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Abstract: A formulation of the parton picture of current interactions is given without
recourse to perturbation theory. In deep inelastic electron scattering the struc-
ture functions Wy and VW g scale but the corresponding functions Wy and vWs for
electron-positron annihilation processes at high energy are likely to be divergent,
Form factors for particles other than the partons themselves go to zero at in-
finite momentum transfer. The relation between the rate of decrease of the nu-
cleon form factors and the behaviour of ¥ Wy near w= 1 is shown to depend upon
further specific properties of parton-nucleon dynamics and so to be model
dependent. Some similarities between the parton picture and a recently proposed
Veneziano-like amplitude are discussed. A difference is that the parton picture
permits the incorporation of the pomeron.

1. INTRODUCTION

The suggestion of Bjorken [1] that the amplitude v Wy of electroproduc-
tion tends to a finite function in the deep inelastic limit has been illustrated
in several theoretical frameworks, and appears to be supported by the ex-
perimental data [2]. It has also been proposed [3] that the corresponding
amplitude v W of electron-positron annihilation has a similar behaviour at
high energy, but this has less theoretical support and there is not yet
sufficient data from storage-ring experiments to provide a check on it. A
perturbation - theory model with a cut-off does make both [4] vW3g and [5]
vWo have a finite asymptotic limit, but in a Veneziano-like model vWgy
remains finite [6], while vWg may become divergent [7].

In this paper we examine the situation in a class of field-theory models
where the electromagnetic current is coupled in a simple fashion to a par-
ton field. We consider first the case where the parton corresponds to a
scalar field ¢ and take the electromagnetic current to be

b =gt o. (1.1)
Secondly we make the parton correspond to a spin 1 field ¢ and take

M =YyE . (1.2)



226 P.V.LANDSHOFTF et al.

In each case the field is a Heisenberg field; we make no use of perturbation
theory. Where there are several types of parton, the current will contain
a number of terms like (1.1) or (1.2). A result of our work will be that in
the deep inelastic limit the cross section is an incoherent sum of contribu-
tions from the various types of parton.

Expressions like (1.1) and (1.2) do not determine the current but need to
be made more precise by stating restrictions on the fields ¢ and ¢. One
way of doing this would, of course, be by the specification of a Lagrangian.
However we do not adopt this approach, preferring to discuss a whole
class of theories characterised by a dynamical postulate which leads to a
finite vW9 in the deep inelastic limit. This postulate is:

(i) Hadronic amplitudes having virtual partons as external particles go
sufficiently rapidly to zero as the masses of the partons become large. We
discuss this more precisely in sect. 2.

Further we fix the normalisation of the fields in (1.1) and (1. 2) by the
requirement:

(ii) The boson two-point function

sy =i fatx e o170 T 0000 |0, (1.3)

becomes asymptotically equal to (k2)'1 at large kz, and the fermion two-
point function

S (k) = [a*x ™ 0| T@x) wop|o (1.4)
becomes asymptotically &/ k2. It is easy to show by an adaptation of the
methods give in sect. 2 below, that this leads to canonical commutators

for currents of type (1.1) and (1.2), when the commutator is defined by
means of the BJL limit [8].

The postulate (ii) is a normal one [8, 9] but (i) is more restrictive. We
know from the fact that a cut-off is needed in some perturbation-theory
models [4] that it is easy to construct examples where (i) is not satisfied.

With condition (i) the amplitude vWy does tend to a finite asymptotic
function in the deep inelastic limit but, as in the Veneziano-like models [6],
we find that vW9 is generally expected to become divergent.

In the case (1.2) of the spin 5 parton the electroproduction amplitude
W1 also remains finite at infinite energy, as predicted by Bjorken [1], in
such a way that the electroproduction is dominated by contributions from
transverse virtual photons, which seems largely to be the experimental
situation [2]. In the case (1.1) of the scalar parton, Wj goes to zero asymp-
totically.

In both the perturbation-theory [10] and the Veneziano-like [6] models
there is a connection between the threshold behaviour of the asymptotic
form of vWg and the behaviour of the proton elastic form factor at large
momentum transfer. However the relationships are different in the two
cases. This indication that such a connection does not have any deep funda-
mental origin is borne out in the present work, where we find that the
threshold behaviour of vW 9 and the asymptotic behaviour of the form factor
depend on different properties of the hadronic amplitudes.
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Our study of the elastic form factor leads to another conclusion: the
form factor of an "ordinary" particle (meson or nucleon) goes to zero at
large momentum transfer if and only if the partons are not themselves ordi-
nary particles. Since the essential nature of a parton is that it interacts
electromagnetically like a point particle this is to be expected.

2. SCALAR PARTONS

We are concerned with the matrix element
MY = [ d4x €% (p| T(jHx)j¥(0))|p) , (2.1)

where \p) is a proton state of momentum p, and it is understood that only
the connected part of the matrix element is included and an average over
proton polarisations is to be performed. Inserting (1.1) into (2.1) and using
standard reduction formulae [11] leads to
MBY =t
(2m)
where Tg is the six-point function that couples four partons to the two spin-
averaged protons. This is shown diagrammatically in fig. 1la, where the
arrows depict the direction of flow both of the labelled momentum and of
positive charge.
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Fig. 1. (2) Diagrammatic representation of (2.2), The broken lines represent virtual
partons. The arrows depict the direction of flow both of the labelled momentum and
of positive charge. (b), (c) The contribution of the disconnected parts of Tg.

(@)

Note that Tg is "non-amputated”, it has poles in its parton legs at

2 2 2_ 2 2_ 2 2 2
(kl"q) =m ’ kl_m ’ k2 m ’ (kz'q) =m ’

where m is the parton mass. It contains disconnected parts in which either
the positive or the negative parton is a spectator [11]:

@n? 6®, - k) 17,8500 +T_a & =g} 2.3)



228 P.V.LANDSHOFTF et al.

Here T, are the amplitudes for the two-body forward scattering of posi-
tively and negatively charged off- mass-shell partons on the spin-averaged
proton. The contributions from (2.3) to M"Y are shown in figs. 1b and lc.
It is these contributions that will dominate in the deep inelastic limit. We
show this in the appendix.

Our technique for exploring the deep inelastic limit is similar to that
developed by Gribov [12] for the analysis of Regge cuts. (We do not expect
the reader to have any previous knowledge of this technique). We begin by
applying it to fig. lc.

Write

k=xp+yq+k (2.4)

where the momentum « is orthogonal to both p and ¢ and so is spacelike
(K2 < 0) and effectively two-dimensional. We may use x, ¥, k as integration
variables instead of &:

d4k = Jdxdy d2« . (2.5)
In the deep inelastic limit
v=p.q— >,
W= _q—zzz fixed , (2.6)
the Jacobian has the asymptotic form
J~v. (2.7

The contribution of fig. 1c to THY is
—’dexdydzx [2xp+(2y - 1) g+ 26]"
(2m)4

[2xp+(2y - 1) q+2K]VA'F(k2) T_(s', uz) ) (2.8)

where
s'=(p+rq-R2=(x-12 M2+ (y-1)2 g2+2(x- 1) (y - 1)v+k2,
n2=(g-k2 =22 M2+ (y-1)2 g2+ 2x(y - 1)v+x2,
k2 = x2 M2 192 g2 2xyv1k2 | (2.9)
with M the nucleon mass. If we expand (2.8) in terms of the basis tensors
phpV, pHeV+qHp¥, gqHgV, gHV,

the coefficient of p#pY is

) 2
(zz )4dexdy d2« do kg(o)o [4"2'1‘42_255/(1_2%_(3', 2. (2.10)
o I : ]

where we have introduced the Lehmann representation [8]
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N )
Al )_of dckz_g, (2.11)

where according to postulate (ii) of sect. 1,

[>0)

[ dop(o)=1. (2.12)
0

In deriving (2.10) we have made use of the relation, holding for the in-
tegrand, that * k¥ may be replaced by

1,2 v pHpv gt qv v v v
2k [gu 'Mz_yz/qz‘qz_uz/M2+(l’“q +qtp )m] (2.13)
The expression in square brackets in (2.13) is the unit matrix in the two-
dimensional subspace orthogonal to p and q.

The imaginary part of (2.10) is the contribution of fig. 1c to W2/M. The
coefficient of g4V, whose imaginary part is the contribution to MW, is
obtained by replacing the square bracket in (2.10) by 22,

Make the change of variable

v xM2
v=y -5, (2.14)
so that in the deep inelastic limit (2.6)
' 2
2 _ " Y - 1\ 2xM v )
w2 =20’ -1) (x - )+——w W' -1)+k2 . (2.15)

According to postulate (i) of sect. 1, the dominant contribution to the inte-
gral arises from that part of the integration in which p.2 remains finite as
v — o, Hence we expect it to come from either of the regions

]

y =1,
"N 14w . (2.16)

Q

y

We dispose of the second possibility in the appendix, where we also deal
with the possibility that y' is outside both of the regions (2.16), but that 2
is large in such a way that ;1.2 remains finite.

Thus we introduce instead of ¥' the new variables :

y'=1+2%, (2.17)
and take the limit under the integration in (2.10). With (2.7) and (2.12) this
gives
; 2 t2
i ~ xe T (s, ue)
—— [ dxdydex 2= o B
v(2m)4 f d x-w-1
s'=(x- 1)®—M2)+K2 R

uz =x§+K2 . (2.18)

b
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It is possible in the light of this ar%ument to clarify postulate (i) some-
what. Outside the region (2.16) both y% and s will tend to infinity like v.
In order for this contribution to be less important than that given by (2.18)
we require that in this limit 7. ~v~Y, y > 1. A similar assumption is made
in the Gribov reggeon calculus [12].

According to the usual 1deas of analyticity, 7. has singularities in p.z, a
right hand cut in the variable s', and a left hand cut in the variable

w =2p2+2M2- s = (x+1) (F+M2)+k2 | (2.19)

where in each case the singularity is slightly displaced below the positive
real axis of the variable in question. If ]x] > 1 all these singularities occur
on the same side of the ¥ contour of integration. This contour can therefore
be completed by a semi-circle at « in the opposite half plane to give a zero
result. If 0 < x <1 the integration no longer gives zero but may be wrapped
around the right hand s' cut. If 0 > ¥ >- 1, the ¥ integration may similarly
be wrapped around the left hand #' cut. Thus 7-(s', ;1.2) in (2.18) may be re-
placed by

2i[6(x) 6(1-x) Im TR + 6(-%) 6(1+x) Im Ty] , (2.20)

where the suffixes R, L respectively denote the right and left hand parts of
T_. It will now be seen (fig. 2a) that the integral (2.18) is real for ‘w! <1,

* ’
Mot : s—cut
(a)
2
- p-cut
C Ss-cut

(b)

(c)

(d)

Fig. 2. (2) The integration contour in (2.21) drawn in the s' or -y plane. (b), (c) The
results of continuing (2.21) into the region 0 <w < 1, passing to different sides of
the possible singularity at w = 1. (d) The correct integration to give vWs.
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and that for w outside this range it has an imaginary part obtained by re-
placing the denominator of the integrand by a delta function. In fact the
range of values w > 1 is the kinematic region of interest in electroproduc-
tion, and the contribution to yW9 is thus

2 _ '
—mfdydzx ImTR(s, p2)

s'=(wl-1)F-M2)+x2,
pl=wly+x2. (2.21)

The contribution from fig. 1b may be obtained from this by crossing, and is
the same but with Im TR(s', u2) replaced by Im Tr, (', p2) with

u' = (w1+1)F+MZ)+x2 . (2.22)

To discover the large w behaviour of (2.21), change variable from ¥ to
= - w'lﬁ. Take the limit under the integral and insert for Im TR the large
s' Regge behaviour

o
Im TR ~ B2y 0,

v = 3(s' -u'). (2.23)

This gives the asymptotic form ™

(22)3 020l [ 4z [a2¢8(2-2)2%0 (2.24)
T 0

If the pomeron couples to the partons, ag = 1.

On the other hand, the behaviour of (2.21) near w = 1 depends on the
form 9f TR for large uz, at finite s'. Change the integration variable from
ytos:

2 1

2 1 ras'g2 t2
PEE w(w_l)fds d2« Im TR(s', u2),

(2.25)

Suppose that for large p.z
Im TR ~ (£2)7 f(s') . (2.26)

(We have no reason to believe that such a simple behaviour is necessarily
realistic.) Then on letting w — 1 under the integral in (2.25) we obtain a
result proportional to (w - 1)7"1.

As has been remarked elsewhere [7], the fact that the value of y may be
such that this factor is not real for w < 1 provides a warning that it may
not be possible to continue vW3 into the region 0 < w <1 to obtain the cor-
responding amplitude vWs9 describing electron-positron annihilation. The

* It should be remembered that the vector K is spacelike, k2 < 0.
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variables I.Lz and s’ are linked together in the integration by the relation in
(2.25). For w > 1 the singularities in the variable 12 are to the left of the
s' cut, but this is no longer so for 0 < w <1, Thus an analytic continuation
into this region results in the ;1.2 singularities retreating to -« and then
reappearing from + in the s' plane, either on the upper side of the s' cut
or on the lower, according to the route taken round w = 1 {figs. 2b and 2¢).
The difference between the two cases, if there is a difference once the in-
tegrations have been performed, corresponds [7] to the existence of singu-
larities of the amplitude in the variable qz. Neither continuation corre-
sponds to the correct integral for vW9, which is obtained by evaluating the
integral with the singularities in one of the two parton masses above the s'
cut, and the other below (fig. 2d). As these p.2 singularities are expected
to occur in ImTR they will pinch the integration contour. Since we are
dealing with a non-amputated amplitude the “2 singularities include a pole
at the parton mass. The associated pinch may be expected to lead to a
divergence of the integral. A similar divergence of vW3 is also, in general,
a feature of Veneziano-like models [7].

In the scalar-parton model, the asymptotic form of MWy in the deep
inelastic limit is v-1 times an integral like (2.25), but with an additional
factor w22 in the integrand (the crossed term must of course, also be
added). Thus in this model W1 is also O(v-1) in the deep melastlc limit,
This does not agree with the exper1menta1 result, that M2 W1 ~ 3 wvWy. To
obtain this, we must use the spin 3 parton model, corresponding to the
current in (1 2), which is discussed in the next section.

3. SPIN ; PARTONS
In this case the contribution of fig. 1c to THV is

i 2 de' v
—— [ Jaxdydk Trfy"S_()y T }. (3.1)
(271_)4 f { F -
The parton-proton amplitude 7_ is averaged over proton polarizations and
S0 is a matrix in the parton spinor indices only. We write the propagator
in the Lehmann representation

' f do_')’kpz(o')"'Pl(U)

3.2
P = e 3.2)

where postulate (ii) of sect. 1 requires that

oo

J dopp(o) =
0

The technique for handling the spinor factors in (3.1) is the same as that
devised by Gaisser and Polkinghorne [4] for use in analyses of perturbation
theory. The trace expression is rearranged by means of a Fierz transfor-
mation in the form
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5 .
12 T A, (3.3)
=1
where
T =Tr{r,T}, (3.4)
A™Y _ oy {'y“SF(k)yV r}, (3.5)

with {T';} being the set of y-matrices
{1,9%, 008, y5y2, ys5} (3.6)

suitably contracted in (3.3) over the indices o and 8. The functions AV
are similar to those found in perturbation theory analyses [4] and we find
that ASHV = 0 and A3%Y and A%%Y do not contribute to the total amplitude
(obtained from the sum of contributions from 1b and 1c) since they are
antisymmetric in g, v and the total amplitude must be symmetric. One
readily finds that ALKV is proportional to

p18"”, (3.7)
and A2HY is proportional to

Po[gUMEY + gUVEL_ glhVEQ] (3.8)

Since T- is a function of the vectors p, k- g, the corresponding T? can be
written

T =T", (3.9)

% =T b +Ty(k-q)_, (3.10)
where T1, T1 and T9 are invariant functions.

In order to identify Wy one looks for the imaginary part of the coefficient
of gt?. Contributions to this coefficient arise from both Al and A2, The
latter contains a term with a factor v formed from the contraction of the
yg®in BY in (3.8) with the py present in (3.10). This term dominates in the
deep inelastic limit and is the reason why Wj itself has a non-zero limit.
(Note that the v formed from xp% in (3.8) and (v - 1)gy in (3.10) is not ef-
fective since (y - 1) ~ v-1), Thus the dominant contribution to W1 in the
limit is obtained from

; % (Ty+xTo)pogyv
o [ Tdx dy d% dc—lz—zi—. (3.11)
(2m) 0 B4-o

This is the analogue of equations of the type of (2.10) in sect. 2. The fur-
ther analysis proceeds exactly as before, obtaining the leading contribution
from the neighbourhood of y ~ 1. It is not necessary to repeat the details.
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W9 may be obtained by, for example, isolating the coefficient of p* gV
in (3.1). The imaginary part of this coefficient is éng/Mz. The coeffi-
cient itself is just v-1 times the expression (3.11). Therefore we find the
expected relation

2M2 Wy = vwWsy , (3.12)

corresponding to R = 0 for spin £ partons. Of course Wy could also be ob-
tained by calculating the imaginary part of the coefficient of pH pV, One
readily sees that the same answer is obtained. This is one of a number of
similar simple checks on the gauge invariance of the theory.

4. THE ELASTIC FORM FACTOR

In this section we show that the partons are not protons. Nor are they
any other partigle whose elastic form factor goes to zero for large momen-
tum transfer A",

Using again the reduction formulae of field theory, we find that with the
current (1.2) the elastic form factor of the proton takes the form drawn in
fig. 3a. If, and only if, the parton is a proton, the parton-proton amplitude
contained within this diagram contains a disconnected part in the a2 chan-
nel. This coniributes to the form factor a term drawn in fig. 3b, which is
independent of A2, We show that the remaining part goes to zero at large
Az, so that only if fig. 3b is not present does the whole form factor go to
zero.

pr p-xo

(@) (b)

Fig. 3. (a) Diagrammatic representation of the proton elastic form factor. (b) The
contribution of the disconnected part that occurs when the current couples directly
to the proton.

Label the momenta as in fig. 3a, and write
kR =aP+BA +X , (4.1)

where X is a momentum orthogonal to both P and A. Since (P + %A)2 = MZ,
the masses of the two partons are

T TS T AT i R (PR v FC (4.2)



A PARTON MODEL 235

According to postulate (i) of sect. 1, the dominant contribution to the form
factox; arises from finite values of these two masses as A2 — e, that is
from B~ 0and @ = + 1. The contributions from these two regions are
similar, being related by crossing the proton lines. Consider one of them
for definiteness, and make the changes of variables

a =1+ % ,
B = % . (4.3)
The asymptotic behaviour of the form factor then takes the form
fd&dﬁdzxg(uf, uixz) (Az)&(xz)“1 ;
ui=M2+x2-%C_¥ +B, (4.4)

where @ is the leading Regge trajectory of the parton-proton amplitude in
the parton+proton channel and g is a Regge residue function. Because x is
spacelike, the exponent of a2 is <0 throughout the integration. Also, be-
cause the singularities in pf are all in Im ¢ = 0- the @ integration can be
completed by a semicircle at infinity in the upper half plane to give zero.
That is, the form factor goes to zero for large A“. How rapidly it goes to
zero depends on how rapidly g goes to zero for large uf. That is, the
asymptotic behaviour of the form factor depends on the asymptotic behav-
iour of the parton-proton amplitude when both the parton mass and the
momentum transfer become large. This is to be contrasted with the behav-
iour of vW9 near w =1 which, as we showed in sect. 2, depends on the be-
haviour of the parton-proton amplitude when the parton mass becomes
large, but the other variables remain finite.

5. DISCUSSION

The model presented in this paper provides a parton, or point-particle,
picture of deep inelastic scattering without the need to resort to perturba-
tion theory. A result of our work is that, when there are several types of
parton, the total contribution to the scaled structure functions is given by
an incoherent sum of the contributions from the different types of parton,
The point-like character of the partons is expressed by their electromag-
netic form factors not tending to zero at infinite momentum transfer, so
that the partons are certainly not nucleons. The basic spirit of the approach
is similar to that used by West [13] in constructing his phenomenological
model for the electromagnetic structure of the proton.

* This time we can exclude the possibility that ;_LE remain bounded through x becom-
ing divergent, since this solution would make the energy variable of the hadron
amplitude become large. This corresponds to a fixed angle limit and so the
amplitude tends rapidly to zero,
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In sects. 2 and 3 we discussed the forward-scattering current matrix
elements, since it is their imaginary parts which give the structure func-
tions of deep inelastic scattering. However it is easy to repeat the analysis
with £ # 0 and one finds that the amplitudes still scale. This would not be
so for theories based on a simple phenomenological diffraction mechanism
[14], but it is true in the Veneziano-like model [6].

Another feature common to the model of this paper and the Veneziano-
like model is that there is a connection between the mechanism responsible
for the scaling of vW9 and the current-algebra fixed pole. This is most
readily seen by considering the amplitude for the scattering of charged I =1
vector currents, relevant to deep inelastic neutrino scattering. The analy-
sis of the deep inelastic limit needs only trivial changes in the arguments
of sects. 2 and 3. Once again the dominant contribution comes from the
region y ~ 1. If one attempts to calculate the Regge limit (v — =, q2 fixed)
in a similar way there are now two significant regions

x~0, (5.1a)
yx~1. (5.1b)

A straightforward evaluation of their contributions shows that (5.1a) gives
Regge behaviour

~ p(t)-2 (5.2a)

where «a(f) is the Regge pole dominating the parton-proton amplitude, while
(5.1b), the region giving also the deep inelastic contribution, yields the
fixed pole behaviour

__2F(t)

ey (5.2b)

where F(t) is the form factor of the I = 1, I3 = 0 current. ‘Tt can be shown
that when «o(¢) is an odd-signature trajectory the Regge term in (5.2a) has
a pole at «(¢) = 1, which cancels the corresponding pole in (5.2b). It was
explained by Bronzan et al. [15], and verified by them in a perturbation-
theory model, that this feature is necessary in order that the complete
double-flip amplitude does not have a spin-one pole in the {~-channel. A
similar mechanism makes (5.2b) finite at a({) = 1 when «(¢) has even sig-
nature; Abarbanel et al. [16] pointed out that this must be so in order that
the pomeron couple to the double-flip amplitude.

Another way of exploring the connection between the scaling of vW9 and
the current-algebra fixed pole is by means of sum rules; we propose to
discuss this elsewhere [17].

Finally, we note that there is one striking difference between the model
of this paper and that provided by the Veneziano-like amplitudes. No dual
theory can satisfactorily accommodate the pomeron, but it finds a natural
place in the formalism discussed here.

One of us (R.D.S.) gratefully acknowledges a research maintenance
grant from the Science Research Council.
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APPENDIX

We argue here that the contribution we have considered in the text is
actually the dominant one in the deep inelastic limit.

Deal first with the second possibility in (2.15), by making the change of
variable from y' to 3', where

v =l+xw+y'/2v, (A.1)
and taking the limit (2.6) under the integral. Then (2.10) becomes

2 'y 2
g Jaray' a2 T2 Y T-(s,p)
V( )4 x+w-1
p? = -x(y' - 2xM2) +x2 |

s’ = -2xwv. (A.2)

’

At first sight this is O(v ®0-1), However, the j)" integration can be com-
pleted by a semicircle in the lower/upper half plane for x = 0 and so
vanishes. How rapidly the contrlbutmn goes to zero depends on how rapidly
T. goes to zero at large #2 when s' is large.

Deal next with the possibility that K2 is large. Change variable from k2
to &, where

K2=2—:(y'-1)2—21/x(y'—1)+§- (A.3)

Then if x, y' are not in either of the regions (2.16), p.z will be finite in the
deep 1ne1astlc limit only if £ is finite. Since k is spacelike, this can only
happen where [(y' - 1)2/w-x(y' - 1)] < 0. Given this, there is then no restric-
tion on the range of values of £ so we can 1ntegrate it from -« to « (in the
non-finite part of this integration the properties of T_ implied by postulate
(i) will produce a negligible contribution, but we may as well include it).
Asymptotically, as v — =, s' and 22 become independent of £. Hence the £
integration gives zero. Agam the rate at which the contrlbutlon goes to
zero depends on the large u2 behaviour of T_ for large s'.

Again, consider the contribution from the connected part of Tg in fig. la.
Write

ki=xip+viq+ki, i=1,2, (A.4)

where the x; are orthogonal to both p and ¢. According to postulate (i) the
dominant contribution arises from finite values of

2 2 2 2 2

ki =X M2+yiq +2vxiyi+xi ,

(ki-q)2 —x2M2+(y -1) q +2vx (y —1)+K , (A.5)

in the deep inelastic limit. We dispose of the solution with non-finite Kz in
the same way as before. This leaves
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2y; -1

XN —
y;~0orl. (A.6)

Treating these in the same way as before, we find that each possibility
leads to a contribution to W9 that goes to zero at least as fast as v-1,

(The Jacobians corresponding to (A.4) give a factor v2 but the changes of
variables corresponding to the conditions (A.6) yield v4 giving a net behav-

iour for Wy of v-2).,
P
vt !

3

Fig. 4. A class of Feynman diagrams that give contributions to Wy of order vl The
dashed lines represent partons of spin 3; the dotted line is a scalar gluon.

Similar arguments yield contributions to Wy or order v-2 also. For spin
3 partons this may seem at first sight surprising since it is known [4] that
Feynman diagrams of the form of fig. 4 give contributions to Wy of order
v-1, The explanation is simple. These contributions arise from regions
where %2 ~ v, kg ~ v, that is two of the parton masses are large. These
particular Feynman diagrams only go to zero like v-1in this case. However
these contributions are still negligible compared to those from fig. 1b and
fig. 1c in the scaling limit.
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