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Tools of the Trade  
in Hadron Physics 

Underlying principles (some derived from QFT) 
• Analyticity and Unitarity of the S-Matrix 
• PCT symmetries 
• Isospin, flavor SU(3), quarks 
Tools for analysis of scattering amplitudes 
• Dispersion relations 
• Mandelstam representation 
• Resonance dominance at low energies 
• Regge poles at high energies 
 



Isospin 



The quark model and flavor SU(3) 

Nonet of pseudoscalar mesons Nonet of vector mesons 



The quark model and flavor SU(3) 

Baryon octet  J=1/2 Baryon decuplet J=3/2 



Pion-Nucleon scattering 

Four momenta of pions are denoted by q, of nucleons by p: 

Three independent four-vectors 

Two independent scalars: momentum transfer and lab energy νlab 

                                             (in c.m. coordinates)                                                    

Nucleon spinors   

 

S matrix 

 

 

The T-matrix is 

 

A and B are matrices in terms of  3 pion indices 

 

 

or, with isospin decomposition 

 

 

 

Taken from Chew et al 
 PR 1957 

+ and – refer to symmetry under 
crossing of pions, e.g.  
π- p → π0 n    vs    π0 p  →  π+ n 
which is also  ν → -ν 
 
 

Isospin indices refer to direct channel 



Using center of mass variables 

 

and nucleon mass M pion mass 1 

One can rewrite 

 

 

 

and express the cross-section as 

 

summing over final and averaging over initial states. 

Partial wave decomposition of amplitudes is 

 

 

 

Taken from Chew et al 
 PR 1957 



Optical theorem and phase shifts 

Taken from Chew et al 
 PR 1957 



The 33 resonance. 
Fermi first 
discovered it in 
phase-shift analysis. 
 
See Cahn and 
Goldhaber, 1989. 



What is a resonance? 

• A circle in the phase-shift analysis 
• A bump in the cross-section 
• A Breit Wigner structure 
• A pole in the scattering amplitude 
• A particle decaying via strong interactions 
Or all of the above… 

For elastic scattering  f=  𝑒
𝑖𝛿sin𝛿
𝑘

  where k is the c.m. momentum, and δ is real (when other 
particle production channels open up it becomes complex). 
The Breit-Wigner approximation for a resonance with mass M and width Γ is 
 
 
 
Leading to differential cross 
section 
 
and total cross-section 
 
 

𝑓 =
𝑒𝑖𝛿sin𝛿
𝑘
= −
1
𝑘
𝛤 2 

𝐸 −𝑀 + 𝑖 𝛤 2 

𝑑𝜎
𝑑𝛺
= |𝑓|2

𝜎 = 4𝜋|𝑓|2 =
4𝜋
𝑘2
𝛤2 4 

𝐸 −𝑀 2 + 𝛤2 4 

 



Dispersion Relations 

Assume  the scattering amplitude is an analytic function with a cut along the real axis (and 
possibly one or two poles).  In this case, the Cauchy contour integral  

 
 

provided 𝑓(𝑠) declines appropriately on the infinite circle. This follows because the discontinuity 
along the cut is proportional to the imaginary part. It can also be rewritten as 

turns into the following expression along the real axis 

employing the equality 

𝑓(𝑠) =
1
2𝜋𝑖
 
𝑓(𝑠′)𝑑𝑠′
𝑠′ − 𝑠

 

+
𝑐
𝑠0 − 𝑠

 

Although we omitted the pole at 𝑠0 we should implicitly remember it as part of the integral.  

𝑠0 



Subtracted Dispersion Relations 

If 𝐼𝑚𝑓(𝑠) does not decrease fast enough for large s, one may invoke the 
subtracted dispersion relation 

𝑓(𝑠) − 𝑓(0) =
1
𝜋
 𝑑𝑠′
𝑠 𝐼𝑚𝑓(𝑠′)
𝑠′(𝑠′ − 𝑠 − 𝑖𝜀)

∞

0

 

If, on the other hand,  f(s)  decreases faster than 1/s   

then  it obeys the “superconvergence  relation”  

 𝐼𝑚f(𝑠)𝑑𝑠 = 0
∞

0

 



Dispersion relations in πN scattering 

where the poles below threshold represent the nucleon 
state i.e. π N → N → π N 



Mandelstam representation 

The Mandelstam plot for πN scattering, taken 
from the original paper [1958]. Masses of π and 
N are denoted by μ and M, respectively. The 
physical region of s is the shaded region on the 
bottom right. 
 

S-matrix models of two-to-two particle-
scattering are described in terms of the s,t,u 
Mandelstam variables  s=(p1+p2)2=(p3+p4)2 ,   
t=(p1-p3)2=(p2-p4)2 , and  u=(p1-p4)2=(p3-p2)2 , 
obeying the over-all constraint s+t+u=∑i mi 2.  
The physical region for the process 1+2->3+4 is 
characterized by positive s and negative t. 
Physical regions in the crossed channels 
described processes involving the anti-particles, 
according to conventional associations in 
Feynman diagrams.  

s u 

t 

direct channel crossed channel 

π- p → π0 n π0 p  →  π+ n 
 

𝜋−𝜋0 → 𝑝 𝑛 



From Barger and Cline 1969 





Regge Poles in the t-channel 

Regge introduced the concept of Regge-poles in complex J (1959, 1960). A Regge-pole  

α(t), associated with some given quantum numbers (isospin, baryon number, 
strangeness) interpolates between particles of mass m such that Reα(t=m2 )=J, the spin 
of the particle.  
Regge poles are conjectured to influence the scattering amplitude at high energies (large 
s and t≤0) in a fashion associated with the behavior of α at these values, as sα(t)  with the 
trajectories being approximately linear (Chew and Frautschi 1962), as seen in the figure 
taken from their paper. 
 
 
 

 

t/mπ
2 

 



Naïve construction of Regge exchange 

Consider the contribution of the Feynman diagram of the exchange of a single particle 
in the t-channel at large s 
 
 
Now assume there exists a Regge trajectory with an infinite tower of particles with 
spins J=1,3,5,…(known as signature τ=-1). 
                                    This will lead to 
(in general τ=(-1)J  for mesons) 
If all have the same coupling, and the trajectory is linear 
 
this leads to the Regge amplitude expression 
 

From Barger and Cline 1969 
 



Regge Poles in the t-channel 

Regge introduced the concept of Regge-poles in complex J (1959, 1960). A Regge-pole  

α(t), associated with some given quantum numbers (isospin, baryon number, 
strangeness) interpolates between particles of mass m such that Reα(t=m2 )=J, the spin 
of the particle.  
Regge poles are conjectured to influence the scattering amplitude at high energies (large 
s and t≤0) in a fashion associated with the behavior of α at these values, as sα(t)  with the 
trajectories being approximately linear (Chew and Frautschi 1962), as seen in the figure 
taken from their paper. 
 
 
 

 

Consistency with accepted lore: 

- σT  cannot increase as a power of s. 
Since σT ~ sα(0)-1 it follows that α(0) ≤1.     
- Trajectory passing through 1 is the 
Pomeron, implementing 
Pomeranchuk theorem  (equal 
asymptotic σT   for particles and anti-
particles). 
- Note that the Pomeron has no 
resonances associated with it. t/mπ

2 
 



Chew and Frautschi 1962: 

Differences of total cross-sections 
can be associated with lower lying 
Regge poles, such as the ρ 
σT  (π- p) - σT  (π+ p)  ~ s αρ(0)-1  

σT  < log2(s) 



The rich set of analyticity and unitarity constraints has led Chew and Frautschi  
to propose the Nuclear Bootstrap idea, stating that these constraints may 
suffice to determine a unique set of poles (i.e. particles and resonances) in all 
channels, thus providing the basis of a theory of the strong interactions. 
Thus particle (or Regge-pole) exchanges in the t-channel should be viewed as 
providing the force which leads to binding particles in the s-channel.  

 



Resonances and Regge exchanges in πp scattering 



Charge exchange processes 

Note sharp decline with t 
and zero occurring at t=-.15  



Candidate Regge exchanges 

label Resonance 
mass 

J,P I,G Signature τ Flavor 
SU(3) 

Pomeron 1 singlet 

f,f’ 1250, 1500 2+ 0+ 1 T nonet 

A2 1320 2+ 1- 1 T nonet 

ω 783 1- 0- -1 V nonet 

φ 1020 1- 0- -1 V nonet 

ρ 750 1- 1+ -1 V nonet 

Using the optical theorem define Regge contributions to total cross-sections 

e.g. evaluating the 
contribution of the ρ Regge 
trajectory to different 
scattering amplitudes: 



Finite Energy Sum Rules 

Consider an anti-symmetric amplitude which obeys an unsubtracted 
dispersion relation 
 
 
 
Assume it is dominated at high energies by the Regge pole 
                                                   obeying 
  
for -1<α<1. It follows then that their difference obeys a superconvergence 
relation              Im∞0 (𝐹 − 𝑅)𝑑𝜈 = 0.  
 If there exist a few Regge poles above -1, one can subtract all of them to 
obtain the superconvergence relation. 

𝐹(𝑣) =
2𝑣
𝜋
 
Im𝐹(𝑣′)𝑑𝑣′
𝑣′2 − 𝑣2

∞

0
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Finite Energy Sum Rules 

Consider the case when the Cauchy contour is drawn at the finite circle  |ν|=N rather then 
at infinity. The analog of the dispersion relation becomes 

 

 

 

where the right-hand-side represents a sum over all Regge poles. There are various 
advantages for this representation: 

• All Regge poles enter irrespective of lying above or below -1 

• Their relative importance is the same as in the expansion of F 

• One can try and choose N such that for ν<N one may insert the data in the form of 
resonances (or phase-shift analysis), and for ν>N the asymptotic expansion in terms 
of Regge poles provides a good approximation to F. 

In fact, one may derive a set of n-moment sum-rules which should hold as well: 
 

Horn and Schmid, Caltech preprint 1967. 

Dolen Horn and Schmid, PRL 1967, PR 1968. 
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πN charge exchange 
As a first application we consider k [σT  (π- p) - σT  (π+ p) ]  which should be dominated by the ρ 
Regge pole. There exist very good data for low energies, and a smooth fit by the Regge pole can 
be observed from 4 GeV onwards. The sum rule holds within experimental accuracy. 
 
Igi and Matsuda, PRL 1967. 
Horn and Schmid, 1967. 
Logunov et al PL 1967 
Dolen Horn Schmid PRL 1967 PR 1968 
  

This figure compares ΔσT  (1) with 
the Regge fit (4). It shows also  
that sum of resonances (2) 
approximates quite well ΔσT   

   at low energies. 



πN charge exchange near forward scattering 

Formalism (Singh PR 63, pion mass=1, nucleon mass=m): 
 

Using the amplitudes A and B of Chew et al, Singh introduced 

In terms of which one obtains 

W is total energy in center of mass. 



πN charge exchange forward scattering 
Regge amplitudes 



πN charge exchange forward scattering 

t-dependence of the two scattering amplitudes, as determined from phase-shift analysis. 
Predictions:  
1.At t=0 B>A’, because different resonances cancel out in A’ and sum up in B.  This explains the high 
forward peak in πN charge exchange  
2. B develops a zero at t=-.5 and A’ develops a zero at t=-0.15 GeV2.  



Consistent behavior of Resonances with Regge poles 

Dolen Horn Schmid  PR 1968 
 



Realization of the Bootstrap idea 

The πN charge-exchange example, has become a realization of the Chew-Frautschi 
Bootstrap idea: with the LHS being dominated by resonances (in the s-channel) and the RHS 
by Regge poles (in the t-channel), this may be viewed as part of a self-consistent 
relationship of hadronic states 
 
 
 
 
 
 
 
Chew (1968) has called it “Horn-Schmid duality”. 
In addition to becoming the realization of a new principle, note that this approach went 
against the then common trend to sum both types of contributions, resonances and Regge 
exchanges, to the scattering amplitude. This practice has followed the common experience 
from the use of Feynman diagrams, which the FESR have shown to involve double-counting.  



Duality and the Pomeron 

Could it be that Pomeron is due to non-resonant scattering, while all other Regge 
trajectories are dual to resonances? 
Here is what Chew has said in 1968: 



Is duality perfect? 

Is the single Regge pole a good approximation? 
DHS PR 68: Not really.  But a sum of Regge poles may be OK. 
 
 
 
 
 
 
 
 
 
Does duality hold for all scattering amplitudes? 
Although various scattering amplitudes seem to be dominated by resonances, there exist nonetheless 
contributions which look like non-resonant background. 
 
Nonetheless, this did not discourage theoreticians from searching for perfect 
examples.. 
  



A mathematical example 

demonstrating how a function dominated by an infinite series of poles can nonetheless have an 
asymptotic description analogous to a Regge pole. 
 
 

−𝐹 =
1
𝜈
+ 2𝜈 

1
𝜈2 − 𝑘2

∞

𝑘=1

 

F has poles at all positive and negative integers, yet Im F  
has an asymptotic expansion consisting of one term, iπ,  
like a single Regge pole with power 0. 
For 𝜈 = 𝑟𝑒𝑖𝜃  use the ray θ=const and expand 

 Im𝐹 = sin𝜃
𝑟
+ 2  𝑟+𝑘2 𝑟 )sin𝜃

𝑟+𝑘2 𝑟 2sin2𝜃+ 𝑟−𝑘2 𝑟 2cos2𝜃

∞

𝑘=1
 

We expect this expression to be dominated by 
“resonances” at low energies and a single pole at 
high energies. 
 

( ) ( ) (1 ) cot( )

( ) ln ( )

F
d
d

Q \ Q \ Q S SQ

\ Q Q
Q

 � �  �

 *

Two rays in the complex ν plane 



 ImF as function of r for θ=0.1 ImF as function of r for θ=0.05 

Im𝐹 =
sin𝜃
𝑟
+ 2 

(𝑟 + 𝑘2 𝑟 )sin𝜃
𝑟 + 𝑘2 𝑟 2sin2𝜃 + 𝑟 − 𝑘2 𝑟 2cos2𝜃

∞

𝑘=1

 



Interlude: the Gamma function 

From Abramowicz and Stegun: Handbook of 
Mathematical Functions. NBS 1964 

Γ(z) is analytic with poles at 0 and negative integers 

𝛤(𝑧) → 𝑒−𝑧𝑧𝑧−1 2 2𝜋 1 2  
Asymptotic expansion 



The Veneziano Model 

Consider the process ππ−>πω which has no elastic channel, and all crossings from s to 
t and u may be viewed as dominated by resonances.  The T-matrix can be written as 
 
 
expressed in terms of the three pion momenta and the polarization vector of ω. In the 
large s limit A can be assumed to be represented by a Regge pole 
 
 
which Veneziano has generalized into a fully Mandelstam symmetric expression using 
 
 
the Euler beta function. If α(t) is real, then ImA becomes a series of delta-functions. If 
it is complex and linear it will have the expected physical behavior 



An explicit expansion provides the expression 
 
 
which has the real part 
 
 
and imaginary part 
 
(remember that cot(πs)->-i) 
By imposing further conditions to eliminate unwanted poles, Veneziano reexpressed A 
in a very symmetric form: 
 
 
 
This leads to an infinite family of equally spaced Regge poles. 
 
 
 



Duality Diagrams 

A merger of the duality principle and the quark model came about through the duality 
diagrams which have been proposed by Harari [1969] and by Rosner [1969]. The 
diagrams display scattering amplitudes in terms of two- or three- quark components, 
as befitting mesons and baryons, but their s- and t-structure is that of a dual 
amplitude.  
Examples of predictions: 
 



Duality Diagrams – extension to multi-particle production 

Example of a multiparticle prediction 
 
 
 
 
 
 
 
Importance of quarks vs flavor SU(3) 



multi-particle production 

 
The light quarks, u d and s, form the basis of flavor-SU(3). This symmetry would seemingly predict 
similarity between kaons and pions. Hadron production experiments demonstrate extensive 
multi-pion production with no equivalent multi-kaon production. The low-mass pion (Nambu- 
Goldstone boson of chiral symmetry breaking) is therefore quite exceptional among all mesons. 
 
Average charge multiplicities in pp processes: 
Note dominance of pions over kaons. 
Thus, whereas total, elastic and inclusive  
cross-sections exhibit flavor similarity, 
exclusive multi-particle production is different. 
It is mostly multi-pion production. 
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