
~ Nuclear Physics B28 (1971) 225-239. North-Holland Publishing Company 

A N O N  PERTURBATIVE PARTON MODEL 
OF CURRENT INTERACTIONS 

P. V. LANDSHOFF, J. C. POLKINGHORNE and R. D. SHORT 
Department of Applied Mathematics and Theoretical Physics, 

University of Cam bridge, England 

Received 19 October 1970 

Abstract: A formulation of the parton picture of current  interactions is given without 
recourse to perturbation theory. In deep inelastic electron scattering the s t ruc -  
ture functions W 1 and vW2 scale but the corresponding functions W1 and vW--2 for 
electron-posi t ron annihilation processes at high energy are likely to be divergent. 
Form factors for part icles other than the partons themselves go to zero at in -  
finite momentum transfer .  The relation between the rate of decrease of the nu-  
cleon form factors and the behaviour of vW 2 near 00 = 1 is shown to depend upon 
further specific properties of patton-nucleon dynamics and so to be model 
dependent. Some s imi lar i t ies  between the parton picture and a recently proposed 
Veneziano-like amplitude are discussed. A difference is that the parton picture 
permits  the incorporation of the pomeron. 

I .  INTRODUCTION 

The s u g g e s t i o n  of B j o r k e n  [1] that  the a m p l i t u d e  v W  2 of e l e c t r o p r o d u c -  
t i on  t ends  to a f in i te  func t ion  in  the deep i n e l a s t i c  l i m i t  has  been  i l l u s t r a t e d  
in  s e v e r a l  t h e o r e t i c a l  f r a m e w o r k s ,  and a p p e a r s  to be  suppo r t e d  by the ex-  
p e r i m e n t a l  da ta  [2]. It has  a l so  b e e n  p r o p o s e d  [3] that  the c o r r e s p o n d i n g  
a m p l i t u d e  vW 2 of e l e c t r o n - p o s i t r o n  a n n i h i l a t i o n  has  a s i m i l a r  b e h a v i o u r  at  
high e n e r g y ,  but  t h i s  has  l e s s  t h e o r e t i c a l  suppor t  and t h e r e  i s  not yet  
su f f i c i en t  da ta  f r o m  s t o r a g e - r i n g  e x p e r i m e n t s  to p r ov i de  a check  on it. A 
p e r t u r b a t i o n  - t h e o r y  mode l  with a cu t -o f f  does  make  both [4] vW 2 and [5] 
vW2 have a f in i te  a s y m p t o t i c  l i m i t ,  but  in  a V e n e z i a n o - l i k e  mode l  v W  2 
r e m a i n s  f in i te  [6], whi le  vW2 may  b e c o m e  d i v e r g e n t  [7]. 

In th i s  p a p e r  we e x a m i n e  the s i t u a t i o n  in  a c l a s s  of f i e l d - t h e o r y  m o d e l s  
whe re  the e l e c t r o m a g n e t i c  c u r r e n t  i s  coupled  in  a s i m p l e  f a sh ion  to a p a r -  
ton f ield.  We c o n s i d e r  f i r s t  the c a s e  whe re  the p a r t o n  c o r r e s p o n d s  to a 
s c a l a r  f ie ld  4) and take  the e l e c t r o m a g n e t i c  c u r r e n t  to be  

j~ = iqS~ ~ (/5 . ( I . I )  

Secondly we make the parton correspond to a spin ½ field ~ and take 

j ~  = ¢,yU ~ .  (1.2) 
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In each case the field is a Heisenberg field; we make no use of perturbation 
theory. Where there are several types of parton, the current will contain 
a number of terms like (I.i) or (1.2). A result of our work will be that in 

the deep inelastic limit the cross section is an incoherent sum of contribu- 

tions f rom the var ious  types of parton. 
Express ions  like (1.1) and (1.2) do not determine the cur ren t  but need to 

be made more  p rec i se  by stating re s t r i c t ions  on the fields ~ and ~. One 
way of doing this would, of course ,  be by the specification of a Lagrangian.  
However we do not adopt this approach,  p re fe r r ing  to d iscuss  a whole 
c lass  of theor ies  cha rac te r i sed  by a dynamical  postulate which leads to a 
finite vW2 in the deep inelastic limit. This postulate is: 

(i) Hadronic ampli tudes having vir tual  par tons  as external  par t ic les  go 
sufficiently rapidly to ze ro  as the masse s  of the par toas  become large.  We 
d iscuss  this more  p rec i se ly  in sect.  2. 

Fur the r  we fix the normal isa t ion of the fields in (1.1) and (1.2) by the 
requirement :  

(ii) The boson two-point function 

/ d4x e ikx <o 
L 

AF(k2) : i I T(~*(x) ~(0)) , (1.3) 

becomes  asymptot ica l ly  equal to (k2) -1 at la rge  k 2, and the fermion two- 
point function 

T 

SF(k) = i f d4x e ikx (0 tT(~(x) ¢/(0))]0) , (1.4) 

becomes  asymptot ica l ly  vk/k  2. It is easy  to show by an adaptation of the 
methods give in sect.  2 below, that this leads to canonical commuta to r s  
for  cu r ren t s  of type (1.1) and (1.2), when the commuta to r  is defined by 
means  of the BJ'L l imit  [8]. 

The postulate (ii) is a normal  one [8, 9] but (i) is more  res t r ic t ive .  We 
know from the fact that a cut-off  is needed in some per tu rba t ion- theory  
models [4] that it is easy to const ruct  examples  where (i) is not satisfied. 

With condition (i) the amplitude vW 2 does tend to a finite asymptot ic  
function in the deep inelast ic l imit but, as  in the Veneziano-l ike models [6], 
we find that vW2 is general ly  expected to become divergent.  

In the case (1.2) of the spin ½ parton the e lec t roproduct ion amplitude 
W 1 also remains  finite at infinite energy,  as  predic ted by Bjorken [1], in 
such a way that the e lec t roproduct ion is dominated by contributions from 
t r a n s v e r s e  vir tual  photons, which seems  la rge ly  to be the experimental  
situation [2]. In the case (1.1) of the sca la r  parton,  W 1 goes to zero  asymp-  
totically.  

In both the pe r tu rba t ion- theory  [10] and the Veneziano-l ike [6] models 
there  is a connection between the threshold behaviour  of the asymptot ic  
form of vW 2 and the behaviour  of the proton elast ic  form factor  at large 
momentum t ransfer .  However the relat ionships  a re  different in the two 
cases .  This indication that such a connection does not have any deep funda- 
mental origin is borne out in the presen t  work, where we find that the 
threshold behaviour of vW2 and the asymptot ic  behaviour of the form fac tor  
depend on different p roper t i e s  of the hadronic amplitudes.  
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Our study of the e las t ic  fo rm fac tor  leads to another  conclusion: the 
fo rm fac to r  of an "ord ina ry"  par t i c le  (meson or  nucleon) goes to ze ro  at 
l a rge  momentum t r a n s f e r  if and only if the par tons  a re  not themse lves  ord i -  
na ry  pa r t i c l es .  Since the essent ia l  nature  of a par ton  is that it in te rac t s  
e l ec t romagne t i ca l ly  like a point pa r t i c le  this is to be expected.  

2. SCALAR PARTONS 

We a re  concerned  with the mat r ix  e lement  

M try = i fd4x eiq x (Pl T(Jtt(x) jV(O))lP) , (2.1) 

where  I P) is a proton state  of momentum p, and it is understood that only 
the connected par t  of the mat r ix  e lement  is included and an average  over  
pro ton  polar i sa t ions  is to be pe r fo rmed .  Inser t ing  (1.1) into (2.1) and using 
s tandard  reduct ion formulae  [11] leads to 

M ~ U _  , _(2~) 8 i  f d 4 k l  d4k2 ( 2 k l - q ) U  (2k2 -q )  u T 6 ( k l - q ,  k l ,  k2, k 2 - q )  , (2.2) 

where  T 6 is the s ix-point  function that couples four pa t rons  to the two spin- 
averaged  protons.  This  is shown d iagrammat ica l ly  in fig. la ,  where  the 
a r r o w s  depict  the d i rec t ion  of flow both of the labelled momentum and of 
posi t ive charge.  

kr q b \>...._.... k2 _k  

k+q ~ -~ k*.q 

(a) (b) 

t I 
k-q ,$, v k-q 

(¢) 

Fig. 1. (a) Diagrammatic representation of (2.2). The broken lines represent virtual 
partons. The arrows depict the direction of flow both of the labelled momentum and 

of positive charge. (b), (c) The contribution of the disconnected parts of T6. 

Note that T6 is "non-amputa ted" ,  it has poles in i ts par ton legs at 

( k l_q )2  = m 2  k21 2 k~ 2 k2 q)2 2 = Y f $  , = m  , ( - = m  , 

where  m is the pa t ton  mass .  It contains disconnected pa r t s  in which e i the r  
the posi t ive or  the negative par ton  is a spec ta tor  [11]: 

' 2 
(2~) 4 5(4)(k 1 - k 2) {T+AF(k 1) +T_ Af (k  1 - q2 )} .  (2.3) 
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Here  T+ a r e  the ampl i tudes  for  the two-body fo rward  sca t t e r ing  of pos i -  
t ively  and negat ively  charged  off- m a s s - s h e l l  par tons  on the sp in - ave raged  
proton.  The contr ibut ions  f r o m  (2.3) to MPv a r e  shown in figs.  lb  and lc .  
It is these  contr ibut ions that will dominate  in the deep ine las t ic  l imit .  We 
show this in the appendix.  

Our technique for  e x p l o r i n g t h e  deep ine las t ic  l imi t  is s i m i l a r  to that 
developed by Gribov [12] for  the ana lys i s  of Regge cuts.  (We do not expect  
the r e a d e r  to have any prev ious  knowledge of this technique). We begin by 
applying it to fig. lc .  

Wri te  

k = xp+yq+K (2.4) 

where  the momen tum K is or thogonal  to both p and q and so is space l ike  
(K2 < 0) and effect ively  two-d imens iona l .  We may  use x, y ,  K as  in tegra t ion  
v a r i a b l e s  instead of k: 

d4k = Jdxdy  d2K. (2.5) 

In the deep inelas t ic  l imi t  

v = p . q  ~ co , 

-2v 
w - q2 fixed , (2.6) 

the Jacob ian  has the asympto t i c  fo rm 

J ~ v .  (2.7) 

The contr ibut ion of fig. lc  to T g  v is 

i f J d x d y d 2 K  [2xp+(2y- 1) q+2K] ~ 
(2~) 4 

[ 2 x p + ( 2 y - 1 ) q + 2 K ] u a  (k 2) T_(s , 2 ) ,  (2.8) 

where  

s' = ( p + q - k )  2 = (x-  1) 2 M 2 + ( y -  1) 2 q 2 + 2 ( x -  1 ) ( y -  1)v+K 2, 

g2 = (q _ k)2 = x2 M 2 + (y _ 1)2 q2 + 2x(y - 1)~,+K 2, 

k 2 = x 2 M2+y  2 q2+2xyv+K2 , (2.9) 

with M the nucleon m a s s .  If we expand (2.8) in t e r m s  of the ba s i s  t e n s o r s  

pg pu , pgqV  +qgpV , 

the coeff icient  of p~pV is  

i f j d x d y d 2 K d  a p(a) (2~) 4 ~ [ 4x2 

q~qV , g~V , 

2K2 1T (s' ' ju 2) 
M 2 : ~ / q 2  _ 

where  we have introduced the Lehmann  r e p r e s e n t a t i o n  [8] 

(2. lO) 
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, 2 ~ p(~) 
AF(k )= ~ d~k2 , (2.11) 

0 -(~ 

where according to postulate (ii) of sect. 1, 

~ dc~p((~) = i . (2.12) 
0 

In deriving (2.10) we have made use of the relation, holding for the in- 
t egrand ,  that ~bt Ku may  be rep laced  by 

K2 I~U-M2 v 2 / q 2 - q 2  u 2 / M 2 + ~ P  • 

The e x p r e s s i o n  in squa re  b r a c k e t s  in (2.13) is the unit ma t r i x  in the two- 
d imens iona l  subspace  or thogonal  to p and q. 

The i m a g i n a r y  pa r t  of (2.10) is the contr ibut ion of fig. lc  to W 2 / M .  The 
coeff ic ient  of g~V, whose i m a g i n a r y  pa r t  is the contr ibut ion to MW1, is  
obtained by rep lac ing  the square  b r acke t  in (2.10) by 2K 2. 

Make the change of va r i ab l e  

' x M 2  (2.14) y = y  - ~ , 

so that in the deep ine las t ic  l imi t  (2.6) 

Y ' -  1 ) + - ~  ( y ' -  1)+K2 (2.15) Vt 2 = 2 v ( y ' -  1) (x -  w 

Accord ing  to pos tu la te  (i) of sect .  1, the dominant  contr ibut ion to the in te-  
g ra l  a r i s e s  f r o m  that  pa r t  of the in tegra t ion  in which g 2 r e m a i n s  finite as  

~ 0% Hence we expect  it to come f r o m  e i the r  of the reg ions  

y ' ~ l ,  

y '  ,~ l + w x  . (2.16) 

We d ispose  of the second poss ib i l i ty  in the appendix,  where  we a lso  deal  
with the poss ib i l i ty  that  y '  is outside both of the reg ions  (2.16), but that K2 
is l a rge  in such a way that g 2 r e m a i n s  finite.  

Thus we in t roduce ins tead of y '  the new v a r i a b l e s  ~: 

y = 1+ , (2.17) 

and take the l imi t  under  the in tegra t ion  in (2.10). With (2.7) and (2.12) this  
give s 

x 2 T_(s '  ~2) 
f dx d~ d2K 

( 2 ~ )  4 x - W - 1 ' 

s '  = (x-  1 ) ~ - M 2 ) + K  2 , 

bt 2 = x~+K 2 . (2.18) 
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It  i s  p o s s i b l e  in the  l igh t  of t h i s  a r g u m e n t  to c l a r i f y  p o s t u l a t e  (i) s o m e -  
what .  O u t s i d e  the  r e g i o n  (2.16) bo th  bt 2 and s '  w i l l  tend  to i n f in i t y  l i ke  ~,. 
In o r d e r  fo r  t h i s  c o n t r i b u t i o n  to be l e s s  i m p o r t a n t  than  tha t  g iven  by  (2.18) 
we r e q u i r e  tha t  in t h i s  l i m i t  T_ ~ v-Y, ~ > 1. A s i m i l a r  a s s u m p t i o n  i s  m a d e  
in the  G r i b o v  r e g g e o n  c a l c u l u s  [12]. 

A c c o r d i n g  to the  u sua l  i d e a s  of a n a l y t i c i t y ,  T_ has  s i n g u l a r i t i e s  in ~2, a 
r i g h t  hand cut  in the  v a r i a b l e  s ' ,  and a l e f t  hand cut  in the  v a r i a b l e  

u' = 2 ~ 2 + 2 M  2 -  s '  = (x + 1) ( ~ + M 2 ) + K  2 , (2.19) 

w h e r e  in  each  c a s e  the s i n g u l a r i t y  i s  s l i g h t l y  d i s p l a c e d  b e l o w  the p o s i t i v e  
r e a l  a x i s  of  the  v a r i a b l e  in q u e s t i o n .  If Ix] > 1 a l l  t h e s e  s i n g u l a r i t i e s  o c c u r  
on the s a m e  s ide  of the ~ con tou r  of i n t e g r a t i o n .  Th i s  c o n t o u r  can  t h e r e f o r e  
be c o m p l e t e d  by  a s e m i - c i r c l e  a t  oo in the  o p p o s i t e  ha l f  p l a n e  to g ive  a z e r o  
r e s u l t .  If 0 < x < 1 the i n t e g r a t i o n  no l o n g e r  g i v e s  z e r o  but  m a y  be  w r a p p e d  
a r o u n d  the r i g h t  hand s '  cut .  If 0 > x > -  1, the ~ i n t e g r a t i o n  m a y  s i m i l a r l y  
be  w r a p p e d  a r o u n d  the l e f t  hand u' cut .  Thus  T_(s', ~2) in (2.18) m a y  be  r e -  
p l a c e d  by 

2 i [0 (x )  ~ ( 1 - x )  Im TR+ ~ ( - x ) 0 ( l + x )  Im TL] , (2.20) 

w h e r e  the  su f f i xe s  R,  L r e s p e c t i v e l y  deno te  the  r i g h t  and  le f t  hand p a r t s  of 
T_.  It wi l l  now be  s e e n  (fig. 2a) that  the  i n t e g r a l  (2.18) i s  r e a l  fo r  Icol < 1, 

(a) 

/~-cut 
x b ~ s - c u t  

(b) 

(c) 

~ IL _ _  S ' - c u t  
____-- 

(d) 

Fig. 2. (a) The integration contour in (2.21) drawn in the s '  o r  -y plane. (b), (c) The 
resul ts  of continuing (2.21) into the region 0 < c0 < 1, pass ing to different s ides  of 

the possible s ingular i ty  at co = 1. (d) The co r rec t  integration to give vW 2. 
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and  that  for  co ou t s ide  th i s  r a n g e  i t  has  an  i m a g i n a r y  p a r t  ob ta ined  by r e -  
p l a c i n g  the d e n o m i n a t o r  of the i n t e g r a n d  by a de l t a  func t ion .  In fact  the 
r a n g e  of v a l u e s  w > 1 i s  the k i n e m a t i c  r e g i o n  of i n t e r e s t  in  e l e c t r o p r o d u c -  
t ion ,  and  the c o n t r i b u t i o n  to vW2 i s  thus  

2 
_ (2~) 3 co 2 f d ~ d 2 ~  i m T R ( S  , ~2) , 

s '  = (¢~-1_ 1) ( ~ - M 2 ) + K  2 , 

~2 = w-i ~+K 2 . (2.21) 

The contribution from fig. lb may be obtained from this by crossing, and is 
the same but with Im TR(S' , ~2) replaced by ImTL(U' , g2) with 

u' = (~0-i+ I) (~+M2)+K 2 . (2.22) 

To discover the large ~0 behaviour of (2.21), change variable from ~ to 
z = - w-l~. Take the limit under the integral and insert for ImTR the large 
s'  Regge behaviour 

ImT R ~ fl(~2) v'~0 , 
! 1 t 

v = ~(s -u ' )  . (2.23) 

This gives the asymptotic form * 

2 w ~0-I ; dz fd2Kfl(K 2- z)z c~O . (2.24) 
(2~) 3 0 

If the p o m e r o n  coup les  to the p a r t o n s ,  o~ 0 = 1. 
On the o the r  hand ,  the b e h a v i o u r  of (2.21) n e a r  c~ = 1 depends  on the 

f o r m  of TR for  l a r g e  ~2 ,  at  f in i te  s ' .  Change  the i n t e g r a t i o n  v a r i a b l e  f r o m  
to S': 

2 /ds'  d2K ,m rR(s' 
(2~)3 co( 1) ' ' 

~ 2  - s ' -  K 2 M 2 
1 - ~  + u) +K2 " (2.25) 

Suppose that for large #2 

Im T R ~ (g2)-~/(s ')  . (2.26) 

(We have no reason to believe that such a simple behaviour is necessarily 
realistic.) Then on letting ¢o -* 1 under the integral in (2.25) we obtain a 
result proportional to (w - 1)7-1. 

As has been remarked elsewhere [7], the fact that the value of 7 may be 
such that this factor is not real for ¢o < 1 provides a warning that it may 
not be possible to continue vW2 into the region 0 < ¢~ < 1 to obtain the cor- 
responding amplitude vW 2 describing electron-positron annihilation. The 

* It should be remembered  that the vector K is spacelike, K 2 < O. 
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variables ~t 2 and s' are linked together in the integration by the relation in 
(2.25). For w > 1 the singularities in the variable ~2 are to the left of the 
s cut, but this is no longer so for 0 < w < 1. Thus an analytic continuation 
into this region results in the ~2 singularities retreating to -~o and then 
reappearing from +~ in the s '  plane, either on the upper side of the s' cut 
Or on the lower, according to the route taken round ¢o = 1 (figs. 2b and 2c). 
The difference between the two cases, if there is a difference once the in- 
tegrations have been performed, corresponds [7] to th e existence of singu- 
larities of the amplitude in the variable q2. Neither continuation corre- 
sponds to the correct integral for vW2, which is obtained by evaluating the 
integral with the singularities in one of the two patton masses above the s' 
cut, and the other below (fig. 2d). As these ~2 singularities are expected 
to occur in Im T R they will pinch the integration contour. Since we are 
dealing with a non-amputated amplitude the # 2 singularities include a pole 
at the parton mass. The associated pinch may be expected to lead to a 
divergence of the integral. A similar divergence of vW2 is also, in general, 
a feature of Veneziano-like models [7]. 

In the scalar-parton model, the asymptotic form of MW 1 in the deep 
inelastic limit is v -1 times an integral like (2.25), but with an additional 
factor ¢o2K 2 in the integrand (the crossed term must, of course, also be 
added). Thus in this model W 1 is also O(v -1) in the deep inelastic limit. 
This does not agree with the experimental result, that M 2 W 1 ~ ½ ¢ovW 2. To 
obtain this, we must use the spin ½ patton model, corresponding to the 
current in (1.2), which is discussed in the next section. 

1 3. SPIN ~ PARTONS 

In this case the contribution of fig. lc to T~ v is 

(2~) 4 fJdxdy d2K Tr {y ~SF(k)yV T_} . (3.1) 

The parton-proton amplitude T_ is averaged over proton polarizations and 
so is a matrix in the parton spinor indices only. We write the propagator 
in the Lehmann representation 

! 

SF(k)  = f ~  da~kP2((Y)+Pl ((~) 
0 k2 -~ , (3.2) 

where postulate (ii) of sect. 1 requires that 

f ~  daP2(~) = 1 . 
0 

The  technique  fo r  hand l ing  the s p i n o r  f a c t o r s  in (3.1) is  the s a m e  a s  that  
d e v i s e d  by  G a i s s e r  and P o l k i n g h o r n e  [4] fo r  use  in a n a l y s e s  of p e r t u r b a t i o n  
t h e o r y .  The  t r a c e  e x p r e s s i o n  is  r e a r r a n g e d  by m e a n s  of a F i e r z  t r a n s f o r -  
m a t i o n  in the f o r m  
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w h e r e  

5 
¼ ~ T i hip *v , 

i=1 
(3.3) 

T i_ = T r { F i T _ }  , (3.4) 

' y 
A i ~ v = T r { ~ S F ( k ) ~  F/} , (3.5) 

with {Fi} be ing  the se t  of v - m a t r i c e s  

{ 1 , y a ,  o~ f l , y57 ,a ,V5}  (3.6) 

su i t ab ly  c o n t r a c t e d  in (3.3) o v e r  the ind ices  a and ft. The func t ions  Airy  
a r e  s i m i l a r  to those  found in p e r t u r b a t i o n  t h e o r y  a n a l y s e s  [4] and we find 
that  A 5~v = 0 and A 3~v  and A 4~v  do not con t r ibu te  to the tota l  ampl i tude  
(obta ined f r o m  the sum  of con t r ibu t ions  f r o m  lb  and lc )  s ince  they a r e  
a n t i s y m m e t r i c  in ~ ,  v and the tota l  ampl i tude  m u s t  be s y m m e t r i c .  One 
r e a d i l y  f inds that  ,xl~v is p r o p o r t i o n a l  to 

pl  g p'u , (3.7) 

and h2~ V is  p r o p o r t i o n a l  to 

P2 [gagkU + gO~Uk~ _ g~ UkO~ . (3.8) 

Since T_ is  a funct ion of the v e c t o r s  p, k -  q, the c o r r e s p o n d i n g  T / can be 
wr i t t en  

T 1 = T 1 , (3.9) 

T2-a = T1 P~ + T2(k- q) a , (3.10) 

w h e r e  T 1, T 1 and T 2 a r e  i nva r i an t  func t ions .  
In o r d e r  to ident i fy  W 1 one looks  f o r  the i m a g i n a r y  p a r t  of the coef f i c i en t  

of g~V. Con t r ibu t ions  to this  coe f f i c i en t  a r i s e  f r o m  both  h 1 and A 2. The 
l a t t e r  con ta ins  a t e r m  with a f a c t o r  v f o r m e d  f r o m  the c o n t r a c t i o n  of the 
yqa  in k a in (3.8) with the Po~ p r e s e n t  in (3.10). Th i s  t e r m  d o m i n a t e s  in the 
deep  ine l a s t i c  l imi t  and is the r e a s o n  why W1 i t se l f  has  a n o n - z e r o  l imi t .  
(Note that  the v f o r m e d  f r o m  xp °l in (3.8) and (y - 1)qot in (3.10) is  not ef-  
f ec t ive  s ince  (y - 1) ~ v - l ) .  Thus  the dominan t  con t r ibu t ion  to W1 in the 
l im i t  is ob ta ined  f r o m  

i f d d x d y d 2 K  ~ d~ (TI+xT2)p2yv (3.11) 
(2~) 4 0 k2 - ~ 

Th i s  is the ana logue  of equa t ions  of the type  of (2.10) in sec t .  2. The fu r -  
t h e r  a n a l y s i s  p r o c e e d s  exac t ly  a s  b e f o r e ,  ob ta in ing  the lead ing  con t r ibu t ion  
f r o m  the ne ighbourhood  of y ~ 1. It is  not n e c e s s a r y  to r epea t  the de ta i l s .  
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W 2 m a y  be obta ined by,  f o r  example ,  i so l a t ing  the coef f i c i en t  of p~ qV 
in (3.1). The i m a g i n a r y  pa r t  of this  coef f ic ien t  is ½ ¢ o W 2 / M  2. The coeff i -  
c ient  i t se l f  is just  v -1 t i m e s  the e x p r e s s i o n  (3.11). T h e r e f o r e  we find the 
expec ted  r e l a t ion  

2M 2 W 1 = vcoW 2 , (3.12) 

c o r r e s p o n d i n g  to R = 0 fo r  spin ½ p a t r o n s .  Of c o u r s e  W 2 could a l so  be ob-  
t a ined  by ca lcu la t ing  the i m a g i n a r y  p a r t  of the coef f ic ien t  of pP" pv .  One 
r e a d i l y  s e e s  that  the s a m e  a n s w e r  is  obtained.  This  is one of a n u m b e r  of  
s i m i l a r  s imp le  c h e c k s  on the gauge i n v a r i a n c e  of the theory .  

4. THE E L A S T I C  FORM F A C T O R  

In this  sec t ion  we show that  the p a r t o n s  a r e  not p r o t o n s .  N o r  a r e  they 
any  o t h e r  pa r t i~ le  whose  e l a s t i c  f o r m  f a c t o r  goes  to z e r o  f o r  l a r g e  m o m e n -  
tum t r a n s f e r  ~". 

Using aga in  the r educ t ion  f o r m u l a e  of field t heo ry ,  we find that  with the 
c u r r e n t  (1.2) the e l a s t i c  f o r m  f a c t o r  of the p ro ton  takes  the f o r m  drawn in 
fig. 3a. If, and only if, the pa r ton  is a p ro ton ,  the p a r t o n - p r o t o n  ampl i tude  
conta ined  within this  d i a g r a m  conta ins  a d i s connec t ed  p a r t  in the A2 chan-  
nel.  This  con t r i bu t e s  to the f o r m  f a c t o r  a t e r m  d rawn  in fig. 3b, which is 
independent  of A2. We show that  the r e m a i n i n g  p a r t  goes  to z e r o  at l a rge  
A2, SO that  only if fig. 3b is not p r e s e n t  does  the whole f o r m  f a c t o r  go to 
z e r o .  

p.,~~P"~ ~ 
(a) (b) 

Fig. 3. (a) Diagrammatic representation of the proton elastic form factor. (b) The 
contribution of the disconnected part  that occurs when the current couples directly 

to the proton. 

Labe l  the m o m e n t a  as  in fig. 3a, and wr i t e  

k = otp+[3A +X , (4.1) 

w h e r e  × is a m o m e n t u m  or thogona l  to both P and iX. Since (P  + ½A) 2 = M 2, 
the m a s s e s  of the two p a t r o n s  a r e  

2 = (k + ½A) 2 = Ot2M2 +A2[(/3 + ½)2_ ¼et2]+X 2 (4.2) ~± 
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A c c o r d i n g  to pos tu la t e  (i) of sec t .  1, the dominan t  con t r ibu t ion  to  the f o r m  
f a c t o r , a r i s e s  f r o m  finite va lues  of t he se  two m a s s e s  as  A2 ~ oo, that  is  
f r o m  fl ~ 0 and ~ ~ + 1. The con t r ibu t ions  f r o m  these  two r e g i o n s  a r e  
s i m i l a r ,  be ing  r e l a t e d  by c r o s s i n g  the p ro ton  l ines .  C o n s i d e r  one of t hem 
fo r  de f in i t eness ,  and m a k e  the changes  of v a r i a b l e s  

~ = i+~-~, 

/3 - A 2  . ( 4 . 3 )  

The a s y m p t o t i c  b e h a v i o u r  of the f o r m  f a c t o r  then t akes  the f o r m  

- 2 2 (A2) ~(×2)- 1 d~d Xg(g+,  bL 2,~X 2 ) _  

2 = M 2 + fl , (4.4) ~+ +X2-½ ~ 

where ~ is the leading Regge trajectory of the parton-proton amplitude in 
the parton+ proton channel and g is a Regge residue function. Because X is 
spacelike, the exponent of A2 is ~< 0 throughout the integration. Also, be- 
cause the singularities in g2 are all in Im bL 2 = 0- the ~ integration can be 
completed by a semicircle at infinity in the upper half plane to give zero. 
That is, the form factor goes to zero for large A 2. How rapidly it goes to 
zero depends on how rapidly g goes to zero for large bt~. That is, the 
asymptotic behaviour of the form factor depends on the asymptotic behav- 
iour of the parton-proton amplitude when both the parton mass and the 
momentum transfer become large. This is to be contrasted with the behav- 
iour of vW2 near ¢o = 1 which, as we showed in sect. 2, depends on the be- 
haviour of the patton-proton amplitude when the parton mass becomes 
large, but the other variables remain finite. 

5. DISCUSSION 

The mode l  p r e s e n t e d  in this  p a p e r  p r o v i d e s  a p a t t o n ,  o r  p o i n t - p a r t i c l e ,  
p i c t u r e  of deep  i ne l a s t i c  s c a t t e r i n g  without  the need to r e s o r t  to  p e r t u r b a -  
t ion  t heo ry .  A r e s u l t  of ou r  w o r k  is  that ,  when t h e r e  a r e  s e v e r a l  t ypes  of 
pa r t on ,  the tota l  con t r ibu t ion  to the s ca l ed  s t r u c t u r e  func t ions  is  g iven by 
an i n c o h e r e n t  sum  of the con t r ibu t ions  f r o m  the d i f f e ren t  types  of pa r ton .  
The po in t - l i ke  c h a r a c t e r  of the p a r t o n s  is  e x p r e s s e d  by t he i r  e l e c t r o m a g -  
ne t ic  f o r m  f a c t o r s  not tending to z e r o  at inf ini te  m o m e n t u m  t r a n s f e r ,  so 
tha t  the p a r t o n s  a r e  c e r t a i n l y  not nuc leons .  The b a s i c  s p i r i t  of the a p p r o a c h  
is s i m i l a r  to that  used  by Wes t  [13] in c o n s t r u c t i n g  h i s  p h e n o m e n o l o g i c a l  
mode l  f o r  the e l e c t r o m a g n e t i c  s t r u c t u r e  of the p ro ton .  

* This time we can exclude the possibility that ~2 remain bounded through × becom- 
ing divergent, since this solution would make the energy variable of the hadron 
amplitude become large. This corresponds to a fixed angle limit and so the 
amplitude tends rapidly to zero. 
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In sects .  2 and 3 we discussed the fo rwa rd - sca t t e r i ng  cur ren t  matr ix  
e lements ,  since it is their  imaginary  par t s  which give the s t ruc ture  func- 
tions of deep inelastic scat ter ing.  However  it is easy  to repeat  the analysis  
with t ¢ 0 and one finds that the ampli tudes still scale.  This would not be 
so for theor ies  based on a simple phenomenological  diffract ion mechanism 
[14], but it is t rue in the Veneziano-l ike model [6]. 

Another feature common to the model of this paper  and the Veneziano- 
like model is that there  is a connection between the mechanism responsible  
for  the scal ing of vW 2 and the cu r r en t - a lgeb ra  fixed pole. This is most  
readi ly  seen by consider ing the amplitude for the sca t te r ing  of charged I = 1 
vec to r  cur ren ts ,  relevant  to deep inelast ic neutrino scat ter ing.  The analy-  
sis of the deep inelast ic l imit needs only tr ivial  changes in the a rguments  
of sects .  2 and 3. Once again the dominant contribution comes  f rom the 
region y ~ 1. If one at tempts  to calculate the Regge l imit  (v --* 0% q2 fixed) 
in a s imi la r  way there  a re  now two significant regions 

x ~ 0 , (5. la) 

y ~ 1 . (5.1b) 

A s t ra ight forward  evaluation of their  contributions shows that (5.1a) gives 
Regge behaviour 

N vow(t) -2 (5.2a) 

where a(t) is the Regge pole dominating the pa r ton-pro ton  amplitude, while 
(5.1b), the region giving also the deep inelast ic contribution, yields the 
fixed pole behaviour 

2F(t) (5.2b) 

where F(t) is the form factor  of the I = 1, 13 = 0 current .  ~It can be shown 
that when a(t) is an odd-s ignature  t r a j ec to ry  the Regge t e rm in (5.2a) has 
a pole at oL(t) = 1, which cancels  the cor responding  pole in (5.2b). It was 
explained by Bronzan et al. [15], and verif ied by them in a per turbat ion-  
theory  model, that this feature is n e c e s s a r y  in o rde r  that the complete 
double-fl ip amplitude does not have a spin-one pole in the t-channel. A 
s imi la r  mechanism makes (5.2b) finite at a(t) = 1 when a(t) has even sig- 
nature;  Abarbanel  et al. [16] pointed out that this must be so in o r d e r  that 
the pomeron  couple to the double-flip amplitude. 

Another way of exploring the connection between the scaling of vW2 and 
the cu r r en t - a lgeb ra  fixed pole is by means  of sum rules;  we propose to 
d i scuss  this e lsewhere  [17]. 

Finally,  we note that there  is one str iking difference between the model 
of this paper  and that provided by the Veneziano-l ike amplitudes.  No dual 
theory  can sa t i s fac tor i ly  accommodate  the pomeron,  but it finds a natural  
place in the fo rma l i sm discussed  here.  

One of us (R.D.S.) grateful ly acknowledges a r e s e a r c h  maintenance 
grant  f rom the Science Resea rch  Council. 
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APPENDIX 

We a r g u e  h e r e  that  the con t r ibu t ion  we have c o n s i d e r e d  in the text  is 
a c tua l l y  the dominan t  one in the deep ine las t i c  l imi t .  

Dea l  f i r s t w i t h  the second  pos s i b i l i t y  in (2.15), by mak ing  the change  of 
v a r i a b l e  f r o m  y '  to ~ ' ,  whe re  

y '  = l + x w + y ' / 2 v ,  (A.1) 

and tak ing  the l imi t  (2.6) under  the in t eg ra l .  Then  (2.10) b e c o m e s  

i x 2 T _ ( s '  /12) 
v ( ~ )  4 f d x d y '  d2K X+OA-I 

~2 = -x(~ '  - 2xM 2) +K 2 , 

s '  = -2x~0v.  (A.2) 

At f i r s t  s ight  this  is O(v o~0-1). H o w e v e r ,  the y '  i n t eg ra t i on  can be c o m -  
p le ted  by a s e m i c i r c l e  in the l o w e r / u p p e r  half  plane fo r  x <> 0 and so 
v a n i s h e s .  How rap id ly  the con t r ibu t ion  goes  to z e r o  depends  on how rap id ly  
T_ goes  to z e r o  at l a r g e  g2 when s '  is  l a rge .  

Deal  next  with the pos s i b i l i t y  that  K 2 is l a rge .  Change  v a r i a b l e  f r o m  K 2 
to ~, w h e r e  

K2 =--2V (y,_ 1)2-  2Vx(y ' -  1 )+~ . (A.3) 
¢o 

Then  if x, y '  a r e  not in e i t h e r  of the r e g i ons  (2.16), g2 will  be f ini te  in the 
deep  ine la s t i c  l imi t  only  if ~ is finite.  Since K is space l ike ,  this  can only 
happen  w h e r e  [ ( y ' -  1 ) 2 / ~ - x ( y ' -  1)] < 0. Given this ,  t h e r e  is then no r e s t r i c .  
t ion  on the r ange  of va lue s  of ~ so we can  i n t e g r a t e  it f r o m  - ~ to ~o (in the 
non- f in i t e  p a r t  of th is  i n t e g r a t i on  the p r o p e r t i e s  of T_ impl ied  by pos tu la te  
(i) will  p r o d u c e  a negl ig ib le  con t r ibu t ion ,  but we m a y  a s  well  include it). 
A s y m p t o t i c a l l y ,  a s  v--* 0% s '  and k2 b e c o m e  independent  of ~. Hence  the 
i n t eg ra t i on  g ives  z e r o .  Aga in ,  the r a t e  at  which the con t r ibu t ion  goes  to 
z e r o  depends  on the l a r g e  g2 b e h a v i o u r  of T_ fo r  l a r g e  s ' .  

Aga in ,  c o n s i d e r  the con t r ibu t ion  f r o m  the connec ted  p a r t  of T 6 in fig. la .  
Wr i t e  

k i = x i p + y i q + K  i , i = 1, 2 , (A.4) 

w h e r e  the K i a r e  o r t h o g o n a l  to both p and q. A c c o r d i n g  to pos tu la t e  (i) the 
dominan t  con t r ibu t ion  a r i s e s  f r o m  fini te  va lue s  of 

k2. x2 ..2 2 2 _ 2 
= z iv1 + y i q  + z v x i Y i + K  i 

_ 2 2 
(k i q)2 = xi  M +(Yi-  1)2 q2+2vx i (Y i  - 1 ) + g ~  , (A.5) 

in the deep ine la s t i c  l imi t .  We d i spose  of the so lu t ion  with non- f in i t e  K 2 in 
the s a m e  way a s  be fo r e .  This  l e a v e s  
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2y i - 1 
X i ~  

O 3  

Yi  ~ 0 or  1 . (A.6) 

T r e a t i n g  these  in the s a m e  way as  be fo r e ,  we find that  each  p o s s i b i l i t y  
l e ads  to a c o n t r i b u t i o n  to v W  2 that  goes to z e r o  at  l e a s t  as  fas t  as  v-1.  
(The J a c o b i a n s  c o r r e s p o n d i n g  to (A.4) give a f ac to r  v2 but  the changes  of 
v a r i a b l e s  c o r r e s p o n d i n g  to the cond i t i ons  (A.6) y ie ld  v -4  g iv ing  a net  b e h a v -  
i ou r  for  W 2 of v-2).  

I 
I : I 

Fig. 4. A class of Feynman diagrams that give contributions to W 1 of order v -1. The 
dashed lines represent  partons of spin ½; the dotted line is a scalar  gluon. 

S i m i l a r  a r g u m e n t s  y ie ld  c o n t r i b u t i o n s  to W1 or  o r d e r  v -2  a l so .  F o r  sp in  
1 p a r t o n s  th i s  may  s e e m  at  f i r s t  s ight  s u r p r i s i n g  s ince  it  i s  known [4] that  
F e y n m a n  d i a g r a m s  of the fo rm of fig. 4 give c o n t r i b u t i o n s  to W 1 of o r d e r  
v-1 .  The exp l ana t i on  is  s imp le .  T h e s e  c o n t r i b u t i o n s  a r i s e  f r o m  r e g i o n s  
whe re  k 2 ~ v, k 2 ~ v, that  i s  two of the p a r t o n  m a s s e s  a r e  l a r g e .  The se  
p a r t i c u l a r  F e y n m a n  d i a g r a m s  only  go to z e r o  l ike  v-1  in  th i s  case .  However  
these  c o n t r i b u t i o n s  a r e  s t i l l  neg l ig ib l e  c o m p a r e d  to those  f r o m  fig. l b  and 
fig. l c  in  the s c a l i n g  l im i t .  
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