Dispersive approach, Unitarity, Pion vector form factor

Igor Danilkin (JPAC & JLab, USA)

2015 International Summer Workshop on Reaction Theory June 8-19, 2015 @ Bloomington, Indiana, US

Dispersion relation

Cauchy Formula (analyticity)

$$F(s) = \frac{1}{2i} \int_{4m^2}^{\infty} \frac{ds'}{\pi} \frac{\operatorname{Disc} F(s')}{s' - s}$$

Reflection principle

$$F^*(s+i\epsilon) = F(s-i\epsilon)$$

Relation to unitarity

$$\operatorname{Disc} F(s) = F(s + i\epsilon) - F(s - i\epsilon) = 2i \operatorname{Im} F(s)$$

Calculation of Discontinuity

Cutkosky (cutting) rule

$$\frac{1}{p^2 - m^2 + i\epsilon} \to (-2\pi i)\,\delta(p^2 - m^2)$$

Example

Disc
$$M = \frac{i}{8\pi} \sqrt{1 - \frac{4m^2}{s}} = \frac{i}{8\pi} \rho(s)$$

$$\operatorname{Im} M = \frac{1}{16\pi} \rho(s)$$

Pion vector form factor

Transition from a photon into a pair of pions

$$\langle \pi^+(p)\pi^-(q)|J_{\mu}(0)|0\rangle = (p-q)_{\mu} F_{\pi}^V(s)$$

ChPT at low energy

$$L \sim A_{\mu} \pi^{+} \partial^{\mu} \pi^{-} + \dots$$

$$F_{\pi}^{V}(s) = 1 + \frac{1}{6} \frac{1}{4\pi f_{\pi}^{2}} (\bar{L}_{6} - 1) s + \dots$$

Píon vector form factor

Analyticity & Unitarity

$$\operatorname{Im} F_{\pi}^{V}(s) = \rho(s)t^{*}(s)F_{\pi}^{V}(s)$$

Watson theorem

$$\operatorname{Arg} F_{\pi}^{V}(s) = \delta(s)$$

Omnes function

Analyticity & Unitarity

High energy behavior

$$\delta(s) \to \alpha \, \pi$$

then

$$\Omega(s) \to \frac{1}{s^{\alpha}}$$

Numerical implementation

Tangent stretching:

Example 2:
$$\int_2^\infty e^{-y^2} dy$$

<< NumericalDifferentialEquationAnalysis`</p>

Principle value integral

$$\int_{4m^2}^{\infty} \frac{ds'}{s'} \frac{f(s')}{s'-s-i\epsilon} = p.v. \int_{4m^2}^{\infty} \frac{ds'}{s'} \frac{f(s')}{s'-s} + i\pi \frac{f(s)}{s}$$

$$p.v. \int_{4m^2}^{\infty} \frac{ds'}{s'} \frac{f(s')}{s'-s} = \int_{4m^2}^{\infty} \frac{ds'}{s'} \frac{f(s')-f(s)}{s'-s} + \frac{f(s)}{s} \ln \frac{4m^2}{s-4m^2}$$

Inomas Jetterson National Accelerator Facility is managed by Jetterson Science Associates, LLC, for the U.S. Department of Energy's Office of Science