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Tools of the Trade
in Hadron Physics

Underlying principles (some derived from QFT)
e Analyticity and Unitarity of the S-Matrix

* PCT symmetries

* |sospin, flavor SU(3), quarks

Tools for analysis of scattering amplitudes

* Dispersion relations

* Mandelstam representation

* Resonance dominance at low energies

* Regge poles at high energies
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The quark model and flavor SU(3)
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The quark model and flavor SU(3)
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Pion-Nucleon scattering

Four momenta of pions are denoted by ¢, of nucleons by p: Prtq1=pst+qa
Three independent four-vectors P=3(pit+p), 0=3(qitg), k=3%(qi—go)
Two independent scalars: momentum transter and lab energy v,,,
k*=1(q1—¢q2)*=%q*(1—cosf) (in c.m. coordinates) »=—P-Q/M v=v,— (/M)

Nucleon spinors .
p iy~ prt-M) =0,

(i'}“f’ﬂ']‘}ﬂ:}ﬁz= 0.

S matrix S=87— (2m)464 (ot q2— pr— q1)
J.M-E i
(Y air
4E, Eqjws
The T-matrix is T=—A+iy-QB,
A and B are matrices in terms of 3 pion indices + and — refer to symmetry under

crossing of pions, e.g.

— 43 L1 (—)
Aﬂrx LW +2|:'Tﬂ:7'a]-f£1 TP S m™©n vs 1O p S mtn

o | N - . 3 i oh is al )
or, with 1sospin decomposition Ba=03aB+il 707218 which s also v => -
AP =3(AB 424 D), Taken from Chew et al
AC=3(AD—4D), etc. PR 1957

Isospin indices refer to direct channel



Using center of mass variables W=total energy,
E=total nucleon energy,

) &= cosb.
and nucleon mass M pion mass 1
: 1 W+M Y —
One can rewrite e 7t flci}_L Mfz‘i’,
dar E+M E—-M
(+)% 1 f (&) - (£)
_B-i = 1 + . .
4 E+M E—Mf
and express the cross-section as ds | | g |\ [
—“=Z‘<f|f1‘f' 2 $>
d<l AN q2q1
summing over final and averaging over initial states.
Partial wave decomposition of amplitudes is A= [Pt ()= fr Py (@)
=0 =2

o5

fo=2 (fi—fi) Pi (%),

i=1
where fi;1 18 the scattering amplitude in the state of
parity — (—1)! and total angular momentum j=I/4%.
Py (x) is the first derivative of the conventionally Taken from Chew et al

normalized Legendre pn!}rnﬂn_'lia,]. PR 1957



Optical theorem and phase shifts

The f, are normalized so that

. q
(7432) Imf = (2.20)

where o, is the total cross section of the partial wave
involved. Thus, for energies below the two-meson
threshold,
: Sind,.
fra=ettE——o, (2.21)
q

where §;.. is the real phase shift in the state /. ; above
this threshold a representation of the form (2.21) still
holds, but with complex &;4.

Taken from Chew et al
PR 1957
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Figure 5.1: An analysis of the J = 3/2,1 = 3/2 channel of pion—nucleon scattering.
Scattering data have been analyzed and fits made to the various angular momentumn and
iscepin channels, For each channel there is an amplitude, azy = (77 — 1)/2i, where &;;
is real for elastic scattering and Iméyy > 0 if there is inclasticity. Elastic scattering gives
an amplitude on the boundary of the Argand circle, with a resonance oceurring when the
amplitude reaches the top of the circle. In the Figure, the clastic resonance at 1232 MeV
is visible, as well as two inelastic resonances. Tick marks indicate 50 MeV intervals. The
projections of the imaginary and real parts of the J = 3/2, I = 3/2 partial wave amplitude
are shown to the right and below the Argand circle [Results of R. E. Cutkosky as presented
in Review of Particle Properties, Phys. Lett. 1708, 1 (1986)).



What 1s a resonance?

 Adcircle in the phase-shift analysis

e Abump inthe cross-section

* A Breit Wigner structure
 Apoleinthe scattering amplitude

* A particle decaying via strong interactions
Or all of the above...

e¥sins

For elastic scattering f= where k is the c.m. momentum, and & is real (when other
particle production channels open up it becomes complex).
The Breit-Wigner approximation for a resonance with mass M and width T is

e'9sing 1 r/2

k  kE—-M+il/2
Leading to differential cross
section E — |f|2
df)
and total cross-section
) 41 F2/4
o = 4m|f|? =

k2(E-M)2+T2/4



Dispersion Relations

Assume the scattering amplitude is an analytic function with a cut along the real axis (and
possibly one or two poles). In this case, the Cauchy contour integral

foy - L reaas ,
S) = ? :
2i [ s'—s H ) R — o
turns into the following expression along the real axis i @ (: SANAAARNAR v ‘i“‘
0 H
1 o= Imf(s c ‘ ’
‘ m Jo s'— s — 1€ So — S

provided f (s) declines appropriately on the infinite circle. This follows because the discontinuity
along the cut is proportional to the imaginary part. It can also be rewritten as

, 1 (s’
Ref(s) — _pf = Imf(s)
T Jo s —s
employing the equality
1 e
— =P +imd(x — xp)
I — Ipo— 1€ I — I

Although we omitted the pole at sy we should implicitly remember it as part of the integral.



Subtracted Dispersion Relations

1 oo, Imf(s
f(S;I — —/ dSF ; mf(S J
mJo S — 8 —1€

If Imf (s) does not decrease fast enough for large s, one may invoke the
subtracted dispersion relation

co

F@) ~ f0) =~ j ds' -1 )

s'(s' —s —ig)
0

If, on the other hand, f(s) decreases faster than 1/s
then it obeys the “superconvergence relation”

oo

j Imf(s)ds =0

0



Dispersion relations in N scattering

Red &) (px%)

P p= 1 1
= mf dv' TmA Ei}[w’}xﬂj( + )
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where the poles below threshold represent the nucleon
state1.e. TN —> N —-> TN

ve=—(1/2M)— (/M) g2 dr=14



Mandelstam representation

S-matrix models of two-to-two particle-
scattering are described in terms of the s,t,u
Mandelstam variables s=(p;+p,)?=(ps+p4)?,
t=(p1'p3)2=(pz'p4)2 , and u=(p1—p4)2=(p3—p2)2 ’
obeying the over-all constraint s+t+u=3, m. 2.
The physical region for the process 1+2->3+4 is
e L ' characterized by positive s and negative t.

' ' Physical regions in the crossed channels
described processes involving the anti-particles,
according to conventional associations in
Feynman diagrams.

0

T T t—> pn
/
The Mandelstam plot for tN scattering, taken /
from the original paper [1958]. Masses of it and
N are denoted by pu and M, respectively. The u S
physical region of s is the shaded region on the crossed channel direct channel

bottom right. mp > mtn mp—>mn’n
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Regge Poles 1n the t-channel

Regge introduced the concept of Regge-poles in complex J (1959, 1960). A Regge-pole

a(t), associated with some given quantum numbers (isospin, baryon number,
strangeness) interpolates between particles of mass m such that Rea(t=m?)=J, the spin

of the particle.

Regge poles are conjectured to influence the scattering amplitude at high energies (large
s and t<0) in a fashion associated with the behavior of a at these values, as s*t with the
trajectories being approximately linear (Chew and Frautschi 1962), as seen in the figure
taken from their paper.

a K . . t/m_ 2

b o iy
-50 0 50 100 150




Naive construction of Regge exchange

Consider the contribution of the Feynman diagram of the exchange of a single particle
in the t-channel at large s

F(s,1) = ng[;gsfot)]J

—> O

Now assume there exists a Regge trajectory with an infinite tower of particles with
spins J=1,3,5,...(known as signature t=-1).

This will lead to F(s,t)= & [( 1y 1](i)

J=0 M2 —t¢ 2 So

(in general t=(-1) for mesons)

If all have the same coupling, and the trajectory is linear
My? = (2] — aj

this leads to the Regge amplitude expression

F(s,t)z_gzﬂ[1 —e—imz](i)a

2u?  sinma \s,

From Barger and Cline 1969



Regge Poles 1n the t-channel

Regge introduced the concept of Regge-poles in complex J (1959, 1960). A Regge-pole

a(t), associated with some given quantum numbers (isospin, baryon number,
strangeness) interpolates between particles of mass m such that Rea(t=m?)=J, the spin

of the particle.

Regge poles are conjectured to influence the scattering amplitude at high energies (large
s and t<0) in a fashion associated with the behavior of a at these values, as s*t with the
trajectories being approximately linear (Chew and Frautschi 1962), as seen in the figure

taken from their paper.

Consistency with accepted lore:

- 07 cannot increase as a power of s.
Since o;~ s*0-1 it follows that a(0) <1.
- Trajectory passing through 1 is the

Pomeron, implementing

Pomeranchuk theorem (equal
asymptotic o; for particles and anti-

particles).

- Note that the Pomeron has no
resonances associated with it.

100

150



Chew and Frautschi 1962:

The evidence, of course, lies in the fact that
total cross sections actually appear to approach
constants at high energy, implying an imaginary
part of forward amplitudes «E,},; 80 we have
conjectured that a Regge pole with the quantum
numbers of the vacuum is responsible—with a
trajectory such that ayac(s=0)=1.2 The slope
of this vacuum trajectory is expected to be posi-
tive at low s (and similar in order of magnitude
to the slopes of other trajectories), and it was
explained in the previous Letter and is amplified
below why it is plausible to have the vacuum tra-
jectory lie above all others.? Thus the condition
@yac(s =0)=1 represents a saturation of Frois-
sart’s limit. o; < log?(s)

Differences of total cross-sections
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Regge poles, such as the p
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The rich set of analyticity and unitarity constraints has led Chew and Frautschi
to propose the Nuclear Bootstrap idea, stating that these constraints may
suffice to determine a unique set of poles (i.e. particles and resonances) in all
channels, thus providing the basis of a theory of the strong interactions.

Thus particle (or Regge-pole) exchanges in the t-channel should be viewed as
providing the force which leads to binding particles in the s-channel.



Resonances and Regge exchanges in mp scattering
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Charge exchange processes

A(m™p - n%1) = % [A(7" p) — A(=~ p)]

A(K~p — K°n) = [A(K~p) — A(K™ n)]
A(K*n — K°p) = [A(K™ p) — A(K* n)]
A(pp — fin) = [A(pp) — A(pn)]
A(pn — np) = [A(pp) — A(pn)]

Note sharp decline with t
and zero occurring at t=-.15
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Candidate Regge exchanges

Resonance Signature t
mass

Pomeron singlet

ff 1250, 1500 2+ 0+ 1 T nonet
A2 1320 2+ 1- 1 T nonet
w 783 1- 0- -1 V nonet
[0) 1020 1- 0- -1 V nonet
P 750 1- 1+ -1 V nonet

Using the optical theorem define Regge contributions to total cross-sections

o,(s) = =0) A(AB) =o(AB) —o,(AB)
e.g. evaluating the . =3A(7" p)
contribution of the p Regge px =3[AK" p) — A(K* )]
trajectory to different o =3 [A(pp) — Alpn)]

scattering amplitudes:



Finite Energy Sum Rules

Consider an anti-symmetric amplitude which obeys an unsubtracted
dispersion relation

(0.0]

ZUJ ImF (v")dv'

F(v) =

0

Assume it is dominated at high energies by the Regge pole

- PU=e™) . obeying Ry -Z[ L 4
sin(za)I'(a +1) 7 Dla+1)ve—v?

for -1<a<1. It follows then that their difference obeys a superconvergence
relation fooo Im (F — R)dv = 0.

If there exist a few Regge poles above -1, one can subtract all of them to
obtain the superconvergence relation.



Finite Energy Sum Rules

Consider the case when the Cauchy contour is drawn at the finite circle Ivi=N rather then
at infinity. The analog of the dispersion relation becomes

where the right-hand-side represents a sum over all Regge poles. There are various
advantages for this representation:

* All Regge poles enter irrespective of lying above or below -1
* Their relative importance is the same as in the expansion of F

* One can try and choose N such that for v<N one may insert the data in the form of
resonances (or phase-shift analysis), and for v>N the asymptotic expansion in terms
of Regge poles provides a good approximation to F.

In fact, one may derive a set of n-moment sum-rules which should hold as well:

N a
Horn and Schmid, Caltech preprint 1967. S (N)= 1 : J‘ v Im Fdv = BN
Dolen Horn and Schmid, PRL 1967, PR 1968. N™ 0 a (o, +n+DI'(; +1)



ntN charge exchange

As a first application we consider k [o; (U p) - o7 (¥ p) ] which should be dominated by the p
Regge pole. There exist very good data for low energies, and a smooth fit by the Regge pole can
be observed from 4 GeV onwards. The sum rule holds within experimental accuracy.

lgi and Matsuda, PRL 1967.

Horn and Schmid, 1967.

Logunov et al PL 1967

Dolen Horn Schmid PRL 1967 PR 1968

This figure compares Ao; (1) with

the Regge fit (4). It shows also

that sum of resonances (2)

& Ao HOHLER, CITRON

RESONANCE APPROX. (ROSENFELD 1967)
DIFFERENCE: (D - @

REGGE FIT

approximates quite well Ao, -0
at low energies. -1s}-

®O 0O




ntN charge exchange near forward scattering

Formalism (Singh PR 63, pion mass=1, nucleon mass=m):

do/dQ= | fi+f2|*+ (t/k*) Refi*/y, fi=f PO for 7Tp— 1P,
daW = D ) -
owtal=— Tm(f14f2) e, fi V2f; for 7 p— xn.
m(w?—1)*
w= (s—m*—1)/(2m)=the lab energy of the pion W is total energy in center of mass.

Using the amplitudes A and B of Chew et al, Singh introduced

w1/ (4m) do m \? t
A'=A+ B, —_— (—) [(1——)|A’|2
1—t/(4m?) dQ \dxW 4m?
t (m~+w)? :
In terms of which one obtains +ﬁ(3"1_£/(4m2)) | B| }
and
1
gtotal — ImA"(:;; £=0)‘

(w2— 1)}



ntN charge exchange forward scattering
Regge amplitudes

(1) T =
a psym (v, 1) =—v Z Sin)(/ﬂ'ﬁi 12) CXP['—I D) 0;] (v? — v?) ?/Az

Hi — di(t) fOl' VAI(+)

0, =wit)—2 for B
0, = a,(t) — 1 for A'C) and ,B®)

5 &

| i
l; l; = N

C, | | b ¢,

= =
-0~y Wy~m

Figure 10.2. Contour C = Cy + C; in the complex v plane used in deriving finite energy sum
rules for n/V elastic amplitudes.




ntN charge exchange forward scattering
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t-dependence of the two scattering amplitudes, as determined from phase-shift analysis.

Predictions:

1.At t=0 B>A’, because different resonances cancel out in A’ and sum up in B. This explains the high

forward peak in N charge exchange

2. B develops a zero at t=-.5 and A’ develops a zero at t=-0.15 GeV?2.



Consistent behavior of Resonances with Regge poles
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Realization of the Bootstrap idea

The N charge-exchange example, has become a realization of the Chew-Frautschi
Bootstrap idea: with the LHS being dominated by resonances (in the s-channel) and the RHS
by Regge poles (in the t-channel), this may be viewed as part of a self-consistent
relationship of hadronic states

Chew (1968) has called it “Horn-Schmid duality”.

In addition to becoming the realization of a new principle, note that this approach went
against the then common trend to sum both types of contributions, resonances and Regge
exchanges, to the scattering amplitude. This practice has followed the common experience
from the use of Feynman diagrams, which the FESR have shown to involve double-counting.



Duality and the Pomeron

Could it be that Pomeron is due to non-resonant scattering, while all other Regge
trajectories are dual to resonances?

Here is what Chew has said in 1968:

The bootstrap aspect of Horn=Schmid duality throws new light on
the peculiar dynamical role of the Pomeranchuk trajectory, the Regge
gingularity which dominates the very high energy behavior of all
elastic and some inelastic amplitudes, even those which lack prominent
low-energy resonances. Schmid® has emphasized the consisteney of the
latter circumstance with the absence of low-mass resonances on the
Pomeranchuk trajectory itself, as well as with the small slope thereof.
Precizely these features allow the Pomeranchuk trajectorv to stand
apart from the interplay of first-order bootstrap econstraints. Harari®
has suggested associating the Pomeranchuk contribution with “back-
ground” at low energy, whether or not prominent resonances there
appear. Such an association might explain why tofal cross sections
systematically approach their high-energy limits from above.



Is duality perfect?

Is the single Regge pole a good approximation?
DHS PR 68: Not really. But a sum of Regge poles may be OK.

In an effective one-pole model, we
predict the p mass and a trajectory aes which is 0.1 to
0.2 lower than the one measured at high energies. (5)
Using high-energy fits as an additional input, we find
some evidence for a second p trajectory, 0.4 lower than
the p. This may be the manifestation of a cut. (6) Using
the parameters of the additional p pole, we predict a
polarization of the right sign and order of magnitude.

Does duality hold for all scattering amplitudes?

Although various scattering amplitudes seem to be dominated by resonances, there exist nonetheless
contributions which look like non-resonant background.

Nonetheless, this did not discourage theoreticians from searching for perfect
examples..



A mathematical example

demonstrating how a function dominated by an infinite series of poles can nonetheless have an
asymptotic description analogous to a Regge pole.

FWV)=yW)—-w(-v)=—-rcot(nv)

d (0/0]
w(v) ZEIHF(V) F 1 +9 1

—_ —_— Vv —_—

Vv V2 — k2

k=1

F has poles at all positive and negative integers, yet Im F L
has an asymptotic expansion consisting of one term, im, Il
08r
like a smgle. Regge pole with power 0. .
For v = re'? use the ray 6=const and expand o6
ImF = sin6 n ZZOO (1?+k2/r)sin9 Ej
T k=1 (r+k2/r)%sin20+(r—k2/r)2cos?0 il
We expect this expression to be dominated by 0ol
“resonances” at low energies and a single pole at ol

D(J iy ik ik
0 1 2 3 4 9 B 7 g 9 10

high energies.

Two rays in the complex v plane



(r + k?/r)sin@

sinf
ImF =——+2
m r + z (r + k2/r)2sin?6 + (r — k?/r)?cos?6
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ImF as function of r for 6=0.05
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ImF as function of r for 6=0.1




Interlude: the Gamma function

re=[" et (R2>0) | /
0 i+ .
Integer Values . U s\ /
Iin+1)=123... (n—1)n=n! ! TN
'i !

[(z) is analytic with poles at 0 and negative integers e
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The Veneziano Model

Consider the process nin—>nw which has no elastic channel, and all crossings from s to
t and u may be viewed as dominated by resonances. The T-matrix can be written as

V= 10008 11y Pog Py - A, 1, u)

expressed in terms of the three pion momenta and the polarization vector of w. In the
large s limit A can be assumed to be represented by a Regge pole

7
Als, 1. u) = f; (1 —alt))(— ()" (5 4> )

which Veneziano has generalized into a fully Mandelstam symmetric expression using
g Y
Aoty w)— = [B1—alt), 1—als)) & B(1— at), 1 — () = B(1 — als). 1 — o(ar)) ] Bla, y)— @MW)
L Ia+ y)
the Euler beta function. If a(t) is real, then ImA becomes a series of delta-functions. If
it is complex and linear it will have the expected physical behavior



An explicit expansion provides the expression

_ B(t) __sin m(al(s) + «(®)) I(a(s) + aft) —1) N (1 — afu)) ]
sin 7 (i) sin s a(s) I(«(s)) I'(2— alu) — aft})
which has the real part

I — cor mwa(t)

Ao sin 77 (1)

[acls) ™07, By = BIT(AB))

and imaginary part
4 v .3“} ﬁt-g W{S}[E{s]]”“‘l

(remember that cot(ms)->-i)

By imposing further conditions to eliminate unwanted poles, Veneziano reexpressed A
in a very symmetric form:

4= # (1 — ala)) P(1 — aft)) I'(1— a{u))[sin mals) + sin malt) + sin maln)]

This leads to an infinite family of equally spaced Regge poles.



Duality Diagrams

A merger of the duality principle and the quark model came about through the duality
diagrams which have been proposed by Harari [1969] and by Rosner [1969]. The
diagrams display scattering amplitudes in terms of two- or three- quark components,
as befitting mesons and baryons, but their s- and t-structure is that of a dual
amplitude.

Examples of predictions:

(1) The following processes cannot be repre-
sented by legal diagrams and are among those

predicted to have purely real amplitudes at small M M M M
t values: K*n—K% KA K*N K*A and K~ p w w
-7~ Z%, 79Z° %%\, p°A, wA. The general rule is '

that all processes of the form K™B —=n7B ", 'R I‘

[
—~K°B’, H+B""-H':'E’j and KB — MB’ are predict- R el el - - :
ed to have vanishing imaginary parts, where B, [ |

B' are any nonexotic baryons and M° is any @ =¥
=0 meson which does not contain a AX component ' m
B ' B

Im(r=p = pr)=-Im(7=p =wn); Im(rtn—=pp)=+Im(rtn = wp);

Im(r*p = wA**) = +Im(r*p —p“ﬁ*’*}; Imi{r=p =)= =Im(r=p -'ﬂzﬂﬂ};
Im(p% —K¥*A)=+Im(wp = K*A); Imip% —7-a*) = -Im(wp = 7-A%), ete.



Duality Diagrams — extension to multi-particle production

Example of a multiparticle prediction

(5) There is no legal diagram for the process
7~p—~K~K™n if we insist that the outgoing neu-
tron is “tied” to the incoming proton. On the oth-
er hand, 7~p — K"K is perfectly legal. One way
of understanding this peculiar prediction is to
consider the KK pair as coming from intermedi-
ate @ =Y=0 mesons. The initial v~ is allowed
by our diagrams to produce only coherent mix-
tures of /=0 and /=1 mesons. These mixtures
are forbidden to decay into K~K° while the K°K®
mode is allowed. a

Importance of quarks vs flavor SU(3) By M B
The assumptions involved in drawing are strong-

er than the requirement that the exotic SU(3) am- b " B
plitudes vanish in all channels.* Qur extra as-

. _ M, My M M M M
sumption can be most easily stated in the SU(3) M
invariance limit (although it is not necessary to
take this limit here). What we assume in addi- f
tion is that 4¢ +& or 29 + 27 intermediate states
are illegal even if they happen to belong to a sin-
glet or an octet. Another way of stating the same
assumption is to note that our annihilated ¢7 d e f
pairs in all channels must be in SU(3) singlets
and not in octets. This assumption is certainly
reasonable if real quarks exist, but even if the
quarks are only mathematical entities represent-
ing some algebraic structure, it is conceivable
that they obey our requirements.



multi-particle production

The light quarks, u d and s, form the basis of flavor-SU(3). This symmetry would seemingly predict
similarity between kaons and pions. Hadron production experiments demonstrate extensive
multi-pion production with no equivalent multi-kaon production. The low-mass pion (Nambu-
Goldstone boson of chiral symmetry breaking) is therefore quite exceptional among all mesons.

' <n, > __ad
Average charge multiplicities in pp processes: o't AT A '
Note dominance of pions over kaons. F P R tie A
Thus, whereas total, elastic and inclusive r,-:a;,:_’fﬂ .- s
/R 4
. o . . . v F .
cross-sections exhibit flavor similarity, 8 48 o .
f: r F / -"‘ 7 ---0'0 < >
exclusive multi-particle production is different *» [ .° L s
8. o e ‘
It is mostly multi-pion production. e b 999 2
E e / 5. 4
& i // 4 ///
: /// :// D//
i0 ‘_ ’/ <>, _-;c{
r' -"6
: B
¢ ¢
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