ζ 2 is determined uniquely by the underlying
conformal invariance incorporated in the one-dimensional effective theory, and the constant term 2λ(J − 1) by the spin
representations in the embedding space.

For the effective potential (5.5) Eq. (2.45) has eigenfunctions (Appendix G.1)

φn,L(ζ ) = |λ|
(1+L)/2


2n!

(n+ L)!
ζ 1/2+Le−|λ|ζ

2/2LLn(|λ|ζ
2), (5.6)

and eigenvalues

M2
= (4n+ 2L+ 2) |λ| + 2λ(J − 1). (5.7)

The LF wave functions φ(ζ ) = ⟨ζ |φ⟩ are normalized as ⟨φ|φ⟩ =

dζ φ2(ζ ) = 1 in accordance with (4.24).

19 The notation λ = κ2 is used in Ref. [176].
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Fig. 5.1. Light-front wave functions φn,L(ζ ) in physical space–time corresponding to a dilaton profile exp(λz2): (left) orbital modes (n = 0) and (right)
radial modes (L = 0).

Except for J = 1 the spectrum predictions are significantly different for λ > 0 or λ < 0. The predicted spectrum for
λ > 0 is

M2
n,J,L = 4λ


n+

J + L
2


. (5.8)

For the lowest possible solution n = L = J = 0 there is an exact cancellation of the LF kinetic and potential energy and the
ground state eigenvalue turns out to be M2

= 0.20 This is a bound state of two massless quarks and scaling dimension 2,
which we identify with the lowest state, the pion. This result not only implies linear Regge trajectories and a massless pion
but also the relation between the ρ and a1 mass usually obtained from the Weinberg sum rules [204]21

m2
π = M2

0,0,0 = 0, m2
ρ = M2

0,1,0 = 2λ, m2
a1 = M2

0,1,1 = 4λ. (5.9)
The meson spectrum (5.8) has a string-model Regge form [206]. In fact, the linear dependence of the squared masses

in both the angular momentum L and radial quantum number n, M2
∼ n + L, and thus the degeneracy in the quantum

numbers n + L, was first predicted using semiclassical quantization of effective strings in Ref. [207]. The LFWFs (5.6) for
different orbital and radial excitations are depicted in Fig. 5.1. Constituent quark and antiquark separate from each other as
the orbital and radial quantum numbers increase. The number of nodes in the light-front wave function depicted in Fig. 5.1
(right) correspond to the radial excitation quantum number n. The result (5.8) was also found in Ref. [181].

To compare the LF holographic model predictions with experiment, we list in Table 5.1 confirmed (3-star and 4-star)
meson states corresponding to the light-unflavoredmeson sector from the ParticleDataGroup (PDG) [16]. The Table includes
isospin I = 0 and I = 1 vector mesons and the I = 1 pseudoscalar mesons. We have included the assigned internal spin,
orbital angular momentum and radial quantum numbers from the quark content |ud̄⟩, 1

√
2
|uū − dd̄⟩ and |dū⟩. The I = 1

mesons are the π , b, ρ and a mesons. We have not listed in Table 5.1 the I = 0 mesons for the pseudoscalar sector which
are a mix of uū, dd̄ and ss̄, thus more complex entities. The light I = 0mesons are η, η′, h, h′ ω, φ, f and f ′. This list comprises
the puzzling I = 0 scalar f -mesons [208], which may be interpreted as a superposition of tetra-quark states with a qq̄
configuration with L = 1, S = 1, which couple to a J = 0 state [203].22 We also include in Table 5.1 the I = 0 vector-mesons
the f and ω, which are well described as a qq̄ system with no mixings with the strange sector. Likewise, in Section 5.1.3 we
compute the masses of the φ mesons which are well described as an ss̄ bound state. We will also discuss in Section 5.1.3
light hadronic bound states composed of u or d with an s-quark: the K meson and K ∗ vector-meson families.

For the J = L+ S meson families Eq. (5.8) becomes

M2
n,L,S = 4λ


n+ L+

S
2


. (5.10)

The lowest possible stable solution for n = L = S = 0, the pion, has eigenvalue M2
= 0. Thus one can compute the full

J = L + S, mass spectrum M2 in Table 5.1, by simply adding 4λ for a unit change in the radial quantum number, 4λ for a
change in one unit in the orbital quantum number and 2λ for a change of one unit of spin to the ground state value. The
spectral predictions for the J = L + S light unflavored meson states, listed in Table 5.1, are compared with experimental
data in Figs. 5.2(a) and 5.3(a) for the positive sign dilaton model discussed here. The data is from PDG [16].

20 One can easily write the LF eigenvalue equation for general dimension d. The dimension has no influence on the confining term λ2z2 but it determines
the constant term in the potential. For J = 0 this term is (2− d)λ. Only in d = 4 dimensions the vacuum energy is exactly compensated by a constant term
in the potential and the J = 0, L = 0 state is massless.
21 A discussion of chiral symmetry breaking in the light-front is given in Ref. [205].
22 The interpretation of the π1(1400) is not very clear [203] and is not included in Table 5.1. Similarly, we do not include the π1(1600) in the present
analysis.
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Table 5.1
Confirmed mesons listed by PDG [16]. The labels L, S and n refer to assigned internal orbital angular
momentum, internal spin and radial quantumnumber respectively. For a qq̄ state P = (−1)L+1 ,C = (−1)L+S .
For the pseudoscalar sector only the I = 1 states are listed.

L S n JPC Meson state

0 0 0 0−+ π(140)
0 0 1 0−+ π(1300)
0 0 2 0−+ π(1800)
0 1 0 1−− ρ(770)
0 1 0 1−− ω(782)
0 1 1 1−− ω(1420)
0 1 1 1−− ρ(1450)
0 1 2 1−− ω(1650)
0 1 2 1−− ρ(1700)

1 0 0 1+− b1(1235)
1 1 0 0++ a0(980)
1 1 1 0++ a0(1450)
1 1 0 1++ a1(1260)
1 1 0 2++ f2(1270)
1 1 0 2++ a2(1320)
1 1 2 2++ f2(1950)
1 1 3 2++ f2(2300)

2 0 0 2−+ π2(1670)
2 0 1 2−+ π2(1880)
2 1 0 3−− ω3(1670)
2 1 0 3−− ρ3(1690)

3 1 0 4++ a4(2040)
3 1 0 4++ f4(2050)

Fig. 5.2. Orbital and radial excitation spectrum for the light pseudoscalar mesons: (a) I = 0 unflavored mesons and (b) strange mesons, for
√
λ = 0.59

GeV.

In contrast to the hard-wall model, the soft-wall model with positive dilaton accounts for the mass pattern observed in
radial excitations, as well as for the triplet splitting for the L = 1, J = 0, 1, 2 observed for the vector meson a-states. As
we will discuss in the next section, a spin–orbit effect is only predicted for mesons not baryons, as observed in experiment
[203,209]; it thus becomes a crucial test for anymodel which aims to describe the systematics of the light hadron spectrum.
Using the spectral formula (5.8) we find [176]

Ma2(1320) > Ma1(1260) > Ma0(980). (5.11)

The predicted values are 0.76, 1.08 and 1.32 GeV for the masses of the a0(980), a1(1260) and a2(1320) vector mesons,
compared with the experimental values 0.98, 1.23 and 1.32 GeV respectively. The prediction for the mass of the L = 1,
n = 1 state a0(1450) is 1.53 GeV, compared with the observed value 1.47 GeV. Finally, we would like to mention the recent
precision measurement at COMPASS [210] which found a new resonance named the a1(1420) with a mass 1.42 GeV, the
origin of which remains unclear. In the present framework the a1(1420) is interpreted as a J = 1, S = 1, L = 1, n = 1
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Fig. 5.3. Orbital and radial excitation spectrum for the light vector mesons: (a) I = 0 and I = 1 unflavoredmesons and (b) strangemesons, for
√
λ = 0.54

GeV.

vector-meson state with a predicted mass of 1.53 GeV. For other calculations of the hadronic spectrum in the framework of
AdS/QCD, see Refs. [211–239].23

The LF holographic model with λ > 0 accounts for the mass pattern observed in the radial and orbital excitations of
the light mesons, as well as for the triplet splitting for the L = 1, J = 0, 1, 2, vector meson a-states [176]. The slope of
the Regge trajectories gives a value

√
λ ≃ 0.5 GeV, but the value of λ required for describing the pseudoscalar sector is

slightly higher that the value of λ extracted from the vector sector. In general the description of the vector sector is better
than the pseudoscalar sector. However, the prediction for the observed spin–orbit splitting for the L = 1 a-vector mesons
is overestimated by the model.

The solution for λ < 0 leads to a pion mass heavier than the ρ meson and a meson spectrum given by M2
=

4λ (n + 1 + (L − J)/2), in clear disagreement with the observed spectrum. Thus the solution λ < 0 is incompatible with
the light-front constituent interpretation of hadronic states. We also note that the solution with λ > 0 satisfies the stability
requirements from the Wilson loop area condition for confinement [177] discussed in Section 4.2.1.

5.1.2. Meson spectroscopy in a gauge invariant AdS model
Like the AdS wave equation for arbitrary spin (4.23), the AdS wave equation which follows from a gauge invariant

construction described in Section 4.2.2 (see Ref. [61]) can be brought into a Schrödinger-like form by rescaling the AdS
field in (4.36) according to Φ̃J(z) = z J−1/2e−λz

2/2φ̃J(z). The result is
−

d2

dz2
−

1− 4J2

4
+ λ2z2 − 2Jλ


φ̃J(z) = M2 φ̃J(z), (5.12)

and yields the spectrum

M2
= (4n+ 2J + 2)|λ| − 2Jλ. (5.13)

Besides the difference in sign in the dilaton profile, there are conceptual differences in the treatment of higher spin given
by KKSS [61] in Section 4.2.2, as compared with the treatment given in Section 4.2. The mapping of the AdS equation of
motion (4.36) onto the Schrödinger equation (5.12) reveals that J = L and therefore an essential kinematical degree of
freedom is missing in the light-front interpretation of the KKSS AdS wave equation. In particular the ρ meson would be an
L = 1 state. Furthermore the method of treating higher spin, based on gauge invariance, can only be applied to the vector
meson trajectory, not pseudoscalar mesons. Generally speaking, one can say that insisting on gauge invariance in AdSd+1
favors a negative dilaton profile (λ < 0), whereas the mapping onto the LF equation demands an AdS mass µ ≠ 0 and a
positive profile (λ > 0).

5.1.3. Light quark masses and meson spectrum
In general, the effective interaction depends on quark masses and the longitudinal momentum fraction x in addition

to the transverse invariant variable ζ . However, if the confinement potential is unchanged for small quark masses it then
only depends on the transverse invariant variable ζ , and the transverse dynamics are unchanged (see Section 2.4.1). This
is consistent with the fact that the potential is determined from the conformal symmetry of the effective one-dimensional
quantum field theory, which is not badly broken for small quark masses.

23 For recent reviews see, for example, Refs. [114,240]. One can also use the AdS/QCD framework to study hadrons at finite temperature (see, for example
Refs. [241–243] and references therein) or in a hadronic medium [244].
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In the limit of zero quark masses the effective LFWF for a two-parton ground state in impact space is

ψq̄q/π (x, ζ ) ∼

x(1− x) e−

1
2 λζ

2
, (5.14)

where the invariant transverse variable ζ 2
= x(1 − x)b2

⊥
and λ > 0. The factor

√
x(1− x) is determined from the precise

holographic mapping of transition amplitudes in the limit of massless quarks (Section 6). The Fourier transform of (5.14) in
momentum-space is

ψq̄q/π (x, k⊥) ∼
1

√
x(1− x)

e−
k2
⊥

2λx(1−x) , (5.15)

where the explicit dependence of the wave function in the LF off shell-energy is evident.
For the effective two-body bound state the inclusion of light quark masses24 amounts to the replacement in (5.15) of

the q − q̄ invariant mass (2.50), the key dynamical variable which describes the off energy-shell behavior of the bound
state [138],

ψq̄q/π (x, k⊥) ∼
1

√
x(1− x)

e
−

1
2λ


k2
⊥

x(1−x)+
m2
q
x +

m2
q̄

1−x


, (5.16)

which has the same exponential form of the successful phenomenological LFWF introduced in Ref. [245]. The Fourier
transform of (5.16) gives the LFWF in impact space including light-quark masses

ψq̄q/π (x, ζ ) ∼

x(1− x) e−

1
2λ

m2
q
x +

m2
q̄

1−x


e−

1
2 λ ζ

2
, (5.17)

which factorizes neatly into transverse and longitudinal components. The holographic LFWF (5.17) has been successfully
used in the description of diffractive vector meson electroproduction at HERA [246] by extending the LF holographic
approach to the longitudinal component of the ρ LFWF, in B → ργ [247] and B → K ∗γ [248] decays as well as in the
prediction of B → ρ [249], B → K ∗ form factors [250] and B → K ∗µ+µ− decays [251]. This LFWF has also been used to
study the spectrum [231] and the distribution amplitudes [252] of light and heavy mesons.

For excited meson states we can follow the same procedure by replacing the key invariant mass variable in the
polynomials in the LFWF using (2.50). An explicit calculation shows, however, that the essential modification in the
hadronic mass, from small quark masses, comes from the shift in the exponent of the LFWF. The corrections from the
shift in the polynomials accounts for less than 3%. This can be understood from the fact that to first order the transverse
dynamics is unchanged, and consequently the transverse LFWF is also unchanged to first order. Thus our expression for the
LFWF

ψn,L(x, ζ ) ∼

x(1− x) e−

1
2λ

m2
q
x +

m2
q̄

1−x


ζ 2e−

1
2 λ ζ

2
LLn(λζ

2), (5.18)

and from (2.49) the hadronic mass shift∆M2 for small quark masses [253]

∆M2
mq,mq̄

=

 1
0 dx e−

1
λ

m2
q
x +

m2
q̄

1−x

 
m2

q
x +

m2
q̄

1−x


 1
0 dx e−

1
λ

m2
q
x +

m2
q̄

1−x

 , (5.19)

which is independent of L, S and n. For light quark masses, the hadronic mass is the longitudinal 1/x average of the square
of the effective quark masses, i.e., the effective quark masses from the reduction of higher Fock states as functionals of the
valence state [161]. The final result for the hadronic spectrum of mesons modified by light quark masses is thus

M2
n,J,L,mq,mq̄

= ∆M2
mq,mq̄

+ 4λ

n+

J + L
2


, (5.20)

with identical slope 4λ from the limit of zero quark masses. In particular, we obtain from (5.20), respectively, the spectral
prediction for the unflavored meson and strange meson mass spectrum. We have

M2
n,L,S = M2

π±
+ 4λ


n+

J + L
2


, (5.21)

24 The light quarkmasses introduced here are not the constituentmasses of the nonrelativistic quarkmodel, but effective quarkmasses from the reduction
of higher Fock states as functionals of the valence state (see Section 2.4.1). In the chiral limit, however, these masses should be zero.
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Table 5.2
Confirmed strange mesons listed by PDG [16]. The labels L, S and n refer to assigned internal orbital angular
momentum, internal spin and radial quantum number respectively. For a qq̄ state P = (−1)L+1 .

L S n JP Meson state

0 0 0 0− K(494)
0 1 0 1− K ∗(892)
0 1 1 1− K ∗(1410)
0 1 2 1− K ∗(1680)

1 0 0 1+ K1(1270)
1 0 1 1+ K1(1400)
1 1 0 2+ K ∗2 (1430)

1 1 1 0+ K ∗0 (1430)
2 0 0 2− K2(1770)
2 0 1 2− K2(1820)
2 1 0 3− K ∗3 (1780)

3 1 0 3− K ∗4 (2045)

Table 5.3
Confirmed φ mesons listed by PDG [16]. The labels L, S and n refer to assigned internal orbital angular
momentum, internal spin and radial quantum number respectively. The parity assignment is given by
P = (−1)L+1 .

L S n JP Meson state

0 1 0 1− φ(1020)
0 1 1 1− φ(1680)
0 1 3 1− φ(2170)

2 1 0 3− φ3(1850)

for the π and b pseudoscalar and ρ, ω, a, f vector mesons, and

M2
n,L,S = M2

K± + 4λ

n+

J + L
2


, (5.22)

for the K and K ∗ meson spectrum. The PDG values are [16]Mπ±
∼= 140 MeV andMK±

∼= 494 MeV.
We list in Table 5.2 the confirmed (3-star and 4-star) strange mesons from the Particle Data Group [16]. The predictions

for the J = L+ S strange pseudoscalar and vector mesons are compared with experimental data in Fig. 5.2(b) and Fig. 5.3(b)
respectively. The data is from PDG [16]. The spectrum is well reproduced with the same values of the mass scale as for the
massless case,

√
λ = 0.59 GeV for the light pseudoscalar meson sector and

√
λ = 0.54 GeV for the light vector sector. It is

clear from Table 5.2 or Fig. 5.2(b) that the interpretation of the states K1(1400) and K2(1820) as n = 1 radial excitations is
not straightforward as their masses are very close to the n = 0 states. As in the case of the light unflavored qq̄ mesons, the
model predictions are much better for the vector sector. In fact, the model predictions for the K ∗ sector shown in Fig. 5.3(b)
are very good [254]. We note, however, from Table 5.2 that the states K ∗0 (1430) and K ∗2 (1430) – which belong to the J = 0,
J = 1 and J = 2 triplet for L = 1, are degenerate. This result is in contradiction with the spin–orbit coupling predicted by
the LF holographicmodel formesons; a possible indication ofmixing of the K ∗0 with states which carry the vacuum quantum
numbers.

Fitting the quark masses to the observedmasses of the π and K we obtain for
√
λ = 0.54MeV the average effective light

quark mass mq = 46 MeV, q = u, d, and ms = 357 MeV, values between the current MS Lagrangian masses normalized at
2 GeV and typical constituent masses. With these values one obtains∆M2

mq,mq̄
= 0.067 λ, ∆M2

mq,ms̄
= 0.837 λ, ∆M2

ms,ms̄
=

2.062 λ, for
√
λ = 0.54 GeV.

Since the φ vector mesons are essentially ss̄ bound-states, we can use our previous results to predict the φ spectrum
without introducing any additional parameter. To this end we list in Table 5.3 the confirmed φ mesons from PDG [16]. The
model predictions shown in Fig. 5.4 follow from (5.20) with∆M2

ms,ms̄
= 2.062 λ.

For heavy mesons conformal symmetry is strongly broken and there is no reason to assume that the LF potential in
that case is similar to the massless one. Indeed, a simple computation shows that the model predictions for heavy quarks
(without introducing additional elements in the model) is not satisfactory. In fact, the data for heavy mesons can only be
reproduced at the expense of introducing vastly different values for the scale λ [231,255,256]. Another important point are
the leptonic decay widths. For light quarks the quark masses have little influence on the result, only about 2% for the π
meson and 5% for the K meson, but using the formalism also for the B and D mesons leads to widely different values when
compared with experiment. For large quark masses the form of the LF confinement potential U cannot be obtained from the
conformal symmetry of the effective one-dimensional quantum field theory [95]. In this case an important dependence on
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Fig. 5.4. Orbital and radial excitation spectrum for the φ vector mesons for
√
λ = 0.54 GeV.

the heavy quark mass is expected, as suggested by the relation given by Eq. (2.46) between the effective potentials in the
front form and instant form of dynamics [97].

5.2. Half-integer spin

One can also take as starting point the construction of light-front wave equations in physical space–time for baryons
by studying the LF transformation properties of spin- 12 states [138,257]. The light-front wave equation describing baryons
is a matrix eigenvalue equation DLF |ψ⟩ = M|ψ⟩ with HLF = D2

LF . In a 2 × 2 chiral spinor component representation, the
light-front equations are given by the coupled linear differential equations (see Appendix H)

−
d
dζ
ψ− −

ν + 1
2

ζ
ψ− − V (ζ )ψ− = Mψ+, (5.23)

d
dζ
ψ+ −

ν + 1
2

ζ
ψ+ − V (ζ )ψ+ = Mψ−,

where the invariant variable ζ for an n-parton bound state is the transverse impact variable of the n − 1 spectator system
given by (2.47).

As we will consider below, we can identify ν with the light-front orbital angular momentum L, the relative angular
momentum between the active and the spectator cluster, but this identification is less straightforward than the relation for
mesons, since it involves the internal spin and parity of the 3-quark baryon configuration. Note that L is the maximal value
of |Lz | in a given LF Fock state. An important feature of bound-state relativistic theories is that hadron eigenstates have in
general Fock components with different L components. By convention one labels the eigenstate with its minimum value
of L. For example, the symbol L in the light-front holographic spectral prediction for mesons (5.8) refers to the minimum L
(which also corresponds to the leading twist) and J is the total angular momentum of the hadron.

A physical baryon has plane-wave solutions with four-momentum Pµ, invariant mass PµPµ = M2, and polarization
indices along the physical coordinates. It thus satisfies the Rarita–Schwinger equation for spinors in physical space–time
(4.37) 

iγ µ∂µ −M

uν1···νT (P) = 0, γ νuνν2···νT (P) = 0. (5.24)

Factoring out from the AdS spinor field Ψ the four-dimensional plane-wave and spinor dependence, as well as the scale
factor (1/z)T−d/2, we write

Ψ±ν1···νT (x, z) = eiP·xu±ν1···νT (P)

R
z

T−d/2

ψ±T (z), (5.25)

where T = J − 1
2 and the chiral spinor u±ν1...νT =

1
2 (1± γ5)uν1...νT satisfies the four-dimensional chirality equations

γ · P u±ν1...νT (P) = Mu∓ν1...νT (P), γ5u±ν1...νT (P) = ± u±ν1...νT (P). (5.26)
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Upon replacing the holographic variable z by the light-front invariant variable ζ and substituting (5.25) into the AdS
wave equation (4.45) for arbitrary spin J , we recover the LF expression (5.23), provided that |µR| = ν + 1

2 and ψ±T = ψ±,
independent of the value of J = T + 1

2 . We also find that the effective LF potential in the light-front Dirac equation (5.23) is
determined by the effective interaction ρ(z) in the effective action (4.39),

V (ζ ) =
R
ζ
ρ(ζ ), (5.27)

which is a J-independent potential. This is a remarkable result, since it implies that independently of the specific form of the
potential, the value of the baryon masses along a given Regge trajectory depends only on the LF orbital angular momentum
L, and thus, in contrast with the vector mesons, there is no spin–orbit coupling, in agreement with the observed near-
degeneracy in the baryon spectrum [203,209]. Eq. (5.23) is equivalent to the system of second order equations

−
d2

dζ 2
−

1− 4ν2

4ζ 2
+ U+(ζ )


ψ+ =M2ψ+, (5.28)

and 
−

d2

dζ 2
−

1− 4(ν + 1)2

4ζ 2
+ U−(ζ )


ψ− =M2ψ−, (5.29)

where

U±(ζ ) = V 2(ζ )± V ′(z)+
1+ 2ν
ζ

V (ζ ). (5.30)

5.2.1. A light-front holographic model for baryons
As for the case of mesons, the simplest holographic model of baryons is the hard-wall model, where confinement

dynamics is introduced by the boundary conditions at z ≃ 1/ΛQCD. To determine the boundary conditions we integrate
(4.39) by parts for ϕ(z) = ρ(z) = 0 and use the equations of motion. We then find

SF = − lim
ϵ→0

Rd


ddx
2zd


Ψ̄+Ψ− − Ψ̄−Ψ+

z0
ϵ
, (5.31)

where Ψ± = 1
2 (1± γ5)Ψ . Thus in a truncated-space holographic model, the light-front modes Ψ+ or Ψ− should vanish at

the boundary z = 0 and z0 = 1/ΛQCD. This condition fixes the boundary conditions and determines the baryon spectrum
in the truncated hard-wall model [200]: M+ = βν,kΛQCD, and M− = βν+1,kΛQCD, with a scale-independent mass ratio
determined by the zeros of Bessel functions βν,k. Equivalent results follow from the hermiticity of the LF Dirac operator
DLF in the eigenvalue equation DLF |ψ⟩ =M|ψ⟩. The orbital excitations of baryons in this model are approximately aligned
along two trajectories corresponding to even and odd parity states [176,200]. The spectrum shows a clustering of stateswith
the same orbital L, consistent with a strongly suppressed spin–orbit force. As for the case for mesons, the hard-wall model
predictsM ∼ 2n+ L, in contrast to the usual Regge behaviorM2

∼ n+ L found experimentally [203,209]. The radial modes
are also not well described in the truncated-space model.

Let us now examine a model similar to the soft-wall dilaton model for mesons by introducing an effective potential,
which also leads to linear Regge trajectories in both the orbital and radial quantum numbers for baryon excited states. As
we have discussed in Section 4.3, a dilaton factor in the fermion action can be scaled away by a field redefinition. We thus
choose instead an effective linear confining potential V = λFζ which reproduces the linear Regge behavior for baryons
[138,180]. Choosing V = λFζ we find from (5.30)

U+(ζ ) = λ2Fζ
2
+ 2(ν + 1)λF , (5.32)

U−(ζ ) = λ2Fζ
2
+ 2νλF , (5.33)

and from (5.28) and (5.29) the two-component solution

ψ+(ζ ) ∼ ζ
1
2+νe−|λF |ζ

2/2Lνn

|λF |ζ

2 , (5.34)

ψ−(ζ ) ∼ ζ
3
2+νe−|λF |ζ

2/2Lν+1n


|λF |ζ

2 . (5.35)

We can compute separately the eigenvalues for the wave equations (5.28) and (5.29) for arbitrary λF and compare the
results for consistency, since the eigenvalues determined from both equations should be identical. For the potential (5.32)
the eigenvalues of (5.28) are

M2
+
= (4n+ 2ν + 2) |λF | + 2 (ν + 1) λF , (5.36)



40 S.J. Brodsky et al. / Physics Reports ( ) –

Table 5.4
Classification of confirmed baryons listed by the PDG [16]. The labels L, S and n refer to the internal
orbital angular momentum, internal spin and radial quantum number respectively. The even-parity baryons
correspond to the 56 multiplet of SU(6) and the odd-parity to the 70.

SU(6) S L n Baryon state

56 1
2 0 0 N 1

2
+
(940)

3
2 0 0 ∆ 3

2
+
(1232)

56 1
2 0 1 N 1

2
+
(1440)

3
2 0 1 ∆ 3

2
+
(1600)

70 1
2 1 0 N 1

2
−
(1535) N 3

2
−
(1520)

3
2 1 0 N 1

2
−
(1650) N 3

2
−
(1700)N 5

2
−
(1675)

1
2 1 0 ∆ 1

2
−
(1620)∆ 3

2
−
(1700)

56 1
2 0 2 N 1

2
+
(1710)

1
2 2 0 N 3

2
+
(1720) N 5

2
+
(1680)

3
2 2 0 ∆ 1

2
+
(1910)∆ 3

2
+
(1920)∆ 5

2
+
(1905)∆ 7

2
+
(1950)

70 3
2 1 1 N 1

2
−
N 3

2
−
(1875)N 5

2
−

3
2 1 1 ∆ 5

2
−
(1930)

56 1
2 2 1 N 3

2
+
(1900)N 5

2
+

70 1
2 3 0 N 5

2
−
N 7

2
−

3
2 3 0 N 3

2
−
N 5

2
−
N 7

2
−
(2190) N 9

2
−
(2250)

1
2 3 0 ∆ 5

2
−
∆ 7

2
−

56 1
2 4 0 N 7

2
+
N 9

2
+
(2220)

3
2 4 0 ∆ 5

2
+
∆ 7

2
+
∆ 9

2
+
∆ 11

2
+
(2420)

70 1
2 5 0 N 9

2
−
N 11

2
−

3
2 5 0 N 7

2
−
N 9

2
−
N 11

2
−
(2600) N 13

2
−

whereas for the potential (5.33) the eigenvalues of (5.29) are

M2
−
= (4n+ 2(ν + 1)+ 2) |λF | + 2νλF . (5.37)

For λF > 0 we findM2
+
= M2

−
= M2 where

M2
= 4 λF (n+ ν + 1) , (5.38)

identical for plus and minus eigenfunctions. For λF < 0 it follows that M2
+
≠ M2

−
and no solution is possible. Thus the

solution λF < 0 is discarded. Note that, as expected, the oscillator form λ2Fζ
2 in the second order equations (5.28) and

(5.29), matches the soft-wall potential formesons prescribed by the underlying conformality of the classical QCD Lagrangian
as discussed in Section 3. We thus set λF = λ reproducing the universality of the Regge slope for mesons and baryons.
Notice that in contrast with the meson spectrum (5.8), the baryon spectrum (5.38) in the soft wall does not depend on J , an
important result also found in Ref. [181].

It is important to notice that the solutions (5.34) and (5.35) of the second-order differential equations (5.28) and (5.29)
are not independent since the solutions must also obey the linear Dirac equation (5.23) [258]. This fixes the relative
normalization. Using the relation Lν+1n−1(x) + Lνn(x) = Lν+1n (x) between the associated Laguerre functions we find for
λ = λF > 0

ψ+(ζ ) = λ
(1+ν)/2


2n!

(n+ ν − 1)!
ζ

1
2+νe−λζ

2/2Lνn

λζ 2 , (5.39)

ψ−(ζ ) = λ
(2+ν)/2 1

√
n+ ν + 1


2n!

(n+ ν − 1)!
ζ

3
2+νe−λζ

2/2Lν+1n


λζ 2 , (5.40)

with equal probability
dζ ψ2

+
(ζ ) =


dζ ψ2

−
(ζ ) = 1. (5.41)

Eq. (5.41) implies that the spin Szq of the quark in the proton has equal probability to be aligned or anti-aligned with the
proton’s spin Jz . Thus there is equal probability for states with Lzq = 0 and Lzq = ±1. This remarkable equality means that in
the chiral limit the proton’s spin Jz is carried by the quark orbital angular momentum: Jz = ⟨Lzq⟩ = ±1/2. This equality also
holds for the hard-wall model.
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Fig. 5.5. Orbital and radial baryon excitation spectrum. Positive-parity spin- 1
2 nucleons (a) and spectrum gap between the negative-parity spin- 3

2 and the
positive-parity spin- 1

2 nucleons families (b). Negative parity N (c) and positive and negative parity ∆ families (d). The values of
√
λ are

√
λ = 0.49 GeV

(nucleons) and 0.51 GeV (deltas).

We list in Table 5.4 the confirmed (3-star and 4-star) baryon states from updated Particle Data Group [16].25 To
determine the internal spin, internal orbital angular momentum and radial quantum number assignment of the N and ∆
excitation spectrum from the total angular momentum-parity PDG assignment, it is convenient to use the conventional
SU(6) ⊃ SU(3)flavor × SU(2)spin multiplet structure [260], but other model choices are also possible [209].26

As for the case of mesons, our first task is to identify the lowest possible stable state, the proton, which corresponds to
n = 0 and ν = 0. This fixes the scale

√
λ ≃ 0.5 GeV. The resulting predictions for the spectroscopy of the positive-parity

spin- 12 light nucleons are shown in Fig. 5.5(a) for the parent Regge trajectory for n = 0 and ν = 0, 2, 4, . . . , L, where L
is the relative LF angular momentum between the active quark and the spectator cluster. The predictions for the daughter
trajectories for n = 1, n = 2, . . . are also shown in this figure. Only confirmed PDG [16] states are shown. The Roper state
N(1440) and the N(1710) are well accounted for in this model as the first and second radial excited states of the proton. The
newly identified state, theN(1900) [16] is depicted here as the first radial excitation of theN(1720). Themodel is successful
in explaining the parity degeneracy observed in the light baryon spectrum, such as the L = 2,N(1680)−N(1720) degenerate
pair in Fig. 5.5(a).

In Fig. 5.5(b) we compare the positive parity spin- 12 parent nucleon trajectory with the negative parity spin- 32 nucleon
trajectory. It is remarkable that the gap scale 4λ determines not only the slope of the trajectories, but also the spectrum gap
between the positive-parity spin- 12 and the negative-parity spin- 32 nucleon families, as indicated by arrows in this figure.
This means the respective assignment ν = L and ν = L+ 1 for the lower and upper trajectories in Fig. 5.5(b). We also note
that the degeneracy of states with the same orbital quantum number L is also well described, as for example the degeneracy
of the L = 1 states N(1650), N(1675) and N(1700) in Fig. 5.5(b).

We have also to take into account baryons with negative parity and internal spin S = 1
2 , such as the N(1535), as well

as baryon states with positive parity and internal spin S = 3
2 , such as the ∆(1232). Those states are well described by the

25 A recent exploration of the properties of baryon resonances derived from a multichannel partial wave analysis [259] report additional resonances not
included in the Review of Particle Properties [16].
26 In particular the ∆ 5

2
−
(1930) state (also shown in Table 5.4) has been given the non-SU(6) assignment S = 3/2, L = 1, n = 1 in Ref. [209]. This

assignment will be further discussed below.
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Table 5.5
Orbital assignment for baryon trajectories according to parity and internal spin.

S = 1
2 S = 3

2

P = + ν = L ν = L+ 1
2

P = − ν = L+ 1
2 ν = L+1

assignment ν = L + 1
2 . This means, for example, that M2 (+)

n,L,S= 3
2
= M2 (−)

n,L,S= 1
2
and consequently the positive and negative-

parity ∆ states lie in the same trajectory consistent with the experimental results, as depicted in Fig. 5.5 (d). The newly
found state, the N(1875) [16], depicted in Fig. 5.5 (c) is well described as the first radial excitation of the N(1520), and the
near degeneracy of the N(1520) and N(1535) is also well accounted. Likewise, the ∆(1660) corresponds to the first radial
excitation of the ∆(1232) as shown in Fig. 5.5 (d). The model explains the important degeneracy of the L = 2, ∆(1905),
∆(1910), ∆(1920), ∆(1950) states which are degenerate within error bars. The parity degeneracy of the light baryons is
also a property of the hard-wall model, but in that case the radial states are not well described [200]. Our results for the∆
states agreewith those of Ref. [216]. ‘‘Chiral partners’’ [261] such as theN(1535) and theN(940)with the same total angular
momentum J = 1

2 , but with different orbital angular momentum are non-degenerate from the onset.27 To recapitulate, the
parameter ν, which is related to the fifth dimensional AdS mass by the relation |µR| = ν + 1, has the internal spin S and
parity P assignment given in Table 5.5 shown below [262].

The assignment ν = L for the lowest trajectory, the proton trajectory, is straightforward and follows from themapping of
AdS to light-front physics. The assignment for other spin and parity baryons states given in Table 5.5 is phenomenological.
It is expected that further analysis of the different quark configurations and symmetries of the baryon wave function, as
suggested by the model discussed in Ref. [221], will indeed explain the actual assignment given in this table. This particular
assignment successfully describes the full light baryon orbital and radial excitation spectrum, and in particular the gap
between trajectories with different parity and internal spin [262]. If we follow the non-SU(6) quantum number assignment
for the∆(1930) given in Ref. [209], namely S = 3/2, L = 1, n = 1 we find the value M∆(1930) = 4

√
λ ≃ 2 GeV, consistent

with the experimental result 1.96 GeV [16].
An important feature of light-front holography is that it predicts a similar multiplicity of states for mesons and baryons,

consistent with what is observed experimentally [203]. This remarkable property could have a simple explanation in the
cluster decomposition of the holographic variable (2.47), which labels a system of partons as an active quark plus a system
of n− 1 spectators. From this perspective, a baryon with n = 3 looks in light-front holography as a quark–diquark system.
It is also interesting to notice that in the hard-wall model the proton mass is entirely due to the kinetic energy of the light
quarks, whereas in the soft-wall model described here, half of the invariant mass squared M2 of the proton is due to the
kinetic energy of the partons, and half is due to the confinement potential.

6. Light-front holographic mapping and transition amplitudes

A form factor in QCD is defined by the transition matrix element of a local quark current between hadronic states. The
great advantage of the front form – as emphasized in Section 2 – is that boost operators are kinematical. Unlike in the
instant form, the boost operators in the front form have no interaction terms. The calculation of a current matrix element
⟨P + q|Jµ|P⟩ requires boosting the hadronic eigenstate from |P⟩ to |P + q⟩, a task which becomes hopelessly complicated
in the instant form which includes changes even in particle number for the boosted state [263,264]. In fact, the boost of
a composite system at fixed time x0 is only known at weak binding [265,266]. In addition, the virtual photon couples to
connected currents which arise from the instant-form vacuum.

In AdS space form factors are computed from the overlap integral of normalizable modes with boundary currents which
propagate in AdS space. The AdS/CFT duality incorporates the connection between the twist-scaling dimension of the QCD
boundary interpolating operators with the falloff of the normalizablemodes in AdS near its conformal boundary [55]. If both
quantities represent the same physical observable, a precise correspondence can be established at any momentum transfer
between the string modes Φ in AdS space and the light front wave functions of hadrons ψ in physical four-dimensional
space–time [75]. In fact, light-front holographic methods were originally derived by observing the correspondence between
matrix elements obtained in AdS/CFT with the corresponding formula using the light-front representation [75]. As shown in
Section 4 the same results follow from comparing the relativistic light-front Hamiltonian equation describing bound states
in QCD with the wave equations describing the propagation of modes in a warped AdS space for arbitrary spin [74,91].

Form factors are among the most basic observables of hadrons, and thus central for our understanding of hadronic
structure and dynamics. The physics includes the important interplay of perturbative and nonperturbative elements, which
if properly taken into account, should allow us to study the transition from perturbative dynamics at large momentum
transfer q2 to non-perturbative dynamics at moderate and small q2. Thus, the transition from quark and gluon degrees of
freedom to hadronic degrees of freedom, which is not a simple task.

27 Since our approach is based on a semiclassical framework, the Regge trajectories remain linear and there is no chiral symmetry restoration for highly
excited states [62].
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As will become clear from our discussion in this Section, holographic QCD incorporates important elements for the study
of hadronic form factors which encompasses perturbative and nonperturbative elements, such as the connection between
the twist of the hadron to the fall-off of its current matrix elements for large q2, and essential aspects of vector meson
dominance which are relevant at lower energies. This framework is also useful for analytically continuing the space-like
results to the time-like region using simple analytic formulas expressed in terms of vector meson masses.

6.1. Meson electromagnetic form factor

6.1.1. Meson form factor in AdS space
In the higher dimensional gravity theory, the hadronic transition matrix element corresponds to the coupling of an

external electromagnetic (EM) field AM(x, z), for a photon propagating in AdS space, with the extended field ΦP(x, z)
describing a hadron in AdS [77]. To simplify the discussion we treat here first the electromagnetic form factor for a spinless
particle in a model with a wall at a finite distance z = 1/ΛQCD – the hard wall model, which limits the propagation of the
string modes in AdS space beyond the IR boundary, and also sets the hadronic mass scale [55]. The coupling of the EM field
AM(x, z) follows from minimal coupling by replacing in (4.14) or (4.16) the covariant derivative DM by DM − ie5AM , where
e5 is the charge in the bulk theory. To first order in the EM field the interaction term is

Sint = e5


d4x dz

√
g gMM ′Φ∗(x, z)i

←→
∂ MΦ(x, z) AM ′(x, z), (6.1)

where g ≡ |det gMN |. We recall from Section 4 that the coordinates of AdS5 are the Minkowski coordinates xµ and z labeled
xM = (xµ, z), with M,N = 0, . . . , 4, and g is the determinant of the metric tensor. The hadronic transition matrix element
has thus the form [77]

e5


d4x dz

√
g Φ∗P ′(x, z)

←→
∂ MΦP(x, z)AM(x, z) ∼ (2π)4δ4


P ′ − P − q


ϵµ(P + P ′)µeF(q2), (6.2)

where, the pion has initial and final four momentum P and P ′ respectively and q is the four-momentum transferred to
the pion by the photon with polarization ϵµ. The expression on the right-hand side of (6.2) represents the space-like QCD
electromagnetic transition amplitude in physical space–time

⟨P ′|Jµ(0)|P⟩ =

P + P ′

µ F(q2). (6.3)

It is the EM matrix element of the quark current Jµ = eqq̄γ µq, and represents a local coupling to point-like constituents.
Although the expressions for the transition amplitudes look very different, one can show that a precise mapping of the
matrix elements can be carried out at fixed light-front time for an arbitrary number of partons in the bound-state [75,76].

The propagation of the pion in AdS space is described by a normalizable modeΦP(xµ, z) = eiP·xΦ(z)with invariant mass
PµPµ = M2 and plane waves along the physical coordinates xµ. The physical incoming electromagnetic probe (no physical
polarizations along the AdS coordinate z) propagates in AdS according to

Aµ(xµ, z) = eiq·xV (q2, z)ϵµ(q), Az = 0, (6.4)

where ϵ is the EM polarization vector in 4 dimensions, with q · ϵ = 0. The function V (q2, z) – the bulk-to-boundary
propagator, has the value 1 at zero momentum transfer, since we are normalizing the solutions to the total charge operator.
It also has the value 1 at z = 0, since the boundary limit is the external current: Aµ(xµ, z → 0) = eiq·xϵµ(q). Thus

V (q2 = 0, z) = V (q2, z = 0) = 1. (6.5)

Extracting the overall factor (2π)4δ4

P ′ − P − q


frommomentumconservation at the vertex,which arises from integration

over Minkowski variables in (6.2), we find [77]

F(q2) = R3
 1/ΛQCD

0

dz
z3

V (q2, z)Φ2(z), (6.6)

where F(0) = 1. The pion form factor in AdS is the overlap of the normalizable modes corresponding to the incoming and
outgoing hadronsΦP andΦP ′ with the non-normalizable mode V (q2, z), corresponding to the external EM current [77].28

28 The equivalent expression for a spin-J meson is F(q2) = R3−2J
 dz

z3−2J
V (q2, z)Φ2

J (z), where the hadronic mode ΦJ is normalized according to (4.24)
for d = 4.
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6.1.2. Meson form factor in light-front QCD
The light-front formalism provides an exact Lorentz-invariant representation of current matrix elements in terms of the

overlap of light-front wave functions. The electromagnetic current has elementary couplings to the charged constituents
since the full Heisenberg current can be replaced in the interaction picture by the free quark current Jµ(0), evaluated at
fixed light-cone time x+ = 0 in the q+ = 0 frame [78]. In contrast to the covariant Bethe–Salpeter equation, in the light
front Fock expansion one does not need to include the contributions to the current from an infinite number of irreducible
kernels, or the interactions of the electromagnetic current with vacuum fluctuations [73].

In the front-form, the EM form factor is most conveniently computed from the matrix elements of the plus component
of the current component J+ at LF time x+ = 0

⟨P ′|J+(0)|P⟩ =

P + P ′

+ F(q2). (6.7)

This component of the current does not couple to Fock stateswith different numbers of constituents in the q+ = 0 frame [78].
We express the plus component of the current operator

J+(x) =

q

eqψ̄(x)γ+ψ(x), (6.8)

in the particle number representation from the momentum expansion of ψ(x) in terms of creation and annihilation
operators (2.14).29 Thematrix element (6.7) is then computed by expanding the initial and final meson states |ψM(P+, P⊥)⟩
in terms of its Fock components (2.23). Using the normalization condition (2.22) for each individual constituent, and after
integration over the intermediate variables in the q+ = 0 frame we obtain the Drell–Yan–West expression [78,79]

FM(q2) =

n

 
dxi
 

d2k⊥i


j

ejψ∗n/M(xi, k
′

⊥i, λi)ψn/M(xi, k⊥i, λi), (6.9)

where the phase spacemomentum integration [dxi
 

d2k⊥i

is given by (2.24) and (2.25), and the variables of the light-front

Fock components in the final state are given by k′
⊥i = k⊥i+ (1− xi) q⊥ for a struck constituent quark and k′

⊥i = k⊥i− xi q⊥
for each spectator. The formula is exact if the sum is over all Fock states n.

The form factor can also be conveniently written in impact space as a sum of overlap of LFWFs of the j = 1, 2, . . . , n− 1
spectator constituents [167]. Suppose that the charged parton n is the active constituent struck by the current, and the
quarks i = 1, 2, . . . , n − 1 are spectators. We substitute (2.35) in the DYW formula (6.9). Integration over k⊥ phase space
gives us n− 1 delta functions to integrate over the n− 1 intermediate transverse variables with the result

FM(q2) =

n

n−1
j=1


dxjd2b⊥j exp


iq⊥ ·

n−1
j=1

xjb⊥j
 ψn/M(xj, b⊥j)

2 , (6.10)

corresponding to a change of transverse momentum xjq⊥ for each of the n − 1 spectators. This is a convenient form for
comparison with AdS results, since the form factor is expressed in terms of the product of light-front wave functions with
identical variables.

6.1.3. Light-front holographic mapping
We now have all the elements to establish a connection of the AdS and light-front formulas. For definiteness we shall

consider the π+ valence Fock state |ud̄⟩ with charges eu = 2
3 and ed̄ =

1
3 . For n = 2, there are two terms which contribute

to Eq. (6.10). Integrating over angles and exchanging x↔ 1− x in the second integral we find

Fπ+(q
2) = 2π

 1

0

dx
x(1− x)


ζdζ J0


ζq


1− x
x

 ψud̄/π (x, ζ )
2 , (6.11)

where ζ 2
= x(1− x)b2

⊥
and Fπ+(0) = 1.

We now compare this result with the electromagnetic form factor in AdS. Conserved currents are not renormalized and
correspond to five-dimensional massless fields propagating in AdS5 space according to the relation (µR)2 = (∆− p)(∆−
4 + p) for a p-form field in AdS space (I.22). This corresponds for µ = 0 and p = 1 to either ∆ = 3 or 1, the canonical
dimensions of an EM current and the massless gauge field respectively. The equation of motion describing the propagation
of the electromagnetic field in AdS space is obtained from the action

Sem =


ddx dz
√
g gMM ′ gNN ′FMN FM ′N ′ , (6.12)

29 Notice that γ+ conserves the spin component of the struck quark (Appendix B), and thus the current J+ only couples Fock states with the same number
of constituents.
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with the covariant field tensor FMN = ∂MAN − ∂NAM . It gives for V (Q 2, z) (Eq. (6.4)) the wave equation
d2

dz2
−

1
z

d
dz
− Q 2


V

Q 2, z


= 0, (6.13)

where Q 2
= −q2 > 0. Its solution, subject to the boundary conditions (6.5), is

V (Q 2, z) = zQK1(zQ ), (6.14)

which decays exponentially for large values ofQ 2: here K1(Qz) ∼


π
2Qz e

−Qz .30 Using the integral representation of V (Q 2, z)
from (G.17)

V (Q 2, z) =
 1

0
dx J0


zQ


1− x
x


, (6.15)

we can write the AdS electromagnetic form-factor as

F(Q 2) = R3
 1

0
dx


dz
z3

J0


zQ


1− x
x


Φ2(z). (6.16)

To comparewith the light-front QCD form factor expression (6.11) we use the expression of the light-front wave function
(2.40)

ψ(x, ζ , ϕ) = eiLϕX(x)
φ(ζ )
√
2πζ

, (6.17)

which we use to factor out the longitudinal and transverse modes φ(ζ ) and X(x) in (6.11). Both expressions for the form
factor have to be identical for arbitrary values of Q . We obtain the result [75]

φ(ζ ) =


R
ζ

−3/2
Φ(ζ ) and X(x) =


x(1− x), (6.18)

where we identify the transverse impact LF variable ζ with the holographic variable z, z → ζ =
√
x(1− x)|b⊥|.31 Thus,

in addition of recovering the expression found in Section 5, which relates the transverse mode φ(ζ ) in physical space–time
to the field Φ(z) in AdS space from the mapping to the LF Hamiltonian equations, we find a definite expression for the
longitudinal LF mode X(x).32 The identical result follows from mapping the matrix elements of the energy–momentum
tensor [81] (see Appendix E).

Although the expression for the form-factor (6.6) is derived in the simple hard-wall model, the power falloff for large
Q 2 is model independent. This follows from the fact that the leading large-Q 2 behavior of form factors in AdS/QCD arises
from the small z ∼ 1/Q kinematic domain in AdS space. According to the AdS/CFT duality (see Section 1), this corresponds
to small distances xµxµ ∼ 1/Q 2 in physical space–time, the domain where the current matrix elements are controlled
by the conformal twist-dimension τ of the hadron’s interpolating operator. In the case of the front form, where x+ = 0,
this corresponds to small transverse separation xµxµ = −x2⊥. In general, the short-distance behavior of a hadronic state is
characterized by its twist (dimension minus spin) τ = ∆− σ , where σ is the sum over the constituent’s spin σ =

n
i=1 σi.

Twist is also equal to the number of partons τ = n.33
In a high-energy electron–proton elastic collision experiment, for example, the photon propagation is near to the light-

cone, and thus its short space-like interval maps to the boundary of AdS near z = 0 (Section 1). This means that the photon
propagation function V (Q 2, z) is strongly suppressed in the AdS interior. At large enough Q 2 the important contribution to
the integral in (6.6) is from the asymptotic boundary region near z ∼ 1/Q where the function V (Q 2, z) has its important
support. At small z the string modes scale as Φ ∼ z∆, and the ultraviolet point-like power-scaling behavior (instead of a
soft collision amplitude) is recovered [55]

F(Q 2)→


Λ2

QCD

Q 2

∆−1
, (6.19)

30 This solution corresponds to a ‘‘free’’ EM current in physical space. Confined EM currents in AdS correspond to ‘‘dressed’’ currents in QCD. This will be
discussed in the next section.
31 Extension of the results to arbitrary n follows from the x-weighted definition of the transverse impact variable of the n− 1 spectator system given by
Eq. (2.47). In general the mapping relates the AdS densityΦ2(z) to an effective LF single particle transverse density [75].
32 It is interesting to notice that computations based on lattice QCD and rainbow-ladder truncation of Dyson–Schwinger equations of twist-two parton
distribution amplitudes give similar results for the longitudinal component X(x) [267,268].
33 For a hadronic state with relative orbital angular momentum L the twist is τ = n+ L.
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Fig. 6.1. Space-like electromagnetic pion form factor Fπ (q2). Continuous line: confined current, dashed line: free current. Triangles are the data compilation
from Baldini [271], boxes are JLAB data [272,273].

upon the substitution∆→ n.
It is remarkable that the QCD dimensional counting rules [56–58] are also a key feature of nonperturbative models [55]

based on the gauge/gravity duality. If fact, the phenomenological success of dimensional scaling laws implies that QCD is a
strongly coupled conformal theory at moderate, but not asymptotic, energies.34 In hard exclusive scattering there is little
sign of the logarithmic running of the QCD coupling from QCD perturbative predictions [159]. For example, the measured
proton Dirac form factor F1 scales as Q 4F1(Q 2) ≃ constant, up to Q 2

≤ 35GeV2 [269]. This puzzling behavior could have
an explanation in the fact that in exclusive reactions the virtuality of the gluons exchanged in the hard QCD processes is
typically much less than the momentum transfer scale Q , since several gluons share the total momentum transfer, and
thus the Q 2-independence of the strong coupling is tested in the conformal IR window. Since the simple nonperturbative
counting rules (6.19) encode the conformal aspects of the theory, the holographic predictions seem to explain quite well the
exclusive data in this large, but not asymptotically large energy range.

The results for the elastic form factor described above correspond to a ‘free’ current propagating on AdS space. It is dual
to the electromagnetic point-like current in the Drell–Yan–West light-front formula [78,79] for the pion form factor. The
DYW formula is an exact expression for the form factor. It is written as an infinite sum of an overlap of LF Fock components
with an arbitrary number of constituents. This allows one to map state-by-state to the effective gravity theory in AdS space.
However, this mapping has the shortcoming that the nonperturbative pole structure of the time-like form factor does not
appear in the time-like region unless an infinite number of Fock states is included. Furthermore, the moments of the form
factor at Q 2

= 0 diverge term-by-term; for example one obtains an infinite charge radius [270] as shown in Fig. 6.1.35 In
fact, infinite slopes also occur in chiral theories when coupling to a massless pion.
Pion form factor with confined AdS current

The description of form factors in AdS has the feature that the time-like pole structure is incorporated in the EM current
when the current is ‘confined’, i.e., the EM current is modified as it propagates in an IR modified AdS space to incorporate
confinement. In this case, the confined current in AdS is dual to a hadronic EM current which includes any number of virtual
qq̄ components. The confined EM current also leads to finite moments at Q 2

= 0, since a hadronic scale is incorporated in
the EM current. This is illustrated in Fig. 6.1 for the EM pion form factor.

As a specific example, consider the hard-wall model with a wall at a finite distance z = 1/ΛQCD.36 The gauge-invariant
boundary conditions for the confined EM field lead to the expression [274]

V (Q 2, z) = z Q

K1(z Q )+ I1(z Q )

K0(Q/ΛQCD)

I0(Q/ΛQCD)


, (6.20)

for the bulk-to-boundary propagator, where an infinite series of time-like poles in the confined AdS current corresponds
to the zeros of the Bessel function I0(Q/ΛQCD). This is conceptually very satisfying, since by using the relation Jα(ix) =
eiαπ/2Iα(x) for the modified Bessel function Iα(x), it follows that the poles in (6.20) are determined by the dimension 2
solution of the hadronic wave equation for L = 0, even if the EM current itself scales with dimension 3. Thus, the poles in

34 For small z it follows that φJ ∼ z1/2+L and thus from (5.1)ΦJ ∼ z3/2−JφJ ∼ z2+L−J , in agreement with the pion twist τ = n+ L for n = 2.
35 This deficiency is solved by taking into account finite quark masses. In this case the charge radius becomes finite for free currents in the DYW formula.
36 A logarithmically divergent result for the pion radius does not appear in the hard-wall model if one uses Neumann boundary conditions for the EM
current. In this case the EM current is confined and ⟨r2π ⟩ ∼ 1/Λ2

QCD .
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the current correspond to the mass spectrum of radial excitations computed in the hard-wall model. Notice that the scaling
dimension 2 corresponds to leading twist τ = 2 quark–antiquark bound state, whereas the scaling dimension 3 corresponds
to the naive conformal dimension of the EM conserved current. The downside of the hard-wall model, however, is that the
spectrum of radial excitations in this model behaves as M ∼ 2n, and thus this model is not able to describe correctly the
radial vector-meson excitations, and consequently neither the time-like form factor data. The observed ρ vector-meson
radial trajectory has instead the Regge behavior M2

∼ n. In the limit for large Q 2 we recover the ‘free’ current propagating
in AdS, given by (6.14). A discussion of pion and vector form factors in the hard-wall model is given in Refs. [274–279].

6.1.4. Soft-wall form factor model
We can extend the computation of form factors with a confined current for the soft wall model. For a general dilaton

profile one need to introduce a z-dependent AdS effective coupling e5(z). This procedure does not affect gauge symmetry
in asymptotic physical Minkowski space, and generally for any fixed value of the holographic variable z. As it turns out, the
functional dependence on z is determined by the requirements of charge conservation in Minkowski space at Q 2

= 0. This
is analogous to the introduction of a z-dependent mass in (4.16), which was fixed by the requirement of a separation of
dynamical and kinematical features. Following the same steps as for the hard-wall model discussed above, we find for the
pion form factor

eF(Q 2) = R3


dz
z3

eϕ(z)e5(z)V (Q 2, z)Φ2(z), (6.21)

with boundary conditions

1
e

lim
Q 2→0

e5(z)V (Q 2, z) =
1
e

lim
z→0

e5(z)V (Q 2, z) = 1. (6.22)

To find the behavior of the bulk-to-boundary propagator we consider the dilaton-modified action for the EM field in AdS

Sem =


ddx dz
√
geϕ(z) gMM ′ gNN ′FMN FM ′N ′ . (6.23)

Its variation gives the wave equation
d2

dz2
−


1
z
− ϕ′(z)


d
dz
− Q 2


V

Q 2, z


= 0. (6.24)

For the harmonic dilaton profile ϕ(z) = λz2 its non-normalizable solution is the EM bulk-to-boundary propagator
[76,280] (see Appendix G.1)

V (Q 2, z) = e(−|λ|−λ) z
2/2 Γ


1+

Q 2

4|λ|


U


Q 2

4|λ|
, 0, |λ|z2


(6.25)

where U(a, b, c) is the Tricomi confluent hypergeometric function

Γ (a)U(a, b, z) =

∞

0
e−zt ta−1(1+ t)b−a−1dt. (6.26)

The current (6.25) has the limiting values V (0, z) = e(−|λ|−λ) z
2/2 and V (Q 2, 0) = 1.

We can determine the z-dependence of the AdS coupling e5 from charge conservation, F(0) = 1, in the limit Q → 0
using (6.22). This requirements fixes for λ < 0 the z-dependence of e5(z) = e independent of z, and for λ > 0 to e5 = e eλz

2
.

Thus the effective current is

Ṽ (Q 2, z) = Γ

1+

Q 2

4|λ|


U


Q 2

4|λ|
, 0, |λ|z2


, (6.27)

where Ṽ (z) = 1
e e5V (z). Themodified current Ṽ (Q 2, z), Eq. (6.27), has the same boundary conditions (6.5) as the free current

(6.14), and reduces to (6.14) in the limit Q 2
→∞ [76].

The soft-wall model of confinement [61] also has important analytical properties which are particularly useful for
the study of transition amplitudes. As shown in Ref. [280] the bulk-to-boundary propagator (6.27) has the integral
representation

Ṽ (Q 2, z) = |λ|z2
 1

0

dx
(1− x)2

xQ
2/4|λ|e−|λ|z

2x/(1−x). (6.28)
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Since the integrand in (6.28) contains the generating function of the associated Laguerre polynomials

e−|λ|z
2x/(1−x)

(1− x)k+1
=

∞
n=0

Lkn(|λ|z
2)xn, (6.29)

Ṽ (Q 2, z) can thus be expressed as a sum of poles [280]

Ṽ (Q 2, z) = 4λ2z2
∞
n=0

L1n(|λ|z
2)

M2
n + Q 2

, (6.30)

withM2
n = 4|λ|(n+ 1).

For negative values of Q 2 (time-like), the poles of the dressed current (6.30) occur at −Q 2
= 4|λ|(n + 1). On the other

hand, the poles of the observed vector mesons with quantum numbers J = 1, L = 0 according to the bound-state equation
(5.8), should occur at −Q 2

= 4|λ|(n + 1
2 ).

37 From here on, we will shift the vector mesons mass poles to their physical
twist-2 location to obtain ameaningful comparisonwithmeasurements.When this is done, the agreement with data is very
good [176].

Let us now compute the elastic EM form factor corresponding to the lowest radial n = 0 and orbital L = 0 state for an
arbitrary twist τ described by the hadronic state

Φτ (z) =


2

Γ (τ − 1)
κτ−1zτ e−κ

2z2/2, (6.31)

with normalization.

⟨Φτ |Φτ ⟩ =


dz
z3
Φτ (z)2 = 1. (6.32)

This agrees with the fact that the field Φτ couples to a local hadronic interpolating operator of twist τ defined at the
asymptotic boundary of AdS space, and thus the scaling dimension ofΦτ is τ . For convenience we have redefined the wave
function to absorb the dilaton profile. To compute the form factor

Fτ (Q 2) = R3


dz
z3

Ṽ (Q 2, z)Φ2
τ (z), (6.33)

we substitute in (6.33) the field (6.31) and the bulk-to-boundary propagator (6.28). Upon integration over the variable z we
find the result [76]

Fτ (Q 2) =

 1

0
dx ρτ (x,Q ), (6.34)

where

ρτ (x,Q ) = (τ − 1) (1− x)τ−2 x
Q2

4κ2 . (6.35)

The integral (6.34) can be expressed in terms of Gamma functions

Fτ (Q 2) = Γ (τ )
Γ


1+ Q 2

4κ2


Γ


τ + Q 2

4κ2

 . (6.36)

For integer twist-τ (the number of constituents N) for a given Fock component we find [76]

Fτ (Q 2) =
1

1+ Q 2

M2
ρ


1+ Q 2

M2
ρ′


· · ·


1+ Q 2

M2
ρτ−2

 , (6.37)

which is expressed as a τ − 1 product of poles along the vector meson Regge radial trajectory. For a pion, for example, its
lowest Fock state – the valence state – is a twist-2 state, and thus the form factor is the well knownmonopole form [76]. For
the proton, the minimal Fock state is a twist-3 state, and the corresponding form factor is the product of two monopoles,
corresponding to the two lowest vector meson states. It is important to notice that even if the confined EM dressed current
(6.30) contains an infinite number of poles, the actual number of poles appearing in the expression for the elastic form

37 For a negative dilaton profile [61] the vector meson radial trajectory corresponds to the quantum numbers J = L = 1 and thus the poles are located at
−Q 2

= 4|λ|(n+ 1). This identification, however, is not compatible with light-front QCD.
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factor (6.37) is determined by the twist of the Fock component: the resulting form factor is given by a product of N − 1
poles for an N-component Fock state. The remarkable analytical form of (6.37), expressed in terms of the lowest vector
meson mass and its radial excitations, incorporates not only the correct leading-twist scaling behavior expected from the
constituent’s hard scattering with the photon but also vector meson dominance (VMD) at low energy [281] and a finite
mean-square charge radius ⟨r2⟩ ∼ 1

λ
.38 The light-front holographic approach extends the traditional Sakurai form of vector

meson dominance [281] to a product of vector poles. Since the LF holographic amplitude encodes the power-law behavior
for hard-scattering [56–58], the result (6.37) can be extended naturally to high-energies, thus overcoming the limitations
of the original VMD model [282].39

Effective wave function from holographic mapping of a current
It is also possible to find a precise mapping of a confined EM current propagating in a warped AdS space to the light-

front QCD Drell–Yan–West expression for the form factor. In this case we find an effective LFWF, which corresponds to a
superposition of an infinite number of Fock states generated by the ‘‘dressed’’ confined current. For the soft-wall model this
mapping can be done analytically.

The form factor in light-front QCD can be expressed in terms of an effective single-particle density [167]

F(Q 2) =

 1

0
dx ρ(x,Q ), (6.38)

where ρ(x,Q ) = 2π

∞

0 b db J0(bQ (1 − x))|ψ(x, b)|2, for a two-parton state (b = |b⊥|). By direct comparison with (6.35)
for arbitrary values of Q 2 we find the effective two-parton LFWF [284]

ψeff (x, b⊥) = κ
(1− x)
π ln( 1x )

e−
1
2 κ

2b2
⊥
(1−x)2/ ln( 1x ), (6.39)

in impact space. The momentum space expression follows from the Fourier transform of (6.39) and it is given by [284]

ψeff (x, k⊥) = 4π


ln
 1
x


κ(1− x)

e−k
2
⊥
/2κ2(1−x)2 ln


1
x


. (6.40)

The effective LFWFencodes nonperturbative dynamical aspects that cannot be determined froma term-by-termholographic
mapping, unless one includes an infinite number of terms. However, it has the correct analytical properties to reproduce
the bound state vector meson pole in the pion time-like EM form factor. Unlike the ‘‘true’’ valence LFWF, the effective LFWF,
which represents a sum of an infinite number of Fock components in the EM current, is not symmetric in the longitudinal
variables x and 1− x for the active and spectator quarks, respectively.

Higher Fock components and form factors
One can extend the formalism in order to examine the contribution of higher-Fock states in the nonperturbative analytic

structure of time-like hadronic form factors. In fact, as we have shown above for the soft-wall model, there is a precise non-
trivial relation between the twist (number of components) of each Fock state in a hadron and the number of poles from the
hadronized qq̄ components in the electromagnetic current inside the hadron. In general, the pion state is a superposition of
an infinite number of Fock components |N⟩, |π⟩ =


N ψN |N⟩, and thus the full pion form factor is given by

Fπ (q2) =

τ

Pτ Fτ (q2), (6.41)

since the charge is a diagonal operator. Normalization at Q 2
= 0, Fπ (0) = 1, implies that


τ Pτ = 1 if all possible states

are included.
Conventionally the analysis of form factors is based on the generalized vector meson dominance model

Fπ (q2) =

λ

Cλ
M2
λ

M2
λ − q2

, (6.42)

with a dominant contribution from the ρ vector meson plus contributions from the higher resonances ρ ′, ρ ′′, ρ ′′′, . . . ,
etc. [285]. Comparisonwith (6.41) and (6.37) allowus to determine the coefficients Cλ in terms of the probabilities Pτ for each
Fock state and the vector meson masses M2

n . However, no fine tuning of the coefficients Cλ is necessary in the holographic
LF framework, since the correct scaling is incorporated in the model.

38 In contrast, the computation with a free current gives the logarithmically divergent result ⟨r2⟩ ∼ 1
λ
ln


4κ2

Q 2

 
Q 2→0

.
39 Other extensions are discussed for example in Ref. [283].
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6.1.5. Time-like form factors in holographic QCD
The computation of form factors in the time-like region is in general a complex task. For example, lattice results of

Minkowski observables, such as time-like hadronic form factors cannot be obtained directly fromnumerical Euclidean-space
lattice simulations, and Dyson–Schwinger computations are often specific to the space-like region. Typically models based
on hadronic degrees of freedom involve sums over a large number of intermediate states and thus require a large number of
hadronic parameters [285–289]. In contrast, as we shall show below for an specific example, the analytical extension of the
holographic model to s > 4m2

π encodes most relevant dynamical aspects of the time-like form factor, including the relative
phases between different vector-meson resonance contributions.

In the strongly coupled semiclassical gauge/gravity limit, hadrons have zero widths and are stable, as in the NC → ∞

limit of QCD.40 In a realistic theory, the resonances have widths due to their mixing with the continuum, e.g., two pions. As
a practical approach, we modify (6.37) by introducing finite widths in the expression for Fπ (s) according to

Fτ (s) =
M2
ρM

2
ρ′
· · ·M2

ρτ−2
M2
ρ − s− i

√
sΓρ(s)

 
M2
ρ′
− s− i

√
sΓρ′(s)


· · ·


M2
ρτ−2
− s− i

√
sΓρτ−2(s)

 , (6.43)

with normalization Fτ (0) = 1.
The effect ofmultiparticle states coupled to ρ-resonances is to introduce an s-dependentwidthΓ (s). Themodifiedwidth

include the kinematical factors from the mixing of the vector mesons with the continuum — which occurs mainly to pion
pairs, although higher multiparticle states also occur at large s.41

A simple holographic model
In holographic QCD, the Fock states of hadrons can have any number of extra qq̄ pairs created by the confining potential;

however, there are no constituent dynamical gluons [51]. This result is consistent with the flux-tube interpretation of
QCD [49] where soft gluons interact strongly to build a color confining potential for quarks. Gluonic degrees of freedom only
arise at high virtuality and gluons with smaller virtuality are sublimated in terms of the effective confining potential. This
unusual property of QCDmay explain the dominance of quark interchange [292] over quark annihilation or gluon exchange
contributions in large-angle elastic scattering [293]. In fact, empirical evidence confirming gluonic degrees of freedom at
small virtualities or constituent gluons is lacking [203,294].

In a complete treatment the unstable hadron eigenvalues and widths should emerge due to mixing with the continuum.
This is a formidable dynamical problem; thus to illustrate the relevance of higher Fock states in the analytic structure of the
pion form factor, wewill consider a simple phenomenologicalmodelwhere thewidths are constant and basically taken from
the Particle Data Group and the probabilities are taken as adjustable parameters. We will consider a simplified model [295]
where we only include the first two components in a Fock expansion of the LF pion wave function

|π⟩ = ψqq̄/π |qq̄⟩τ=2 + ψqq̄qq̄|qq̄qq̄⟩τ=4 + · · · , (6.44)

and no constituent dynamical gluons [51]. The JPC = 0−+ twist-2 and twist-4 states are created by the interpolating
operators O2 = q̄γ+γ5q and O4 = q̄γ+γ5qq̄q. Up to twist-4 the corresponding expression for the pion form factor is

Fπ (q2) = (1− γ )Fτ=2(q2)+ γ Fτ=4(q2), (6.45)

where we have labeled the twist-4 probability Pqq̄qq̄ = γ , the admixture of the |qq̄qq̄⟩ state.
The predictions of the light-front holographic model up to twist-4 (6.45) for the space-like and time-like pion elastic

form factor are shown in Fig. 6.2. We choose the values Γρ = 149 MeV, Γρ′ = 360 MeV and Γρ′′ = 160 MeV. The chosen
values for the width of the ρ ′ and ρ ′′ are on the lower side of the PDG values listed in Ref. [16]. The results correspond to the
probability Pqq̄qq̄ = 12.5%. The values of Pqq̄qq̄ (and the corresponding widths) are inputs in the model. We use the value of
√
λ = 0.5482 GeV determined from the ρ mass:

√
λ = Mρ/

√
2, and themasses of the radial excitations follow from setting

the poles at their physical locations, M2
→ 4λ(n + 1/2). The main features of the pion form factor in the space-like and

time-like regions are well described by the same physical picture with a minimal number of parameters. The value for the
pion radius is ⟨rπ ⟩ = 0.644 fm, compared with the experimental value ⟨rπ ⟩ = 0.672±0.008 fm from Ref. [16]. Since we are
interested in the overall behavior of the model, we have not included ω − ρ mixing and kinematical threshold effects. This
simple model, however, reproduces quite well the space- and time-like structure in the momentum transfer regime where
the model is valid: this is, up to the second radial excitation of the ρ, s ≃ M2

ρ′′
≃ 3 GeV2 in the time like region (which

covers the Belle data). Above this energy interference with higher twist contributions and a detailed study of the effects of
the mixing of the vector mesons with the continuum should be incorporated, as well as the effects of s-dependent widths
from multiparticle states coupled to the ρ-resonances.

The analytical structure of the holographic model encodes essential dynamical aspects of the pion form factor, including
its pole and relative phase dependence as derived from multiple vector meson resonances, leading-twist scaling at high

40 In Refs. [76,284] the computation of the pion leptonic decay constant in LF holography is examined. A computation of decay constants in the framework
of bottom-up AdS/QCD models will be given in Section 5. See also [290] for a recent computation of the decay constant of the pion and its excited states.
41 An alternative form given by Gounaris and Sakurai is often used [291].



S.J. Brodsky et al. / Physics Reports ( ) – 51

Fig. 6.2. The structure of the space-like (s = −Q 2 < 0) and time-like (s = q2 > 4m2
π ) pion form factor in light-front holographic QCD for a truncation of

the pionwave function up to twist four. The space-like data are taken from the compilation fromBaldini et al. [271] (black) and JLAB data [272,273] (red and
green). The time-like data are from the precise measurements from KLOE [296–298] (dark green and dark red), BABAR [299,300] (black) and BELLE [301]
(red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6.3. Scaling predictions for Q 2Fπ (Q 2). The space-like data is from the compilation of Baldini et al. (black) [271] and JLAB data [272,273] (red and
green). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

virtuality, as well as the transition from the hard-scattering domain to the long-range confining hadronic region. The scaling
behavior in the space-like region is illustrated in Fig. 6.3 where we plot Q 2Fπ (Q 2).

At very large time-like momentum transfer we expect that higher twist contributions and the effects of the mixing with
the continuum are not important. This follows from the structure of the hadronic form-factor Fτ (6.37), which is the product
of (N − 1)-poles for the twist τ = N component in the light-front Fock expansion of the wave function. As a result, the
resonant contributions for twistN+1 is decoupled by a factor 1/Q 2 for largeQ 2, compared to the twistN contribution. Thus
at large time-like momentum transfer, the resonant structure should be less and less visible and melts to a smooth curve.
This is indeed the case for the BABAR data which is well reproduced above s ≃ 6 GeV2 by the leading twist-2 amplitude.
However, a recent measurement from CLEO [302] at s = 14.2 and 17.4 GeV2 gives results significantly higher than those
expected from QCD scaling considerations. One can also extend the LF holographic approach to describe other processes,
as for example the photon-to-meson transition form factors, such as γ ∗γ → π0, a reaction which has been of intense
experimental and theoretical interest.42

6.2. Nucleon electromagnetic form factors

Proton and neutron electromagnetic form factors are among the most basic observables of the nucleon, and thus central
for our understanding of the nucleon’s structure and dynamics.43 In general two form factors are required to describe the

42 See for example Ref. [284] and references therein.
43 For a recent review see Ref. [303].
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elastic scattering of electrons by spin- 12 nucleons, the Dirac and Pauli form factors, F1 and F2

⟨P ′|Jµ(0)|P⟩ = u(P ′)

γ µF1(q2)+

iσµνqν

2M
F2(q2)


u(P), (6.46)

where q = P ′− P . In the light-front formalism one can identify the Dirac and Pauli form factors from the LF spin-conserving
and spin-flip current matrix elements of the J+ current [80]:


P ′,↑

 J+(0)2P+

 P,↑ = F1

q2

, (6.47)

and 
P ′,↑

 J+(0)2P+

 P,↓ = −

q1 − iq2


2M

F2

q2

. (6.48)

On the higher dimensional gravity theory on the bulk, the spin-non-flip amplitude for the EM transition corresponds to
the coupling of an external EM field AM(x, z) propagating in AdS with a fermionic modeΨP(x, z), given by the left-hand side
of the equation below

d4x dz
√
g Ψ̄P ′(x, z) eAM ΓA AM(x, z)ΨP(x, z) ∼ (2π)4δ4


P ′ − P − q


ϵµu(P ′)γ µF1(q2)u(P), (6.49)

where eAM =
 R
z


δAM is the vielbein with curved space indices M,N = 0, . . . , 4 and tangent indices A, B = 0, . . . , 4. The

expression on the right-hand side represents the Dirac EM form factor in physical space–time. It is the EM spin-conserving
matrix element (6.47) of the local quark current Jµ = eqq̄γ µq with local coupling to the constituents. In this case one can
also show that a precise mapping of the J+ elements can be carried out at fixed LF time, providing an exact correspondence
between the holographic variable z and the LF impact variable ζ in ordinary space–time with the result [138]

G±(Q 2) = g±R4


dz
z4

V (Q 2, z)Ψ 2
±
(z), (6.50)

for the components Ψ+ and Ψ− with angular momentum Lz = 0 and Lz = +1 respectively. The effective charges g+ and g−
are determined from the spin-flavor structure of the theory.

A precise mapping for the Pauli form factor using light-front holographic methods has not been carried out. To study
the spin-flip nucleon form factor F2 (6.48) using holographic methods, Abidin and Carlson [180] propose to introduce a
non-minimal electromagnetic coupling with the ‘anomalous’ gauge invariant term

d4x dz
√
g Ψ̄ eAM eBN [ΓA,ΓB] FMNΨ , (6.51)

in the five-dimensional action, since the structure of (6.49) can only account for F1. Although this is a practical avenue, the
overall strength of the new term has to be fixed by the static quantities and thus some predictivity is lost.

Light-front holographic QCD methods have also been used to obtain hadronic momentum densities and generalized
parton distributions (GPDs) of mesons and nucleons in the zero skewness limit [304–307]. GPDs are nonperturbative,
and thus holographic methods are well suited to explore their analytical structure.44 LF holographic methods have been
used to model transverse momentum dependent (TMD) parton distribution functions and fragmentation functions [310].
LF holography can also be used to study the flavor separation of the elastic nucleon form factors [311] which have been
determined recently up to Q 2

= 3.4 GeV2 [312]. One can also use the holographic framework to construct light-front wave
functions and parton distribution functions (PDFs) by matching quark counting rules [313]. Recently, models of nucleon
and flavor form factors and GPDs has been discussed using LF holographic ideas and AdS/QCD [314–317]. The Dirac and
Pauli weak neutral nucleon form factors have also been examined using the framework of light-front holographic QCD in
Ref. [318]. LF holography has also been used to describe nucleon transition form factors, such as γ ∗N → N∗ [319].45

6.2.1. Computing nucleon form factors in light-front holographic QCD
In computing nucleon form factors we should impose the asymptotic boundary conditions by the leading fall-off of the

form factors to match the twist of the hadron’s interpolating operator, i.e. τ = 3, to represent the fact that at high energies
the nucleon is essentially a system of 3 weakly interacting partons. However, as discussed at the end of Section 5, at low
energies the strongly correlated bound state of n quarks behaves as a system of an active quark vs. the n − 1 spectators.

44 A computation of GPDs and nucleon structure functions at small x using gravity duals has been carried out in Refs. [308,309] respectively.
45 A computation of nucleon transition form factors has been carried out in the framework of the Sakai–Sugimoto model in Refs. [320,321]. Baryon form
factors have also been computed using the SS framework in Refs. [322,323].
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This means, for example, that for a proton the nonperturbative bound state behaves as a quark–diquark system, i.e., a twist-
2 system. In this simple picture, at large momentum transfer, or at small distances, where the cluster is resolved into its
individual constituents, the baryon is governed by twist-3, whereas in the long-distance nonperturbative region by twist-2.
Thus, at the transition region the system should evolve from twist-3 to twist-2. In practice, since the behavior of the form
factors at very low energy is much constrained by its normalization, we will use a simple approximation where the nucleon
form factor is twist-3 at all momentum transfer scales (In fact, twist-3 for the Dirac form factor, and twist-4 for the Pauli
form factor to account for the L = 1 orbital angular momentum). As in the case of the pion form factor described in the
previous section, the vector-meson poles should be shifted to their physical locations for a meaningful comparison with
data. With this limitations in mind, we describe below a simple model approximation to describe the space-like nucleon
form factors.

In order to compute the individual features of the proton and neutron form factors one needs to incorporate the
spin-flavor structure of the nucleons, properties which are absent in models of the gauge/gravity correspondence. The
spin–isospin symmetry can be readily included in light-front holography by weighting the different Fock-state components
by the charges and spin-projections of the quark constituents; e.g., as given by the SU(6) spin-flavor symmetry. We label
by Nq↑ and Nq↓ the probability to find the constituent q in a nucleon with spin up or down respectively. For the SU(6)wave
function [260] we have

Nu↑ =
5
3
, Nu↓ =

1
3
, Nd↑ =

1
3
, Nd↓ =

2
3
, (6.52)

for the proton and

Nu↑ =
1
3
, Nu↓ =

2
3
, Nd↑ =

5
3
, Nd↓ =

1
3
, (6.53)

for the neutron. The effective charges g+ and g− in (6.50) are computed by the sum of the charges of the struck quark
convoluted by the corresponding probability for the Lz = 0 and Lz = +1 components Ψ+ and Ψ− respectively. We find
g+p = 1, g−p = 0, gn

+
= −

1
3 and gn

−
=

1
3 . The nucleon Dirac form factors in the SU(6) limit are thus given by

F p
1 (Q

2) = R4


dz
z4

V (Q 2, z)Ψ 2
+
(z), (6.54)

F n
1 (Q

2) = −
1
3
R4


dz
z4

V (Q 2, z)

Ψ 2
+
(z)− Ψ 2

−
(z)

, (6.55)

where F p
1 (0) = 1 and F n

1 (0) = 0.
In the soft-wall model the plus and minus components of the leading twist-3 nucleon wave function are

Ψ+(z) =

√
2κ2

R2
z7/2e−κ

2z2/2, Ψ−(z) =
κ3

R2
z9/2e−κ

2z2/2, (6.56)

where we have absorbed the dilaton exponential dependence by a redefinition of the AdS wave function, and the bulk-to-
boundary propagator V (Q 2, z) is given by (6.28). The results for F p,n

1 follow from the analytic form (6.37) for any twist τ . We
find

F p
1 (Q

2) = F+(Q 2), (6.57)

and

F n
1 (Q

2) = −
1
3


F+(Q 2)− F−(Q 2)


, (6.58)

where we have, for convenience, defined the twist-3 and twist-4 form factors

F+(Q 2) =
1

1+ Q 2

M2
ρ


1+ Q 2

M2
ρ′

 , (6.59)

and

F−(Q 2) =
1

1+ Q 2

M2
ρ


1+ Q 2

M2
ρ′


1+ Q 2

M2
ρ′′

 , (6.60)

with the multiple pole structure derived from the soft-wall dressed EM current propagating in AdS space. The results for
Q 4F p

1 (Q
2) and Q 4F n

1 (Q
2) are shown in Fig. 6.4. The value

√
λ = 0.548 GeV is determined from the ρ mass.
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Fig. 6.4. Light-front holographic predictions for Q 4F p
1 (Q

2) (left) and Q 4F n
1 (Q

2) (right) in the SU(6) limit.
Source: Data compilation from Diehl [269].

Fig. 6.5. Light-front holographic predictions for F p
2 (Q

2) (left) and F n
2 (Q

2) (right). The value of the nucleon anomalous magnetic moment χ is taken from
experiment.
Source: Data compilation from Diehl [269].

The expression for the elastic nucleon form factor F p,n
2 follows from (6.46) and (6.51).

F p,n
2 (Q 2) ∼


dz
z3
Ψ+(z)V (Q 2, z)Ψ−(z). (6.61)

Using the twist-3 and twist-4 nucleon soft-wall wave functions Ψ+ and Ψ− (6.56) we find

F p,n
2 (Q 2) = χp,nF−(Q 2), (6.62)

where the amplitude (6.61) has been normalized to the static quantities χp and χn and F−(Q 2) is given by (6.60). The
experimental values χp = 1.793 and χn = −1.913 are consistent with the SU(6) prediction [324] µP/µN = −3/2. In
fact (µP/µN)exp = −1.46, where µP = 1 + χp and µN = χn. The results for F p

2 (Q
2) and F n

2 (Q
2) are shown in Fig. 6.5. The

vector meson masses are given byM2
= 4λ


n+ 1

2


with the value

√
λ = 0.548 GeV obtained from the ρ mass.

We compute the charge andmagnetic root-mean-square (rms) radius from the usual electric andmagnetic nucleon form
factors

GE(q2) = F1(q2)+
q2

4M2
F2(q2) (6.63)

and

GM(q2) = F1(q2)+ F2(q2). (6.64)

Using the definition

⟨r2⟩ = −
6

F(0)
dF(Q 2)

dQ 2


Q 2=0

, (6.65)

we find the values

⟨rE⟩p = 0.802 fm,


⟨r2M⟩p = 0.758 fm, ⟨r2E ⟩n = −0.10 fm2 and


⟨r2M⟩n = 0.768 fm, compared with the

experimental values

⟨rE⟩p = (0.877 ± 0.007) fm,


⟨r2M⟩p = (0.777 ± 0.016) fm, ⟨r2E ⟩n = (−0.1161 ± 0.0022) fm2 and
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⟨r2M⟩n = (0.862 ± 0.009) fm from electron–proton scattering experiments [16].46 The muonic hydrogen measurement

gives

⟨rE⟩p = 0.84184(67) fm from Lamb-shift measurements [325].47

Chiral effective theory predicts that the slopes of the form factors are singular for zero pion mass. For example, the slope
of the Pauli form factor of the proton at q2 = 0 computed by Beg and Zepeda diverges as 1/mπ [326]. This result comes
from the triangle diagram γ ∗ → π+π− → pp̄. One can also argue from dispersion theory that the singular behavior of
the form factors as a function of the pion mass comes from the two-pion cut. Lattice theory computations of nucleon form
factors require a strong dependence at small pion mass to extrapolate the predictions to the physical pion mass [327]. The
two-pion calculation [326] is a Born computation which probably does not exhibit vector dominance. To make a reliable
computation in the hadronic basis of intermediate states one evidently has to include an infinite number of states. On the
other hand, divergences do not appear in light-front holographic QCD even for massless pions when we use the dressed
current. In fact, the holographic analysis with a dressed EM current in AdS generates a nonperturbative multi-vector meson
pole structure.48

7. Other bottom-up and top-down holographic models

Here we review some of the other holographic approaches to hadronic physics, and after discussing generic features
of these models we focus on particular top-down and bottom-up models based on chiral symmetry breaking. Top-down
models are derived from brane configurations in string theory, while bottom-up models, like Light Front Holographic QCD,
are more phenomenological and are not restricted by the constraints of string theory-based models. All holographic QCD
models include degrees of freedom which are identified with Standard Model hadrons via their quantum numbers, and
predictions of QCD observables may be compared to experiment and to other models, often with remarkable quantitative
success accurate to within the 10%–15% level.

By now there are enough examples of gauge theories with established gravity duals that a dictionary exists
between features of the gauge theory and corresponding properties of the higher-dimensional gravity dual. The AdS/CFT
correspondence relates operators in the lower-dimensional theory to fields in the higher-dimensional dual theory [22].
The quantum numbers and conformal dimensions of the gauge theory operators dictate the nature of the corresponding
fields [27,28]. Global symmetries in the 3 + 1 dimensional theory become gauge invariances of the 4 + 1 dimensional
theory. Hence, symmetry currents are related to gauge fields in the gravity dual. In the case of N = 4 Yang–Mills theory,
the SO(6)R-symmetry, which is a global symmetry of the theory, is associated with the SO(6) isometry of the five-sphere
in the AdS5 × S5 supergravity background. A Kaluza–Klein decomposition of the gravitational fluctuations on the 5-sphere
include spin-1 SO(6) gauge fields in the effective 4+ 1 dimensional theory on AdS5. In addition to R-symmetries, there may
be flavor symmetries due to the addition of probe branes [328], on which gauge fields propagate as fluctuations of open
strings ending on the probe branes. The 3+ 1 dimensional interpretation of the theory follows either from the behavior of
the solutions to the equations of motion near the boundary of AdS5, or from a further Kaluza–Klein decomposition of the
4+ 1 dimensional theory on AdS5. The boundary conditions do not allow massless Kaluza–Klein modes of the gauge fields
to propagate, so the gauge invariance is absent in the 3+ 1 dimensional effective theory while a global symmetry typically
remains. In AdS/QCD models, isospin is the remnant of a 4+ 1 dimensional gauge invariance with the same gauge group as
the isospin symmetry group. The notion that boundary conditions in an extra dimension may be responsible for breaking of
gauge invariances is also the basis of Higgslessmodels of electroweak symmetry breaking [329] and holographic technicolor
models [330–332].

In order to describe a confining theory the conformal invariance encoded in the isometries of AdS5 must be broken.
In bottom-up models the breaking of conformal symmetry is most easily modeled by way of a hard wall [32], so that the
space–time geometry becomes a slice of AdS5. The location of the hard wall determines the typical scale of hadronic masses
in hard-wall AdS/QCD models. While phenomenological AdS/QCD models often take the slice of AdS5 as the background
space–time, inmodels based on string theory the space–time geometry is dictated by the corresponding brane configuration
andmay be quite different from AdS5 [53,38,39]. A comparison of the predictions of AdS/QCDmodels in various space–time
backgrounds appears in Ref. [54]. The result of such a comparison is that, for a wide class of space–time geometries, naive
predictions of the classical 5Dmodels (ignoring quantum corrections) agree with experiment at the 10%–30% level, with the
slice of AdS5 often producing among the most accurate predictions. It is not known whether there is an underlying reason
for the phenomenological success of models based on the AdS geometry, though there are arguments based on decoupling
of high dimension operators at low energies [333] and suggestions of scale invariance in QCD at low energies [46] that may
help to understand this.

46 The neutron charge radius is defined by ⟨r2E ⟩n = −6
dGE (Q 2)

dQ 2


Q 2=0

.
47 Other soft and hard-wall model predictions of the nucleon rms radius are given, for example, in Refs. [180,306,307].
48 In the case of a free propagating current in AdS, we obtain logarithmic divergent results in the chiral limit.
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7.1. Bottom-up models

Bottom-up holographic QCDmodels, like Light-Front Holographic QCD described in previous Sections, are loosely related
to string-theory examples of holographic dualities, but are phenomenological and not constrained by the restrictions of
string theory. The flexibility in bottom-up model building allows for matching of various aspects of QCD, for example the
pattern of explicit and spontaneous chiral symmetry breaking and certain aspects of QCD at high energies (e.g. operator
product expansions [69,334]). Bottom-up models are motivated by the AdS/CFT dictionary relating properties of a non-
gravitational theory to a gravitational theory in one additional dimension. Interpolating operators for QCD states map into
fields in the higher-dimensional model. For example, as described in earlier sections, the rho mesons are created by the
SU(2) vector isospin current, so in order tomodel the spectrum of rhomesons the higher-dimensional model would include
a field with the appropriate quantum numbers to couple to the vector current, namely an SU(2) gauge field. For simplicity,
and motivated by conformal symmetry, the higher-dimensional space–time in bottom-up holographic models is typically
chosen to be Anti-de Sitter space, with metric that we repeat here:

ds2 =
R2

z2

ηµνdxµdxν − dz2


, (7.1)

where the z coordinate describes the extra spatial dimension. In order to break the conformal symmetry the AdS space–time
may be chosen to end at some value of z, as in hard-wall models, or else some field may have a non-vanishing background
with a dimensionful parameter, as in the soft-wall model. Both hard-wall and soft-wall models maintain the 3 + 1
dimensional Poincaré invariance of the space–time.

Consider an SU(2) gauge theory on the slice of AdS5 withmetric Eq. (7.1) between the boundary at z = 0 and an infrared
cutoff at z = zm. The 5-dimensional SU(2) gauge fields are related via the AdS/CFT correspondence to a 4-dimensional SU(2)
current which may be identified with the isospin current of QCD. The action for this theory is

S = −
1

4g2
5


d4x dz

√
g F a

MN F a
PQ gMPgNQ

= −
1

4g2
5


d4x dz

R
z


F a
µν F

a
ρσ η

µρηνσ − 2F a
µz F

a
νz η

µν


= −
1

4g2
5


d4x dz

R
z


F a
µν F

aµν
+ 2F a

zµ F a zµ , (7.2)

where F a
MN = ∂MV a

N − ∂NV
a
M + ϵ

abcV b
MV c

N is the field strength tensor for the gauge fields V a
M , g5 is the 5-dimensional gauge

coupling, and the SU(2) gauge index a runs from 1 to 3. As usual, Greek indices are contracted with the 4-dimensional
Minkowski tensor ηµν as in the last line of Eq. (7.2), while capital Latin indices run from 0 to 4 and contractions of capital
Latin indices with gMN are made explicit so as to avoid confusion.

The linearized equations of motion are

1
z
∂µF aµν

+ ∂z


1
z
F a zν


= 0, (7.3)

1
z
∂µF aµz

= 0, (7.4)

where for the present discussion the field strengths are to be linearized. Note that R and g5 factor out of the linearized
equations of motion, and otherwise they appear in the dimensionless combination R/g2

5 . At the infrared boundary z = zm
there is freedom in the choice of boundary conditions. We will impose the simplest gauge-invariant boundary conditions,
F a
µz(x, zm) = 0. The Kaluza–Klein modes must also be normalizable as z → 0, i.e. the integral over z in the action Eq. (7.2)
must remain finite upon replacing the gauge fields by a Kaluza–Klein mode. As we will review, a Weinberg sum rule is an
automatic consequence of the choice of Dirichlet boundary conditions on the gauge fields in a UV-regulated boundary at
some z = ϵ, where ϵ → 0.

Suppose we fix a gauge V a
z = 0. In that case the linearized equations of motion become,

1
z
∂µF aµν

− ∂z


1
z
∂zV a ν


= 0, (7.5)

together with a transverseness condition ∂z∂µV aµ
= 0. From the transverseness condition follows that ∂µV aµ is

independent of z, and then by a z-independent gauge transformation condition consistent with our choice V a z
= 0, we

may also set ∂µV aµ
= 0. The 4-dimensional-transverse Kaluza–Klein modes are solutions to the linearized equations of

motion of the form

V aµ
n (x, z) = εaµn eiq·x ψn(z), (7.6)
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where q2 = m2
n, q · ε

a
= 0. The wavefunction ψn(z) then satisfies the equation

d
dz


1
z

dψn(z)
dz


+

m2
n

z
ψn(z) = 0, (7.7)

with boundary conditions ψ ′(zm) = 0 and normalizability, with normalization zm

ϵ

dz ψn(z)2/z = 1. (7.8)

The subscript n denotes the discrete set of eigenvalues m2
n of the Sturm–Liouville system. In practice we impose Dirichlet

(ψn(ϵ) = 0) boundary conditions on the modes at an unphysical ultraviolet cutoff z = ϵ ≪ zm. As ϵ → 0 the spectrum
becomes independent of the specific form of the Sturm–Liouville boundary condition except for the addition of a zero mode
in the Neumann case. The extra zero mode decouples from the rest of the spectrum in the ϵ → 0 limit, as can be seen from
the fact that the integral over z in the action for the zero mode diverges in this limit.

The equations of motion Eq. (7.5) imply that the Kaluza–Klein modes satisfy the Proca equation,

∂µF aµν
= −m2

n V
a ν, (7.9)

so the eigenvaluemn is identified with the mass of the corresponding 3+ 1 dimensional field.
By construction the Kaluza–Klein modes have quantum numbers conjugate to the corresponding 3 + 1 dimensional

current Jaµ = qγ µT aq, where T a are the SU(2) isospin generators normalized such that Tr T aT b
=

1
2δ

ab. Both the gauge fields
V a
µ and the current Jaµ transform in the adjoint representation of SU(2). Under charge conjugation V a

µ is odd, and parity acts
as V a

i (t, x, z)→−V
a
i (t,−x, z), while V a

0 and V a
z are even under parity. These charge assignments identify the Kaluza–Klein

modes with states obtained by acting with the current Jaµ on the vacuum.
A useful object to consider is the bulk-to-boundary propagator, which is related to the solution of the equations ofmotion

subject to the boundary condition V aµ(x, z) → V aµ
0 (x) as z → 0 for arbitrary fixed V aµ

0 (x) [27,28]. We have already
encountered this object in Section 6,where itwas used in the calculation ofmeson andnucleon electromagnetic form factors.
The boundary profile of the field, V aµ

0 (x), plays the role of the source of the current Jaµ(x) in the AdS/CFT correspondence.
Fourier transforming in 3 + 1 dimensions, with a slight abuse of notation we equivalently have V aµ(q, z) → V aµ

0 (q) as
z → 0. With

V aµ(x, z) =


d4q
(2π)4

e−iq·xV aµ
0 (q) V (q, z), (7.10)

the bulk-to-boundary propagator V (q, z) satisfies,

∂z


1
z
∂zV (q, z)


+

q2

z
V (q, z) = 0, (7.11)

with V (q, ϵ) = 1 and ∂zV (q, z)|z=ϵ = 0. The bulk-to-boundary propagator determines solutions to the equations of motion
that have a prescribed form on the UV boundary of the space–time, z = ϵ.

The bulk-to-boundary propagator can be decomposed in terms of the normalizable eigensolutions as follows [274]:
Define the Green function G(q, z, z ′)with Dirichlet boundary conditions at z = ϵ,

∂z
1
z
∂z +

q2

z


G(q, z, z ′) = δ(z − z ′), (7.12)

G(q, ϵ, z ′) = 0, ∂zG(q, z, z ′)

z=zm
= 0. (7.13)

Now consider the integral zm

ϵ

dz V (q, z)

∂z

1
z
∂z +

q2

z


G(q, z, z ′) = V (q, z ′). (7.14)

Integrating by parts twice, we have,

V (q, z ′) =
 zm

ϵ

dz G(q, z, z ′)

∂z

1
z
∂z +

q2

z


V (q, z)+


V (q, z)

1
z
∂zG(q, z, z ′)− G(q, z, z ′)

1
z
∂zV (q, z)

zm
z=ϵ

= −
1
z
∂zG(q, z, z ′)

z=ϵ . (7.15)

By Eqs. (7.12) and (7.13), the Green function can be decomposed in the complete set of normalizable solutionsψn(z) defined
earlier:

G(q, z, z ′) =

n

ψn(z)ψn(z ′)
q2 −m2

n
, (7.16)
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where the wavefunctions are normalized as in Eq. (7.8). Hence, we obtain

V (q, z ′) = −

n

ψ ′n(ϵ)

ϵ

ψn(z ′)
q2 −m2

n
, (7.17)

as long as z ′ ≠ ϵ. A consequence of the hard-wall boundary condition on the Kaluza–Klein modes is the Gibbs phenomenon
at z ′ = ϵ, which is the discontinuity in the Fourier series of a functionwith a jumpdiscontinuity. In our case the discontinuity
can be seen by comparing Eq. (7.17) with ψn(ϵ) = 0 and the condition V (q, ϵ) = 1. However, limits as z ′ → ϵ are well
defined. This situation is analogous to the problem in Fourier transforming a square waveform in terms of modes which
vanish at the boundaries of the square. In that case, the Fourier transform strictly vanishes at the discontinuity, and for any
sum over a finite number of modes there is a deviation in the function from the desired waveform in the neighborhood of
the discontinuity.

In the context of the hard-wall model, the precise statement of the AdS/CFT correspondence in the gravity limit is
that the generating functional of connected correlation functions of products of currents, W [V aµ

0 (x)] in 3 + 1 physical
space–time, is identified with the 4 + 1 dimensional action S evaluated on solutions to the equations of motion such that
V aµ(x, z) → V aµ

0 (x) as z → ϵ [27,28,175]. The gravity limit is the limit of infinite N and large ’t Hooft coupling [22], but
in the context of the hard-wall model the same analysis is equivalent to studying the effective 3 + 1 dimensional theory
derived from the 4+1 dimensional model in the classical limit, i.e. having absorbed quantum corrections into the definition
of the model.

Integrating the action by parts, the action vanishes by the equations of motion except for a boundary term at z = ϵ.
Hence, the generating functional has the form,

W [V aµ
0 (x)] = S[V aµ

0 (x)] = −
R

2g2
5


d4x


V aµ(x, z)


gµν −

∂µ∂ν

∂2


1
z
∂zV a ν(x, z)


z=ϵ
+ · · ·

= −
R

2g2
5


d4x


d4q̄
(2π)4

d4q̄′

(2π)4


V aµ
0 (q̄′)e−i(q̄

′
+q̄)·xV (q̄′, z)


gµν −

q̄µq̄ν
q̄2


V a ν
0 (q̄)

1
z
∂zV (q̄, z)


z=ϵ
+ · · ·

= −
R

2g2
5


d4q̄
(2π)4


V aµ
0 (−q̄)


gµν −

q̄µq̄ν
q̄2


V a ν(q̄)

1
ϵ
∂zV (q̄, z)


z=ϵ
+ · · ·

= −
R

2g2
5


d4q̄
(2π)4


d4x̄ d4x̄′


eiq̄·(x̄−x̄

′) V aµ
0 (x̄′)


gµν −

q̄µq̄ν
q̄2


V a ν
0 (x̄)

1
z
∂zV (q̄, z)


z=ϵ
+ · · · , (7.18)

where the ellipsis represents terms more than quadratic in V aµ
0 . The transverse projection operator enforces the

transverseness of field-theory correlators derived from this generating functional.
The AdS/CFT prediction for the current–current correlator follows:

⟨Jaµ(x) J
b
ν (0)⟩ =

δ2W
δV aµ(x) δV b ν(0)

= −δab
R
g2
5


d4q̄
(2π)4


d4x̄ d4x̄′ eiq̄·(x̄−x̄

′)δ4(x̄′ − x)

gµν −

q̄µq̄ν
q̄2


δ4(x̄)

1
z
∂zV (q̄, z)


z=ϵ

= −δab
R
g2
5


d4q̄
(2π)4

e−iq̄·x

gµν −

q̄µq̄ν
q̄2


1
z
∂zV (q̄, z)


z=ϵ
. (7.19)

Fourier transforming,
d4x eiq·x ⟨Jaµ(x) J

b
ν (0)⟩ = −δ

ab R
g2
5


gµν −

qµqν
q2


1
z
∂zV (q, z)


z=ϵ
. (7.20)

Expressing the bulk-to-boundary propagator V (q̄, z) in terms of the Kaluza–Klein modes as in Eq. (7.17), we obtain the
decomposition

d4x eiq·x ⟨Jaµ(x) J
b
ν (0)⟩ = δ

ab R
g2
5


gµν −

qµqν
q2


lim
z→ϵ


n


ψ ′n(ϵ)/ϵ

 
ψ ′n(z)/z


q2 −m2

n
. (7.21)

The polarizationΠV (q2) is defined in terms of the two-point function of currents via
d4x eiq·x ⟨Jaµ(x) J

b
ν (0)⟩ = −δ

ab gµνq2 − qµqν

ΠV (q2), (7.22)
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so we identify

ΠV (q2) =
R
g2
5

1
q2
∂zV (q, z)

z


z=ϵ

(7.23)

= −
R
g2
5

lim
z→ϵ


n


ψ ′n(ϵ)/ϵ

 
ψ ′n(z)/z


q2(q2 −m2

n)
(7.24)

= −
R
g2
5


n


ψ ′n(ϵ)/ϵ

2
m2

n(q2 −m2
n)
, (7.25)

up to a contact interaction from the replacement of the factor of 1/q2 in Eq. (7.24) with 1/m2
n in Eq. (7.25).

The analytic solution for V (q, z) as the regulator ϵ → 0 is

V (q, z) =
πqz

2J0(qzm)
(J1(qz)Y0(qzm)− Y1(qz)J0(qzm)) . (7.26)

so we obtain an analytic solution for the polarizationΠV [335,330,70],

ΠV (q2) = −
πR (J0(qzm)Y0(qϵ)− Y0(qzm)J0(qϵ))

2g2
5 J0(qzm)

. (7.27)

The rho massesmρn are determined by the poles ofΠV (q2), at which

J0(mρnzm) = 0. (7.28)

Analytically continuing the bulk-to-boundary propagator V (q, z) in q and expanding for large Euclidean momentum,
−q2 ≫ 1, near the boundary of AdS5,

V (q, z) = 1+
(−q2z2)

4
log(−q2z2)+ · · · , (7.29)

and

ΠV (q2) = −
R

2g2
5
log(−q2ϵ2)+ const. (7.30)

This is the correct logarithmic behavior for the current–current correlator in the conformal theory. The identification of Eqs.
(7.30) and (7.25) is reminiscent of a Weinberg sum rule. The sum over Kaluza–Klein modes in Eq. (7.25) can be identified
with a sum over resonances ρaµ

n carrying the quantum numbers of the current Jaµ. With this identification, we can read off
the decay constants Fn such that ⟨0|Jaµ(0)|ρ

b
n⟩ = Fn δabεµ for a resonance with transverse polarization εµ:

F 2
n =

R
g2
5


ψ ′n(ϵ)/ϵ

2
. (7.31)

If we choose to match this result to the perturbative QCD result ΠV (q2) ≈ − Nc
24π2 log(−q2) as in Refs. [69,70], we then

identify

g2
5 =

12π2

Nc
. (7.32)

If zm is chosen so thatmρ = 776MeV, then themodel predicts the decay constant for the rho to be F 1/2
ρ = 329MeV [69], to be

compared to the experimental value of 345±8MeV [16]. In principle this model predicts properties of an infinite spectrum
of radial excitations of the rho, though the model also ignores all resonances other than these, and it is not surprising that
predictions are inaccurate at scales significantly higher than the mass of the lightest rho meson.

A generic feature of holographic models based on classical equations of motion is that he Kaluza–Klein resonances are
infinitely narrow, as can be seen in this example by the fact that the poles inΠV are at real values of q2. The classical limit, or
supergravity limit, of the AdS/CFT correspondence is a large-NC limit of the gauge theory. The width of mesonic resonances
in QCD goes to zero as the number of colors goes to infinity, so this feature of holographic models may be considered a
remnant of the large-NC limit, even as NC is set to 3 in results such as Eq. (7.32). In more elaborate models, couplings of
the rho meson to pions can be calculated, from which the width of the rho meson can be inferred. This begins a bootstrap
approach to holographicmodel building inwhich quantum corrections are self-consistently included. This approach has not
been elaborated on in the literature.
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7.2. A bottom-up model with chiral symmetry breaking

To reproduce the approximate SU(2) × SU(2) chiral symmetry of QCD, the hard-wall model of Refs. [69,70] includes a
higher-dimensional SU(2) × SU(2) gauge invariance. Treating isospin as unbroken, we consider the breaking of the chiral
symmetry due to the chiral condensate σ = ⟨(uLuR + uRuL)⟩ = ⟨(dLdR + dRdL)⟩. Correspondingly, the model includes a set
of 5-dimensional fields XIi, I, i ∈ (1, 2), which transform as a bifundamental under the SU(2) × SU(2) gauge invariance. A
non-vanishing background for XIi breaks the chiral symmetry via the Higgs mechanism. If we assume the breaking is such
that

⟨X Ii(x, z)⟩ = X0(z)δIi, (7.33)

then the diagonal subgroup of the gauge group is unbroken by the background. This unbroken group is identified with
isospin, and Kaluza–Klein modes of the corresponding gauge fields are identified with the rho meson and its radial
excitations. The broken sector describes the axial–vector mesons and pions. The AdS/CFT correspondence motivates an
identification of quark mass and chiral condensate as coefficients in the background X0(z). If no other sources of symmetry
breaking are introduced in the model, this pattern of symmetry breaking ensures that approximate relations like the
Gell-Mann–Oakes–Renner relation [336], which are due to the pattern of chiral symmetry breaking, are satisfied in the
model [69]. However, it is important to ensure that the boundary conditions on fluctuations about the background are
consistent with the pattern of chiral symmetry breaking [337].

The symmetry-breaking background solves the equations of motion for the fields X Ii in the background space–time. For
simplicity we assume that the scalar fields have a mass m2 but otherwise no potential, though nontrivial potentials have
been considered (for example, Ref. [222]). We further assume that there is little backreaction from the profile X0(z) on the
space–time geometry. The action describing non-gravitational fluctuations in the model is [69,70]:

S =


d5x
√
g Tr


|DX |2 −m2

|X |2 −
1

2g2
5
(F 2

L + F 2
R )

, (7.34)

where DµX = ∂µX − iALµX + iXARµ, AL,R = Aa
L,RT

a, and FµνL,R = ∂
µAνL,R − i[AµL,R, A

ν
L,R], and indices are contracted with the AdS

metric of Eq. (7.1).
The scalar field equations of motion for the background X0(z) are:

d
dz


1
z3

d
dz

X0


+

m2R2

z5
X0 = 0, (7.35)

with solutions

X0(z) = mq z4−∆ +
σ

4(∆− 2)
z∆, (7.36)

where we assume 2 < ∆ < 4 and we takemq and σ real.
According to the AdS/CFT dictionary, the massm of a 5-dimensional p-form field depends on the scaling dimension∆ of

the corresponding operator, according to (I.22)

m2
= (∆− p)(∆+ p− 4). (7.37)

This relation also follows from demanding the correct scaling behavior of correlation functions deduced by the AdS/CFT
correspondence in the conformal field theory [27,28], or in the deep Euclidean regime in models of asymptotically free
confining theories. For example, for a conserved current,∆ = 3 and p = 1, corresponding to amassless 5-dimensional gauge
field as discussed above. In AdS/QCD models it is reasonable to leave the effective scaling dimension ∆ of most operators
as adjustable parameters, because renormalization modifies the scaling dimension of operators at low energies. However,
conserved currents are not renormalized and always correspond to massless 5-dimensional gauge fields in the dual theory.

For scalar fields like XIi, p = 0 and the exponent∆ is related to the massm via,

m2
= ∆(∆− 4). (7.38)

A QCD operator with appropriate quantum numbers to be dual to XIi is the scalar quark bilinear ⟨qILq
i
R⟩ where (q1, q2) =

(u, d), which in the UV has dimension∆ = 3.
In the bottom-up approach we treat the 5-dimensional scalar mass squared, m2, as a free parameter.49 However, for

definiteness we can fixm2
= −3/R2, so that∆ = 3. The action Eq. (7.34) withm2

= −3/R2, together with the background
space–time geometry Eq. (7.1) between z = 0 and zm, defines one version of the hard-wall AdS/QCD model [69,70].

The solution X0(z) ∝ z4−∆ is not normalizable in the sense defined earlier: For scalar field profiles of the form
XIi(x, z) = X0(z) XIi(x), the integral over z in the action is divergent if X0(z) ∝ z4−∆ if ∆ > 2. On the other hand, the

49 In the light-front holographic approach the 5-dimensional mass m is not free parameter, but it is fixed by the holographic mapping to the light-front
(see Sections 4 and 5).
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Table 7.1
Fit of a five-parameter hard-wall model for meson masses and decay constants.
Source: From Ref. [341].

Observable Measured Model fit
(Central value-MeV) (MeV)

mπ 139.6 134
fπ 92.4 86.6
mK 496 514
fK 113 101
mK∗0

672 697
fK∗0 36
mρ 776 789
F 1/2
ρ 345 335
mK∗ 894 821
FK∗ 337
ma1 1230 1270
F 1/2
a1 433 453
mK1 1272 1402
FK1/2

1
488

solution X0(z) ∝ z∆ is normalizable. The coefficients of the two solutions are defined in anticipation of their physical
interpretation via the AdS/CFT correspondence. The normalizable solution to the equation of motion corresponds to the
state of the system [338,339]. In this case the vacuum expectation value of the operator corresponding to the field X ,
which is proportional to the chiral condensate σ (we assume that σ in Eq. (7.36) is real). The non-normalizable solution
corresponds to the source for the corresponding operator, in this case the (isospin-preserving) quark mass [27,28]. The
factor of 1/4(∆ − 2) in Eq. (7.36) is suggested by the AdS/CFT correspondence [339,113]. As noted by Cherman, Cohen
and Werbos [340], the interpretation of mq and σ with quark mass and chiral condensate is only up to a rescaling of mq
and σ . Matching the holographic prediction of the two-point correlator of scalar operators qq with the QCD prediction at
large Euclidean momentum, the parameter mq should be rescaled by

√
NC/2π and σ by 2π/

√
NC in order for mq and σ to

represent the quark mass and chiral condensate, respectively [340]. Although the identification of parameters in the scalar
field background with QCD parameters would follow from the AdS/CFT correspondence, they may more conservatively be
regarded as model parameters allowed to vary in order to fit experimental data.

We define the vector and axial–vector combinations of the gauge field V a
M = (LaM + Ra

M)/
√
2 and Aa

M = (LaM −
Ra
M)/
√
2, respectively. Under parity the gauge fields transform as Lai (t, x, z) ↔ −R

a
i (t,−x, z), L

a
0(t, x, z) ↔ Ra

0(t,−x, z),
Laz(t, x, z) ↔ Ra

z(t,−x, z). The vector combination V a
i = (L

a
i + Ra

i )/
√
2 is odd under parity; the axial–vector combination

Aa
i = (L

a
i − Ra

i )/
√
2 is even. Expanding the scalar fields about the background, we may write

X(x, z) = (X0(z)+ σ(x, z)) exp

2i T aπ a(x, z)


, (7.39)

where T a are SU(2) generators normalized so that Tr T aT b
= δab/2. In this matrix notation, we also define LM =

LaMT a and RM = Ra
MT a, and similarly for VM and AM . The Hermitian matrix of fields σ(x, z) are scalar under Lorentz

invariance and parity, and for the time being we set these fields to zero. The equations of motion for σ , π and the gauge
fields, with appropriate boundary conditions [337], determine the spectrum of Kaluza–Klein modes, which are identified
with the corresponding meson states. The quantum numbers of the mesons are determined by transformations of the
5-dimensional fields under symmetries of the 5-dimensional theory. The gauge fields are odd under charge conjugation.
Under 5-dimensional parity the vector V a

µ is odd; the axial–vector Aa
µ is even. Hence, the Kaluza–Klein modes of the

transverse part of V a
µ are identified with the tower of radial excitations of rho mesons; the Kaluza–Klein modes of the

transverse part of Aa
µ are identified with the tower of radial excitations of a1 mesons. The fields π a, which mix with the

longitudinal part of Aa
µ, are odd under charge conjugation and parity. The solutions to the coupled equations of motion for

π a and the longitudinal part of Aa
µ, with appropriate boundary conditions, are identified with the pions.

The decay constants for the vector and axial–vector mesons may be calculated either from the AdS/CFT correspondence
as described above, or by examination of the effective action for the Kaluza–Kleinmodes upon integration of the action over
the z-coordinate [38]. Themodel defined above has three free parameters:mq, σ , and zm. A global fit for the lightest pion, rho
and a1 masses and decay constants yields agreement with data at better than 10% [69]. The effective action also determines
couplings like ρ-π-π , which generally do not fare as well. However, the existence of a non-vanishing ρ-π-π coupling in
the model predicts a non-vanishing width for the rho meson, which would then shift the corresponding pole of the vector
current two-point correlator off the real axis.

The addition of the strange quark is straightforward. The SU(2) × SU(2) gauge group becomes SU(3) × SU(3), and
to separate the strange quark mass from the up and down quark masses one can expand about the background X0(z) =
diag(mq,mq,ms)z+σ z3/4, as in Ref. [341]. The result of a five-parametermodel to fourteen observables is given in Table 7.1
from Ref. [341].
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7.3. Top-down models

Top-down AdS/QCDmodels are based on configurations of D-branes in string theory aremore restrictive than bottom-up
models. Strings ending on D-branes have a field-theoretic interpretation at low energies, and the AdS/CFT correspondence
provides a dual description of the field theory in terms of a supergravity or string theory in a fixed background space–time
with fluxes of certain fields. The class of QCD-like theories which emerge from D-brane configurations with supergravity
duals is rather limited, and those theories each differs from QCD in a number of important ways. Top-down models are
motivated rather directly by the AdS/CFT correspondence, so this is an appropriate point to briefly review that motivation.

In the top-down approach, a brane configuration in string theory is engineered whose low-energy spectrum of open-
string fluctuations has a known field-theoretic interpretation. Via theAdS/CFT correspondence, for somebrane constructions
describing large-NC gauge theories with large ’t Hooft coupling g2NC , a dual description exists in terms of supergravity on a
fixed space–time background supported by fluxes of certain fields [22]. The prototypical example isN = 4 supersymmetric
gauge theory, which has as its dual (in the supergravity limitNC →∞ and g2NC ≫ 1) Type IIB supergravity on an AdS5×S5
space–time background with non-vanishing five-form flux and constant dilaton.

For this prototypical example Maldacena considered the dynamics of a stack of overlapping D3-branes in Type IIB string
theory [29]. The number 3 in ‘‘D3-branes’’ indicates that the branes span three spatial dimensions. Quantizing the open
strings which end on the NC D3-branes, one finds the massless spectrum of N = 4 supersymmetric SU(NC ) gauge theory
in 3 + 1 dimensions. The massless spectrum of the closed strings describes Type IIB supergravity, which includes a scalar
dilaton field and a spin-2 graviton, in addition to various p-form and fermionic fields. The gauge coupling g in the action for
the SU(NC ) gauge theory on the D3-branes is also related to the string coupling gs, by gs = g2.

If gs → 0 then perturbative string theory corrections are negligible, and classical supergravity is an appropriate
description of the theory. In addition to a non-vanishing constant dilaton, the solutions to the supergravity equations of
motion include a non-vanishing five-form flux (for which the D3-branes act as sources) and a space–time with horizon. The
near-horizon geometry of this space–time is the aforementioned AdS5 × S5. The curvature of both the anti-de Sitter factor
and the five-sphere is given by a distance scale R5 = ls(gsNC )

1/4, where ls is the string length. Hence, if gsNC ≫ 1 then the
geometries are smooth on scales of the string length, and massive string modes can be neglected so that fluctuations are
described by classical supergravity without higher-derivative operators induced by the massive modes. In this case the ’t
Hooft coupling g2N is large in the gauge theory on the D3-branes. The supergravity limit, in which classical supergravity
describes the fluctuations of the background created by the stack of D-branes, is what we have just described: gs → 0 with
gsNC ≫ 1, or equivalently, NC →∞with g2NC ≫ 1.

Maldacena’s great conceptual leap was to identify the physics of the open strings (i.e. N = 4 Yang–Mills theory) with
the physics of the closed strings in the near-horizon geometry (i.e. AdS5 × S5). Some evidence for the duality is provided
by a matching of symmetries, in particular the SO(2, 4) conformal symmetry and the SO(6)R-symmetry of the N = 4
Yang–Mills theory, which are identical to the isometries of AdS5 and S5, respectively. Certain classes of operators in the
N = 4 theory naturally map onto the spherical harmonics on the S5. The explicit dictionary between the dual theories was
proposed independently by Witten [28] and Gubser, Klebanov and Polyakov [27]. Operators in the field theory correspond
to supergravity fields on AdS5. In the supergravity limit NC →∞ with g2NC ≫ 1, the generating functional for connected
correlation functions in the N = 4 theory is identified with the action in the supergravity on the AdS5 × S5 background,
with the constraint that the supergravity fields approach (3+ 1)-dimensional configurations on the boundary of AdS5 that
are the sources for the corresponding operators in the N = 4 theory.

Karch and Katz [328] suggested the possibility to add to the basic scenario a small number of matter fields that transform
in the fundamental representation of the SU(NC ) gauge group by adding to the N D3-branes a small number of D7-branes.
The light fluctuations of strings which stretch from the D7-branes to the D3-branes include scalar fields and fermions
which transform in the fundamental representation of the SU(NC ) gauge group, in analogy to the quarks of SU(3) QCD.
The resulting theory is not asymptotically free, but progress is made by treating the D7-branes as probes while ignoring
their backreaction on the supergravity background, in which case the difficulties associated with the loss of asymptotic
freedom are conveniently evaded.

There now exists a large number of examples of field theories with supergravity duals, and the basic dictionary has been
expanded to include theorieswith interesting phenomenological features. Conformal invariance and supersymmetry are not
essential. The field theory can be confining with chiral symmetry breaking, which in those respects is similar to QCD. Some
examples of confining theories with known supergravity duals are the N = 1∗ theory of Polchinski and Strassler [32], the
Klebanov–Strassler cascading gauge theory [33], the D4–D6 system of Kruczenski et al. [53], and the D4–D8 system of Sakai
and Sugimoto [38,39]. The predictions of a top-downmodel pertain to the specific theory dual to the particular supergravity
background defining the model. The benefit of top-down models is that both sides of the duality can be described, at least
in part, independently of the duality. Top-down AdS/QCD models are engineered to have certain similarities to QCD, but
always suffer from a difficulty in separating scales of the desired degrees of freedom from additional degrees of freedom
and interactions not present in QCD.

Although the AdS/CFT correspondence is conjectured to extend to smaller NC by extending the supergravity to the full
string theory, for the sake of calculability AdS/QCD models generally ignore the string-theoretic corrections and naively
extend the supergravity description of the AdS/CFT correspondence to QCD, with NC = 3. Certain remnants of the large-NC
approximation remain at first approximation in both top-down and bottom-up AdS/QCD models, such as infinitely narrow
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Fig. 7.1. Brane configuration in the Sakai–Sugimoto model. The D4-branes create a cigar-like geometry, and the D8 and D8-branes connect. A mass gap is
created by the cigar-like box, and chiral symmetry breaking arises from the joining of the branes responsible for the left and right-handed chiral fermions.

resonances. Additional difficulties in matching aspects of QCD, such as the distribution of jets at high energies, have been
discussed by various authors, for example [115,342].

7.4. The Sakai–Sugimoto model

The Sakai–Sugimoto model is so far the top-down application of the AdS/CFT correspondence most closely related to
QCD. The system includes a stack ofN D4-branes in Type IIA string theory [29] wrapped on a circle onwhich fermions satisfy
antiperiodic boundary conditions which break the supersymmetry of the theory. From an effective 3+ 1 dimensional point
of view, the massless spectrum includes the SU(N) gauge fields, but the fermions and scalars are massive. At low energies,
the theory is described by pure Yang–Mills theory. Without the additional flavor branes introduced by Sakai and Sugimoto,
this model was discussed by Witten shortly after the initial AdS/CFT conjecture [34] in the context of the deconfinement
transition inQCD. In that case the circle is the compactified Euclidean time,whose size is inversely related to the temperature
of the system. Kruczenski et al. [53] suggested the addition of probe D6 and anti-D6 (D6) branes to the model, which gives
rise to fermionic quark fields in the low-energy spectrum, but without the pattern of chiral symmetry breaking observed
in nature. Instead of the probe D6-branes, the Sakai–Sugimoto model includes Nf D8-branes and NfD8-branes transverse to
the circle on which the D4-branes wrap. The D8 and D8 branes span all of the nine spatial dimensions of the string theory
except the circle on which the D4-branes are wrapped, and they intersect the D4-branes on 3 + 1 dimensional manifolds
at definite positions along the circle, as in Fig. 7.1. The massless fluctuations of open strings connecting the D4 and D8 or
D8-branes at their intersections describe 3+1 dimensional chiral fermions, with opposite chirality at the D8 and D8-branes.
This is the Sakai–Sugimoto model [38,39]. There are two ‘‘ultraviolet’’ regions on the D8-branes, for which the geometry is
asymptotically different than AdS, and the gauge theory dual to the Sakai–Sugimotomodel is not asymptotically free. In fact,
since the geometry in this model is not asymptotically AdS, it cannot account for dimensional power scaling [55–58] in QCD
for hard scattering. The Sakai–Sugimoto model should be considered a model of QCD only at low energies.

In the supergravity limit the D4-branes generate a space–time with a cigar-like topology which effectively cuts off the
space–time geometry at the tip of the cigar. The 9+1 dimensional space–timemetric generated by the D4-branes wrapped
on a circle is [34]

ds2 =

U
R

3/2 
ηµνdxµdxν + f (U)dτ 2


+


R
U

3/2  dU
f (U)

+ U2dΩ2
4


, (7.40)

where the Greek indices span 3 + 1 dimensions, τ is the coordinate on the circle, and dΩ2
4 is the metric on the unit

four-sphere. The coordinate U plays a role analogous to the radial coordinate z of Anti-de Sitter space in the holographic
interpretation of this model. The function f (U) describes the horizon at some U = UKK:

f (U) = 1−
U3
KK

U3
. (7.41)

As U approaches the horizon at UKK the proper size of the circle in the τ -direction shrinks to zero size. For the geometry
to be smooth, the location of the tip of the cigar is correlated with the size of the compact circle on which the D4-branes
wrap [34,53]. This is one reason that non-QCD states are not decoupled from the hadronic states of interest. The dilaton φ
also has a profile in the D4-brane background, and plays a role in the action on the D8-branes:

eφ = gs


U
R

3/4

, (7.42)

where gs is the string coupling. The D4-branes also generate a 4-form flux which supports the space–time geometry, but
otherwise that flux does not play a role in the present discussion.

In the D4-brane background, ignoring the backreaction of the D8 and D8-branes on the geometry, the D8 and D8-branes
bend as a consequence of their tension so as to minimize the Dirac–Born–Infeld action on the branes. The D8-brane profile
is described by a curve in the U-τ coordinates, which is specified by a function U = U(τ ). The result is that the D8 and
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D8-branes connect at some minimum value of U , which corresponds to the spontaneous breaking of the SU(Nf ) × SU(Nf )
chiral symmetry of the theory to a diagonal SU(Nf ) isospin symmetry.

The perturbative massless spectrum is that of SU(N) QCD with Nf flavors of quarks. However, Kaluza–Klein modes
associated with the circle direction have masses comparable to the confining scale in this theory, so the massive spectrum
of QCD-like bound states are not separated in mass from the spectrum of non-QCD-like Kaluza–Klein modes. As a result,
the five-dimensional nature of the effective theory on the D4-branes becomes apparent at the same scale as the hadron
masses we are interested in. This is an important distinction between the Sakai–Sugimotomodel and QCD, and typically the
unwanted states are ignored when comparing the model to experiment.

If we ignore the Kaluza–Klein modes around the circle, and integrate out the four dimensions along the D8-branes but
transverse to the D4-branes, then the fluctuations of the 4 + 1 dimensional SU(Nf ) × SU(Nf ) gauge fields on the D8 and
D8-branes are identified with vector mesons, axial–vector mesons, and pions. The quantum numbers of the corresponding
states can be identified with symmetries of the D-brane system. The 3 + 1 dimensional parity symmetry, for example, is
identifiedwith a parity symmetry in the 4+1 dimensional theory, which also exchanges the two sets of SU(Nf ) gauge fields.
If we ignore the extra circle direction, then the effective 3+ 1 dimensional action on the D8-branes at the intersection with
the D4-branes describes the effective action for the light mesons, and allows for the comparison of decay constants (fπ , Fρ ,
etc.) and couplings (e.g. gρππ ), or alternatively some of the chiral low-energy coefficients, with QCD. At this stage the setup
is similar to that of bottom-up models, except that the D8-branes have two asymptotic UV boundaries (one for each SU(Nf )
factor), and the AdS5 space–time is replaced by the induced metric on the D8-branes,

ds2 =
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and the four-sphere is integrated over in the effective 4+ 1-dimensional action, after which it no longer plays an important
role. (This is analogous to the role of the five-sphere in the prototypical AdS5×S5 geometry in the AdS/CFT correspondence.)

Once the effective 4 + 1 dimensional action for the gauge fields on the D8-brane is evaluated, the calculation of
meson observables proceeds as in bottom-up models. One difference of note is that there are two UV boundaries in the
Sakai–Sugimoto model, one for each factor of SU(Nf ) in the chiral symmetry. There is one set of SU(Nf ) gauge fields in
the geometry with two ultraviolet regions rather than two sets of SU(Nf ) gauge fields in the hard-wall model, with one
ultraviolet region. The potential to enhance the symmetries of a theory byway of additional ultraviolet regionswas exploited
in unrelated models in Ref. [343].

Several related descriptions of light baryons in AdS/QCD have been identified. The effective 4 + 1 dimensional gauge
theory on the D8-branes, after integrating out the additional 4-sphere in the D8-brane geometry, has small instanton
solutions which correspond to D4-branes wrapped on the 4-sphere [190,189]. Also integrating out the remaining extra
dimension along the induced geometry on theD8-branes, the Skyrme term in the effective 3+1dimensional pion Lagrangian
emerges directly from the kinetic terms in the action for the SU(2)L × SU(2)R gauge fields [38,39]. The baryon number of
the Skyrmion is equivalent to the instanton number in the 4+ 1 dimensional effective theory [190], so the Sakai–Sugimoto
model provides a connection between various solitonic descriptions of the baryon [344]. A similar discussion in a bottom-up
model was given in Ref. [345].

Despite the differences between the Sakai–Sugimoto model and QCD, the qualitative, and sometimes quantitative,
success of a naive application of the AdS/CFT correspondence when compared with QCD has helped to further the hope
that interesting features of QCD might be better understood by consideration of holographic models. The geometry on
which the D8-branes live is similar to one considered earlier by Son and Stephanov, albeit in latticized form, in the context
of extended hidden local symmetry models [346]. The Sakai–Sugimoto model is also similar to the hard-wall model with
chiral symmetry breaking, although the quarks in the Sakai–Sugimoto model are exactly massless. An alternative approach
to chiral symmetry breaking with massive quarks in a system with D7 branes in a nontrivial background was suggested in
Ref. [347].

8. Summary and conclusion

The AdS/CFT correspondence (or gauge/gravity duality) introduced by Maldacena [22] has given rise to a completely
new set of tools for studying the dynamics of strongly coupled quantum field theories such as QCD. In effect, the strong
interactions of quarks and gluons are represented by a simpler classical gravity theory in a higher-dimensional space. Anti-
de Sitter space in five dimensions plays a special role in elementary particle physics because it provides an exact geometrical
representation of the conformal group.

Although a perfect string theory dual of QCD is not yet known, bottom-up approaches, starting from a QCD description
and searching for a higher-dimensional theory, of which QCD is the boundary theory, has already provided many new and
remarkable insights into QCD. In particular one has to break by some mechanism the maximal symmetry of AdS space,
because its holographic dual quantum field theory is conformally invariant and cannot incorporate a mass scale likeΛQCD.

In this report we mainly concentrate on light-front holographic QCD [74,75,91]. This approach to strongly coupled
quantum field theory exploits the remarkable holographic duality between classical gravity in AdS5 and the semiclassical
approximation to light-front quantized QCD. Light-front Hamiltonian theory, derived from the quantization of the QCD
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Lagrangian at fixed light-front time x+ = x0 + x3, provides an ideal framework for describing bound-states in relativistic
theory (Section 2). Light-front holography leads to a precise relation between the holographic variable z of the fifth
dimension of AdS space, and the light-front variable ζ , the argument of the boost-invariant light-front wave functions
describing the internal structure of hadrons in physical space–time [75].

For massless quarks the classical QCD Lagrangian contains no scale and is conformal invariant. However, the appearance
of a scale, or a mass gap, is necessary for confinement. Therefore the origin of a mass scale in an originally conformal theory
is a fundamental unsolved problem in the theory of strong interactions. An indication of the origin of the QCD mass scale
can be drawn from a remarkable paper by V. de Alfaro et al. [94] in the context of one-dimensional quantum field theory.
Starting from a conformally invariant action these authors showed how to construct a generalized Hamiltonian from the
three generators of the conformal group in one dimension. This remarkable result is based in the fact that the SO(2, 1)
algebra can be realized in conformal quantummechanics: one of the generators of SO(2, 1), the rotation in the 2-dimensional
space, is compact and has therefore a discrete spectrum.Mathematically, this result is based on the isomorphism of the one-
dimensional conformal group Conf


R1

with the group SO(2, 1). Since the generators of the conformal group H , D and K

have different dimensions their connection with the generators of SO(2, 1) require the introduction of a scale [94], which
plays a prominent role in the dAFF procedure. The evolution parameter corresponding to the dAFF generalized Hamiltonian
is proportional to the light front-time and has a finite range [95].

The threefold connection of light-front dynamics, classical gravity in a higher-dimensional space, and a conformal
invariant one-dimensional quantum field theory provides new insights into the origin of a fundamental mass scale and
the physics underlying confinement dynamics in QCD [95]. The mapping of the generalized dAFF Hamiltonian to the light
front fixes the effective instantaneous light-front potential to a harmonic oscillator form (see Section 3). This corresponds
to a quadratic dilaton profile in the embedding AdS space. For large separation distances the quadratic effective potential in
the front form of dynamics corresponds to a linear potential in the usual instant form of dynamics [97]. The final result is a
relativistic light-front wave equation for arbitrary spin which incorporates essential spectroscopic and dynamical features
of hadron physics.

The light-front Hamiltonian equation predicts that the pion has zero mass for massless quarks, and the resulting Regge
trajectories have equal constant slope in the radial and orbital quantum numbers as observed experimentally. There is
only one input, the constant

√
λ setting the QCD mass scale (see Section 5). Our procedure can be extended to non-

zero light quarks without modifying to first approximation the transverse dynamics and the universality of the Regge
slopes (see Section 5.1.3). The predicted meson light-front wave function accurately describes diffractive vector meson
electroproduction [246] and other observables. The shape of form factors is successfully described (see Section 6).

We have derived hadronic bound-state equations for hadrons with arbitrary spin starting from an effective invariant
action in the higher-dimensional classical gravitational theory. The mapping of the equations of motion from the
gravitational theory to the Hamiltonian equations in light-front quantized QCD has been an important guide to construct the
effective actions in the bulk and to separate kinematical and dynamical aspects [91]. For mesons, this separation determines
a J-dependent constant term in the effective potential. The unmodified AdS geometry reproduces the kinematical aspects of
the light-front Hamiltonian, notably the emergence of the light-front angular momentum which is holographically related
to the AdS mass in the gravitational theory, and the modification of AdS space in the infrared region encodes the dynamics,
including confinement (see Section 4).

For baryons the 3-body state is described by an effective two-body light-front Hamiltonian, where the holographic
variable is mapped to the invariant separation of one constituent (the active constituent) to the cluster of the rest (the
spectators). Therefore, the mapping of AdS equations to the light-front bound-state equations imply that there is only one
relevant angular momentum, the light-front orbital angular momentum L between the active and the spectator cluster, an
effective approximationwhich capturesmuch of the strongly-coupled dynamics. Furthermore, since the action for fermions
is linear in the covariant derivatives, nomixing between dynamical and kinematical aspects occurs. Thus, for baryons there is
no explicit J dependence in the light-front equations of motion, and consequently the bound-state spectrum of baryons can
only depend on L (see Section 5.2.1). These remarkable predictions, which are inferred from the geometry of AdS space, are
independent of the specific dynamics and account for many striking similarities and differences observed in the systematics
of themeson and baryon spectra [91]. The equality of the slopes of the linear Regge trajectories and themultiplicity of states
for mesons and baryons is explained. We also explain the observed differences in the meson versus the baryon spectra that
are due to spin–orbit coupling. For example, the predicted triplet spin–orbit splitting for vectormesons is in striking contrast
with the empirical near-degeneracy of baryon states of different total angular momentum J; the baryons are classified by
the internal orbital angular momentum quantum number L along a given Regge trajectory, not J (see Section 5).

The semiclassical approximation described here is not restricted to a specific number of colors. Indeed, in this effective
theory the color quantumnumber does not appear explicitly. However, since themodel is an offspring of the original AdS/CFT
correspondence [22], it is reminiscent of an NC →∞ theory. This interpretation is also in accordance with the zero width
of all states, including the excited ones.

The treatment of the chiral limit in the LF holographic approach to strongly coupled QCD is substantially different from
the standard approach. In the standard approach spontaneous chiral symmetry breaking plays the crucial role. Themassless
pion is the Goldstone boson of the broken symmetry and the mass differences between the parity doublets, for example
the ρ(770) – a1(1260) and the N(939) – N(1535) doublets, is a consequence of the spontaneous chiral symmetry breaking.
In light-front holographic QCD discussed here, the vanishing of the pion mass in the chiral limit follows from the precise



66 S.J. Brodsky et al. / Physics Reports ( ) –

cancellation of the light-front kinetic energy and light-front potential energy terms for the quadratic confinement potential
(see Section 5.1.1). This effective potential results from the triple correspondence of light-front quantized QCD, gravity
in AdS5 space and conformal quantum mechanics [95]. The mass differences between the parity doublets also follows
from this specific potential. The parity splitting in this framework depends crucially on the light-front orbital quantum
numbers. Therefore, in this approach the parity doublets are not degenerate and the trajectories remain parallel as observed
experimentally (see Section 5).

The mapping of transition amplitudes in the gravity theory to the light front is also an important aspect of light-front
holography (see Section 6). In addition to reproducing the essential elements of the transverse dynamics found by the
light-front mapping of the Hamiltonian equations, one also obtains new information on the longitudinal dynamics which
is relevant, for example, to compute QCD distribution amplitudes and extend the formalism to include light-quark masses
(see Section 5.1.3).

In addition to describing hadronic bound states (normalizable solutions), the gravity theory allows to extend the
confining dynamics to external currents (non-normalizable solutions). The ‘‘dressed’’ or confined current corresponds to
sum an infinite class of Fock states containing qq̄ pairs in the hadronized current. This leads to the remarkable results that
for the soft-wall model the current is expressed as an infinite sum of poles and the form factor as a product of poles (see
Section 6.1.4). Notably, the actual number of poles in form factor is determined by the twist of the hadronic state (the
number of constituents). At large space- and time-like q2 the form factor incorporates the correct power-law fall-off for hard
scattering independent of the specific dynamics and is dictated by the twist [55]. At low q2 the form factor leads to vector
dominance, and therefore there are no divergences in the limit of zero quark masses. Furthermore the analytic expressions
obtained for the form factors allows an analytic continuation into the time-like region (see Section 6.1.5).

Finally, in Section 7 we reviewed bottom-up and top-down holographic models motivated by chiral symmetry breaking
in QCD. We described in this Section the most relevant aspects of this approach and practical limitations. Hopefully future
studies will help to understand better the connections between both approaches.

8.1. Open problems and future applications

The light-front holographic model discussed here gives a satisfactory first-order description of a large bulk of light-
hadronic data using essentially a single scale. It is of course desirable to improve the agreement with observations and to
better understand some aspects of the framework. We collect the most noticeable points that from our perspective should
be addressed.
1. The agreement for the meson trajectories of the ρ and K ∗ is very satisfactory. For the mesons on the π and K trajectory

the agreement is less satisfactory and the scale
√
λ has to be increased by 10%. The triplet splitting of the a mesons is

qualitatively correct, but the predicted splitting is too large.
2. An extended computation should also include the isoscalar mesons, the description of which is problematic in most

models [208]. A proper description should probably include higher twist components. For example, the f0 could be a
superposition of two quarks in a P wave and four quarks in an S wave.

3. In the soft-wall model the dilaton profile in the AdS action for fermions does not lead to an effective potential, since it
can be absorbed by a field redefinition [182]. Thus confinement must be imposed by introducing an additional term in
the action (see Section 4.3).

4. The agreement in the full baryon sector is also very satisfactory. Indeed, two newly discovered states [16], the N(1875)
and theN(1900) arewell described by themodel. However, the quantumnumber assignment for the ν quantumnumber
(see Section 5.2.1) is only fixed for the proton trajectory. For the other families the assignment is phenomenological. We
expect that a further investigation of the light-front mapping to baryonic states with different quark configurations will
explain this successful assignment.

5. The ν-assignment of the proton mentioned above is based on the fact that it is the ground state. In our approach
it corresponds to a bound state of an active quark and the remaining cluster. Therefore the number of effective
constituents in the nonperturbative domain is 2, corresponding to an effective twist 2. In the nucleon this corresponds
to a quark–diquark cluster decomposition. At short distances all constituents in the proton are resolved and therefore
the fall-off of the form factor at high q2 is governed by the number of all constituents, i.e., twist 3. It is desirable to
understand better the dynamics of the cluster formation in the nucleon and thus get further insight into the transition
region of the nonperturbative to the perturbative regime.

6. The description of electromagnetic form factors in the soft-wall model is very satisfactory if the poles of the confining
electromagnetic current (J = 1, L = 1) are shifted to their physical locations (see Section 6.1.4), which corresponds to
the predicted bound-state poles of the ρ ground state and its radial excitations (J = 1, L = 0).

7. To extend the computation of form-factors in the time-like region for larger values of q2 one has to include finite decay
widths with a correct threshold behavior. The present analysis only included constant decay widths and Fock states up
to twist four (see Section 6.1.5).

8. We have used successfully the SU(6) spin-flavor symmetry only for the computation of the Dirac form factor. The
computation of the Pauli form factorwas carried out using the generic expression for a twist-4 hadronic state normalized
to the experimental anomalous magnetic moment (see Section 6.2.1). In fact, the value of anomalous magnetic moment
and the actual form of the Pauli form factor should result from the theory.
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9. For particles with spin, the AdS wave function is factorized as product of a z-independent polarization tensor and
a z-dependent scalar function (see Section 4). This implies that the light-front wave function is the same for all
polarizations, which is not a realistic result. This does not affect the spectrum, since themass eigenvalue is independent
of the polarization. But for electroproduction of vector mesons, for instance, the different polarizations give different
contributions, and therefore their precise form is important. A more elaborate model, for instance starting from a
Duffin–Kemmer–Petiau equations [348–350] in AdS, could solve this problem.

10. An essential feature for the construction of a confining Hamiltonian from a conformal action is the transition from the
original evolution parameter t to a new evolution parameter τ , which is proportional to the light-front lime x+ and has
a finite range (see Section 3). It is natural to identify this τ as the LF time difference of the confined q and q̄ in the hadron,
a quantity which is naturally of finite range and in principle could be measured in double-parton scattering processes.

11. The emergence of a confining light-front Hamiltonian here was obtained by rather formal arguments. One would like to
relate this derivation tomore conventionalmethods used in QCD like the Dyson–Schwinger approach or the summation
of H diagrams (two-gluon exchange with gluonic multi-rungs) which are infrared divergent [163,164].

We have discussed and successfully applied an extension of the light-front mapping to include light-quark masses in
the Hamiltonian and the light-front wave functions (LFWFs). The formal procedure could be extended to heavy masses,
but then conformal symmetry can no longer be a guiding principle and there is no reason that the harmonic oscillator light-
front potential remains valid. Furthermore additional contributions as the one gluon-exchange potential become important.
There are many applications in light-front QCD [351] that require knowledge of the AdS/light-front wave functions. We list
a few of them:

(a) The nucleon transition form factor to the first radial excitation using light-front holographicmethods has been computed
in Ref. [319]. With the 12 GeV upgrade at Jefferson Lab, it will be possible to measure different nucleon form factors to
higher excited states at high virtuality [352]. The methods of Ref. [319] can be extended to compute these quantities.

(b) The shape of the pion light-front wave function is measured in diffractive dijet reactions πA→ Jet Jet X [353]. The data
shows a Gaussian fall-off in k⊥ and a transition at high k⊥ to power-law fall-off. This could be a testing ground of LF
holography and the confinement potential. Using the holographic LFWFs, we can predict, for example, the slope in k2

⊥

and the change in the shape in k⊥ with x.
(c) Using the light-front holographic wave functions obtained here one can in principle compute hadronization at the

amplitude level [354].
(d) The holographic light-front wave functions can be used to compute the quark interchange contributions to exclusive

hadronic amplitudes [292].
(e) Since the transverse holographic light-front wave functions form a complete basis, they can be used as a starting point

to compute higher order corrections, as for example using the Lippmann–Schwinger equation or the coupled-cluster
method [355]. The light-front wave functions also provide a convenient basis for numerical computations as in the BFLQ
approach [356].

There are two conceptually essential points which need further clarification. First, the existence of a weakly-coupled
classical gravity with negligible quantum corrections requires that the corresponding dual field theory has a large number
of degrees of freedom. In the prototypical AdS/CFT duality [22] this is realized by taking the limit of a large number of
colors NC . In the light front, the bound-state dynamics corresponds to strongly correlated multiple-particle states in the
Fock expansion, and the large NC limit is not a natural concept. The mapping of the AdS bound-state equations to the light-
front Hamiltonian is carried out for NC = 3, with remarkable phenomenological success. Following the original holographic
ideas [23,24] it is thus tempting to conjecture that the required large number of degrees of freedom is provided in this case
by the large number of Fock states in light-front dynamics. In fact, in the light-front approach, the effective potential is the
result of integrating out all higher Fock states, corresponding to an infinite number of degrees of freedom, thus absorbing all
the quantum effects. The reduction of higher-Fock states to an effective potential is not related to the value of NC . It should
also be noted that the main objective of this report, namely to find a bound state equation in QCD, is bound to incorporate
an essential feature of NC →∞ QCD: the feature that all bound states, also the excited ones, are stable.

There is another important relation which we have not fully exploited here: the relation between the generators of the
one-dimensional conformal group and those of the isometries of Anti-de Sitter space in 2 dimensions, AdS2. The relations
between the generators of the triple isomorphism of Conf
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
, SO(2), and AdS2 are given in Appendix A.2.3 and Section 3.3.

The connection between the isometries of AdS2 space and the SO(2, 1) group of conformal quantummechanics is the basis
of the AdS2/CFT1 correspondence [173]. In Section 3 we have shown that the introduction of the scale leading to a confining
Hamiltonian corresponds to a ‘‘detuning’’ of the relation between the Hamiltonian and the SO(2, 1) transformations, see
(3.34). This detuning, which corresponds to the introduction of a scale and the appearance of a harmonic oscillator potential
in the LF Hamiltonian, has a very simple geometrical interpretation [254] on the AdS2 hyperboloid embedded in a three-
dimensional Euclidean space (Fig. A.1).

Recently, the relevance of AdS2 and the emergence of its IR one-dimensional dual quantum field theory [357] has become
manifest through holographic renormalization in the bulk [129], the geometric version of the Wilson renormalization
group [128]. In this approach, the holographic flow in the bulk geometry from the boundary theory to the resulting low
energy behavior is associatedwith the holographic coordinatewhich represents the energy scale [358]. Of particular interest
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is the formulation of holographic renormalization flows for strongly interacting theories with a cut-off in the bulk, where
integration of high energy modes corresponds to integrate the bulk geometry up to some intermediate scale to extract
the low-energy effective theory of the initial boundary theory [359,360]. A particularly interesting example, and a line of
research worth pursuing, is the holographic flow of boundary theories to AdS2 geometry in the infrared [360–362], since
its dual one-dimensional conformal quantum field theory is realized as conformal quantum mechanics (Section 3.3) with
remarkable features which, intertwined to light-front dynamics and holography as explained in this report, captures quite
well important properties of the hadronic world.

Addendum

After completion of thiswork, it has becomeapparent that the striking phenomenological similarities between the baryon
and meson spectra, described in this review, reflect underlying supersymmetric relations responsible for these important
features. In fact, it has been shown recently that the extension of superconformal quantummechanics to the light front has
important applications to hadronic physics [363,364].

In particular, it has been shown [363] that a comparison of the half-integer LF bound-state equations with the
Hamiltonian equations of superconformal quantummechanics [172,365] fixes the form of the LF potential, in full agreement
with the phenomenologically deduced form V (ζ ) = λB ζ . This new development addresses one of the open problems
of the approach to strongly-coupled QCD described in this report (see Section 8.1). In contrast to conformal quantum
mechanics without supersymmetry, which is dual to the bosonic sector of AdS only up to a constant term, which in turn
is fixed by embedding the LF wave equations for arbitrary integer spin into AdS. This procedure, originally developed by
Fubini and Rabinovici [172], is the superconformal extension of the procedure applied by de Alfaro et al. [94]. Following
this procedure a new evolution Hamiltonian is constructed from a generalized supercharge, which is a superposition of
the original supercharge together with a spinor operator which occurs only in the superconformal algebra. The resulting
one-dimensional effective theory applied to the fermionic LF bound-state equations is equivalent to the semiclassical
approximation to strongly coupled dynamics which, as described in this report, follows from the light-front clustering
properties of the semiclassical approximation to strongly coupled-QCD dynamics and its holographic embedding in AdS
space.

In Ref. [363] superconformal quantum mechanics was used to describe baryonic states. In this case, the supercharges
relate the positive and negative chirality components of the baryon wave functions, consistent with parity conservation.
Light-front superconformal quantum mechanics can also be used to relate hadronic states with different fermion
number [364]. In this approach the nucleon trajectory is the superpartner of the pion trajectory, but the pion, which
is massless in the chiral limit, has no supersymmetric partner. It is important to notice that the quantum-mechanical
supersymmetric relations derived in [363,364] are not a consequence of a supersymmetry of the underlying quark and gluon
fields; they are instead a consequence of the superconformal-confining dynamics of the semiclassical theory described in
this Review and the clustering inherent in light-front holographic QCD.
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Appendix A. Riemannian geometry and anti-de Sitter space

We briefly review in this appendix relevant elements of Riemannian geometry useful in the discussion of Anti-de Sitter
space and applications of the AdS/CFT correspondence.

A.1. Basics of non-Euclidean geometry

The geometric properties of a D-dimensional curved space with coordinates xM =

x0, x1 · · · xD−1


are described by the

metric tensor gMN(x)which defines the space–time metric

ds2 = gMNdxMdxN , (A.1)

in each reference frame. In D-dimensional Minkowski space in Cartesian coordinates, the metric tensor ηMN has diagonal
components (1,−1, . . . ,−1). In non-Euclidean geometry themetric tensor varies from point to point and its form depends
on the coordinate choice. Since (A.1) is invariant, the change of the metric induced by a coordinate transformation xM →
x′M(x)

dx′M =
∂x′M

∂xN
dxN = ∂Nx′

MdxN , (A.2)
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is

g ′MN(x
′) = ∂ ′MxR∂ ′Nx

SgRS(x), (A.3)

where we define ∂M ≡ ∂/∂xM , ∂ ′M ≡ ∂/∂x
′M . A D-components object VM which transforms as the differential quantities

(A.2) is said to be a contravariant vector

VM(x)→ V ′M(x′) = ∂Nx′
MVN . (A.4)

The gradient ∂Mφ of a scalar function φ(x) = φ′(x′) transforms according to

∂ ′Mφ
′(x′) = ∂ ′MxN∂Nφ(x). (A.5)

A D-components object VM which transforms as the gradient of a scalar function (A.5) is said to be a covariant vector

VM(x)→ V ′M(x
′) = ∂ ′MxNVN . (A.6)

Thus, contravariant vectors are denoted by upper components, and covariant ones by lower components. A covariant or
contravariant or mixed tensor has several indices which transform according to (A.6) or (A.4). For example a covariant
tensor of rank two transforms as

VMN → V ′MN = ∂
′

MxS∂ ′Nx
RVRS . (A.7)

The inverse of gMN is the contravariantmetric tensor gMN ; gMR gRN
= δNM , where δNM is themixed unit tensor: δMN = 1,N =

M; δMN = 0,N ≠ M . InMinkowski space–time the inversemetric tensor in Cartesian coordinates is equal to the original one:
ηMN = η

MN , but this is not the case for a general non-Euclidean metric. We can transform contravariant vectors in covariant
ones and vice versa. Indices are lowered or raised by the metric tensor VM = gMNVN , VM

= gMNVN . The scalar product of
two vectors AM

=

A0, A1

· · · AD−1

and BM

=

B0, B1

· · · BD−1


A · B = ANBM
= AMBN = gMNAMBN

= gMNAMBN , (A.8)

is invariant under coordinate transformations as one can easily verify from (A.4) and (A.6).
When integrating in a curved space time, the volume element dV should behave as an invariant upon integration over a

D-dimensional domain. In curved space

dV =
√
g dx0dx1 · · · dxD−1, (A.9)

where g is the absolute value of the metric determinant g ≡ |det gMN |.

A.1.1. Covariant derivative and parallel transport
The next step is to define a covariant derivative DM which transforms covariantly. For example, when DM acts on a

covariant vector VN the resulting rank-two covariant tensor DMVN should transform as

D′MV ′N = ∂
′

MxR∂ ′Nx
SDRVS . (A.10)

This is not the case for the usual partial derivative

∂ ′MV ′N = ∂
′

MxS∂ ′Nx
R∂SVR + VR ∂

′

M ∂
′

Nx
R, (A.11)

since the second term spoils the general covariance unless the second derivatives vanish: ∂ ′M∂
′

Nx
′R
= 0. This happens only

for linear transformations: x′M = ΛM
N xN +aM , whereΛM

N and aM are constants. In non-Euclidean geometry a vector changes
its components under parallel transport when comparing two vectors at the same point (for example when computing the
change in the velocity of a particle). One has to make a parallel transport of a vector VM from xM to an infinitesimally close
point xM + ϵM

VM(x)→ VM(x+ ϵ) = VM(x)+ Γ M
KL V

K (x)ϵL, (A.12)

where theΓ M
KL , so-called Christoffel symbols for the connection, are functions of the coordinates. Taking into account parallel

transport, the total change expressed by the covariant derivative is thus

DMVN
= ∂MVN

+ Γ N
KMV K . (A.13)

The expression for the covariant derivative of a covariant vector follows from (A.14) and the fact that the scalar product of
two vectors is invariant under parallel transport. The result is

DMVN = ∂MVN − Γ
K
MNVK . (A.14)
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It is possible to choose a local inertial coordinate system xM at a given point with metric ηMN . Under a coordinate
transformation (A.3)

g ′MN = ∂
′

MxR∂ ′Nx
SηRS . (A.15)

Differentiating (A.15) with respect to x′
K
and permuting indices

∂ ′M∂
′
NxR∂ ′K xSηRS =

1
2


∂ ′Mg ′NK + ∂

′

Ng
′

MK − ∂
′

Kg
′

MN


. (A.16)

From the inverse transformation of gMN to ηMN and the relation δNM = ∂
′
MxR∂Rx′

N
, we find the useful relation

∂ ′M∂
′
NxR =

1
2
g ′

KL 
∂ ′Mg ′NL + ∂

′

Ng
′

ML − ∂
′

Lg
′

MN


∂ ′K xR. (A.17)

Using (A.17) it is straightforward to prove that the covariant derivative has indeed the right transformation properties under
a general coordinate transformation (A.10). Furthermore, we find from (A.17) and (A.14) an expression for the Christoffel
symbols Γ K

MN in terms of the metric tensor

Γ K
MN =

1
2
gKL (∂MgNL + ∂NgML − ∂LgMN) , (A.18)

where Γ K
MN = Γ

K
NM . Eq. (A.18) can also be obtained from the condition that the covariant derivative of the metric tensor gMN

is zero

DKgMN = 0. (A.19)

It follows from (A.18) that Γ R
MR =

1
2g

RS∂MgRS = ∂M ln
√
g , where g is the absolute value of the metric determinant

g ≡ |det gMN |. We thus find the expression for the divergence of a vector in curved space–time

DMVM
=

1
√
g
∂M
√

g VM . (A.20)

It also follows from the symmetry of the Γ K
MN that the rank-two antisymmetric tensor DMVN − DNVM = ∂MVN − ∂NVM .

A.1.2. Space–time curvature
Unlike flat space, the second covariant derivative in curved space depends on the order of derivation:

[DN ,DK ]VM = −RL
MNKVL, (A.21)

where the fourth-order Riemann tensor or curvature tensor RL
MNK ,

RL
MNK = ∂NΓ

L
MK − ∂KΓ

L
MN + Γ

L
NRΓ

R
MK − Γ

L
KRΓ

R
MN , (A.22)

depends on the coordinate system chosen. Likewise for a contravariant vector one obtains

[DN ,DK ]VM
= RM

LNKV
L. (A.23)

The curvature tensor in antisymmetric in the indices N and K ; RL
MNK = −R

L
MKN . The tensor is null in Euclidean space

RL
MNK = 0, and conversely, if RL

MNK = 0 the space is Euclidean. It is useful to express the Riemann tensor in covariant
form

RKMLN = gKRRR
MLN , (A.24)

with the symmetry properties

RKMLN = −RMKLN , (A.25)
RKMLN = −RKMNL, (A.26)
RKMLN = RLNKM . (A.27)

The rank two tensor

RMN = gKLRKMLN = RL
MLN , (A.28)

is the Ricci tensor RMN = RNM . Contracting RMN we obtain the scalar curvature R

R = gMNRMN = gKLgMNRKMLN , (A.29)
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which encodes intrinsic properties of space–time. The Einstein tensor given by

GMN = RMN −
1
2

R gMN , (A.30)

has the property that DNGN
M = 0, known as the Bianchi identity.

To have a better intuition of parallel transport and the Ricci tensor consider the parallel transport of a vector between two
points along different paths in a non Euclidean space. In particular the change∆VM of a vector along a closed infinitesimal
loop is

∆VM =


Γ L
MNVLdxN . (A.31)

Using Stokes theorem one obtains

∆VM =
1
2
RL

MNKVL∆SNK , (A.32)

where∆SNK is the infinitesimal area enclosed by the integration contour. The result of parallel transporting a vector is path
dependent.

A.1.3. Spinors in non-Euclidean geometry
To describe spin in curved space–time we attach an orthonormal frame, the vielbein, at each point in space–time [366].

The vielbein at a point P is a local inertial system. The spin connection gives us information on how the vielbein is rotated
when it moves along a curve. It turns out that the vielbein is essential for treating spinors in non-Euclidean geometry.50

Let ξA(x) be the coordinates of the point P in the local inertial frame. The vielbein is a set ofD orthonormal tangent vectors
eAM(x) = ∂Mξ

A(x), where x are the coordinates of the same point P in a general frame with metric tensor gMN(x), and the
index A is a Lorentz index in tangent space. Lorentz indices are denoted by A, B · · · and curved space indices by M,N · · · .
Since themetric tensor in the inertial frame is theMinkowski tensor ηMN , themetric tensor in the general frame is according
to (A.3) gMN(x) = ∂MξA∂Nξ BηAB. Thus

gMN(x) = ηAB eAM(x)e
B
N(x) = eAM(x)eAN(x), (A.33)

where eAM = ηAB eBM , since the tangent indices are raised or lowered by the Minkowski metric ηAB. The inverse vielbein
is denoted eMA , thus eAM(x)e

M
B (x) = δAB . The vectors eAM form a complete basis at each point P . The vielbein is not uniquely

determined since in each point there is an infinity of equivalent inertial coordinate systems, all related through Lorentz
transformations; e′AM(x) = Λ

A
B(x)e

B
M(x), whereΛA

B(x) is a local Lorentz transformation at the point P .
For spinors, the analog of the Christoffel symbols is the spin connection denoted ωM

A
B. Thus the covariant derivative of a

vector with tangent indices V A
= eAM VM

DMV A
= ∂MV A

+ ωM
A
BV

B. (A.34)

Consistency with (A.19) and (A.33) implies that the covariant derivative of the vielbein is zero51

DMeAN = 0, (A.35)

and thus DMeAN = ∂MeAN − Γ
L
MNe

A
L + ωM

A
Be

B
N = 0. The spin connection then follows from (A.35)

ω AB
M = eAN∂MeNB + eAL e

NBΓ L
NM . (A.36)

Eqs. (A.14) and (A.34) for the covariant derivative are equivalent. To see this we contract (A.34) with eNA and use (A.36):

DMVN
= eNA DMV A

= eNA ∂MV A
+ eNA e

A
K (∂MeKB )V

B
+ eNA e

A
L e

K
BΓ

L
KMV B

= ∂M(eNA V
A)− (∂MeNA )V

A
+ (∂MeNB )V

B
+ Γ N

KM(e
K
BV

B)

= ∂MVN
+ Γ N

KMV K .

50 Technically the quantities ∂x′M/∂xN in (A.4) for transforming a vector field VM are the elements of the general linear group GL(D, R), the group of
invertible real D×Dmatrices. Thus a vector VM transforms in the fundamental representation of GL(D, R). Spinors transform under the special orthogonal
group SO(D), a subgroup of GL(D, R), but the spinor representations are not comprised in the representations of GL(D, R). The vielbein formalism allows us
to replace the GL(D, R)matrices by a SO(D)matrix representation.
51 The condition (A.35) corresponds to minimal coupling of the spinors. Deviations from minimal coupling are measured by the torsion T A

MN defined by
T A
MN = DMeAN − DNeAM .
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We now come to spinors. We consider a spinor field ψ(x) in the spinor representation of the Lorentz group. The
generators of the Lorentz groupΣAB in the spinor representation are

ΣAB =
i
4
[ΓA,ΓB], (A.37)

where the flat space gamma matrices ΓA are constant matrices obeying the usual anticommutation relations
Γ A,Γ B

= 2ηAB. (A.38)

The covariant derivative of ψ is defined by

DMψ =


∂M −

i
2
ωAB

M ΣAB


ψ. (A.39)

Under a local Lorentz transformationψ(x)→ Λ(x)ψ(x), withΛ = exp

−

i
2ωABΣ

AB

, the covariant derivative DMψ(x) also

transforms as a spinor, DMψ(x)→ Λ(x)DMψ(x), thus general covariance is maintained.
The vielbein allows us also to construct space-dependent Γ -matrices in non-Euclidean space

Γ M(x) = eMA (x)Γ
A. (A.40)

From (A.33) and (A.38) it follows that the matrices Γ M obey {Γ M(x), Γ N(x)} = 2gMN(x). It can also be proven from (A.35)
that the matrices Γ M(x) are covariantly constant, [DM ,Γ

N(x)] = 0. Thus the Dirac operator ̸D can be defined as

̸D = Γ M(x)DM = eMA (x)Γ
A DM . (A.41)

A.2. Maximally symmetric spaces

A.2.1. Definition
A space–time manifold is said to be maximally symmetric if it has the same number of isometries as Euclidean space.

A D-dimensional Euclidean space is isotropic and homogeneous. Its metric tensor is invariant under D(D − 1)/2 rotations
(isotropy) and D translations (homogeneity). We have thus altogether D(D + 1)/2 isometries i.e., transformations which
leave the metric invariant. This is also the maximal number of isometries of a D-dimensional Minkowski space, therefore
flat space–time is a maximally symmetric space. This concept of isometry and maximal symmetry can be translated into
non-Euclidean geometry.

If the metric does not change its form under a coordinate transformation x → x′, that is gMN(x) → g ′MN(x
′) = gMN(x′),

then it follows from (A.3) that

gMN(x′) = ∂ ′MxR∂ ′Nx
SgRS(x). (A.42)

Any change of coordinates that satisfies (A.42) is an isometry. In particular, if one looks for local isometries under
infinitesimal transformations: x′M = xM + ϵ ξM(x), one can show easily that the requirement to be an isometry is given
by the covariant structure

DMξN + DNξM = 0, (A.43)

the Killing equation. Any vector field ξM(x) satisfying (A.43) is said to form a Killing vector of the metric gMN(x). The
maximum number of independent Killing vectors in a D-dimensional space is D(D + 1)/2, thus the Killing vectors are the
infinitesimal generators of isometries. A spacewith ametric that admits thismaximal number of Killing vectors ismaximally
symmetric: it is homogeneous and isotropic for every point.

A.2.2. Anti-de Sitter space–time AdSd+1
Anti-de Sitter space is themaximally symmetric space–timewith negative scalar curvature. We can construct themetric

of a maximally symmetric space by embedding it in a flat space of one dimension higher. Anti-de Sitter space–time in d+ 1
dimensions, AdSd+1, can be described as a hyperboloid embedded in a flat d+ 2 dimensional space–time with an additional
time-like direction, i.e. the surface

X2
−1 + X2

0 − X2
1 − · · · − X2

d ≡


M=−1,d

XM XM = R2, (A.44)

with metric induced by the (d+ 2)-dimensional flat metric with signature (2, d)

ds2 = dX2
−1 + dX2

0 − dX2
1 − · · · − dX2

d . (A.45)
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The isometries of the embedded space are those which leave the hyperboloid invariant; that is, they are isomorphic to
the group SO(2, d). This group in turn is isomorphic to the conformal group Conf (R1,d−1). These groups have d(d + 1)/2
generators. The isometries of AdSd+1 can be either obtained via the Killing vectors (A.43), or, expressed in the embedding
coordinates X through the transformations of SO(2, d).

The AdS space time contains closed time-like curves. For example, for fixed coordinates {X1, . . . , Xd}, any closed path
along the circle in the (X0, X1) plane is a closed time-like curve. Global coordinates (i.e. coordinates which cover the entire
space time) are ρ, τ , andΩi with 0 ≤ ρ < π/2,−π < τ ≤ π , and−1 ≤ Ωi ≤ 1 with

d
i=1Ω

2
i = 1. Global coordinates

are related to the embedding coordinates X by:

X−1 = R
sin τ
cos ρ

, (A.46)

X0 = R
cos τ
cos ρ

, (A.47)

Xi = RΩi tan ρ. (A.48)

In global coordinates the metric is

ds2 =
R2

cos2 ρ


dτ 2 − dρ2

− sin2 ρ dΩ2 . (A.49)

The universal cover of Anti-de Sitter space is obtained by unwrapping the hyperboloid along the time-like circle and
repeatedly gluing the resulting space–time to itself along the seam ad infinitum in order to eliminate the periodicity, which
also eliminates the closed time like curves.

Poincaré coordinates naturally split the AdS space time into smaller patches. The plane X−1 = Xd splits the full AdSd+1
space in two patches. On these patches we can introduce coordinates by first defining the light-cone coordinates

u ≡
1
R2
(X−1 − Xd), v ≡

1
R2
(X−1 + Xd), (A.50)

and by introducing the Poincaré coordinates x0 = t , xi, i = 1 . . . d−1 and z, which are related to the embedding coordinates
by

xi =
Xi

R u
, x0 =

X0

R u
, z =

1
u
. (A.51)

In order to obtain themetric tensor in the Poincaré coordinateswe eliminate v by the embedding condition (A.44) and obtain

X−1 =
1
2z
(z2 + R2

+ x2 − t2), (A.52)

X0 =
R t
z
, (A.53)

Xi =
R xi

z
, (A.54)

Xd =
1
2z
(z2 − R2

+ x2 − t2). (A.55)

The coordinate z = R2/(X−1 − Xd) is referred to as the holographic coordinate, and separates the AdS space–time into
two distinct regions: z > 0 and z < 0. Each region is absent of closed time-like curves. The region z = 0 belongs to the
boundary of the AdS space time, and we will be interested in the Poincaré patch z > 0. In Poincaré coordinates the AdS
metric with coordinates xM = (xµ, z), µ, ν = 0, 1, 2, . . . , d− 1, takes the form

ds2 = gMNdxMdxN =
R2

z2

ηµνdxµdxν − dz2


, (A.56)

and thus

gMN =
R2

z2
ηNM , gMN

=
z2

R2
ηNM , eAM =

R
z
δAM , eMA =

z
R
δMA , (A.57)

where ηNM has diagonal components (1,−1, . . . ,−1). The metric determinant g = | det gMN | is g = (R/z)2d+2. Additional
details regarding various coordinates on anti-de Sitter space time and its Poincaré patches can be found in Ref. [367].
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The Christoffel symbols (A.18) for the metric (A.57) are:

Γ L
MN =

1
2
gLK (∂MgKN + ∂NgKM − ∂KgMN)

=
−1
z


δzMδ

L
N + δ

z
Nδ

L
M − η

LzηMN

, (A.58)

and the covariant derivative (A.14) for a vector is

DzVM =


∂z +

1
z


VM , (A.59)

DµVz = ∂µVz +
1
z
Vµ,

DµVν = ∂µVν +
1
z
ηµνVz .

Every maximally symmetric space has constant curvature R. In fact, for an isotropic and homogeneous space the Ricci
tensor RL

MNK can only depend on the metric tensor, and thus by virtue of its symmetry properties (A.25)-(A.27) it should
have the form RKMLN = λ (gKL gMN − gKN gML), where λ is a constant. For AdSd+1 the Ricci tensor (A.28) is RMN = λ d gMN and
the scalar curvature (A.29) R = d(d+ 1)λ. A simple but tedious computation using the expression (A.22) for the Riemann
tensor and (A.58) for the Christoffel symbols gives R = ηzz d(d+ 1)/R2 and thus52

RKMLN = −
1
R2 (gKL gMN − gKN gML) . (A.60)

From the realization of AdSd+1 as an hyperboloid in a d + 2 dimensional space, (see Eq. (A.44)), it follows that the
isometries of AdSd+1 are isomorphic to the transformations which leave this hyperboloid invariant, i.e. the elements of
SO(2, d). The Killing vectors of AdSd+1 in Poincaré coordinates can be constructed from the SO(2, d) generators

LM,N = i

XN ∂

∂XM
− XM ∂

∂XN


, (A.61)

whereM,N = −1, 0, . . . , d, with the relations (A.52)-(A.55) between the different coordinates. In the next subsection this
is done for the case d = 1.

A.2.3. Relation between Conf

R1

, SO(2, 1) and the isometries of AdS2

Since the conformal groupplays an eminent role in our treatment,we give here amore extensive discussion of the relation
between the generators of the conformal group and those of the isometries of Anti-de Sitter space in two dimensions, AdS2.53
In Fig. A.1 we show the embedding of the AdS2, i.e. d = 1, into a three dimensional space. The surface of the hyperboloid
is the space AdS2. The intersection with the plane X1 − X−1 = 0 corresponds to the value z = ±∞ which separates the
AdS2 space into two patches, none of them containing time-like closed curves. The value z = 0 correspond to the limit
X1 →−∞.

The conformal group in one dimension Conf

R1

is locally isomorphic not only to the group SO(2, 1), but also to

the isometries of AdS2. The three generators of the latter, A(i), can be constructed with the Killing vectors ξ (i) as (see
Appendix A.2.1)

A(i) = ξ (i)M
∂

∂xM
, x1 = t, x2 = z. (A.62)

The conditions for the Killing vectors of AdS2 follow from the Killing equation (A.43)

∂tξ
(i) 1
−

1
z
ξ (i) 2 = 0, ∂zξ

(i) 2
−

1
z
ξ (i) 1 = 0, ∂tξ

(i) 2
− ∂zξ

(i) 1
= 0, (A.63)

with the solutions

ξ (1) = R

1, 0


, ξ (2) =


t, z


, ξ (3) =

1
R


(t2 + z2), 2tz


. (A.64)

52 This relation shows that the signum of the holographic variable in the metric determines the sign of the scalar curvature and hence if the space is a de
Sitter or an anti-de Sitter space.
53 The relation between the conformal group, AdS2 and the generators of SO(2, 1) is described with great detail in the Senior Thesis of T. Levine at Brown
University [368]. We thank Antal Jevicki for pointing us this work.
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Fig. A.1. The space AdS2 embedded as the hyperboloid X2
−1 + X2

0 − X2
1 = R2 into a three dimensional space and the plane X1 − X−1 = 0.

The relation between the Killing vectors and the generators of SO(2, 1) is not uniquely fixed by the commutation relations
(A.43), therefore it is advantageous to construct them explicitly by going back to AdS2 as a 2-dimensional hyperboloid
embedded in a three dimensional space (Fig. A.1). The embedding space has two time coordinates {X−1, X0} and one space
coordinate X1. The space AdS2 is given by the surface X2

−1 + X2
0 − X2

1 = R2 and its isometries are the transformations which
leave the hyperboloid invariant, that is the rotation L0,−1 in the (X0, X−1) plane and the two boosts L1,0 and L1,−1. They obey
the commutation relations of the SO(2,1) algebra (Section 3.1)

L0,−1, L1,0

= iL1,−1, (A.65)

L0,−1, L1,−1

= −iL1,0,

L1,0, L1,−1

= −iL0,−1.

The Poincaré coordinates are given by (see (A.50)–(A.55))

t =
X0 R

X−1 − X1
, z =

R2

X−1 − X1
. (A.66)

The relation between the generators of SO(2, 1) and the isometries of AdS2 given by (A.62), can now be obtained directly
by expressing the rotation and the boost generators in Poincaré coordinates

L0,−1 = i

X−1

∂

∂X0
− X0

∂

∂X−1


=

i
2


t2 + z2

R
+ R


∂t + 2

t z
R
∂z


, (A.67)

L1,0 = i

X0

∂

∂X1
+ X1

∂

∂X0


=

i
2


t2 + z2

R
− R


∂t + 2

t z
R
∂z


,

L1,−1 = i

X−1

∂

∂X1
+ X1

∂

∂X−1


= i(t ∂t + z ∂z),

where X0 = X0, X−1 = X−1 and X1 = −X1. In terms of the generators of the isometries of AdS2 (A.62),

L0,−1 =
i
2
(A(3) + A(1)), L1,0 =

i
2
(A(3) − A(1)), L1,−1 = iA(2). (A.68)

Notice that the asymmetry between the representation of the two boosts is due to the choice of the Poincaré coordinates
in (A.66). In Table A.1 the relation between the generators of the isometries of AdS2, the generators of SO(2, 1) and the
generators of the conformal group H, D, and K (see Section 3) are displayed.

The generators of the AdS2 isometries depend on the AdS2 Poincaré coordinates t and z. Using Table A.1, one can see
explicitly the equivalence of the generators of AdS2 isometries at the AdS2 boundary, z = 0, with the representation of the
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Table A.1
Relation between the generators of the conformal group in one dimension Conf


R1

, the generators of

SO(2, 1) and the Killing vectors of AdS2 expressed in Poincaré coordinates.

Conf (R1) SO(2, 1) AdS2

H 1
a (L

0,−1
− L1,0) i

aA
(1)
=

i R
a ∂t

D L1,−1 iA(2) = i(t∂t + z∂z)
K a(L0,−1 + L1,0) iaA(3) = ia

R


(t2 + z2)∂t + 2zt∂z


conformal generators H , D and K in conformal quantum mechanics given by (C.14) in Appendix C: H = i∂t , D = it∂t and
H = it2∂t , provided that a = R.

Appendix B. Light-front metric conventions and spinors

The Minkowski metric is written in terms of light-front coordinates

dσ 2
= dx+dx− − dx2

⊥
, (B.1)

with time-like and space-like components x+ = x0+ x3 and x− = x0− x3 respectively. We write contravariant four-vectors
such as xµ as

xµ =

x+, x−, x1, x2


=

x+, x−, x⊥


. (B.2)

Scalar products are

x · p = xµpν = gµνxµpν

= x+p+ + x−p− + x1p1 + x2p2

=
1
2


x+p− + x−p+


− x⊥ · p⊥, (B.3)

with front-form metrics

gµν =

0 1
2 0 0

1
2 0 0 0
0 0 −1 0
0 0 0 −1

 , gµν =

0 2 0 0
2 0 0 0
0 0 −1 0
0 0 0 −1

 . (B.4)

A covariant vector such as ∂µ is

∂µ = (∂+, ∂−, ∂1, ∂2) =

∂+, ∂−, ∂⃗⊥


. (B.5)

Thus ∂+ = 2 ∂− and ∂− = 2 ∂+.
Useful Dirac matrix elements for light-front helicity spinors with spin component along the z-axis (λ = ±1) are [159]

ū(p)γ+u(q)δλp,λq = 2

p+q+, (B.6)

ū(p)γ+u(q)δλp,−λq = 0, (B.7)

with v̄α(ℓ)γ µvβ(k) = ūβ(k)γ µuα(ℓ). Other useful matrix elements for LF spinors are given in [159].

Appendix C. Notes on conformal quantummechanics

In this appendix we examine specific features of the framework introduced by de Alfaro et al. [94] which are useful for
the discussions in Section 3. For the relation between the conformal group and the isometries of AdS2 see Appendix A.2.3.
We start with the dAFF action

A =
1
2


dt

Q̇ 2
−

g
Q 2


, (C.1)

and the corresponding Lagrangian

L[Q ] =
1
2


Q̇ 2
−

g
Q 2


, (C.2)



S.J. Brodsky et al. / Physics Reports ( ) – 77

which is, up to a total derivative, conformally invariant i.e.,

L[Q ′] dt ′ =

L[Q ] −

dΩ[Q ]
dt


dt. (C.3)

We use the notation Q̇ = dQ (t)/dt, Q̇ ′ = dQ ′(t ′)/dt ′. To proof (C.3) we perform a general conformal transformation

t ′ =
αt + β
γ t + δ

, Q ′(t ′) =
Q (t)
γ t + δ

, αδ − βγ = 1, (C.4)

with

dt ′ =
dt

(γ t + δ)2
, Q̇ ′(t ′) = (δ + γ t)Q̇ − γQ . (C.5)

One obtains immediately

A =
1
2


dt ′

(Q̇ ′)2 −

g
Q ′2


=

1
2


dt

Q̇ 2
−

g
Q 2
−

dΩ
dt


, (C.6)

with

Ω =
1
2
γ

Q 2

δ + γ t
. (C.7)

Therefore the actionA (C.1) is invariant, up to a surface term, under the groupof conformal transformations in onedimension.
The constants of motion, which follow from the invariance of the action (C.1) under conformal transformations, are also

the generators of the conformal group expressed in terms of the field operatorsQ . The conserved generators can be obtained
from Noether’s theorem. If the Lagrangian is form invariant under infinitesimal transformations i.e.,

L′[Q ′] = L[Q ′] +
dΩ
dt

(C.8)

then J obtained from

δJ =

L−

∂L
∂Q̇

Q̇

δt +

∂L
∂Q̇
δQ +Ω, (C.9)

is a constant of motion.
The Noether currents of the three independent transformations of the conformal group in one dimension are:

1. For translations t ′− t = δt = ϵ and δQ = 0 in (C.4). The group parameters are α = δ = 1, γ = 0, β = ϵ. The Noether
current is J ϵ =


L− ∂L

∂Q̇
Q̇

ϵ and the translation operator in the variable t

H = −J =
1
2


Q̇ 2
+

g
Q 2


. (C.10)

2. For dilatations t ′− t = δt = ϵt and δQ = Q ′−Q = 1
2ϵ Q +O(ϵ2) in (C.4). The group parameters are α =

√
1+ ϵ, δ =

1/
√
1+ ϵ, γ = β = 0. The Noether current is J ϵ =


L− ∂L

∂Q̇
Q̇

ϵ t + ∂L

∂Q̇
ϵ Q
2 and the dilatation operator

D = −J =
1
2


Q̇ 2
+

g
Q 2


t −

1
4


Q̇ Q + Q Q̇


. (C.11)

3. For special conformal transformations t ′ − t = δt = ϵ t2 + O(ϵ2) and δQ = Q ′ − Q = ϵ tQ + O(ϵ2) in (C.4). From (C.7)
we have Ω = − 1

2ϵ
Q 2

1−ϵt . The group parameters in this case are α = δ = 1, β = 0, γ = −ϵ. The Noether current is

J ϵ =

L− ∂L

∂Q̇
Q̇

ϵ t2 + ∂L

∂Q̇
ϵ t Q − 1

2ϵ
Q 2

1−ϵt and the generator of the special conformal transformations

K = −J =
1
2


Q̇ 2
+

g
Q 2


t2 −

1
2


Q̇ Q + Q Q̇


t +

1
2
Q 2. (C.12)

Since the operators must be Hermitian, one has to write the classical product Q̇ Q as the symmetrized expression
1
2 (Q̇ Q + Q Q̇ ). Note that the crucial term in K , namely Q 2, stems from the derivative dΩ/dt in the transformed Lagrangian
(C.6).

One can check explicitly that the generators Ht ,D and K obey the algebra of the generators of the conformal group

[H,D] = i H, [H, K ] = 2 i D, [K ,D] = −i K . (C.13)
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To proof this, one has to use repeatedly the commutation relation [Q , Q̇ ] = i, e.g.

[Q̇ 2, Q̇ Q ] = Q̇ 3Q − Q̇ Q Q̇ 2
= Q̇ 3Q − Q̇ (i+ Q̇ Q )Q̇

= Q̇ 3Q − iQ̇ 2
− Q̇ 2(i+ Q̇ Q ) = −2iQ̇ 2.

A useful relation is Q̇ Q−1 = Q−1 Q̇ + iQ−2 which can be proved by multiplying both sides by Q .
We can now examine the action of the generators of the conformal group on the state-space vectors

e−iH ϵ |ψ(t)⟩ = |ψ(t + ϵ)⟩ = |ψ(t)⟩ +
d
dt
|ψ(t)⟩ ϵ + O(ϵ2), (C.14)

e−iD ϵ |ψ(t)⟩ = |ψ(t + t ϵ)⟩ = |ψ(t)⟩ +
d
dt
|ψ(t)⟩ ϵ t + O(ϵ2),

e−iK ϵ |ψ(t)⟩ =
ψ t

1− ϵ t


= |ψ(t)⟩ +

d
dt
|ψ(t)⟩ ϵ t2 + O(ϵ2).

Using the canonical commutation relation for the fields, [Q , Q̇ ] = i, we can also obtain the evolution generated by the
operators H , D and K in the Heisenberg picture

i [H,Q (t)] =
dQ (t)
dt

, (C.15)

i [D,Q (t)] = t
dQ (t)
dt
−

1
2
Q (t),

i [K ,Q (t)] = t2
dQ (t)
dt
− tQ (t).

In terms of the new time variable τ (3.19) and the new field q(τ ) (3.22)

dτ =
dt

u+ vt + wt2
, q(τ ) =

Q (t)
√
u+ vt + wt2

, (C.16)

one obtains

A =
1
2


dt

Q̇ 2
−

g
Q 2


=

1
2


dτ

q̇2 −

g
q2
+
v2 − 4uw

4
q2 +

1
2

d
dτ


(v + 2w t(τ ) )q2


, (C.17)

where we have used the identity

(v + 2wt)qq̇ =
1
2
∂τ [(v + 2wt)q2] −

1
2
q2∂τ (v + 2w t(τ )). (C.18)

Thus, the transformed action differs from the original action only by a surface term which does not modify the equations of
motion.

Appendix D. Useful formulas for higher spin equations in anti-de Sitter space

D.1. Arbitrary integer spin

D.1.1. The action in the local Lorentz frame
Using the Christoffel symbols in Appendix A.2.2 one obtains from Eq. (A.58)

DMΦN1···NJ = ∂MΦ{N} +Ω(z)


j


δzMΦNj,N1···Nj−1Nj+1···NJ + δ

z
Nj
ΦMN1···Nj−1Nj+1···NJ + ηMNjΦzN1···Nj−1Nj+1···NJ


, (D.1)

with he warp factorΩ(z) = 1/z in AdS space.
The appearance of covariant derivatives (D.1) in the action for higher spin fields (4.14) and (4.16) leads to multiple

sums and quite complicated expressions. These, however simplify considerably if one goes to a local inertial frame with
(Minkowskian) tangent indices. The transformation from general covariant indices to those with components in the local
tangent space is achieved by the vielbeins, see (A.57)

Φ̂A1A2···AJ = eN1
A1
eN2
A2
· · · e

NJ
AJ
ΦN1N2···NJ , (D.2)
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and thus

Φ̂N1...NJ =

 z
R

J
ΦN1...NJ . (D.3)

Notably, one can express the covariant derivatives in a general frame in terms of partial derivatives in a local tangent frame.
One finds for the AdS metric

DzΦN1...NJ =


R
z

J

∂zΦ̂N1...NJ , (D.4)

and

gµµ
′

gν1ν
′
1 . . . gνJν

′
JDµΦν1...νJ Dµ′Φν′1...ν′J = gµµ

′

ην1ν
′
1 . . . η

νJ ν
′
J

∂µΦ̂ν1...νJ ∂µ′Φ̂ν′1...ν

′
J
+ gzz J Ω2(z) Φ̂ν1...νJ Φ̂ν′1...ν′J


, (D.5)

whereΩ(z) = 1/z is the AdS warp factor in the affine connection.
It is convenient for the application of the Euler–Lagrange equations (4.17) and (4.18) to split action (4.16) into three

terms:

1. A term S[0]eff which contains only fieldsΦν1...νJ orthogonal to the holographic direction.
2. A term S[1]eff , which is linear in the fieldsΦ∗zN2···NJ

,Φ∗N1z···NJ
, · · · ,Φ∗N1N2···z

.
3. The remainder, which is quadratic in fields with z-components, i. e., it contains terms such as Φ∗zN2...NJ

ΦzN ′2...N
′
J
. This last

term does not contribute to the Euler–Lagrange equations (4.18), since, upon variation of the action, a vanishing term
subject to the condition (4.15) is left.

Using (4.16), (D.4) and (D.5), and making use of the symmetry of the tensor fields, one finds,

S[0]eff =


ddx dz


R
z

d−1

eϕ(z) ην1ν
′
1 · · · η

νJν
′
J


−∂zΦ̂

∗

ν1...νJ
∂zΦ̂ν′1...ν

′
J

+ ηµµ
′

∂µΦ̂
∗

ν1...νJ
∂µ′Φ̂ν′1...ν

′
J
−


µeff (z)R

z

2

+ J Ω2(z)


Φ̂∗ν1...νJ Φ̂ν

′
1...ν
′
J


, (D.6)

and

S[1]eff =


ddx dz


R
z

d−1

eϕ(z)

−J Ω(z) ηµµ

′

ηN2ν
′
2 · · · η

NJν
′
J ∂µΦ̂

∗

zN2...NJ
Φ̂µ′ν′2...ν

′
J

+ J Ω(z) ηµνηN2ν
′
2 · · · η

NJν
′
J Φ̂∗zN2...NJ

∂µΦ̂νν′2...ν
′
J
− J(J − 1)Ω2(z) ηµνηN3ν

′
3 · · · η

NJν
′
J Φ̂∗zzN3···NJ

Φ̂µνν′3···ν
′
J


. (D.7)

As can be seen from the presence of the affine warp factorΩ(z) in (D.7), this term is only due to the affine connection and
thus should only contribute to kinematical constraints.

From (D.6) one obtains, upon variation with respect to Φ̂∗ν1...νJ (4.17), the equation of motion in the local tangent space
∂µ∂

µ
−

zd−1

eϕ(z)
∂z


eϕ(z)

zd−1
∂z


+
(µeff (z)R)2 + J

z2


Φ̂ν1...νJ = 0, (D.8)

where ∂µ∂µ ≡ ηµν∂µ∂ν . Using (D.7) one finds by variation with respect to Φ̂∗N1···z···NJ
(4.18) the kinematical constraints

ηµν∂µΦ̂νν2···νJ = 0, ηµνΦ̂µνν3···νJ = 0. (D.9)

From (D.8) and (D.9) one obtains using (D.3) the wave equation in a general frame in terms of the original covariant
tensor fieldΦN1···NJ given in (4.19) and (4.20) and the kinematical constraints given by (4.21).

D.1.2. Warped metric
In the warped metric (4.26) the vielbein has the form

ẽAM =
R
z
eϕ̃(z)δAM . (D.10)

The Christoffel symbols for the warped metric (4.26) have the same form as (A.58)

Γ L
MN = −Ω̃(z)


δ5Mδ

L
N + δ

5
Nδ

L
M − η

L5ηMN


with the warp factor Ω̃(z) = 1/z − ∂z ϕ̃(z).
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The effective action, invariant with respect to the warped metric g̃MN is

S̃eff =


ddx dz

g̃ g̃{NN

′
}


g̃MM ′DMΦ

∗

{N} DM ′Φ{N ′} − µ̃
2
eff (z)Φ

∗

{N}Φ{N ′}


, (D.11)

where µ̃eff (z) is again an effective mass.
Again one can go to a local tangent frame

Φ̂A1···AJ = e
N1···NJ
A1···AJ

ΦN1···NJ =

 z
R

J
e−J ϕ̃(z)ΦA1···AJ (D.12)

and obtain

S̃[0]eff =


ddx dz


R eϕ̃(z)

z

d−1

ην1ν
′
1 · · · η

νJ ν
′
J


−∂zΦ̂

∗

{ν} ∂zΦ̂{ν′}

+ ηµµ
′

∂µΦ̂
∗

ν1·νJ
∂µ′Φ̂ν′1·ν

′
J
−


µeff (z)R eϕ̃(z)

z

2

+ JΩ̃2(z)


Φ̂∗ν1·νJ Φ̂ν

′
1·ν
′
J


. (D.13)

Comparing (D.13) with the AdS action (D.6), one sees that both forms of the action are equivalent provided that one sets

ϕ̃(z) =
1

d− 1
ϕ(z) and (µ̃eff (z)R)2e2ϕ̃ = (µeff (z)R)2 + Ω̃2(z)(J − 1). (D.14)

Also S̃[1]eff is equivalent to (D.7), only Ω is replaced by Ω̃; since these warp factors factor out, their special form is not
relevant for the kinematical conditions derived from (4.18). Therefore the kinematical constraints (4.21) follow also from
the warped action (4.27).

D.2. Arbitrary half integer spin

D.2.1. General treatment
The covariant derivative of a Rarita–Schwinger spinor Ψ{N} is given by

DMΨN1···NT = ∂MΨN1···NT −
i
2
ωAB

M ΣABΨN1···NT −


j

Γ L
MNj
ΨN1Nj−1LNj=1···NT , (D.15)

whereΣAB are the generators of the Lorentz group in the spinor representation

ΣAB =
i
4
[ΓA,ΓB] , (D.16)

and the tangent space Dirac matrices obey the usual anti-commutation relation

Γ A Γ B
+ Γ B Γ A

= 2 ηAB. (D.17)

The spin connection in AdS is

wAB
M = Ω(z)


ηAzδBM − η

BzδAM

, (D.18)

withΩ(z) = 1/z.
For even d one can choose the set of gamma matrices Γ A

= (Γ µ,Γ z)with Γ z
= Γ 0Γ 1

· · ·Γ d−1. For d = 4 one has

Γ µ
= γ µ, Γ z

= −Γz = −i γ 5, (D.19)

where γ µ and γ 5 are the usual 4-dimensional Dirac matrices with γ 5
≡ iγ 0γ 1γ 2γ 3 and (γ 5)2 = +1. The spin connections

are given by

ωzα
µ = −ω

αz
µ = Ω(z)δ

α
µ, (D.20)

all other components ωAB
M are zero.

The covariant derivatives of a Rarita–Schwinger spinor in AdS are

DzΨN1···NT = ∂zΨN1···NT + T Ω(z)ΨN1···NT , (D.21)

DµΨN1···NT = ∂µΨN1···NT +
1
2
Ω(z)Γµ ΓzΨN1···NT

+Ω(z)


j


δzNj
ΨN1Nj−1,µ,Nj+1,...,NT + ηµNjΨN1Nj−1,z,Nj+1,...,NT


(D.22)

where, as usual the index z denotes the (d+ 1) holographic direction.
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The derivation of the equation ofmotion follows the lines outlined in Section 4.2 and Appendix D.1. One introduces fields
with tangent indices using a local Lorentz frame as in Appendix D.1.1

Ψ̂A1...AT = eN1
A1
· · · eNT

AT
ΨN1...NT =

 z
R

T
ΨA1...AT , (D.23)

and separate the action into a part S[0]Feff containing only spinors orthogonal to the holographic direction, and a term S[1]Feff ,
containing terms linear in Ψ̄zN2...NT ; the remainder does not contribute to the Euler–Lagrange equations (4.42). Since the
fermion action is linear in the derivatives, the calculations are considerably simpler than for the integer spin. One obtains
from (D.21)

S[0]F eff =


ddx dz

R
z

d+1
eϕ(z)ην1ν

′
1 . . . ηνT ν

′
T


i
2
eMA Ψ̂ ν1···νTΓ

A ∂M Ψ̂ν′1...ν
′
T

−
i
2
eMA

∂M Ψ̂ ν1...νT


Γ A Ψ̂ν′1···ν

′
T
− (µ+ ρ(z)) Ψ̂ ν1···νT Ψ̂ν′1···ν

′
T


, (D.24)

and

S[1]F eff = −


ddx dz

R
z

d
eϕ(z)ηN2N ′2 · · · ηNTN ′T T Ω(z)


Ψ̂ zN2···NT Γ

µΨ̂µN ′2···N
′
T
+ Ψ̂ µN2···NT Γ

µΨ̂zN ′2...N
′
T


, (D.25)

where the factor of the affine connectionΩ(z) = 1/z follows from Eqs. (A.58) and (D.18). Performing a partial integration,
the action (D.24) becomes:

S[0]F eff =


ddx dz

R
z

d
eϕ(z) ην1ν

′
1 · · · ηνT ν

′
T Ψ̂ ν1···νT


iηNMΓM∂N +

i
2z
Γz

d− zϕ′(z)


− µR− ρ(z)


Ψ̂ν′1...ν

′
T
, (D.26)

plus surface terms.
The variation of (D.25) yields indeed the Rarita–Schwinger condition in physical space–time (4.37)

γ νΨ̂νν2 ... νT = 0, (D.27)

and the variation of (D.26) provides the AdS Dirac-like wave equation
i

zηMNΓM∂N +

d− zϕ′

2
Γz


− µR− R ρ(z)


Ψ̂ν1...νT = 0. (D.28)

Going back to covariant Rarita–Schwinger spinors Ψνν2 ... νT one obtains immediately (4.43) and (4.44).

D.2.2. Spin- 32 Rarita–Schwinger field in AdS space
The generalization [183,184] of the Rarita–Schwinger action [179] to AdSd+1 is

S =


ddx dz
√
g Ψ̄N


iΓ̃ [NMN ′] DM − µ Γ̃

[NN ′]

ΨN , (D.29)

where Γ̃ [NMN ′] and Γ̃ [NN
′
] are the antisymmetrical products of three and two Dirac matrices Γ̃ M

= eMA Γ
A
=

z
R δ

M
A Γ

A,
with tangent space matrices Γ A given by (D.17). From the variation of this action one obtains the generalization of the
Rarita–Schwinger equation

i Γ̃ [NMN ′] DM − µ Γ̃
[NN ′]


ΨN ′ = 0. (D.30)

The Christoffel symbols in the covariant derivative can be omitted due to the antisymmetry of the indices in Γ̃ [NMN ′] and
only the spin connection must be taken into account. Eq. (D.30) leads to the Rarita–Schwinger condition [183]

Γ M ΨM = 0, (D.31)

and the generalized Dirac equation [184]
i

zηMNΓM∂N +

d
2
Γz


− µR


Ψ̂A = ΓAΨ̂z, (D.32)

for the spinor with tangent indices Ψ̂A =
z
R δ

M
A ΨM . These equations agree for T = 1, ϕ(z) = ρ(z) = 0 and Ψ̂z = 0 with Eq.

(D.28), derived from the effective action (4.39), for ϕ = ρ = 0.



82 S.J. Brodsky et al. / Physics Reports ( ) –

Appendix E. Light-front holographic mapping and the energy–momentum tensor

E.1. Gravitational form factor of composite hadrons

In Section 6 we described the matching of the electromagnetic current matrix elements in AdS space with the
corresponding expression derived from light-front quantization in physical space–time, thus establishing a precise relation
between wave functions in AdS space and the light-front wave functions describing the internal structure of hadrons. One
may ask if the holographicmapping found in [75] for the electromagnetic current is specific to the charge distributionwithin
a hadron or a general feature of light-front holographic QCD. In fact, the matrix elements of local operators of hadronic
composite systems, such as currents, angular momentum and the energy–momentum tensor, have exact Lorentz-invariant
representations in the light front in terms of the overlap of light-front wave functions and thus the LF holographic mapping
is a general property of LF observables. In this appendix we show explicitly that one obtains indeed identical holographic
mapping using matrix elements of the energy–momentum tensor [81,82].

E.1.1. Meson gravitational form factor in AdS space
The action for gravity coupled to a scalar field in AdS5 is

S =
1
κ2


d4x dz

√
g (R − 2Λ)+ SM

= SG + SM , (E.1)
where g ≡ |det gMN | and R is the scalar curvature (see Appendix A.1.2), κ is the 5-dimensional Newton constant, g is
the determinant of the metric tensor, and Λ is a bulk ‘cosmological’ constant. The first term in the action SG describes the
dynamics of the gravitational fields gMN and determines the background, which is AdS space (see Appendix A.2.2). The
coordinates of AdS5 are the Minkowski coordinates xµ and z labeled xM = (xµ, z), with M,N = 0, . . . , 4. The dynamics of
all other fields, the matter fields, is included in SM . To simplify the discussion we consider a scalar field in AdS. In this case
the matter content is represented by the AdS action:

SM =


d4x dz
√
g

gMN∂MΦ

∗∂NΦ − µ
2Φ∗Φ


, (E.2)

which describes a meson in AdS space. The symmetric and gauge-invariant Hilbert energy–momentum tensor of the mater
fields follows from the functional derivative

ΘMN(xL) = −
2
√
g

δSM
δgMN(xL)

, (E.3)

and is given by

ΘMN = ∂MΦ
∗∂NΦ + ∂NΦ

∗∂MΦ − gMN

∂LΦ∗∂LΦ − µ

2Φ∗Φ

. (E.4)

To determine the matrix elements of the energy–momentum tensor for arbitrary momentum transfer, we must first
identify the interaction term in the action of thematter fieldswith an external gravitational source at the AdS boundary [82].
To this end we consider a small deformation of the metric about its AdS background: ḡMN = gMN + hMN , and expand SM to
first order in hMN

SM [hMN ] = SM [0] +
1
2


d4x dz

√
g hMNΘ

MN
+ O(h2), (E.5)

where we have used the relation ΘMNδgMN = −ΘMNδgMN which follows from gMNδgMN = −gMNδgMN . Thus, in the weak
gravitational approximation the coupling of an external graviton field hMN to matter is given by the interaction term

SI =
1
2


d4x dz

√
g hMNΘ

MN . (E.6)

Likewise, we can determine the AdS equation of motion of the graviton field hMN by substituting the modified metric
ḡMN = gMN + hMN into the gravitational action SG. We find

SG[hMN ] = SG[0] +
1

4κ2


d4x dz

√
g

∂NhLM∂NhLM −

1
2
∂Lh ∂Lh


+ O(h2), (E.7)

where the trace hL
L is denoted by h. In deriving (E.7) we have made use of the gauge invariance of the theory h′LM =

hLM + ∂LϵM + ∂MϵL to impose the harmonic gauge condition ∂ℓhℓm =
1
2∂mh. The action describing the dynamical fields

hLM is given by the linearized form

Sh =
1

4κ2


d4x dz

√
g

∂NhLM∂NhLM −

1
2
∂Lh ∂Lh


, (E.8)

resembling the treatment of an ordinary gauge field. The total bulk action describing the coupling of gravity andmatter with
an external graviton in the weak field approximation thus has two additional terms: S = SG + SM + Sh + SI .
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E.1.2. Hadronic transition matrix elements in AdS and gravitational form factor
To simplify the discussion, we consider the holographic mapping of matrix elements of the energy–momentum tensor

of mesons, where only one gravitational form factor is present, but the results can be extended to other hadrons. We also
describe the bulk AdS geometrywith amodelwith awall at a finite distance z = 1/ΛQCD – the hardwallmodel of Ref. [55]. In
the higher-dimensional background theory thematrix element of the energy–momentum tensor for the hadronic transition
P → P ′, follows from the interaction term (E.6) describing the coupling of themeson fieldΦP(x, z)with the external graviton
field hMN(x, z) propagating in AdS space,

d4x dz
√
g hMN


∂MΦ∗P ′∂

NΦP + ∂
NΦ∗P ′∂

MΦP

, (E.9)

where we have dropped the second term in (E.4), which vanishes on-shell modulo a surface term. The hadronic transition
matrix element has the form

d4x dz
√
g hMN(x, z)


∂MΦ∗P ′(x, z)∂

NΦP(x, z)+ ∂NΦ∗P ′(x, z)∂
MΦP(x, z)


∼ (2π)4δ4


P ′ − P − q


ϵµν

PνP ′µ + PµP ′

ν A(q2), (E.10)

where the meson has initial and final four momentum P and P ′ respectively and q is the four-momentum transferred to
the pion by the graviton with polarization ϵµν . The expression on the right-hand side of (E.10) represents the space-like
gravitational form factor in physical space–time:

P ′
Θ ν

µ

 P  = PνP ′µ + PµP ′
ν A(q2). (E.11)

It is the matrix element of the energy–momentum tensor operator in QCD Θµν obtained below in Appendix E.1.3, and
represents a local coupling to point-like constituents. Despite the fact that the expressions for the transition amplitudes are
quite different, one can show that in the semiclassical approximation, discussed in Sections 2 and 6, a precise mapping can
be carried out at fixed light-front time for an arbitrary number of partons in the bound state [81].

The propagation of the meson in AdS space is described by a normalizable mode ΦP(xµ, z) = eiP·xΦ(z) with invariant
mass PµPµ = M2 and plane waves along the physical coordinates xµ. The boundary limit of the graviton probe is a plane
wave along the Minkowski coordinates with polarization indices along physical space–time according to h νµ(x, z → 0) =
ϵ νµ (q) e

iq·x. We thus write

h νµ(x, z) = ϵ
ν
µ (q) e

iq·xH(q2, z), (E.12)

with

H(q2 = 0, z) = H(q2, z = 0) = 1. (E.13)

Extracting the overall factor (2π)4δ4

P ′ − P − q


frommomentumconservation at the vertex,which arises from integration

over Minkowski variables in (E.10), we find [82]

A(Q 2) = R3
 1/ΛQCD dz

z3
H(q2, z)Φ2(z), (E.14)

with A(0) = 1. The gravitational form factor in AdS is thus represented as the z-overlap of the normalizable modes dual to
the incoming and outgoing hadrons, ΦP and ΦP ′ , with the non-normalizable mode, H(q2, z), dual to the external graviton
source [82]; this provides the form of the gravitational transition matrix element analogous to the electromagnetic form
factor in AdS [77]. It is interesting to notice that in holographic QCD hadrons appear noticeably more compact measured by
the gravitational form factor than by the corresponding charge form factor [82,180,369].

E.1.3. Meson gravitational form factor in light-front QCD
The symmetric and gauge-invariant expression for the energy–momentum tensor Θµν is obtained by varying the QCD

action with respect to the four-dimensional Minkowski space–time metric gµν(x)

Θµν(xρ) = −
2
√
g
δSQCD
δgµν(xρ)

, (E.15)

where SQCD =

d4x
√
gLQCD and g ≡ | det gµν |. From (2.9) we obtain he result:

Θµν =
1
2 ψ̄ i


γµDν + γνDµ


ψ − gµνψ (i ̸D−m) ψ − Ga

µλG
a
ν
λ
+

1
4gµνG

a
λσG

aλσ , (E.16)

where the first two terms correspond to the fermionic contribution to the energy–momentum tensor and the last two to
the gluonic contribution.
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In the front form, the gravitational form factor is conveniently computed from the matrix elements of the plus–plus
component of the energy momentum tensor at LF time x+ = 0:

P ′
Θ++(0) P  = 2


P+
2 A q2 , (E.17)

where P ′ = P + q. In the LF gauge A+ = 0 the fermionic component of the operatorΘ++ is

Θ++(x) =
i
2


f

ψ̄f (x)γ+
←→
∂
+

ψf (x), (E.18)

where an integration by parts is carried out to writeΘ++ in its Hermitian operator form. The sum in (E.18) extends over all
the types of quarks f present in the hadron.54 The expression for the operatorΘ++(0) in the particle number representation
follows from themomentumexpansion of theDirac fieldψ(x) in termsof creation and annihilation operators givenby (2.14).
The matrix element the operator Θ++ is then computed by expanding the initial and final meson states |ψM(P+, P⊥)⟩ in
terms of its Fock components (2.23). Using the normalization condition (2.22) for each individual constituent, and after
integration over the intermediate variables in the q+ = 0 frame we find the expression for the gravitational form factor of
a meson [160,81]

AM(q2) =

n

 
dxi
 

d2k⊥i
 n

f=1

xf ψ∗n/M(xi, k
′

⊥i, λi)ψn/M(xi, k⊥i, λi), (E.19)

where the sum is over all the partons in each Fock state n. The variables of the light-cone Fock components in the final state
are given by k′

⊥i = k⊥i + (1 − xi) q⊥ for a struck constituent quark and k′
⊥i = k⊥i − xi q⊥ for each spectator. Notice that

each type of parton contributes to the gravitational form factor with struck constituent light-cone momentum fractions xf ,
instead of the electromagnetic constituent charge ef which appears in the electromagnetic form factor. Since the longitudinal
momentum fractions of the constituents add to one,


f xf = 1, the momentum sum rule is satisfied at q = 0: A(0) = 1.

The formula is exact if the sum is over all Fock states n.
In order to comparewithAdS results it is convenient to express the LF expressions in the transverse impact representation

since the bilinear forms may be expressed in terms of the product of light-front wave functions with identical variables. We
substitute (2.35) in the formula (E.19). Integration over k⊥ phase space gives us n− 1 delta functions to integrate over the
n− 1 intermediate transverse variables with the result [81]

AM(q2) =

n

n−1
j=1


dxjd2b⊥j

n
f=1

xf exp

iq⊥ ·

n−1
k=1

xkb⊥k
 ψn/M(xj, b⊥j, λj)

2 , (E.20)

corresponding to a change of transverse momentum xjq⊥ for each of the n− 1 spectators.
For a baryon, the spin-conserving form factor A(q2) is the analog of the Dirac form factor F1(q2). It allows one to measure

the momentum fraction carried by each constituent. There is also a spin-flip form factor B(q2), the analog of the Pauli form
factor F2(Q 2) of a nucleon, which provides a measure of the orbital angular momentum carried by each quark and gluon
constituent of a hadron at q2 = 0. An important constraint is B(0) = 0, the vanishing of the anomalous gravitomagnetic
moment of fermions [370,371]. For a composite bound state this means that the anomalous gravitomagnetic moment of
a hadron vanishes when summed over all the constituents. The explicit verification of these relations, Fock state by Fock
state, can be obtained in the light-front quantization of QCD in light-cone gauge [160]. Physically B(0) = 0 corresponds to
the fact that the sum of the n orbital angular momenta L in an n-parton Fock state must vanish since there are only n − 1
independent orbital angular momenta.

E.1.4. Light-front holographic mapping
The mapping of AdS transition amplitudes to light-front QCD transition matrix elements is much simplified for two-

parton hadronic states. The light-front expression for a meson form factor in impact space is given by (E.20) and includes
the contribution of each struck parton with longitudinal momentum fraction xf . For n = 2, there are two terms which
contribute to the f -sum in (E.20). Exchanging x↔ 1− x in the second term and integrating over angles we find

Aπ (Q 2) = 4π
 1

0

dx
(1− x)


ζdζ J0


ζq


1− x
x


|ψqq̄/M(x, ζ )|2, (E.21)

where ζ 2
= x(1− x)b2

⊥
and AM(0) = 1.

54 The plus-plus component of the energy–momentum does not connect Fock states with different numbers of constituents in the q+ = 0 frame [78].
In the semiclassical AdS/CFT correspondence there are no quantum effects, and only the valence Fock state contributes to the hadronic wave function. In
this approximation we need to consider only the quark contribution to the energy momentum tensor in (E.18). Notice also that the second term of the
energy–momentum tensor (E.16) does not appear in the expression forΘ++ since the metric component g++ is zero in the light-front (Appendix B).
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We now consider the expression for the hadronic gravitational form factor in AdS space (E.14). Since the energy
momentum tensor ΘMN is gauge invariant, we may impose a more restricted gauge condition in order to simplify the
calculations and use the general covariance of the theory to obtain the final result. We choose the harmonic-traceless gauge
∂LhL

M =
1
2∂Mh = 0 and we consider the propagation inside AdS space of a graviton probe hMN with vanishing metric

components along the z-coordinate hzz = hzµ = 0. The set of linearized Einstein equations from (E.8) reduce for H(Q 2, z)
in (E.12) to the wave equation [82]

d2

dz2
−

3
z

d
dz
− Q 2


H(Q 2, z) = 0, (E.22)

which describes the propagation of the external graviton inside AdS space. Its solution subject to the boundary conditions
(E.13) is (Q 2

= −q2 > 0)

H(Q 2, z) =
1
2
Q 2z2K2(zQ ), (E.23)

the result obtained by Abidin and Carlson [82]. Using the integral representation of H(Q 2, z) from (G.17)

H(Q 2, z) = 2
 1

0
x dx J0


zQ


1− x
x


, (E.24)

the AdS gravitational form factor (E.14) can be expressed as

A(Q 2) = 2R3
 1

0
x dx


dz
z3

J0


zQ


1− x
x


|Φπ (z)|2 . (E.25)

We now compare with the light-front QCD gravitational form factor (E.21) using the expression of the light-front wave
function (2.40)

ψ(x, ζ , ϕ) = eiLϕX(x)
φ(ζ )
√
2πζ

, (E.26)

which we use to factor out the longitudinal and transverse modes φ(ζ ) and X(x) from the LFWF in (E.21). Both expressions
for the gravitational form factor are identical for arbitrary values of Q provided that [81]

φ(ζ ) =


R
ζ

−3/2
Φ(ζ ) and X(x) =


x(1− x). (E.27)

This comparison allows us to identify the transverse impact LF variable ζ with the holographic variable z, z → ζ =√
x(1− x)|b⊥|.55 The results are identical to those obtained from the mapping of the electromagnetic form factor in

Section 6.1.3.

Appendix F. Propagators in the limiting theory of AdS5

F.1. AdS boundary conditions and gauge/gravity correspondence

The formal statement of the duality between a gravity theory on a (d+ 1)-dimensional Anti-de Sitter AdSd+1 space and
the strong coupling limit of a conformal field theory (CFT) on the d-dimensional flat space boundary at z = 0, is expressed
in terms of the d+ 1 partition function for a fieldΦ(x, z) propagating in the bulk

Zgrav[Φ] =


D[Φ]eiSgrav[Φ], (F.1)

and the d-dimensional generating functional of correlation functions of the boundary conformal theory in presence of an
external source j(x):

ZCFT [j] =

exp


i


ddx j(x)O(x)

, (F.2)

where O is a local interpolating operator. The interpolating operators O of the boundary quantum field theory are
constructed from local products of fields and their covariant derivatives, taken at the same point in four-dimensional
space–time.

55 Extension of the results to arbitrary n follows from the x-weighted definition of the transverse impact variable of the n− 1 spectator system given by
Eq. (2.47).
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The correlation function ⟨O(x1) · · ·O(xn)⟩ follows from the functional derivatives of the generating functional of the
connected Green functions log ZCFT [j]:

⟨O(x1) · · ·O(xn)⟩ = (−i)n
δ

δj(x1)
· · ·

δ

δj(xn)
log ZCFT [j]. (F.3)

As a specific example consider a scalar field in AdS. In the boundary limit z → 0, the independent solutions behave as

Φ(x, z)→ z∆Φ+(x)+ zd−∆Φ−(x), (F.4)

where∆ is the scaling dimension. The non-normalizable solutionΦ− has the leading boundary behavior and is the boundary
value of the bulk fieldΦ which couples to a QCD interpolating operator:

lim
z→0

z∆−dΦ(x, z) = j(x), (F.5)

where j(x) = Φ−(x), a finite quantity. The normalizable solutionΦ+ is the response function and corresponds to the physical
states [372].

The precise relation of the gravity theory on AdS space to the conformal field theory at its boundary is [27,28]

ZCFT [j] = Zgrav

Φ[z=ϵ] → j


, (F.6)

where the partition function (F.1) on AdSd+1 is integrated over all possible configurations Φ in the bulk which approach
its boundary value j. In the classical limit we neglect the contributions from quantum fluctuations to the gravity partition
function, then the generating functional of the four-dimensional gauge theory log Z[j] (F.2) is precisely equal to the classical
(on-shell) gravity action Son−shellgrav


Φcl
[z=ϵ] → j


:

log Z[j] = i Son−shellgrav


Φcl
[z=ϵ] → j


, (F.7)

evaluated in terms of the classical solutionΦcl to the bulk equation of motion. This defines the semiclassical approximation
to the conformal field theory. In the bottom-up phenomenological approach, the effective action in the bulk is usually
modified for large values of z to incorporate confinement and is truncated at the quadratic level.

Consider the AdS action for the scalar fieldΦ56

Sgrav =
1
2


ddx dz

√
g

gMN∂MΦ∂NΦ − µ

2Φ2 , (F.8)

where g =
 R
z

2d+2
. Integrating by parts, and using the equation of motion, the bulk contribution to the action vanishes, and

one is left with a non-vanishing surface term in the boundary

Son−shellgrav = −
1
2


ddx
√

gΦgzz∂zΦ

z=ϵ . (F.9)

We can compute the expectation value of O

⟨O(x)⟩j = −i
δ

δj(x)
Son−shellgrav = −i lim

z→0
zd−∆

δ

δΦ(x, z)
Son−shellgrav , (F.10)

and thus

⟨O(x)⟩j ∼ Φ+(x). (F.11)

One finds thatΦ+(x) is related to the expectation values ofO in the presence of the source j [372]. The exact relation depends
on the normalization of the fields chosen [339]. The fieldΦ+ thus acts as a classical field, and it is the boundary limit of the
normalizable string solution which propagates in the bulk.

In the bottom-up phenomenological approach, the effective action in the bulk is usually modified for large values of z to
incorporate confinement and is usually truncated at the quadratic level.

56 For a description of the correlators of spinor and vector fields see for example Ref. [175].
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F.2. Two-point functions for arbitrary spin and Migdal procedure

We start from the action (D.6). Performing a partial integration in the variable z and using the equation of motion (D.8)
one obtains, after a Fourier transform in x, the on-shell gravity action

Son−shellgrav [Φ̂cl
] =


d4q


R
z

d−1

eϕ(z) ϵν1...νJ (−q) Φ̂J(−q, z) ϵν1...νJ (q)∂zΦ̂J(q, z), (F.12)

where ϵν1...νJ (q) is the polarization vector with

qν1ϵν1...νJ = 0, ην1ν2ϵν1ν2...νJ = 0, (F.13)

and Φ̂J(q, z) is the solution of the equation of motion in the inertial frame (see (D.8)):
−q2 −

zd−1

eϕ
∂z


eϕ

zd−1
∂z


+
(µeff (z)R)2 + J

z2


Φ̂(q, z) = 0. (F.14)

We go back to covariant tensor withΦJ =
 R
z

d−1
Φ̂ (see (D.3)),

Son−shellgrav [Φcl
] =


d4q


R
z

d−1−2J

eϕ(z)

ϵν1...νJ (−q)ΦJ(−q, z)

× ϵν1...νJ (q)∂zΦJ(q, z)+
J
z
ϵν1...νJ (−q)ΦJ(−q, z) ϵν1...νJ (q)ΦJ(q, z)


.

In order to satisfy the conditionΦcl
[q, z → 0] = j(q)we put:

Φcl
J (q, z) ϵν1...νJ = jν1...νJ (q) lim

ϵ→0

ΦJ(q, z)
ΦJ(q, ϵ)

. (F.15)

We then obtain

Son−shellgrav [Φcl
] =


d4q


R
z

d−1−2J

eϕ(z)
∂zΦ(q, z)
Φ(q, ϵ)

+
J
z


× σν1ν′1...νJν

′
J
(q) jν1...νJ (−q) jν

′
1...ν
′
J (q),

where the spin tensor σν1ν′1...νJν′J (q) reflects the conditions (F.13). The term J/z in the action is independent of q and therefore
gives only rise to a contact term; it will, like all contact terms, be discarded in the following.

The propagator of the quantum field φ is obtained from log Z[j] by functional differentiation using the equality (F.7)

⟨φν1...νJ (q)φν′1...ν′J (−q)⟩ =
δ

δjν1...νJ (−q)
δ

δjν
′
1...ν
′
J (q)

log Z[j] (F.16)

= 2i σν1ν′1...νJν′J (q)

R
z

3−2J

eϕ(z)
∂zΦ(q, z)
Φ(q, ϵ)

≡ i σν1ν′1...νJν′J (q) Σ(q
2). (F.17)

For the conserved vector current (µ = 0; J = L = 1) one starts with the AdS action

SAdS =
1
2


d4x dz


R
z

5

FMN FMN . (F.18)

In the hard wall model with Dirichlet boundary conditions at z0 one obtains [99]

1
R
Σ(q2) = 2q2 lim

z→0


log(q z)−

π Y1(qz0)
2 J1(qz0)


. (F.19)

For the soft wall model the solutions are

Φ(z) = z2+L−J e−(λ+|λ|)z
2/2 U(a, L+ 1, |λ| z2), (F.20)

with a = 1
4


−q2

|λ|
+ 2L+ 2− λ

|λ|
(2− 2J)


. The function U(a, b, z) in (F.20), is the solution of Kummer’s equation which

vanishes for z →∞ [373]. One obtains for the propagator of the conserved current in the soft wall model [103,104]

1
R
Σ(q2) = −q2ψ


−

q2

4λ
+ 1


− q2 log(|λ|z2), (F.21)
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where ψ(z) is the meromorphic Digamma function, ψ(z) = ∂z log(Γ (z)) which has poles at z = 0,−1,−2 · · · . The term
which is infinite in the limit z → 0 is a contact term, which will be discarded.

As has been shown in [99] the propagator of the conserved vector current obtained in the hard-wall model of AdS5,
Eq. (F.19), is identical to the result obtained by Migdal [100,101] in its hadronization scheme of perturbative QCD. In
the NC → ∞ limit of QCD the hadronic cuts should vanish and only the hadron poles survive. Furthermore conformal
invariance makes it possible to find explicit perturbative expressions up to order α4

s which are diagonal in the rank of
the hadron interpolating operators [374,375]. Migdal has constructed propagators which asymptotically reproduce the
perturbative result, but have only poles on the positive real axis of q2. As a prescription to obtain this answer, he used the Padé
approximation where the logarithm of the perturbative result is approximated by a quotient of power series. As stressed
in [99] the hard-wall model of AdS5 is a convenient framework to achieve this ‘‘meromorphization’’. The logarithmic cuts
occurring in the Bessel function Y1 are canceled by the logarithmic term in (F.19). It was considered as a deficiency that the
Migdal regularization scheme did not lead to linear Regge trajectories and induced Migdal not to pursue this investigations
further.57

Insisting on equally spaced poles on the real axis (Regge daughters) an obvious choice for a meromorphization is the
digamma function ψ(z), see (F.21). It has poles at z = 0, −1, −2 · · · and behaves in the deep Euclidean region z ≫ 1
like log z2. Therefore, one can also see the soft-wall model of AdS5 as a correspondence of themeromorphization program of
perturbative QCD. Since the asymptotic expansion of the digamma function is

ψ(z) ∼ log z −
1
2z
−

∞
n=1

B2n

2nz2n
= log z −

1
2z
−

1
12z2

+ · · · , z →∞, | arg z| < π, (F.22)

the soft wall model is closer to the QCD sum rule method of Shifman, Vainshtein and Zakharov [102] than to the Migdal
model [103,104]. Also in the sum rule approach, corrections with inverse powers of Q 2 are added to the perturbative
expression in order to improve the perturbative result in the not so deep Euclidean region. Note that there is also a power
correctionproportional to 1/Q 2 whichdoes not correspond to a classical vacuumexpectation value (see [376]). Finite-energy
sum rules also lead under model assumptions to a linear rise inM2 for the radial excitations:M2

∼ n [377,378].
Next we discuss the fields with L = 058 which play an important role in the phenomenology of LF holographic QCD,

where λ > 0. For the vector current which interpolates the ρ in light-front AdS/QCD, i.e. the field with quantum numbers
J = 1, L = 0, ((µR)2 = −1) one obtains in the soft wall model (up to finite and diverging contact terms)

1
R
Σ(q2) =

1
(z log(z))2


ψ


−

q2

4λ
+

1
2


+ O


1

log z


+ O(1). (F.23)

The leading term in the expression for the generating functional log Z[j], proportional to the square bracket in (F.23) is a
meromorphic function with the poles as predicted by the equation of motion. The gauge gravity prescription [27,28] given
by (F.7) is equivalent to

log Z[j] = lim
z→0

(z log z)2 i Son−shellgrav


Φcl
[z=ϵ] → j


. (F.24)

The factor z2 log2 z cancels the infinity in (F.23) as z → ∞ and the O(1) contributions vanish. Note that in this case the
polarization tensor is given by gµν − qµ qν/q2.

For a general tensor field with L > 0 we obtain:

Σ(q2) = CLR3−2Jz2(J+L)−4 λL
Γ


−q2+2(J+L)λ

4λ


Γ


−q2+2(J−L)λ

4λ

 ψ −q2 + 2(J + L)λ
4λ


, (F.25)

where CL is an L-dependent number. The ratio of the Gamma functions is a polynomial in q2 of degree L. For L > 0 the
relation (F.7) becomes

log Z[j] = lim
z→0

(z )4−2(J+L) i Son−shellgrav


Φcl
[z=ϵ] → j


. (F.26)

In the hard-wall model we obtain similar results as in the soft-wall model, but the meromorphic digamma function is
replaced by a meromorphic combination of J and Y Bessel functions. Specifically for the case L > 0 we obtain:

Σ(q2) = C ′LR
3−2Jz2(J+L)−4 q2L

πYL(qz0)− 2 log(qz0) JL(qz0)
JL(qz0)

. (F.27)

57 M. Shifman, private communication.
58 For a treatment in the soft wall model with negative dilaton profile see [220,379].
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To summarize: Both the soft- and hard-wall models in LF holographic QCD can be seen as a meromorphization of the
perturbative QCD expression. The philosophy of the two procedures is, however, quite different. The Migdal procedure,
corresponding to the hard-wall model, stays as close as possible to perturbative QCD. The Padé approximation is chosen
in such a way as to optimize the agreement with the perturbative expression in the deep Euclidean region. In the soft-
wall model, where the two-point function is proportional to the digamma function, there are power corrections to the
(perturbative) logarithm, see (F.22). Therefore, the soft-wall model is closer in spirit to the QCD sum rule method [102]
where also power corrections are added to the perturbative result [103,104]. The essential input is the equal spacing of the
Regge daughters as in the Veneziano model [380]. The slope of the trajectory fixes the genuine non-perturbative quantity,
the scaleλ. Finally, let us remark that both the hard- and the soft-wallmodels share essential features of QCD in theNC →∞

limit: The propagators are meromorphic functions and the higher n-point functions vanish.

Appendix G. Some useful formulæ

G.1. Solutions of the equations of motion in AdS space

The equation of motion for arbitrary spin has the generic form given by (4.23)

−
zk

eϕ(z)
∂z


eϕ(z)

zk
∂zΦ(z)


+


(mR)2

z2
−M2


Φ(z) = 0 (G.1)

where k = d− 2J − 1. This equation can be rewritten as
−z2 ∂2z +


k− zϕ′(z)


z∂z + (mR)2 − z2M2Φ(z) = 0. (G.2)

By rescaling the field according toΦ(z) = zk/2e−ϕ(z)/2 φ(z) this equation can be brought into a Schrödinger form
−

d2

dz2
+

2k+ k2 + 4(mR)2

4z2
+

z2 ϕ′2 + 2z2ϕ′′ − 2kzϕ′

4z2


φ(z) = M2φ(z), (G.3)

which shows the structure of the light-front Hamiltonian.
For the hard-wall model one has ϕ(z) = 0 and can, for M2 > 0 bring (G.2) into the form of a Bessel equation [373] by

rescalingΦ(z) = z(k+1)/2 f (y), y = Mz:

y2f ′′(y)+ yf ′(y)+ (y2 − ν2)f (y) = 0, (G.4)

with ν2 = (mR)2+ 1
4 (k+1)2. Solutions are the Bessel functions of the first and second kind, Jν(y) and Yν(y). Only the Bessel

functions of the first kind are regular at z = 0

Jν(y) =
(y/2)ν

Γ (ν + 1)
+ O(y2(ν+1)), ν ≠ −1,−2, . . . . (G.5)

For normalization one can use the integral formula y0

0
dy y J2L (y) =

1
2
y20

J2L (y0)− JL−1(y0) JL+1(y0)


. (G.6)

In the hardwall model Jν(Mz0) = 0 and the zeroes of the Bessel functions Jν(y) determine the hadron spectrum: Each Bessel
function has an infinite set of zeroes. For small values of ν we can use the approximation [373]

βν,r ≈


k+

ν

2
−

1
4


π −

4ν2 − 1
8π

r + ν

2 −
1
4

 . (G.7)

For the caseM2
= −Q 2 < 0 we obtain by rescalingΦ(z) = z(k+1)/2 f (y), y = Q z the modified Bessel equation

y2f ′′(y)+ yf ′(y)− (y2 + ν2)f (y) = 0, (G.8)

with ν2 = (mR)2 − 1
4 (k + 1)2. Its two independent solutions are the modified Bessel functions Iν(y) and Kν(y) [373]. The

function Iν(y) increases asymptotically like ey for y → ∞, Kν(y) is singular at y = 0, K0(y) diverges logarithmically at
y = 0.

In the case of the soft-wall model one has the dilaton profile ϕ(z) = λ z2 and (G.2) can be brought into the following
form by rescalingΦ(z) = z(k+1)/2 e−λz

2/2f (z):
−

d2

dz2
−

1
z

d
dz
+

L2

z2
+ λ2z2


f (z) =


M2
+ (k− 1)λ


f (z), (G.9)

with L2 = (mR)2 + (k+1)2

4 .
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Table G.1
General form of the solutions of the AdS wave equations for integer spin and their spectra. The AdS field Φ denotes the
solution of Eq. (4.23). The solution φ is rescaled as φ = z(2J+1−d)/2eϕ(z)/2Φ in order to satisfy an equation of the Schrödinger
type (G.3). The normalization factor N is determined from


dz φ2(z) = 1 and is regular at z = 0.

ϕ ≡ 0

M2 > 0 Φ(z) = zd/2−J (A JL(Mz)+ B YL(Mz))
φ(z) = 1

N z1/2JL(Mz)
N2
= z20


JL(Mz0)2 − JL−1(Mz0) JL+1(Mz0)


MnL = βLk/z0

Q 2
= −M2 > 0 Φ(z) = zd/2−J (A KL(Qz)+ B IL(Qz))

d = 4, L = 1, J = 1 Φ1(z) = Qz K1(Qz)
Φ1(0) = 1

ϕ = λz2

M2 > 0 Φn,L(z) = zd/2−J+L LLn(|λ| z
2)e−(|λ|+λ)z

2/2

φn,L(z) = 1
N zL+1/2 LLn(|λ| z

2)e−|λ|z
2/2

N =

(n+L)!
2 n! |λ|

−(L+1)/2

M2
n,L = (4n+ 2L+ 2)|λ| + 2λ(J − 1)

Q 2
= −M2 > 0 Φ(z) = zd/2+L−J e−(λ+|λ|)z

2/2 U(a, L+ 1, |λ| z2)
a = 1

4


Q 2

|λ|
+ 2L+ 2− λ

|λ|
(d− 2J − 2)


d = 4, L = 1, J = 1 Φ1(z) = Γ


1+ Q 2

4|λ|


e−(λ+|λ|)z

2/2 U


Q 2

4|λ| , 0, |λ|z
2


Φ1(0) = 1

The operator of the left hand side of (G.9) is the Hamiltonian of an harmonic oscillator in two dimensions with angular
momentum L. The normalized eigenfunctions of the harmonic oscillator are

fnL(z) =


2n!

(n+ L)!
zL e−|λ|z

2/2 LLn(|λ|z
2), (G.10)

and its eigenvalues are EnL = (2n+ L+ 1)|λ|. The spectrum of eigenvalues forM2 is thus given by

M2
nL = (4n+ 2L+ 2)|λ| − (k− 1)|λ|. (G.11)

If one rescalesΦ(z) = z(k+1)/2+Lg(y)with y = |λ| z2 and L2 = (mR)2 + (k+1)2

4 one obtains the equation

y g ′′(y)+

b+

λ

|λ|
y

g ′(y)− a g(y) = 0, (G.12)

with a = − 1
4
λ
|λ|
(2L+ k+ 1)− M2

4|λ| , b = L+ 1.
For λ < 0 this is Kummer’s equation [373]with the solutionsM(a, b, y) andU(a, b, y).M(a, b, z) increases exponentially

for z → +∞ and leads to a divergent solution; thus, only the hypergeometric function U is of interest for us. For a = −n,
the confluent hypergeometric function U is regular at z = 0 and is given by [373]

U(−n, L+ 1, y) =
n!

(L+ 1)(L+ 2) · · · (L+ n)
LLn(y). (G.13)

The condition a = −n yields the spectrum (G.11) for λ < 0; one thus recovers the result obtained above. Eq. (G.12) is valid
for arbitrary values of a and hence also for negative values ofM2

= −Q 2.
For λ > 0 on can transform (G.12) into Kummer’s equation by additional rescaling by the factor e−λz

2
, that is Φ(z) =

z(k+1)/2+Le−λz
2
g(y), y = |λ| z2. Then one obtains from (G.2) Kummer’s equation (G.12), but with a = 1

4 (2L+ 3− k)− M2

4λ .
For the electromagnetic current (d = 4) we have k = 1, L = 1 and the solution of (G.12) is [373]

g(y) = U

1+

Q 2

4|λ|
, 2, y


=

1
y
U


Q 2

4|λ|
, 0, y


. (G.14)

The solutionΦ , normalized toΦ(0) = 1 can be written as

Φ(z) = Γ

1+

Q 2

4|λ|


e−(λ+|λ|)z

2/2 U


Q 2

4|λ|
, 0, |λ|z2


. (G.15)

The solutions of the differential equations relevant for the soft- and hard-wall models are summarized in Table G.1.
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G.1.1. A useful integral
The integral relation between the Bessel function of the first kind Jα(x) and the modified Bessel function Kα(x) is usually

given by the Hankel–Nicholson integral [373]
∞

0

tν+1Jν(zt)
t2 + a2

µ+1 dt =
zµaν−µ

2µΓ (µ+ 1)
Kν−µ(az). (G.16)

Changing the variable t according to x = a2

t2+a2
we can recast the integral (G.16) as 1

0
dx xµ−1


1− x
x

ν/2
Jν


az


1− x
x


=

(az)µ

2µ−1Γ (µ+ 1)
Kν−µ(az). (G.17)

Appendix H. Integrability and light-front effective Hamiltonians

Integrability of a physical system is related to its symmetries. In holographic QCD the conformal symmetry often means
integrability: the solution to the differential equations describing the system can be expressed is terms of analytical
functions. In this appendix we shall follow the remarkable integrability methods introduced by L. Infeld in a 1941 paper
[381,382]. The key observation in Infeld’s paper is the realization that integrability follows immediately if the equation
describing a physical model can be factorized in terms of linear operators. These operators, the ladder operators, generate
all the eigenfunctions once the basic eigenfunction is know. In the following we will describe how to construct effective
light-front Hamiltonians corresponding to the hard and soft-wallmodels discussed in this report from the algebra of bosonic
or fermionic linear operators [138,257]. In particular, we describe here a different approach to the soft-wall model which
results from a minimal extension of the conformal algebraic structures. This method is particularly useful in the fermionic
sector where the corresponding linear wave equations become exactly solvable [138,257].

H.1. Light-front effective bosonic Hamiltonians

H.1.1. Light-front hard-wall model
To illustrate the algebraic construction procedure consider first, as a simple example, the light-front Hamiltonian form

(5.2) in the conformal limit:

HνLF = −
d2

dζ 2
−

1− 4ν2

4ζ 2
, (H.1)

with hadronic mass eigenvalues and eigenstates determined by the eigenvalue equation

HνLF φν(ζ ) = M2
ν φν(ζ ). (H.2)

If ν > 0 the Hamiltonian (H.1) can be expressed as a bilinear form

HνLF = bνbĎν, (H.3)

where

b =
d
dζ
+
ν + 1

2

ζ
, (H.4)

and its adjoint

bĎ = −
d
dζ
+
ν + 1

2

ζ
, (H.5)

with


d
dζ

Ď
= −

d
dζ .

Since the Hamiltonian is a bilinear form, its eigenvalues are positive definite

⟨φ
HνLF φ⟩ =  dζ |bĎνφ(z)|

2
≥ 0.

Consequently M2
≥ 0 if ν2 ≥ 0. The critical value ν = 0 corresponds to the lowest possible stable solution. If ν2 < 0 the

system is not bounded from below.
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From the eigenvalue Eq. (H.2) we obtain the wave equation
−

d2

dx2
−

1− 4ν2

4x2


φν(x) = φν(x), (H.6)

where x = ζM . In terms of the operators bν and bĎν (H.6) is equivalent to

bνbĎν |ν⟩ = |ν⟩. (H.7)

Multiplying both sides on the left by bĎν ,

bĎνbν{b
Ď
ν |ν⟩} = {b

Ď
ν |ν⟩}. (H.8)

It is simple to verify that

bĎνbν = bν+1b
Ď
ν+1, (H.9)

and thus

bν+1b
Ď
ν+1{b

Ď
ν |ν⟩} = {b

Ď
ν |ν⟩}. (H.10)

Consequently

bĎν |ν⟩ = cν |ν + 1⟩, (H.11)

or 
−

d
dx
+
ν + 1

2

x


φν(x) = cνφν+1(x), (H.12)

with cν a constant. Thus bĎν is the raising operator. Likewise, one can show that bν is the lowering operator,

bν |ν + 1⟩ = cν |ν⟩, (H.13)

or 
d
dx
+
ν + 1

2

x


φν+1(x) = cνφν(x), (H.14)

with cν a constant.
Writing

φν(x) = C
√
xFν(x), (H.15)

and substituting in (H.12) we get

ν

x
Fν(x)− F ′ν(x) ∼ Fν+1(x), (H.16)

a relation which defines a Bessel function Zν+1(x) of rank ν + 1 in terms of a Bessel of rank ν, Zν(z), [373]

ν

x
Zν(x)− Z ′ν(x) = Zν+1(x). (H.17)

Thus the normalizable solution to the eigenvalue equation (H.2) is

φν(ζ ) = Cν
√
zJν(ζM) (H.18)

with Cν a constant. The eigenvalues are obtained from the boundary conditions and are given in terms of the roots of the
Bessel functions.
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H.1.2. Light-front soft-wall model
We can introduce a scale by modifying the operators (H.4) and (H.5) while keeping an integrable system. Let us consider

the extended operator

bν =
d
dζ
+
ν + 1

2

ζ
+ λζ , (H.19)

and its adjoint

bĎν = −
d
dζ
+
ν + 1

2

ζ
+ λζ . (H.20)

Since we have introduced a scale λ in the problem, the effective Hamiltonian has the general form

HνLF = bνbĎν + C(λ), (H.21)

where the constant term C(λ) depends on the spin representations. Since the Hamiltonian is a bilinear form, modulo a
constant, its eigenvalues are positive definiteM2

≥ 0 provided that ν2 ≥ 0 and C(λ) ≥ −4λ.
Let us consider the case where the ground state is massless (the pion). In this case C(λ) = −4λ and the LF effective

Hamiltonian is given by

HνLF (ζ ) = −
d2

dζ 2
−

1− 4ν2

4ζ 2
+ λ2ζ 2

+ 2λ(ν − 1), (H.22)

which is identical to the LF Hamiltonian from (5.2) with effective potential (5.5),

U(ζ ) = λ2ζ 2
+ 2λ(ν − 1), (H.23)

for ν = J = L.
Following the analysis of Appendix H.1.1 it is simple to show that the operator bĎν acts as the creation operator,

bĎν |ν⟩ = cν |ν + 1⟩, (H.24)

or 
−

d
dζ
+
ν + 1

2

ζ
+ λζ


φν(ζ ) = cνφν+1(ζ ). (H.25)

with cν a constant.
We also consider the operator

aν = −
d
dζ
+
ν + 1

2

ζ
− λζ , (H.26)

and its adjoint

aĎν =
d
dζ
+
ν + 1

2

ζ
− λζ . (H.27)

It is also simple to verify that the operator aν lowers the radial quantum number n by one unit and raises ν by one unit

aν |n, ν⟩ ∼ |n− 1, ν + 1⟩. (H.28)

Notice that the state |n−1, ν+1⟩ obtained by application of the operator aν is degenerate with the state |n, ν⟩. For a given ν
the lowest possible state corresponds to n = 0. Consequently the state |n = 0, ν⟩ is annihilated by the action of the operator
aν

aν |n = 0, ν⟩ = 0, (H.29)

or equivalently
d
dζ
−
ν + 1

2

ζ
+ λζ


φn=0
ν (ζ ) = 0, (H.30)

with solution

φn=0
ν (ζ ) = Cνζ 1/2+νe−λζ

2/2, (H.31)
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where Cν is a constant. Writing

φν(ζ ) = Cνζ 1/2+νe−λζ
2/2Gν(ζ ), (H.32)

and substituting in (H.25) we get

2xGν(x)− G′(x) ∼ xGν+1(x), (H.33)

with x =
√
λζ , a relation which defines the confluent hypergeometric function U(n, ν + 1, x) in terms of U(n, ν, x) [373]

U(n, ν, x)− U ′(n, ν, x) = U(n, ν + 1, x), (H.34)

or equivalently

2x U(n, ν, x2)−
dU(n, ν, x2)

dx
= 2x U(n, ν + 1, x2). (H.35)

Thus the normalizable solution of the eigenvalue equation bνbĎν φ = M2φ is

φn,ν(ζ ) = Cν ζ 1/2+νe−λζ
2/2Lνn(λζ

2), (H.36)

with Cν a constant. The solution also follows from the iterative application of the ladder operators, the Rodriguez formula
for the Laguerre polynomials (see [383]). We find

φ(ζ )n,ν ∼ ζ
1/2−νeλζ

2/2

1
ζ

d
dζ

n

ζ 2(n+ν)e−λζ
2
, (H.37)

with eigenvalues

M2
= 4λ(n+ ν + 1). (H.38)

H.2. Light-front effective fermionic Hamiltonians

In this section we extend the algebraic procedure described in Appendix H.1 to construct light-front effective
Hamiltonians for LF baryonic modes. We will describe first the conformal case where we have an exact prescription from
the mapping of AdS wave equations (see Sections 4.3 and 5.2). Then, as for the case of LF bosonic modes described above,
we extend the conformal limiting case to include a scale while maintaining integrability of the Hamiltonian eigenvalue
equations [138,257]. This procedure turns out to be particularly useful since in AdS the confining dilaton background is
absorbed by a rescaling of the Dirac field (Section 4.3), and thus we have little guidance in this case from the gravity side.
However, as we shall show below, a consistent solution can be found by imposing the correct transformation properties for
half-integer spin.

H.2.1. Light-front hard-wall model
Weconsider an effective light-front Dirac-type equation to describe a baryonic state in holographic QCD. In the conformal

limit

(DLF −M) ψ(ζ ), (H.39)

where the Dirac operator DLF is the Hermitian operator

DLF = −iα


−

d
dζ
+
ν + 1

2

ζ
γ


, (H.40)

and α and γ are matrices to be determined latter.
It is useful to define the matrix-valued (non-Hermitian) operator

b =
d
dζ
+
ν + 1

2

ζ
γ , (H.41)

and its adjoint

bĎ = −
d
dζ
+
ν + 1

2

ζ
γ . (H.42)
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Premultiplying the linear Dirac wave equation (H.60) by the operator DLF + M we should recover the LF Hamiltonian
eigenvalue equation:

HLF ψ = D2
LFψ = M2ψ, (H.43)

which imply that

αĎ
= α, α2

= 1, (H.44)

γ Ď
= γ , γ 2

= 1, (H.45)
{α, γ } = 0. (H.46)

Consequently the matrices α and γ are four-dimensional Dirac matrices.
The effective light-front Hamiltonian HLF = D2

LF = bνbĎν is thus given by

HνLF = −
d2

dζ 2
+


ν + 1

2

2
ζ 2

−
ν + 1

2

ζ 2
γ . (H.47)

The positivity of the product of operators imply that ⟨ψ |HνLF |ψ⟩ ≥ 0, and thus M2
≥ 0 if ν2 ≥ 0, identical to the stability

bound for the scalar case.
To satisfy the wave equation (H.39) for each component ψα we require that the matrix γ satisfies the equation

γ u± = ±u±, (H.48)

where u± are four-component chiral spinors. Consequently the matrix γ is the four dimensional chirality operator γ5. The
LF equation (H.47) thus leads to the eigenvalue equation

HLFψ± = M2ψ±, (H.49)

where
−

d2

dζ 2
−

1− 4ν2

4ζ 2


ψ+(ζ ) = M2ψ+(ζ ) (H.50)

and 
−

d2

dζ 2
−

1− 4(ν + 1)2

4ζ 2


ψ−(ζ ) = M2ψ−(ζ ). (H.51)

These are two uncoupled equations for the upper and lower spinor components, ψ+ and ψ−, with the solution

ψ+(ζ ) ∼

ζ Jν(ζM), ψ−(ζ ) ∼


ζ Jν+1(ζM). (H.52)

The plus and minus components are not independent since they must also obey the first order Dirac Eq. (H.39). In the Weyl
representation where the chirality operator γ is diagonal (iα = γ β) we have

iα =


0 I
−I 0


, β =


0 I
I 0


, γ =


I 0
0 −I


, (H.53)

where I a two-dimensional unit matrix. The linear equation (H.39) is equivalent to the system of coupled equations

−
d
dζ
ψ− −

ν + 1
2

ζ
ψ− = Mψ+, (H.54)

d
dζ
ψ+ −

ν + 1
2

ζ
ψ+ = Mψ−, (H.55)

a result which is identical with the results which follow from the Dirac AdS wave equation in the conformal limit [138,257]
(see Section 5.2). Solving the coupled Eqs. (H.54)–(H.55) and making use of the relation between Bessel functions

Jν+1(x) =
ν

x
Jν(x)− J ′ν(x), (H.56)

we obtain the solution

ψ(ζ ) = C

ζ [Jν(ζM)u+ + Jν+1(ζM)u−] , (H.57)

with normalization
dζ ψ2

+
(ζ ) =


dζ ψ2

−
(ζ ). (H.58)

identical for the plus and minus components.
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H.2.2. Light-front soft-wall model
We write the Dirac equation

(DLF −M) ψ(ζ ) = 0, (H.59)

and construct an extended LF Dirac operator DLF following the same procedure used for the bosonic case in Appendix H.1.2,
where we introduced a scale by making the substitution ν+1/2

ζ
→

ν+1/2
ζ
+ λζ . Thus the extended Dirac operator

DLF = −iα


−

d
dζ
+
ν + 1

2

ζ
γ + λζγ


, (H.60)

and the extended matrix-valued non-Hermitian operators

b =
d
dζ
+
ν + 1

2

ζ
γ + λζγ , (H.61)

bĎ = −
d
dζ
+
ν + 1

2

ζ
γ + λζγ . (H.62)

The effective light-front Hamiltonian HLF = D2
LF = bbĎ is given by

HLF = −
d2

dζ 2
+


ν + 1

2

2
ζ 2

−
ν + 1

2

ζ 2
γ + λ2ζ 2

+ λ(2ν + 1)+ λγ , (H.63)

with γ the chirality matrix γ u± = ±u.
The eigenvalue equation HLFψ± = M2ψ± leads to the uncoupled light-front wave equations
−

d2

dζ 2
−

1− 4ν2

4ζ 2
+ λ2ζ 2

+ 2(ν + 1)λ

ψ+(ζ ) = M2ψ+(ζ ), (H.64)

−
d2

dζ 2
−

1− 4(ν + 1)2

4ζ 2
+ λ2ζ 2

+ 2νλ

ψ−(ζ ) = M2ψ−(ζ ), (H.65)

with solutions

ψ+(ζ ) ∼ z
1
2+νe−λζ

2/2Lνn(λζ
2), (H.66)

ψ−(ζ ) ∼ z
3
2+νe−λζ

2/2Lν+1n (λζ 2), (H.67)

and eigenvalues

M2
= 4λ(n+ ν + 1), (H.68)

identical for both plus and minus eigenfunctions.
Using the 2 × 2 representation of the Dirac matrices given in the previous section we find the system of coupled linear

equations

−
d
dζ
ψ− −

ν + 1
2

ζ
ψ− − λζψ− = Mψ+, (H.69)

d
dζ
ψ+ −

ν + 1
2

ζ
ψ+ − λζψ+ = Mψ−. (H.70)

This result is identical with the results from the AdS wave equation in presence of a potential V (z) = λz [138,257] (see
Section 5.2).

Solving the coupled Eqs. (H.69)–(H.70) making use of the relation between associated Laguerre functions

Lν+1n−1(x)+ Lνn(x) = Lν+1n (x), (H.71)

we find

ψ(ζ ) = Cz
1
2+νe−λζ

2/2


Lνn

λζ 2 u+ + √

λζ
√
n+ ν + 1

Lν+1n


λζ 2 u− , (H.72)

with normalization
dζ ψ2

+
(ζ ) =


dζ ψ2

−
(ζ ). (H.73)
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It is important to notice that, in contrast to the bosonic case, one cannot add a constant term to the light-front effective
Hamiltonian with dependence on the spin representations for baryons. This constraint follows from the fact that the plus
andminus components are not independent and obey the first order linear equation (H.59). This additional requirement has
the notable consequence that, in contrast to bosons, there is no spin–orbit coupling in the light-front holographic model for
baryons as discussed in Sections 4 and 5.

Appendix I. Equations of motion for p-form fields in AdS

In this appendix we describe the properties of massive p-form fields propagating in AdS space. As we discussed in
Section 4, obtaining the general form of the equations of motion for higher-spin fields in AdS space may become quite
complex. It is thus useful to study the simplified structure of the differential equations of p-form fields in AdS, which for
p = 0 and p = 1 represent spin 0 and spin 1 respectively (Section 4.1). The compact formalism of differential forms is
particularly convenient to describe the solutions of higher p-form actions in AdSd+1 space. In this notation a p-form field A
is

A = AM1M2···Mp dx
M1 ∧ · · · ∧ dxMp , (I.1)

in the dual basis dxM . The tensor field AM1M2···Mp is a totally antisymmetric tensor of rank p, and the sum is overM1 < · · · <

Mp. AdSd+1 coordinates are the Minkowski coordinates xµ and z which we label xM , withM,N = 0, . . . , d.
The field strength F of the p form A is the p+ 1 form given by the exterior derivative

F = dA = ∂MAM1M2···Mp dx
M1 ∧ · · · ∧ dxMp ∧ dxM , (I.2)

with sum over M and M1 < · · · < Mp. The invariant Lagrangian density must be a d + 1 form. This leads to the action in
geometrical units

S =
1
2


AdSd+1


F∧∗ F− µ2A∧∗ A


, (I.3)

where µ is the AdS mass.
The wedge product ∧ of a p-form A and a q-form B is the p+ q form A ∧ B. In tensor notation:

A ∧ B =
(p+ q)!
p! q!

A[M1...Mp BMp+1···Mp+q]dx
M1 ∧ . . .∧d xMp+q . (I.4)

The hodge star operator establishes a correspondence between p-forms to d+1−p forms onAdSd+1. In tensor notation the
Hodge dual ofA is obtained by contracting the indices ofAwith the d+1-dimensional completely antisymmetric Levi-Civita
tensor

(∗A)M1M2···Md+1−p =
1
p!
(A)N1N2···NpηN1N2···Np,M1···Md+1−p , (I.5)

where the Levi-Civita tensor is

ηM1···Mp =
√
gϵM1···Mp , (I.6)

with g ≡ |det gMN | and ϵM1···Mp the totally antisymmetric tensor density with entries±1.
The classical equations of motion for A follow from the variation of the action (I.3). Making use of the Stokes theoremwe

obtain:
AdSd+1

d

A∧∗ dA


= 0, (I.7)

from which follows
AdSd+1


dA∧∗ dA


= (−1)p


AdSd+1


A ∧ d∗dA


, (I.8)

yielding

(−)pd ∗dA+ µ2 ∗A = 0. (I.9)

Since ddA = 0, this equation implies for µ ≠ 0

d ∗A = 0. (I.10)
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In tensor notation the equations of motion for A are expressed as the set of p+ 1 coupled differential equations [384]
z2∂2z − (d+ 1− 2p)z ∂z − z2∂ρ∂ρ − (µR)2 + d+ 1− 2p


Azα2···αp = 0, (I.11)

z2∂2z − (d+ 1− 2p)z ∂z − z2∂ρ∂ρ − (µR)2 + d+ 1− 2p

Aα1z···αp = 0, (I.12)

· · ·
z2∂2z − (d− 1− 2p)z ∂z − z2∂ρ∂ρ − (µR)2


Aα1α2···αp = 2z


∂µ1Azα2···αp + ∂µ2Aα1z···αp + · · ·


, (I.13)

where α, ρ = 0, 1, 2, . . . , d− 1 and the notation zα2 · · ·αp means M1 = z, M2 = α2, · · · , Mp = αp, etc.
We introduce fields with Lorentz tangent indices A, B = 0, . . . , d,

ÂA1A2···Ap = eM1
A1

eM2
A2
· · · eMp

Ap AM1M2···Mp =

 z
R

p
AA1A2···Ap , (I.14)

where eMA is the vielbein (see Appendix A.1.3). In terms of Â we obtain from (I.11)–(I.13) the set of p + 1 differential
equations [384]


z2∂2z − (d− 1)z ∂z − z2∂ρ∂ρ − (µR)2 + p(d− p)

  Âzα2···αp

z


= 0, (I.15)


z2∂2z − (d− 1)z ∂z − z2∂ρ∂ρ − (µR)2 + p(d− p)

  Âα1z···αp

z


= 0, (I.16)

· · ·
z2∂2z − (d− 1)z ∂z − z2∂ρ∂ρ − (µR)2 + p(d− p)


Âα1α2···αp = 2z


∂µ1Âzα2···αp + ∂µ2Âα1z···αp + · · ·


. (I.17)

Consider the plane-wave solution AP(xµ, z)α1···αp = eiP·x A(z)α1···αp , with 4-momentum Pµ, invariant hadronic mass
PµPµ = M2 and spin indices α along the space–time coordinates, that is Azα2···αp = Aα1z···αp = · · · = 0. In this case the
system of coupled differential equations (I.11)–(I.13) reduce to the homogeneous wave equation

z2∂2z − (d− 1− 2p)z ∂z + z2M2
− (µR)2


Aα1α2···αp = 0. (I.18)

In tangent space the coupled differential equations (I.15)–(I.17) for all polarization indices along the Poincaré coordinates
reduces to

z2∂2z − (d− 1)z ∂z + z2M2
− (µR)2 + p(d− p)


Âα1α2···αp = 0. (I.19)

Its solution is

Ã(z)α1α2···αp = Cz
d
2 J
∆− d

2
(zM) ϵα1α2···αp , (I.20)

with conformal dimension [384]

∆ =
1
2


d±


(d− 2p)2 + 4µ2R2


. (I.21)

Thus the relation

(µR)2 = (∆− p)(∆− d+ p), (I.22)

for a p-form field with dimension∆. The relation (I.21) agrees with the conventions in Refs. [131,385]. For a spinor field in
AdS the mass-dimension relation is [386]

∆ =
1
2
(d+ 2|µR|) . (I.23)

The relation for spin- 32 is unchanged [183,387].
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