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Bound state studies
Bound states are both familiar and poorly known to students of QFT

® First courses in Quantum Mechanics explain the H-atom.

® Field Theory courses (generally) do not discuss bound states.

Perturbative calculations of atoms require summing an infinite series in o
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® Why are higher order diagrams not suppressed by o.?
® How can the expansion nevertheless be useful?

® Need to study principles of atoms before considering hadrons.
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"The J/y is the Hydrogen atom of QCD"
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Positronium provides precision tests of QED

Orthopositronium: j£¢ — 1——  Parapositronium: j’C — —+

AFE = E(ortho) — E(para) Av = AFE/2rh

7 a (8 1In?2
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YQED Tnaf{12 7r(9+'2 )

2 5 1367 5197 221 1 53
—|—a— [——w21noz—|— T n?4 (—7‘(‘2 + —) In2 — —C(B)]

2| 24 648 3456 144 2 32
Tl 3 17 217
~ a4 “Ina (— In2— —) +0 (a3)} — 203.39169(41) GHz
&7 T s 3 90
Note log @ A. Penin, PoS LL2014 (2014) 074

Avexp =203.3941+ .003 GHz (2013) A. Ishida et al, 1310.6923

Bound state masses can be expanded in powers of o and log a.

Perturbation theory is our most precise, analytic tool for gauge theories.
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QM I. The Hydrogen atom at lowest order in a

Schrodinger equation (postulated): /\.\

Ground state Eb

1 2 2
binding energy: 2 Te & S(as)

Wave function: P(x) = Nexp(—ame.|x|) all orders of a

How do we describe relativistic bound states 1n field theory?

How does the Schrodinger equation emerge from Perturbative QED?
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Definition of bound states

A (stable) bound state 1s stationary in time, 1.€., 1t 1s an eigenstate of the
time translation generator, the Hamiltonian H,

H(t)|E,t) = E|E,t) = E,t) = exp(—iBt) |[E,t = 0)

The Hamiltonian 1s determined by the time translation invariance of the action.

In QED the interaction term A1 implies that H can create/destroy photons
and e*e- pairs. Therefore the eigenstate |F, t) must have all Fock components:

B, t) = Qete- |€7€7 )+ @ete—r|eTe™y)+...+ o leTeTeTe™) + ...

The wave functions describe the distributions of the constituents of each Fock
state, for example:

pere |etem) = [ dpdp S o (pp b (. N0 X) [0
WY
where b' (p, \) creates an electron of momentum p and helicity A, similarly for

positrons and photons. Only the superposition of Fock states is an eigenstate of H.
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Bound states as poles in scattering amplitudes

Fourier transform ’E >

t — pY Jig

—1
pY — E + e

/ dt P +ie)t exp(—iEt) =
0

Bound states appear as poles in scattering amplitudes (4-momentum space).

By evaluating amplitudes perturbatively (via Feynman diagrams) we can
determine the bound states.
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e'e” — e'e”: Positronium poles

- 2
e’ % k k- prog b Pete-]
pO—Feq + k; %kq + ‘E' ! + q + ... — pO _6 Ee _|_ Zg —|_ )

LHS: ) cna”
n=2

RHS: Not polynomial in o

(© (d)

Rest frame: £ = 2m,. — imea2 + O (a4)

Bound state pole can arise only
— through a divergence of the
perturbative series (n — )

Why does the QED perturbative series diverge (for any o)?

Which diagrams cause the divergence?
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Ladder diagrams (rest frame)

The Bohr momentum scale is Ipl ~ am |, kinetic energy Ipl*/2m ~ a?m ~ Ep

With momenta « a, the propagators bring inverse powers of o :

pI D4
~
e 62 o 1 0 2
q ~ s~ = Note: ¢° ~a” < |q| ~ «
B q q .
e N
p2 D3
)2 pljk P4
4 2
e o 1
K vg ~ | dik0 Pk ~a?a’ ~
! / (k*)? (AE,)? (@®)?(a?)?  a

Pr pirk D3

All “ladder diagrams” are of order 1/a0 =—> Sum can diverge!
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Exercise 2.1

Using the above counting, show that all ladder diagrams are of @(OL‘I)
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Non-ladders are suppressed by a

k e
! These diagrams have the same number of
‘ propagators and vertices as the 2-photon ladder.
P2 psk s A similar counting would again give ~ 1/a. .
k
D D4 However, the O(1/a)) term vanishes:
9 / dk® 1
X : — =0
) 2w (kY —a + i) (kY — b+ ie)
p2 D3
In the straight ladders 10 1
: . 0
Fhe }ntegratlon contour X / o (ko “ax ia)(kO — is) +
1s pinched:

—> Only straight ladders are of the leading order, 1/a. .
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The Bethe-Salpeter equation 2

X -ETE I

G=L1+GSL1\=L1+LSLi+GSLiSLi=...

;
At a bound state pole: G(p”) ~ p(\)Ij_\IjE = UV =wvS5[,
q
q k
p — AL — —— ——
0 / S =) s e
—> d —— D —

This 1s the Bethe-Salpeter equation for a single photon kernel L; .

In the rest frame it reduces to the Schrodinger equation as o — 0.

It 1s valid in any frame (since Feynman diagrams are Lorentz covariant).
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Dyson-Schwinger equations

We can establish identities between Green functions, valid to all orders in «.

These are called Dyson-Schwinger equations. Eg., for the quark propagator,

3 0 The circles contain quark and
>_C>9 — gluon loops to all orders.
Y ‘S e The same diagrams occur on both sides.

There are analogous identities for the gluon propagator and the vertices.
They imply formally exact Bethe-Salpeter equations for bound states.

Unfortunately, the D-S equations do not close. Truncations are needed
to fix the order of summing the Feynman diagrams.

The only model independent truncation is based on powers of a (PQCD).
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The NRQED approach

Atomic electrons are non-relativistic: v = p/m ~ o << I,

Expanding the QED Lagrangian in loops, giving inverse powers of p/m,

find the effective L:
T. Kinoshita and G. P. Lepage,

in Quantum Electrodynamics (1990)
CanmoEp = —1 JA(F™)2 4t {i@t —¢Ag +D? /2m + D* /3m?
+c1e/2mo B +coe /8m?V - E
+c3ie /8m*o - (D xE—-E x D)+ }w

+dy /m* (YT)? + do /m® (WTay)? + ...

+ positron and positron-electron terms.

NRQED 1s the the most efficient method for higher order calculations 1n a.

It gives up explicit Lorentz covariance, making use of physics: p/m <<'1
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Why does perturbation theory diverge for atoms?

No bound state pole 1s generated at finite order 1n a.
= Finite order diagrams are “infinitely wrong” close to the bound states.

Recall the perturbative expansion of the S-matrix:

Spi = 0ut<fy{Texp[—7;/

— OO

oo

it Hi(0)] | ),

The in and out states are J(aV), non-interacting states at f = + o,

They get dressed by H; as they propagate from the asymptotic times.

The lack of an EM field around the in and out electrons implies that
we expand around unphysical states. Their matrix elements do not

satisfy the field equations:
Gauss’ law — VA% (t, ) = ey (t, ) (t, )

requires a charge to be accompanied by an EM field.
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The IR singularities

The absence of an EM field in the in and out states causes infrared divergencies,
These are cured (order-by-order) by adding (the missing) soft photons. E.g.:

+

v € et ' e
% : 'Y* /
y : m‘/LEA
Q : + y :4'/’(/1
e ; e e : o
v ete v ete

For bound states the soft photons are essential: They provide the binding!

The ladder sum regenerates the omitted classical Coulomb field: V(r) = —o/r
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Born level = Classical gauge field

The Born term is the lowest order contribution in A to any

perturbative amplitude. It is given by tree diagrams (no loops).

The Schrodinger atom is described €~ (P)

by tree diagrams, e~ scattering from A0
the classical photon field + + + ...

=

At Born level, states are bound by a classical gauge field.

k
Higher orders in & involve loop diagrams. M

The photon k 1s a quantum fluctuation, A0
not a classical field.
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Hamiltonian approach at O(h°)

Any state can be expanded on its Fock components, e.g., for Positronium:

Pos et(ky) er - er
— = + Y+ \ :; + ...
e (k2) e e

For non-relativistic Positronium at rest the ete— Fock state dominates:

M, P =0)= /d3w1d3w2 D(t, 2 )P(21 — x2)(t, 25) |0)

where 1) (7,x) 1s the electron field.

The state has an electron at x| and a positron at xz, distributed
according to the (4 x 4, c-numbered) wave function @, to be
determined from the bound state condition:

H|M,P=0)=M|M,P =0)

Paul Hoyer IU 2015



QED Hamiltonian with the classical potential

The QED action & = /d437 W(Z@ —ed —m)y — iF/wFW}

0S -
implies the field equations of motion 5 AV () = —epy, Y +0MF,, =0

which allow to express the field energy as

/d4az( — 1F,, F*) = %/d4az A0, F" = %/d4x1§61{4¢

Using this the action becomes: S = / d*z (i) — 2ed —m)y
This gives the Hamiltonian for a state with a classical gauge field Av:
H = /dgaz V(t,x)(—iV -y + m+ sed)y(t, z)

The factor 1/2 takes into account the energy of the EM field.
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Bound State Equation for Positronium
Impose H|M,P =0)= M |M,P =0) onthebound state
’M, P = O> = /d3$1d3332 Qz(t, $1)(I)($1 — wg)w(t, 332) ‘O>

The classical EM field in H for each Fock component 1s

e (@) e (@) . AV (@i my, ) = —— (ff/\o
. ’ |£U—$1| ‘a?—m2’ ///

Using {4(t,®),¢'(t,y)} = 6> (¢ —y) and H|0) =0 /f \\\*’/

we get the bound state equation for the 4x4 wave function ®(x1—x2):

iV - {3y, @(x)} + m [0, 0(x)] = [M — V(x)|®(x)

where V(z) = Tz In the NR limit (o0 — 0) this reduces to

the Schrodinger eq., with M = 2m+E,.

Paul Hoyer IU 2015
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Exercise 2.2

a) Derive the bound state equation for P(x),
iV - {7y, (@)} + m [y, ®(x)] = [M - V(x)|D(x)
from the condition H |M,P =0)= M |M,P = 0)

b) Show that it reduces to the non-relativistic Schrodinger equation as o — 0

Hint: Proceed as in the case of the Dirac equation. Write M = 2m+E} ,
and take V = O(am); Ep, V = G(a?m). Express the 4x4 wave function
P (x) in block 2x2 form:

P11 Poo
b =
{ Doy Do ]

®>(x) 1s the leading component (if the y’s are in Dirac representation.

Paul Hoyer IU 2015
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Summary: Schrodinger eq. in QED

* A H formulation requires an equal-time definition of the bound state.

 The QED Hamiltonian with a classical photon field (Born level).
= V- {1"7,0(@)} +m [y, 0(z)] = [M - V(x) 0(z)
Method can be used in any frame: H |E, P) = E |E, P) withP #0

The frame dependence of bound states i1s non-trivial:

Wave function Lorentz contracts and £ = \/ P? + (2m + E,)?

All this can be done for QCD as well. What about
the linear term 1n the quarkonium potential?

Paul Hoyer IU 2015



A Homogeneous solution of Gauss' law z

For a state with e~ at x1 and et atxa (¢, 1)WY (¢, £2)|0)

Gauss’ law for the classical A°
ﬁeld iS (ln QED) —VQAO(t, iE) — 6[53(.’13 — .’,81) — 53(23 — wg)]

There 1s also a homogeneous

O — . —_—
solution, with » independent of x: At ) = ke - (T1 — @2)

In QED this is excluded by a boundary condition: lim A° () =0

|| — 00

The field energy density
1s independent of x

2
[VAO] — /62 (2131 — 2132)2
The infinite field energy is irrelevant provided it is a universal constant.

Paul Hoyer IU 2015
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The linear potential

Requiring:
e Translation invariance: V(ie+a)=V(x)
A universal field density as | x | — o VA (z)] 2 = A

suffices to specity the potential. In U(1) gauge theory:

— 1 0 0 1 2
V(Zl?l,afg) — 59[14 (t,ﬂ?l) — A (t,ﬂ?g)] — §gA ‘2131 — 332’
Only neutral states are translation invariant: 91 — —g2 = ¢
The bound state equation has the same form as above for Positronium.

Usual perturbation theory has charged S(aV) states: electrons, quarks, gluons

Then the linear potential would break translation symmetry.
The above solution is unique, up to the single parameter /A

At the Born (no loop) level, a dimensionful parameter can only be
introduced through a boundary condition.

Paul Hoyer IU 2015
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Exercise 2.3

a) Determine % in the expression A (t, QB) = RKRI: (:Bl — 332)
from the requirement that the field energy density 1s universal.
b) Show that the potential arising from H |[M,P =0)= M |M,P = 0)

where |M, P = 0) — / Bary P D(t, 1) D (1 — @) (2, 22) [0)

and H = /d3az V(t, 2)(—iV -y +m + %eA)zp(t,w) (A =0)

is linear: V' (x1,xo) = %eAz 1 — x|

Hint: The canonical commutation ; .
relations are {1% (t, ), wﬁ(tv y)} = 0apd” (T — y)

Paul Hoyer IU 2015



The linear potential in QCD

For SU(3) there is a solution only for color singlet mesons:

VM(wl—mQ \/ CFgA |€131—2132

and for color singlet baryons:

VB(ZEL L2, $3 2\f\/ QAQ\/ $1 — C132 ($2 — 333)2 + (ms — 2131)2

Note: Vg(wl,ing,wg) = VM(wl — wZ)

The quark-diquark potential Vg agrees with quark-antiquark V.

Paul Hoyer IU 2015
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Relativistically Bound States

M,
2Mm.,, + my

~ 50

Hadrons are ultrarelativistic states:

—> They have Fock states with many sea quarks and gluons

[proton) = ¢yua |vud) + Guuag |uud g) + Guudqg |uud qq) + . ..

Nevertheless, hadron quantum numbers a o ‘)
reflect valence quarks only °

@ <

An example of this “paradox” is provided by the
Dirac equation: A relativistic electron bound in an external field.

 The Dirac wave function has the degrees of freedom of a single electron
e Its £ <0 components show the presence of e*e- pairs (cf. Klein paradox)

What state does the Dirac wave function actually describe?

Paul Hoyer IU 2015 J. P. Blaizot & PH
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The states described by Dirac wave functions

For any given A, the Dirac equation has solutions with positive and negative
energy eigenvalues,

(—iV v +m+ed)o,(x) = FE,y b, () Ey, >0
(—iV -’y—i—m—l—eﬁ)qgn(m) = —En’yoggn(a:) B, >0
The corresponding eigenstates of the Dirac Hamiltonian

H = /d3a: Wit x)[ =iV A%y + my° + ed(z)|Y(t,z)  are

Ht) | t) = Enlnt) s |nyt) = / Az ) (1, @) b o) | = cf, |9)

H(t) [7,6) = Bolnt) 5 |nt) = / dz 3, (@) a(t, ) 1) = ¢, )

Note that all states have positive energy eigenvalues.

Paul Hoyer 2015
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The creation operators of Dirac states

The creation operators c,:[b, E,}L,L of the eigenstates can be expressed as

— Z ¢T p AT ’U( —D; )‘)dT_p,A]

b7 creates an electron

d' creates a positron

o= [bF \ul(p,A) +d_p v (=p, N)] dn(p)

DA

They diagonalize the Dirac Hamiltonian: / = Z [En C;rlcn + E, E;rlén}

n

The ground state (vacuum) 1Q2) is determined by the conditions:
e |Q) =2, Q) = H|Q) =0

IQ) is given by the Dirac wave functions @y, ¢,
It 1s a superposition of any number of e-e* pairs.

Paul Hoyer 2015



Properties of the Dirac wave function in D=1+1

The Dirac matrices can be 0 > 0,1 —
represented as 2x2 Pauli matrices 7= 03 T =
and the potential is V(z) = e’z

The 2-component Dirac spinor then satisfies

|~ i010: + 3€°[x| + mos] { o } - M{ i(x) }

Eliminating the lower component,

O20(0) + i 0@ + [(M = V) = () =0,

The wf oscillates at large x: gp(x — OO) ~ eXp(::i62x2/4)

Hence it cannot be normalized, and there is no condition on M!
Paul Hoyer IU 2015



Exercise 2.4

Show that for a linear potential V' (x) = %62 |z| the solution of

e(x)
M —V 4+ m)

Oop(x) + N Orp(x) + [(M = V)? —=m?]p(x) = 0,

oscillates at large x: (2 — 00) ~ exp(::i€2x2/4)

After a non-relativistic reduction to the Schrodinger equation the
wave function 1is instead exponentially suppressed (or enhanced)
at large x. Explain the reason for this difference.

Paul Hoyer IU 2015
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AUGUST 1, 1932 PHYSICAL REVIEW VOLUME 41

The Dirac Electron in Simple Fields*

By MiLTON S. PLESSET
Sloane Physics Laboratory, Yale University

(Received June 6, 1932)

The relativity wave equations for the Dirac electron are transformed in a
simple manner into a symmetric canonical form. This canonical form makes readily
‘possible the investigation of the characteristics of the solutions of these relativity
equations for simple potential fields. If the potential is a polvnomial of any degree
in x, a continuous energy spectrum characterizes the solutions. If the potential is a
polynomial of any degree in 1/x, the solutions possess a continuous energy spectrum
when the energy is numerically greater than the rest-energy of the electron: values
of the energv numerically less than the rest-energv are barred. When the potential
i1s a polynomial of any degree in #, all values of the energy are allowed. For poten-
tials which are polynomials in 1/7 of degree higher than the first, the energy spec-
trum is again continuous. The quantization arising for the Coulomb potential is an
exceptional case.

E. C. Titchmarsh, Proc. London Math. Soc. (3) 11 (1961) 159 and 169; Quart.
J. Math. Oxford (2), 12 (1961), 227.

Paul Hoyer IU 2015
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Analytic solution of the Dirac equation
In terms of the variable o= (M —V)? = M? — e*|z|M + +e*z?
For x > 0, with ¢(x) real and y(x) imaginary, define: ¢ (0) = p(0) + x(0)

(o) = [(a 4 ib)1F1< _ @7 1, 2@'0) + (b+ia)2me(M — V) /o 1F1<1 _;mz, ;, 2i0>] exp(—io)

2 2

where a and b are real constants and m = m/e 1s the dimensionless parameter.

The solution for x < 0 1s defined by parity and the continuity condition at
x =0 fixes a/b. A solution 1s found for all M: The spectrum is continuous.

In the NR limit of large m/e, the eigenvalues M = m + E) become insensitive
to a/b, and (for a+b # 0) the wave function reduces to the Schrodinger solution:

Y(o)=(14+1)(a+ b)ﬁml/Bewm2/2—m/4Ai [m1/3(|aj\ - 2Eb)} [1 L0 (m—2/3) }
In the NR limit, the continuous range of M 1s restricted to a/b = —1.

Paul Hoyer IU 2015



Dirac wave function for m/e = 2.5 3

Comparison of the Dirac ¢@(x) wave function (for b = 0)
with the Schrodinger Ai solution Q(x):

V(x) <<m
wf /
1 ¢

0 755 mmm  Dirac ©(X) with b=0

T = = Schrddinger p(x)

0.5}

0.25§-
0.25|

0.5

V=2m

The oscillations at V > 2m describe positrons, which are repelled by the potential.
The amplitude of the oscillations depends on a/b, but is always non-zero.
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f f bound states in D=1+1

A state with two fermions of energy £ and momentum P! = P ;

/2x2 c-numbered wif.
|E, P) = /dxlda:g U(t, 1) exp | 2iP(x1 4+ x2) | ®(z1 — 22)(t, 22)|0)

Unlike the Dirac eq., this is an eigenstate also of the space translation generator:

PYE, P) = P|E, P) Bound state has momentum P

PO E,P) = FE|E,P) Bound state equation for ®(x) from QED action:

10y {01, ®(x)} + |[—2Poy + mos, ®(z)| = |E — V()| ®(2)

where V(ZIZ‘) — %62’213’ and WO = 03, ’Yl = 1072, 7Y = 01

Here the CM momentum P is a parameter, thus £ and ¢ depend on P .
Paul Hoyer IU 2015
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Frame dependence of bound states

Boosts are dynamical transformations: /7 1s not ivariant.

In D=1+1 the Poincare Lie algebra is, with K the boost generator, H = PV:
PP P =0 PY K| =P PY K| =iP"

States are defined at equal time 1n all frames: This 1s a frame-dependent concept.
The Hamiltonian generates time translations, hence is frame dependent.

Correspondingly, the eigenvalue condition for H has no explicit covariance:

10y {01, ®(x)} + |—5Po1 + mo3, ®(z)] = |[E — V(z)|P(x)

Being derived from a Poincaré invariant action we may expect that it
has a dynamical covariance.

Paul Hoyer IU 2015
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Boost covariance

“Miraculously”, the state 1s indeed covariant under boosts:

(1 — id¢K)|E, P) = |E + déP, P + d¢E)

This holds only for a linear potential and ensures that F/(P) = \/ P? + M?

The P-dependence of the wave function @ can be explicitly given in terms of
an invariant distance :

o(z)=(FE-V)* - P?
(I)P(O') — Y0 ¢/25(P=0) (0)6—%%(/2 Any P

— d  tanh(———1
E_V(g &4 tahi=-gmy

where  dx =

™~ Relativistic Lorentz contraction
Paul Hoyer IU 2015



Explicit Lorentz covariance: Bethe-Salpeter approach

The B-S wave function ® 1s defined Lorentz covariantly (here D=3+1)

(Q T {g(z2)ba(z1)} |P) = e 14202 9P (2 — )

where | P > is any state with total momentum 4-momentum P, and €2 > is the
vacuum.

The B-S wave function @ transforms simply under boosts. If P~ = AP then

O (2 — 2,) = S(A)®F (21 — 22)S~H(A)

Since the time difference zzzg — 26(1) 1s frame-dependent, the B-S wt is not
simply related to the Fock state wi’s of a Hamiltonian approach.

Paul Hoyer IU 2015
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Solutions of the ff bound state equation

To solve the fermion-antifermion bound state equation (here m; = mz = m)

10y {01, ®(x)} + |[—3 Po1 + mos, ®(z)| = |E — V()| ®(2)

we may expand the 2x2 wave function as @ = Op+01D1+02,Dr+03D5 .
We get two coupled equations, with no explicit £ or P dependence:

210,y () = Bo(0) 200, ®(0) = [1 . 4_””‘2] 5, (0)

o

The general solution is

Oy (o) =ce " a Fi (1 —im? 2,i0) + bU(1 —im?,2,i0)]

If b # 0 the wf @ is singular at 0 = 0. Requiring b = 0 the spectrum 1s discrete.

Note: This constraint only applies for m # 0.

Paul Hoyer IU 2015
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Non-relativistic limit

For m/e — o with E, = M—2m fixed the Hypergeometric functions become

| 5\ 2/3 s
aoe /2 Fi(1—im?,2,i0) = () e™™ Ai [(% )" (|| —2Eb)}
m

—io )2 925 - N o 2\2/3 Te ™ o1 N1/3/00
boe RU(L = im?, 2,i0) = —(2m) p s {A1 [(Zm) (2] 2Eb)}
+iBi [(gm)l/3(|;c| - 2Eb)”
The solution 1s normalizable in the NR limit \
only if b =0.

Exponentially
increasing

— @) (m=4)

p(x) (m=2) o
Oscillations at large ex

similar to the Dirac case.

Reflect fermions accele-
rated to high momenta
\/ by the linear potential.

30 32 34

— Nearly non-relativistic case: m = 4.0¢
— Schrodinger (Airy fn.) wi. o(x).
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Solutions for small fermion mass m

The solution simplifies . :
for m/e — 0 (I)l(a) - Nsm(

o) [1 + O (mz)}

DN |

Linear “Regge trajectories” Mﬁ = nme? [1 + O (m2) } (n=0,1.2,...)

The parity is (—1)"*! : No parity doublets for m # 0 !

4 2 )
m ] B, (o) Wf’s that are regular at

Recall: 105 Do (U) [ - 0 = 0 have discrete spectrum

Chiral symmetry appears only when m = 0 exactly. The wave function is
then regular for all M, and parity doublets exist.

String breaking (hadron loops) are probably important at small m.

However, the spectrum breaks chiral symmetry even without string breaking,
for any m # 0.
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Infinite Momentum Frame (IMF) = Light Front (LF)

The wf is frame invariant in terms of ¢ = (£-V)2-P2. Since V(x) = lxl :

:EzQ(Ei\/PQ—I—a)

o AP +0o/P
For P— »at fixedo: 2 ~2(E+P)+ — ~ ,

P (M?2=0)/P
Lower solution: x o< 1/P Lorentz-contracted “valence” region.

Upper solution: x = 4P — o QOscillations (pairs move to infinite x.

P :
Perturbatively: “Z-diagrams” get infinite /é

energy (k — ) in the P — oo limit. 5
k § s %

C.f.. HIO) =0 in LF quantization. 5

p*T =0 means p? = — ®© :

Explicitly: ®p_,o(0) = 2am P7+e_w/21F1(1 —im?,2,i0)
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Frame (P) dependence of the solutions ( mizmz)

Comparison of ground and excited state wave functions
for P=0 (CM frame) and for P = 5e. (m1=1.0e¢ my=1.5¢e)

Moves away in IMF (P — < limit)

D+ Py D+, \P 5

: - | AT !

2 [ I\ 1.2; , ,|

’ . 1.04 1
0.8 | ||,"\'.
0.6
0.4 m=315[ |
0.2} \ ’
M

5 10 20 25 X 30

15
(b)
Note: In the IMF limit, only the normalizable, valence part of the wf remains.

Paul Hoyer IU 2015



44

Quark - Hadron duality

The wave functions of highly excited (large mass M) bound states are similar
to free ff pairs (for V(x) << M). This determines their normalization:

k

e - AT
J P
kP °
The same result for
= |Dy(x=0)2 = |®1(x=0)2=1/2  ;_g p v 4 currents
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Bloom-Gilman Duality

W. Melnitchouk et al, Phys. Rep. 406 (2005) 127

0.4 » $ JlabHallC - Resonance contributions
ep —> eN*
build DIS scaling in

M- = My + Q7 (——1)

Scattering dynamics is built into hadron wave functions.

Requires relativistic bound states in motion.
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Partons in bound states

In the parton picture, high energy quarks can be treated as free constituents.
They are momentum eigenstates, described by plane waves.
How does this fit into the bound state wave functions?

Consider a highly excited state (P=0): M — «©, V(x) << M
0=M-V)? =M?-2MV —x

B(0 — 00) ~ exp(Fic/2) = eFM" exp(Fiz M/2)

Thus oscillations of wf at large 0 gives plane wave with p = £M/2

The operator expression for the state 1s in this limit:

V2T b i
M, P =0)= oM (bM/2d—M/2+b M2 M/2)| )

As 1n the parton picture, only £ > O particles appear (no b or d operators).
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Bound state scattering amplitudes

The perturbative expansion of the S-matrix is defined by

Spi= out<f!{Texp [—z/

— o0

oo

dt H](t)} } 0 in

where the in and out states are O(a’) asymptotic states at 1 = + o,

The ff states bound by a linear potential are O(a) and Poincaré covariant.
They can be used as in and out states, defining the perturbative expansion.

Even the O(a) amplitudes have a rich dynamics (string breaking,...).
The feasibility of the perturbative approach to hadrons discussed here

requires that the main features of hadron dynamics are described at O(a)
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EM Form Factor (D = 1+1)

Fyp(z) = (B(Pp);t = +oo[j"(2) [A(Pa);t = —00) A, B:in & out states

EM current:

3 (2) = Dl i(z) = €7 (0)e

Gauge invariance 1s verified: 0, F X B (z) =0

Poincar€ invariance is verified (numerically).

In the Bjorken limit we can calculate the parton distribution.

2

1

TRj = ¢ M%:QQ(——1>%OO
2pa - q TBj
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Parton distributions have a sea component

The sea component i1s prominent at low mi/e :

m/e =0.1
xg;f (xg;) xg;jf (xg;)
10 (a) - (b)
Sl 12F
10} .
6l sl (log scale 1n x3))
4l 6l
4k
2 |
» » » » ° .. . M . . . a Xp:
02 04 o6 o8 1o°® 0.001 0.0l 00501

The red curve 1s an analytic approximation, valid in the xp; — 0 limat.

Note: Enhancement at low x is not due to CIDQM F (valence wf.)
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Final remarks

e Hadron physics is fortunate: Theory (QCD) is known
Much data on spectra, couplings, scattering

* Unprecedented features: Confinement, Chiral SB, Ultrarelativistic states

e Suggestive features of data: Hadron spectrum, Couplings, Duality

e Present approach: Assume that regularities are not “accidental”

They suggest that QCD 1s perturbative even for Q — 0

e Conclusions: Essential features appear already at (D (a SO)
Implies a different expansion point for perturbation theory.

The approach is strongly constrained by the requirement of a

perturbative expansion (single parameter A).

PH: arXiv:1409.4703
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