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Introduction 
•  Donnachie and Landshoff in 1992 concluded 

their analysis on total cross sections based on 
Regge-type fits stating that Regge theory 
remains one of the great truths of particle 
physics.  

•  15 years later this remains even more 
remarkably true than ever but, 

•  why?  
   and, 
•  what was the birth of Regge poles? 
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• We shall briefly outline what motivated Regge 
poles  

• why they are a theory more than a model 
• how they were born 
• how they made it to become an extremely 

useful instrument in high energy physics 
• what made them slowly disappear from the 

scene  
• what triggered their comeback 
• why they are still with us (and presumably will 

remain for a long time to come if not forever)    
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•  Regge poles were born in a brilliant 
attempt to learn about the properties of 
the full fledged S-Matrix theory starting 
from the only really fully manageable 
scheme, non relativistic potential model. 
The basic assumption is that we can use 
the Schrödinger equation to describe the 
elastic interaction of two (spinless, for 
simplicity) 

              a  +  b  →  a  +  b 
 (-h2/2μ) Δψ(r) + V(r) ψ(r)  =  E 
ψ(r)  
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• The conventional wisdom when using 
potential scattering to deal  with particle 
physics problems is that the realistic 
underlying dynamics can be mimicked by 
Yukawa-like spherical (or central) 
potentials of the type: 

            V(r) = ∫ g(α) e-αr dα. 
 Using 
k = 2μ/ħ2  E  ,     U(r) = 2μ/ħ2 V(r)  
the Schrödinger equation takes the form 
            [Δ – U(r) – k2] ψ(r) = 0. 
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• The assumption is that an impinging 
particle comes from (-)infinity as a plane 
wave to interact with a spherical 
symmetric potential so that at large 
(positive) distances, the asymptotic 
solution of (1.5) becomes the 
superposition of the incoming plane wave 
plus a distorted outgoing spherical wave 
of the form 

    ψ(r)  ~ r→∞  eik·r  + f(k, k’)  eikr/r  
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•  f(k, k’) is known as the scattering 
amplitude whose squared modulus gives 
(in potential theory) the differential cross 
section 

       dσ/dΩ  = ׀ f(k, k’)׀2   = ׀ f(k, θ)2׀  
As usual, for a spherical interaction, the 

scattering amplitude can be expanded in 
partial waves over all integer positive 
values of the angular momentum ℓ (from 
ℓ=0 to ℓ=∞) 

 
      f(k, θ) = ∑ℓ (2ℓ+1) aℓ(k) Pℓ(cos θ).  
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• aℓ(k) are (complex) quantities known as 
partial waves related to the phase shifts  

   δℓ(k) (and to the S-Matrix partial wave 
amplitudes) by  

 aℓ(k) = (1/2ik) [exp(2i δℓ(k) ) – 1] =   
            (1/2ik) [Sℓ(k) -1]  
or 
          Sℓ(k) =  exp[2i δℓ(k)]  
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• For elastic scattering (no inelastic channels 
open implies no absorption or, within the 
present scheme, real potentials), δℓ(k) 
are real quantities and the elastic unitarity 
condition reads │Sℓ(k)│ = 1 or 

          Im aℓ(k) = k │aℓ(k)│2  
from the above results the optical theorem  
 
          Im f(k, 0) = k/π  σtot  
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Moving to relativistic kinematics 

•  In the relativistic scheme, the simple 
minded two body reaction a+b →a+b is 
no longer the full story; due to crossing 
and the other properties in QFT, we have 
three independent but related reactions. 
More precisely, if we use the property that 
an outgoing particle can be viewed as an 
incoming antiparticle of reversed 
fourmomentum, 
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 for a two-body process, we have three 
channels in which related (but different) 
reactions occur. Schematically, if we 
underline a particle to denote the 
corresponding antiparticle we can relate  a
+b→a+b to the annihilation process a+b
+a+b and this leads to three channels 
which are called “s”, “t” and “u” in 
reminiscence of the values taken by the 
corresponding Mandelstam variables 
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Crossing 
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(2.1)             (s-channel) 
a(p1)  +   b(p2)    →    a(p3)    +    b(p4)                      
(2.2)             (t-channel) 
a(p1)  +   a(-p3)    →   b(-p2)   +    b(p4)                  
(2.3)             (u-channel) 
a(p1)  +   b(-p4)    →    a(p3)    +    b(-p2)                                        
   are, by analytic continuation one and 

thesame taken in different regions of the 
complex variables describing the above 
reactions.  
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• In (2.1-3), incoming/outgoing 
particles are viewed as outgoing/
incoming antiparticles of reversed 
momentum (the other three possible 
reactions are  simply the time 
reversed of the previous ones).  

•  Just as an example, take the charge 
exchange reaction π¯p→π° n  
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Charge exchange  
reactions 
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•  To exemplify, the s-channel (charge exchange) 
reaction 

     p(p1)  +   π–(p2)  →    n(p3)   +   π°(p4) 
becomes in the t-channel the annihilation reaction  
     p(p1)  +   n(-p3)   →   π+ (-p2)  +   π°(p4)  
and, in the u-channel the hitherto experimentally  
inaccessible charge exchange reaction 
     p(p1)  +   π°(-p4)  →  n(p3)  +   π+ (-p2)   
(use has been made of the fact that π+ is the  
antiparticle of  π- and that π° is its own  
antiparticle).  
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• Formal complications arise in the 
case of realistic particles endowed 
with so far ignored quantum 
numbers (like spin etc.) but these 
need not to concern us here.   
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•  These three reactions (2.1-3) are labelled s-, 
t- and u-channel respectively since for each 
of them the corresponding invariant 
Mandelstam variable   

•  (2.4)                  s = (p1 + p2)2     
•  (2.5)                  t  = (p1 – p3)2 

•  (2.6)                  u = (p1 – p4)2 

 is positive definite while the other two are  
negative being, in essence, the four  
dimensional momentum transfer of the  
corresponding reaction.  
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For instance, in the s-channel (equal 
masses case), in the c. m. we have 

   s = (p1 + p2)2 = 4 (k2 + m2) > 0 
   t  = (p1 – p3)2 = - 2k2 (1 – cos θs) ≤ 0 
   u = (p1 – p4)2 = - 2k2 (1 + cos θs) ≤ 

0. As a consequence,  
(2.7)   cos θs  =  1 + 2t /(s - 4 m2)  
For on-shell particles only two of these  
variables are independent and, in fact                 
                      s + t + u = 4 m2 . 
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•  This situation may change in case one of the 
particles is not on shell. Such is the case of an 
inclusive reaction such as 

(2.8)              a  +  b   →   c +  X, 
(i.e. a reaction where X stays for an unresolved  
cluster of undetected particles in the final state)  
will be dealt with. In this case, a third variable, for  
instance the so-called missing mass (or any other  
independent variable)  
(2.9)              pX 2 = (p1 + p2 – p3)2 

will have to be used to properly describe the  
process. 
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3. Problems with (high spin) 
meson exchange.  

• According to the general wisdom going back 
to the old days of Yukawa (1935), the 
nuclear forces acting between hadrons are 
due to virtual particles (mesons) exchanged 
in the crossed t and/or u channels in strict 
analogy with e.m. interactions arising from 
the exchange of virtual photons between 
electrons.  
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•  This picture becomes inapplicable at high energies 
(i.e. s → ∞) for the following reason.  

•  Consider a generic two body reaction 
(3.1)             1 + 2  à 3 + 4 

mediated by single particle exchange in the t- 
channel. The scattering amplitude for the  
exchange of a particle of mass M and spin J goes as 
(3.2) Ames(s, t)  ~ AJ(t)  PJ(cos θt)  = PJ(cos θt) / (t – M2) 
where m is the mass of the interacting particle and 

(3.3)        cos θt  =  1 + 2s /(t - 4 m2)  
is the t-channel scattering angle (compare with eq.  
(2.7)).  
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If in (3.2) we keep t fixed and let s à ∞,  
using  Pℓ(z) ~ zℓ as z à ∞ we find  
(3.4)            Ames(s, t)  ~  sJ 

which corresponds to a cross section  
growing like s2J-2  as s à ∞. 
This behaviour can be proved to violate (s- 
channel) unitarity since it  violates the  
Froissart-Martin bound which, owing to  
unitarity requires σtot  to be bounded by  
ln2s). 
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• As we will see, Regge theory 
overcomes this difficulty while 
preserving the notion of crossed 
channel exchange. Also, according to 
Regge theory, the strong interaction 
will turn out to be due not to the 
exchange of particles of definite spin 
but to Regge trajectories  i.e. to 
entire families of resonances.  
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 4. Regge poles in non relativistic 
potential models. 

The starting point is the partial wave s- 
channel expansion of the scattering  
amplitude (1.9) which we rewrite as 
(4.1)    A(s, z) = ∑ℓ (2ℓ+1) Aℓ(s) Pℓ(z)  
where z is the cosine of the physical s-

channel scattering angle 
(4.2)    z ≡ cos θs = 1 +  2t /(s - 4 m2) 
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• The representation (4.1) of the scattering 
amplitude is defined in the physical s-
channel domain given by 

(4.3)    s ≥  4 m2        and   -1 ≤ z ≤ 1. 
• The question arises, therefore, whether 

(4.1) converges in a domain of the 
complex s, t and u variables larger than 
(4.3) and, more specifically, in a 
sufficiently large physical domains of the 
crossed t- and u-channels. As we shall 
see, this is not the case and the reason is 
simple to understand qualitatively.  
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• The s-channel singularities of A(s,t) are 
contained in the partial wave amplitudes 
Aℓ(s) but the t-dependence is embodied in 
the Legendre polynomials and these are 
entire functions of their argument so that 
any singularity of the full amplitude must 
reveal itself from the divergence of the 
series (4.1) which becomes senseless.  
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• The problem of finding a representation of 
A(s,t) which can be used to connect the 
various channels and hence can be used 
to describe all physical reactions 
connected by crossing, is solved by 
introducing the seemingly unphysical 
concept of  complex angular momenta. 
Before doing this, let us first investigate 
the region of convergence of the series 
(4.1) in the complex θ plane.  
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• The asymptotic expansion of Pℓ(cos θ) for 
ℓ real and tending to ∞, 
(4.4)      Pℓ(cos θ)  = O(eℓ│Im θ│ )  
implies its exponential growth (in ℓ ) for  
complex θ. 

• As a consequence, the only way the series 
(4.1) can converge is that, as ℓ à ∞                                  
(4.5)             Aℓ(s)  ~ e-ℓη(s)  

•  In this case convergence is guaranteed so 
long as 
(4.6)              Im θ  ≤  η(s). 
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• Thus, convergence is insured in a 
horizontal strip in the complex θ plane 

   symmetric with respect to the real axis of 
width η(s). Setting χ = ch η(s) (which 
is always ≥1), the corresponding 
convergence domain of the partial wave 
expansion (4.1) in the complex cos θ 
plane (z= cos θ = x + iy) is  

•  (4.7)     x2/χ2  +   y2 /( χ2 -1) = 1  
• which is an ellipse with foci ±1 and 

semiaxes χ and √χ2 -1 which is known 
as the Lehmann ellipse . 
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• The conclusion is that the representation 
(4.1) converges in a domain which, albeit 
greater than the physical domain -1 ≤ z ≤ 1 
(to which it reduces if η(s) à 0), is still 
finite i.e. never extends to arbitrarily large 
values of  the complex variable │z= cos 
θ│. In the language of the s, t, u variables, 
the domain never extends to asymptotic 
values of │t│ (or │u│)[recall cos θs = 1 
+  2t /(s - 4 m2)].  

• As expected, the representation (4.1) 
cannot be used to explore the large 
crossed channels energy domain . 
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•  As already anticipated, the way to 
circumvent this difficulty is to continue the 
expansion (4.1) to complex values of the 
angular momentum ℓ. 

•  To get a hint as to how to proceed, let us 
investigate the extreme case when ℓ is purely 
imaginary. In this case, repeating the previous 
procedure, provided  

•  (4.8)            Aℓ(s)  ~ e -│ℓ│δ(s)     , 
•  convergence will now be insured in a vertical 

strip parallel and symmetric to the imaginary θ 
axis i.e. in the strip 
(4.9)                │Re θ│ ≤ δ(s) . 
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•  Setting, accordingly  ξ = cos δ  (which is always 
≤1), the convergence domain is now given by 

(4.19)         x2/ ξ 2  - y2 /(1 - ξ 2) = 1. 
•  Contrary to the previous case, (4.10) defines now an 

open domain, a hyperbola with foci ±1 and 
convergence is guaranteed in one of its halves. 

•  In addition, given that it overlaps in part with a 
portion of the Lehmann ellipse, once we have made 
an analytic continuation of the amplitude to complex 
angular momenta, the new representation will define 
exactly the very same scattering amplitude A(s,t) we 
started from so that we will be able to safely 
continue it to domain where the crossed channel 
energies │t│ and/or │u │ can become arbitrarily 
large. 
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 5. Complex Angular Momenta 
• We now have to find the condition to continue 

the partial wave scattering amplitude to complex 
angular momenta so as to find a representation 
suitable to make asymptotic expansions. 

•  First we have to assume that we can continue 
the partial wave amplitude Aℓ(s) to complex 
values of ℓ and construct an interpolating 
function A(ℓ,s) 

•  which reduces to Aℓ(s) for real integer values of 
ℓ.  

•  For this, we suppose that 
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•  A(ℓ,s) has only isolated 
singularities (poles) in the 
complex ℓ plane (and, for further 
simplicity, that they are simple 
poles); 

•  A(ℓ,s) is holomorphic for Re ℓ ≥ L  
(L positive arbitrary but finite) 

•  A(ℓ,s) à 0 as │ℓ│à∞  for Re ℓ > 
0. 

•  An amplitude A(ℓ,s) with the previous 
properties exists in at least two contexts: 
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•  i) in non relativistic QM when the potential 
is a superposition of Yukawa potentials of 
the form  

(1.3)               V(r) =  ∫ g(α) e -αr dα.  
• This is supposed to mimic particle 

exchange in the t-channel of a general 
two-body reaction (3.1)   

•  ii) in the relativistic case when further 
requirements are satisfied (such as the 
validity of dispersion relations). 
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•  If such an A(ℓ,s) exists, then it also unique 
thanks to a theorem by Carlson and the 
partial wave expansion (4.1) can be 
rewritten as 

•  (5.1)  A(s, z) = ∑ℓ (2ℓ+1)  Aℓ(s) Pℓ(z)  
   – 1/2i  ∫C (2ℓ+1) A(ℓ,s) Pℓ(-z)/sin πℓ   dℓ 
• where the discrete sum runs up to N-1 (N 

being the smallest integer larger than L) 
and C is the contour parallel to the real 
axis to the right of all singularities of  
A(ℓ,s) (see figure where λ=ℓ+½).  
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• The validity of (5.1) and its equivalence 
with (4.1) are a direct consequence of 
Cauchy residue’s theorem (the integrand 
f(ℓ) in (5.1) has simple poles at all 
integers ℓ=n with residues 2i (2n+1) An(s) 
Pn(z)).  

• Given that there are no singularities of 
A(ℓ,s) at the right of ℓ=L and due to the 
asymptotic properties of A(ℓ,s) and of  

   Pℓ(-z)/sin πℓ, we can now deform the 
integration contour along the imaginary ℓ 
axis at the right of  Re ℓ>L.  
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•  Next, if the only singularities of A(ℓ,s) are simple 
poles, we can further move the integration 
contour to a parallel of the imaginary axis (see 
figure …) collecting the residues of A(ℓ,s) (at the 
same time, the residues of sin πℓ cancel the 
terms of the sum in (5.1)) so that, finally, we get 
the so called (Watson-Sommerfeld-Regge 
representation of the scattering amplitude whose 
asymptotically dominant contribution (we neglect 
the integral along a parallel to the left of the 
imaginary ℓ axis which vanishes as z goes to ∞) 
turns out to be 

(5.2) A(s, z) ~ -∑i [2αi(s)+1] βi(s) Pαi(-z)/sin 
παi(s). 
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• The representation is now convergent in the 
half of the  hyperbola (4.10) and we can now 
take the asymptotic z limit (i.e. the high 
energy limit in the crossed t/u) channel).  

•  If we call α(s) the pole with the largest real 
part, owing to Pα(s)(z) ~ zα(s) and using 
(4.2) we get the asymptotic behaviour 

(5.3) A(s,t) ~t→∞ - β(s) tα(s) /sin 
πα(s)  

where nothing is known about the residue 
β(s). 
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• Several complications can occur that 
muddle this simple result like, for instance 
higher order poles in the complex angular 
momentum plane, cuts etc. We shall not 
dig further on this matter in these notes 
and we refer the interested reader to the 
existing literature. 

• One additional important point comes in 
the relativistic case due again to crossing.  
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• Invoking now the validity of crossing 
(….) we come, finally, to the amazingly 
simple asymptotic Regge behaviour as 
dominated by the singularity with the 
largest real part in the complex angular 
momentum plane of the crossed t-
channel (beware, we are going to 
interchange s with t) 

(5.4) At(s,t) ~s→∞ -β(t) sα(t)/sin πα(t) 
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• When s→∞ at fixed t, also u→-∞ (recall that 
s+t+u= 4m2). Consequently, if (5.4) is the 
asymptotic behaviour generated by the t-
channel, we will have also a contribution from 
the u channel singularity (-u)α(t) which,  

• after some technical refinement, is written as 
   Au(s, t) ~s→∞ β(t) ξ e-iπα(t)/sin 
πα(t) 

• where ξ is called signature and can take 
only the two possible values ±1. 

• For future references, we shall introduce the 
signature factor  η(t) 

    η(t) = - (1+ξ e-iπα(t))/sin πα(t) 
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•  so that, in conclusion, the complete 
asymptotic behaviour of the scattering 
amplitude will be written as 

(5.5)   A(s,t) ~s→∞- β(t) sα(t)  
           (1+ξe-iπα(t)) /sin πα(t) 
The first remarkable observations 

concerning Regge poles are: 
i)   The energy dependence of the 

asymptotic amplitude is predicted 
ii)   its phase is fixed 
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 6. Regge trajectories. 
• Near one of its poles in the complex 

angular momentum α(t), the partial wave 
amplitude A(ℓ, t) can be approximated by 
(6.1) A(ℓ, t) ~ ℓ→α(t)  β(t) / (ℓ - α(t)) 

• For t physical in the s-channel (t ≤ 0), the 
ℓ plane singularities occur, in general at 
complex values of α(t); these can take on 
integer real values at unphysical (t≥0)  

   t-values.  In this case, Regge poles 
correspond to resonances or bound states.  
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•  Suppose that for some real t0 value, we have 
                       α(t0) = ℓ + i ε 
where ℓ is some integer and ε some real number 
(which we suppose much smaller than one). 

Expanding α(t0) around t0,  
we find 

        α(t) = ℓ + i ε + α'(t0) (t - t0) + …. 
so that the denominator in (6.1) can be written as 
•  (6.4)          1/ (ℓ - α(t)) ≈ 1/(t - t0 + iΓ)  
where Γ = Im α(t0)/ α'(t0) = ε/ α'(t0). 
•  This is the typical structure of a Breit-Wigner 

resonance of mass M=√t0 and width Γ which 
will be real iff 
–  d Im α(t)/dt│t0  << d Re α(t)/dt│t0 
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• Notice, however that while the vanishing 
of the denominator sin πα(t) signals the 
possible presence of a resonant state at 
every integer value of  α(t), owing to the 
signature factor (1+ξ e-iπα(t)) induced by 
the crossed term in (5.5), actual bound 
states will be interpolated by a 
Regge trajectory at even values of 
the angular momentum (spin) if the 
signature ξ = +1 while negative 
signature if ξ = -1 will interpolate 
odd spin particle. 
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• The crucial message is that the asymptotic 
s-channel behaviour is due to the exchange 
of families of resonances in the crossed 
channels which amplifies the message 
contained in the Yukawa message about the 
relevance of the exchange of particles 
extending its role to the determination of the 
asymptotic behaviour of the scattering 
amplitude. 

•  Different processes will, in general, receive 
contribution from different trajectories 
according to their quantum numbers. 
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•  It is interesting to note that around t=0 one can 
expand α(t) in powers of t; for small enough t 
we can use the linear approximation 
                     α(t) = α(0) + α' t 

•  where α(0) and α' are known as the intercept 
and the slope respectively of the trajectory. 
According to (5.5) and all the previous 
discussion, it will be the trajectory with the 
highest intercept (whose real part lies higher 
in the complex angular momentum plane) 
which will determine the asymptotic 
behaviour of scattering amplitudes and cross 
sections. 
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•  Quite unexpectedly, the linear approximation (6.6) 
turns out to provide a reasonably good account of 
the physical situation up to considerably higher 
values of t than one would a priori have guessed. 
The figure shows an example of the extent to 
which all dominant mesons lie on the same 
straight line up to |t| values of the order of 6 ÷ 7 
(GeV)² irrespective of their spin being even or odd 
(exchange degeneracy). All leading meson 
trajectories, ρ, f2 ,a2 , and ω appear basically 
superimposed. Just as an example, we list the 
quantum numbers of the leading mesonic 
trajectories whose names come from the first 
resonance they interpolate. 
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• Quantum numbers of leading mesonic tr. 
•  f2 
  P = +1, C = +1 , G = +1 ,  I = 0,  ξ = 

+1 
• ρ        
  P = -1,  C = -1 , G = +1 ,   I = 1,  ξ = -1 
• ω        
  P = -1, C = -1 ,  G = -1 ,   I = 0,  ξ = -1 
• a2          
  P = +1, C = +1 , G = -1 ,   I = 1,  ξ = 

+1 



1-13 July 2007 
QCD, low x, Saturation and 

Diffraction, Copanello 54 

Mesonic Regge trajectory 
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• Note also that, among the above 
trajectories, f2 has the quantum numbers of 
the vacuum. As it is well known, a special 
trajectory exists with the q. n. of the vacuum 
called Pomeron, whose existence determines 
the properties of the high energy cross 
sections (see  Landshoff). In fact, all 
mesonic trajectories appear basically 
exchange degenerate and their intercept 
is very close to  

•  (6.7)              α(0)  ≈  ½, 



1-13 July 2007 
QCD, low x, Saturation and 

Diffraction, Copanello 56 

•  Needless to say, this exchange degeneracy of the 
Regge trajectories is slightly broken if one plots 
them more accurately. It is, in fact, impossible for 
a trajectory to rise linearly indefinitely. It can be 
proved that analyticity forces a trajectory to bend 
asymptotically to a lesser growth than linear 
(power or logarithmic as the case may be). 

•  Similar conclusions hold for fermionic trajectories. 
They, however, lie lower in intercept than the 
mesonic ones and their role is correspondingly  less 
relevant to account for the gross features of the 
cross sections at high energies (but essential for 
subdominant features such as the backward 
behaviour or other). 
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• A most important exception in the above 
description is represented by the Pomeron 
trajectory will turn out to have an 
intercept very near 1 and will, therefore, 
provide the dominant behaviour of the 
cross sections 
(6.8)   αP(0)  ≈  1.  

• We will not, however, spend much time on 
this subject which has been covered in 
great detail in another course. 
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• A last feature to be noticed is the almost 
universal slope of the mesonic (and also of 
the fermionic trajectories) which turns out 
to be very closely 

•  (6.9)               α' ≈ 1 (GeV)-²           
• and is related to the so-called string 

tension in the realm of string theories. 
The noticeable exception to this almost 
universal property is, once again, the 
Pomeron whose slope turns out to be 
much smaller or close to zero so that 
many authors consider it on a different 
footing than the other Regge trajectories. 
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 7. A brief account of Regge 
phenomenology. 

• We will not spend much time on Regge 
phenomenology. We just wish to stress one feature 
which makes the Regge pole approach unique in 
the description of high energy physics phenomena. 
In fact, Regge poles determine the asymptotic 
behaviour of the scattering amplitudes (and, 
therefore, cross sections) in the s-channel (i.e. as 
s→∞) when t is negative and, at the same time, 
as we have just discussed, they provide the 
basic information on resonant states when t 
is positive. 
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• A further remarkable property is that the 
phase of the dominant contribution is 
predicted and turns out to be 
imaginary in the forward direction in 
perfect agreement with what high energy 
data demand. 

• Rewriting the signature factor (5.6) for 
positive signature ξ =+1 as 
(7.1)    η(t)  = - e-i½πα(t)/sin ½πα  

• And using (6.6) with α(0) ≈ 1, near t=0  
                  η(0) = i 
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• We also expand near t ≈ 0 the residue 
function β(t) which we assume to have 
an exponential form (this is unessential) 

(7.2)             β(t) ≈ β(0) exp[½B0t]. 
Putting everything together, the asymptotic 

(s → ∞) near-forward scattering 
amplitude reads 

(7.3)    A(s,t) ~s→∞  i β(0) sα(0) eB(s)t  
• where the slope B(s) is thus predicted to 

have a ln s  growth  
(7.4)      B(s) ≈ ½B0  + α' (ℓn s – i π/

2). 
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• The result (7.3, 4) contains an unexpectedly 
simple and interesting set of properties. First 
of all, at high energies a diffraction peak 
is predicted to appear in the near 
forward direction. Furthermore, the slope 
is predicted grows logarithmically or the 
peak is  predicted to shrink as the energy 
increases. 

• Notice that it is not the assumption on β(t) 
which accounts for these properties. The 
assumption on β(t) provides a constant term 
in the slope (as the data seem to require).  
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• The shrinkage of the forward peak 
(energy increase of the slope) is purely 
consequence of the exchange of a Regge 
trajectory with the vacuum quantum 
numbers and this seems indeed a general 
property supported by the data (see figure 
of angular pp distributions near t=0).  

•  In turn, the shrinkage of the diffraction 
peak is often interpreted as the increase 
of the effective interaction radius of 
the hadrons (we will not elaborate on this 
point here).  
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• On the other hand, using the general form 
(5.5) or directly (7.3), we can now analyze the 
Regge pole prediction for what concerns high 
energy total cross sections. Due to the optical 
theorem which in the present case reads 

 (7.5) σtot ~s→∞ 1/s Im A(s, t=0) ~s→∞ sα(0)-1 

• we  see that the total cross section σtot grows 
as a power if  α(0) > 1. This conflicts 
potentially with a bound on such a growth put 
by unitarity due to Froissart, Lukaszuk & Martin 
which restricts this growth to be at most  

 (7.6)        σtot ~s→∞ O(ℓn2s).  



1-13 July 2007 
QCD, low x, Saturation and 

Diffraction, Copanello 66 



1-13 July 2007 
QCD, low x, Saturation and 

Diffraction, Copanello 67 

•  In actual terms, the rate at which the 
Pomeron intercept αP(0) would be required 
to exceed unity is so mild (αP(0)  ≈  1.08) 
that the violation of the unitarity bound 
would occur at energies well beyond reach 
at any foreseeable future.  

• This is true but: 
       i) the predicted growth of total c.s. is at 

risk of being exceeded at Tevatron energies 
       ii) at the same energies b-unitarity is 

near violation. 
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8. Conclusion  

• Regge pole phenomenology has been 
extremely popular some decades ago 
when it was shown to describe 
successfully the gross features of a large 
class of reactions (basically all reactions – 
it was also extended to production 
amplitudes) with a rather limited number 
of adjustable parameters. 
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• At some point, however, people lost 
interest in the model when it became 
apparent that it was unable to reproduce a 
number of delicate points such as 
polarization data, charge exchange 
reactions and, in general, most subleading 
features of high energy processes.  

•  In addition, as soon as one tries to go 
beyond the simple notion of poles in the 
complex angular momentum plane, the 
complication and the arbitrariness grow 
fast and get rapidly out of control.  
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• A further reason of loss of interest in 
Regge poles was the difficulty of 
extending their notion and derivation to 
the realm of field theory beyond the 
original framework of non relativistic 
potential theory and beyond few 
manageable and simple exchange model. 
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• A last (psychological) reason for the 
diminution of interest in Regge models lies 
in the explosion of interest in Deep 
Inelastic Scattering (DIS) which in the 
Seventies gave rise to the new 
“Rutherford” experiment where it was 
shown that inside the proton exist 
seemingly point-like particles, the quarks 
(very much like Rutherford proved that 
inside the nuclei seemingly point-like 
particles, the nucleons, exist). 


