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J. Rosner – Reaction Theory Summer Workshop

Indiana University – June 2015

Lecture 1: Review of Lecture 2: S-matrix and Lecture 3: Some simple
scattering theory related physics applications
S, T , and K matrices 1-,2-channel examples Optical analogs
Wave packet scattering Transmission resonances Eikonal approximation
Scattering amplitude Bound states Diffractive scattering
Partial wave expansion S wave properties Adding resonances
Phase shifts Resonances Dalitz plot applications
R-matrix Absorption Historical notes
Unitarity circle Inelastic cross section Example from electronics

For simplicity some of the formalism will be nonrelativistic

“In” state |i〉in: Free particle in remote past

“Out” state out〈j|: Free particle in remote future

S-matrix takes “in” states to “out” (with wave packets:
Goldberger and Watson, Scattering Theory, 1964.)
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Sji ≡out 〈j|i〉in is unitary: completeness and orthonormality
of “in” and “out” states

S†S = SS† = 1

Just an expression of probability conservation

S has a piece corresponding to no scattering

Can write S = 1 + 2iT

Notation of S. Spanier, BaBar Analysis Document #303,
based on S. U. Chung et al. Ann. d. Phys. 4, 404 (1995).

Unitarity of S-matrix ⇒ T − T † = 2iT †T = 2iTT †.

(T †)−1 − T−1 = 2i1 or (T−1 + i1)† = (T−1 + i1).
Thus K ≡ [T−1 + i1]−1 is hermitian; T = K(1− iK)−1
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Normalized plane wave states: χ~q = ei~q·~r/(2π)3/2

(χ~q′, χ~q) = (2π)−3
∫

d3~r ei(~q−
~q′)·~r = δ3(~q − ~q′) .

Expansion of wave packet: ψ~p(~r, t = 0) =
∫

d3q χ~q φ(~q−~p)
where φ is a weight function peaked around 0

Fourier transform of φ: G(~r) =
∫

d3k ei
~k·~rφ(~k)

ψ~p(~r, t = 0) =
∫

d3q χ~q−~p+~p φ(~q − ~p) = χ~p G(~r) .

Norm: (ψ, ψ) =
∫

d3q |φ(~q−~p)|2 = 1
(2π)3

∫

d3r|G(~r)|2 = 1 .

ψ~p(~r, t) = e−iHtψ~p(~r, 0) =
∫

d3q φ(~q − ~p)χ~qe
−iEqt ,

where Eq = q2/2m (NR) or (q2 +m2)1/2 (Relativistic) .
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Expand about ~q = ~p; define ~k ≡ ~q − ~p and vi ≡ ∂Ep/∂pi

Eq = Ep + ~k · ~v + 1
2kikj

∂2Ep

∂pi∂pj
+ . . . .

ψ~p(~r, t) = e−iEptχ~p
∫

d3k φ(~k)ei
~k·(~r−~vt)(1−it

2kikj
∂2Ep

∂pi∂pj
+. . .)

= e−iEptχ~p(1 + it
2

∂2Ep

∂pi∂pj
∇i∇j + . . .)G(~r − ~vt) .

Gaussian packet: G(r) = Ne−r
2/2w2

∇i∇jG(~r − ~vt) =
[

−δij
w2 +

(ri−vit)(rj−vjt)
(w2)2

]

G(~r − ~vt) .

NR: ∂2Ep/(∂pi∂pj) = δij/m ; parameter describing

spreading is ǫ = t
2

∂2Ep

∂pi∂pj
∇i∇jG(~r − ~vt) ∼ t

2mw2 = L(∆k)2

2p .
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E. Merzbacher, Quantum Mechanics (3rd Ed. Ch. 13) has
a good discussion which will be abbreviated here

Free Hamiltonian: H0 = p2/(2m); full: H = H0 + V

Packet: ψ~k0(~r, 0) = 1
(2π)3/2

∫

d3k φ(~k − ~k0)e
i~k·(~r− ~r0) , φ(~k)

centered about 0, width ∆k, center of packet ~r0

At t = 0 packet is headed to target, momentum ~k0,
distance ~r0 from it; want its shape for large t

Expand ψ~k0(~r, 0) in eigenfunctions of H:

ψ~k0(~r, 0) =
∑

n cnψn(~r) , ψ~k0(~r, t) =
∑

n cnψn(~r)e
−iEnt .

Need to find the eigenfunctions ψn(~r)
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(

~p2

2m + V
)

ψ = Eψ , or with k2 ≡ 2mE, U ≡ 2mV ,

Schrödinger equation is (∇2 + k2)ψ = Uψ

Define a Green’s function G(~r, ~r′) satisfying

(∇2 + k2)G(~r, ~r′) = −4πδ(~r − ~r′)

ψ(~r) = − 1
4π

∫

d3r′ G(~r, ~r′)U(~r′)ψ(~r′): particular sol’n.

Add solution ei
~k·~r/(2π)3/2 of homogeneous equation:

ψ~k(~r) = ei
~k·~r

(2π)3/2
− 1

4π

∫

d3r′ G(~r, ~r′)U(~r′)ψ~k(
~r′)

Differential eqn. + boundary condx. ⇔ integral equation
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Two Green’s functions: G±(~r, ~r′) = e±ik|~r−~r′|

|~r−~r′|
with (+,−) ⇔ (outgoing,incoming) spherical waves

Can take ~r′ = 0; G± are solutions for ~r 6= 0

For ~r = 0, integrate test function f(~r) times (∇2 + k2)G
over small region surrounding the origin; use Gauss’ Law

Green’s functions G± define two sets of solutions:

ψ
(±)
~k

(~r) = ei
~k·~r

(2π)3/2
− 1

4π

∫

d3r′ e
±ik|~r−~r′|

|~r−~r′|
U(~r′)ψ(±)

~k
(~r′)

where r′ is limited if U is of short range

Expand k|~r−~r′| = k
√

r2 − 2~r · ~r′ + r′2 ≃ kr
(

1 − ~r·~r′
r2

+ . . .
)

1/|~r − ~r′| ≃ 1/r
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ψ
(±)
~k

(~r) ∼ ei
~k·~r

(2π)3/2
− 1

4πre
±ikr ∫ d3r′ U(~r′)ψ(±)

~k
(~r′)e∓i

~k′·~r′

~k′ ≡ kr̂

Define f
(±)
~k

(r̂) ≡ −
[

(2π)3/2

4π

]

∫

d3r′ U(~r′)ψ(±)
~k

(~r′)e∓i
~k′·~r′

Then ψ
(±)
~k

(~r) ∼ (2π)−3/2
[

ei
~k·~r + e±ikr

r f
(±)
~k

(r̂)
]

(r → ∞)

Initial flux per unit area I0 ∼ k

Final fluence I
in cone of solid angle dΩ:

I ∼ k(r2dΩ)|f (±)
~k

(r̂)/r|2

dσ/dΩ = I/I0 = |f (±)
~k

(r̂)|2 ≡ differential cross section
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Large-r Schr. eq. solution: ψ ∼ eikr cos θ + fk(θ)

eikr

r (1)

Connect with central-force solutions
uℓ,k(r)

r Y m
ℓ (θ, φ) where

[

− d2

dr2
+ ℓ(ℓ+1)

r2
+ 2mV (r) − k2

]

uℓ,k(r) = 0 (k2 ≡ 2mE)

Free uℓ,k(r)/r ≡ Rℓ,k(r) solutions jℓ(kr), nℓ(kr)

Outside range of V : Rℓ,k(r) = Aℓ jℓ(kr) +Bℓ nℓ(kr)

As kr → ∞ Rℓ,k(r) → Aℓ
sin(kr−ℓπ/2)

kr −Bℓ
cos(kr−ℓπ/2)

kr

For tan δℓ ≡ −Bℓ/Aℓ, Rℓ,k(r) ∼ sin(kr−ℓπ/2+δℓ)
kr as kr → ∞

Then ψ →
∑

Cℓ(k)Pℓ(cos θ)[sin(kr − ℓπ/2 + δℓ)]/r (2)

Bauer: eikr cos θ =
∑∞

ℓ=0 i
ℓ (2ℓ+ 1)jℓ(kr)Pℓ(cos θ) (3)
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Compare incoming spherical wave coefficients in (2,3):

ψ ≃
∑∞

ℓ=0(2ℓ+ 1)iℓeiδℓ[sin(kr − ℓπ/2 + δℓ)]Pℓ(cos θ)/kr

Compare coeff. of outgoing spherical wave in this and (1):

fk(θ) =
∑∞

ℓ=0(2ℓ+ 1)[(e2iδℓ(k) − 1)/(2ik)]Pℓ(cos θ)

= k−1
∑∞

ℓ=0(2ℓ+ 1)eiδℓ(k) sin δℓ(k)Pℓ(cos θ)

Total cross section:

σ =
∫

dΩ dσ
dΩ =

∫

dΩ |fk(θ)|2 = 4π
k2

∑∞
ℓ=0(2ℓ+ 1) sin2 δℓ(k)

using
∫

dΩ Pℓ(cos θ)Pℓ′(cos θ) = 4πδℓℓ′/(2ℓ+ 1)

Optical theorem: σ = (4π/k)Im fk(0)

Convenient to define fℓ(k) ≡ [e2iδℓ(k) − 1]/(2ik)

Then optical theorem takes the form Im fℓ(k) = k|fℓ(k)|2
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Want a real function reducing to fℓ(k) for small f

Stereographic projection: Rℓ(k) ≡ (1/k) tan δℓ(k)

fℓ(k) = k−1eiδℓ(k) sin δℓ(k)

= 1/k (maximum) for δℓ(k) = π

fℓ(k) = [1+ikRℓ(k)]Rℓ(k)

1+k2R2
ℓ(k)

Sℓ(k) ≡ e2iδℓ(k) = 1+ikRℓ(k)
1−ikRℓ(k)

Many channels: real R is useful because it has eigenvalues

S-matrix is useful because it is unitary: S†S = 1

S = 1 + 2iT = (1 + iK)/(1− iK)
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For single channel, phase shift

defined by S = e2iδ.

Then T = (S − 1)/(2i) =

eiδ sin δ; K = tan δ = kR.

The T amplitude must lie
on boundary of the circle

For inelastic processes

T = (ηe2iδ − 1)/(2i) , η < 1.

Consider scattering in one dimension with no reflections

Class of potentials giving rise to full transmission of a
plane wave ψ(x) ∼ eikx incident from the left, so that as
x→ ∞, ψ(x) → S(k)eikx with |S(k)| = 1. Take 2m = 1.
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These potls. have bound states at energies Ej = −α2
j (1 ≤

j ≤ N and one can write S(k) = ΠN
j=1[(ik − αj)/(ik +

αj)] = e2iδ, where δ =
∑N

j=1 δj and tan δj = αj/k.

Simplest one-level potential: V (x) = −2α2/cosh2α(x−x0)

One-level K-matrix is just K = α/k. If we define Kj =

αj/k then K →
∑N

j=1Kj as k → ∞, but not in general.

Now let the potential permit reflections, so that
ψ(x) → Aeikx +Be−ikx (x→ −∞)
ψ(x) → Feikx +Ge−ikx (x→ ∞)

With channel 1 ∼ eikx, channel 2 ∼ e−ikx, can write

F = S11A+ S12G ; B = S21A+ S22G
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The incoming and outgoing fluxes must be equal: |F |2 +
|B|2 = |A|2 + |G|2. This implies S†S = SS† = 1.

Square well, V (x) = −V0 for |x| ≤ a, V (x) = 0 for
|x| > a shows transmission resonances: |S11| = |S22| = 1
and S12 = S21 = 0 when 2k′a = nπ (k′ =

√

2m(E + V0)).

Merzbacher, Quantum Mechanics (3rd ed.), p. 109:

S11 = S22 =

ηe2iδ,
iS12 = iS21 =

√

1 − η2e2iδ.

Ticks:
equal ∆E/V0

intervals
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DEEP WELL EXAMPLE
Another example from Merzbacher, 3rd ed., p. 109.

Well much deeper; resonances more closely spaced in E.
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Write reflectionless S(k) = ΠN
j=1

[

i−αj/k

i+αj/k

]

= F (k)
F (−k) = e2iδ

F (k) = ΠN
j=1(i− αj/k) is an example of a Jost function

Zeroes of Jost function at k = −iαj correspond to S-
matrix poles at k = iαj (bound states): wave function
eikx → e−αjx as x→ ∞ and e−ikx → eαjx as x→ −∞
Phase of the Jost function is just the phase shift

Generalizes to all ℓ: Sℓ(k) = Fℓ(k)/Fℓ(−k) = e2iδℓ

R. Newton, J. Math. Phys. 1, 319 (1960); P. Roman,
Advanced Quantum Theory, Addison-Wesley, 1964

Useful in proving Levinson’s Theorem: δℓ(k = 0) − δ(k =
∞) = nℓπ, where nℓ is the number of bound states with
angular momentum ℓ
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S-wave scattering amplitude

f0(k) = (e2iδ − 1)/(2ik) vanishes

at δ = π; σel = 0 there

This is seen in scattering of

electrons on rare gas atoms

where σ ≃ 0 around 1 eV

S. Geltman, Topics in Atomic

Collision Theory, Academic Press, NY, 1969, p. 23

Effect is used to produce monochromatic neutron beams;
σ(n−56 Fe) has a dip at 24 keV, leading to transparency

[P. S. Barbeau +, Nucl. Inst. Meth. A 574, 385 (2007)]

Dip in S-wave ππ scattering near 1 GeV due to opening of
KK̄ threshold: S. M. Flatté et al., PL B38, 232 (1972)
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R.Garcia-Martin et al., Phys. Rev. D 83, 074004 (2011):
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Cusps and dips: J. L. Rosner, PR D 74, 076006 (2006)
ππ → KK̄ only one example where new threshold is
associated with a dip in the elastic cross section
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For small k, δℓ(k) ∼ k2ℓ+1 (Merzbacher, 3rd ed., p. 309)

In particular, δ0 → −ka as k → 0; a= scattering length

Scattering length approximation to the S-matrix:

S = e2iδ ≃ 1+iδ
1−iδ = 1−ika

1+ika = 1/a−ik
1/a+ik; pole at k = i/a

Bound state at k = iα for a = 1/α > 0; example is
deuteron

When a is large and negative one has a virtual state, as
in 1S0 nucleon-nucleon scattering near threshold

Effective range r0: the next term in an expansion
k cot δ = −(1/a) + (r0k

2/2)

No linear term in k because δ(−k) = −δ(k)



21/42RELATIVISTIC NORMALIZATION

Cross section in terms of invariant matrix element Mfi:

dσ
dΩ = 1

(8π)2s

(

qf
qi

)

|Mfi|2 = |f(Ω)|2

qf,i = (final, initial) c.m. momenta; s = E2
c.m.

Partial waves: f(Ω) = 1
qi

∑

ℓ(2ℓ+ 1)T ℓ(s)Pℓ(cos θ)

Tℓ(s) = ηℓe
2iδℓ−1
2i satisfies unitarity for ηℓ ≤ 1

Lorentz-invariant transition amplitude: Tfi =
√
ρf T̂fi

√
ρi;

ρi,f = 2-body phase sp. factors 2qi,f/m (→ 1 as m→ ∞).

Mfi = 16πT̂fi(Ω); for elastic scattering T̂ ℓ = 1
ρe
iδ sin δℓ.



22/42RESONANCES
In partial wave ℓ : σℓ = (4π/k2) sin2 δℓ(2ℓ+ 1)

When δ = π/2, σℓ is maximum

Can represent any Sℓ(k) = e2iδℓ = (a− ib)/(a+ ib)

At a resonance Sℓ = −1 so a = 0, b = constant

Normalization choice: a = E − E0, b = Γ/2, defining Γ.

We shall see that Γ must be positive

Then Sℓ(k) = (E − E0 − iΓ/2)/(E − E0 + iΓ/2)

fℓ(k) = Sℓ(k)−1
2ik = 1

2ik

[

−iΓ
E−E0+iΓ/2

]

= − Γ/2k
E−E0+iΓ/2

σℓ(res) = 4π(2ℓ+ 1)|fℓ(k)|2 = 4π
k2

(2ℓ+ 1) Γ2

4(E−E0)2+Γ2

(Breit-Wigner resonance)
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Wave function inside sphere of r < a:

ψ
(+)
k (r, θ) ≃ eiδℓ sin δℓ gℓ,k(r, θ)

≃ Γ/2
E0−E−iΓ/2 gℓ,k(r, θ) (g slowly varying)

Wave packet with width ∆E ≫ Γ:

ψ(t = 0) =
∫

∆E ρ(E) Γ/2
E0−E−iΓ/2 gℓ,k(r, θ)

(ρ(E) peaked wt. function)

Then ψ(t) ≃ ρ(E0)gℓ,k0(r, θ)
∫

∆E
Γ/2

E0−E−iΓ/2e
−iEtdE

which can be performed for t > 0 by contour integration

Close contour in lower plane around E = E0 − iΓ/2 pole

Then find |ψ(t)/ψ(0)|2 = e−Γt so 1/Γ is “lifetime”; Γ > 0
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Had ψ
(+)
k (r, θ) =

∑

ℓ
aℓ(k)Pℓ(cos θ)

2ikr [(−i)ℓeikreiδℓ− iℓe−ikre−iδℓ]
Let outgoing partial wave be attenuated by ηℓ, 0 ≤ ηl ≤ 1

ψ
(+)
k (r, θ) =

∑

ℓ
aℓ(k)Pℓ(cos θ)

2ikr [(−i)ℓeikrηℓeiδℓ − iℓe−ikre−iδℓ]

All previous derivations go through as before, but now

fk(θ) =
∑

ℓPℓ(cos θ)(2ℓ+ 1)fℓ(k) ; fℓ(k) = [ηℓe
2iδℓ−1]
2ik

Note that if ηℓ < 1 then Im fℓ(k) 6= k|fℓ(k)|2

Optical theorem σT = (4π/k) Imf(θ = 0) still holds

Elastic cross section σel =
∫

dΩ dσ
dΩ =

∫

dΩ |fk(θ)|2

=
∑

ℓ(2ℓ+ 1)(π/k2)(η2
ℓ + 1 − 2ηℓ cos 2δℓ)

and we need the inelastic cross section σin = σT − σel
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Compare e±ikr fluxes I =

∫

d~σ ·~j (d~σ = area element; ~j =
probability current); find in each partial wave

Iin = (2ℓ+ 1)π/mk ; Iout = η2
ℓ(2ℓ+ 1)π/mk

so Iin − Iout =
∑

ℓ(π/mk)(2ℓ+ 1)(1 − η2
ℓ)

Incident particles in a time interval dt sweeping out a
volume V impinging on an area A: N = v0dtA, so flux
per unit time per unit area is I0 = N/(Adt) = v0 = k/m

Then σin = Iin−Iout

I0
=

∑

ℓ(2ℓ+ 1)(π/k2)(1 − η2
ℓ)

σT = σin + σel =
∑

ℓ(2ℓ+ 1)(2π/k2)(1 − ηℓ cos 2δℓ)

Im fℓ(k) = 1−ηℓ cos 2δℓ
2k so Im fk(0) =

∑

ℓ(2ℓ+ 1)1−ηℓ cos 2δℓ
2k

which is just kσT/(4π), proving optical theorem
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Inelastic scattering occurs whenever ηℓ < 1

Always accompanied by elastic scattering:

1 + η2
ℓ − 2ηℓ cos 2δℓ 6= 0 when ηℓ < 1

Black disk: ηℓ = 0 for ℓ ≤ kR; ηℓ = 1, δℓ = 0 for ℓ > kR

For high energies such that kR ≫ 1, where R is the
range of scattering, can expect many partial waves to
contribute, and fℓ(k) is fairly continuous in ℓ and k.
It is then convenient to define the impact parameter
b ≡ (ℓ+ 1/2)/k and replace

∑

ℓ by k
∫

db.

Then for black disk σin = σel = πR2 , σT = 2πR2

Define momentum transfer t = −q2 ≡ −2k2(1 − cos θ)

Will express near-forward scattering in terms of b and t



27/42EIKONAL APPROXIMATION
Large-ℓ Legendre polynomials near forward direction:

Pℓ(cos θ) ≃ J0[(ℓ+ 1
2)

√

2(1 − cos θ)] = J0(bq)

With h(b, k) ≡ 1 − ηℓe
2iδℓ and

∑

ℓ(2ℓ+ 1) ≃ 2
∫

ℓdℓ:

fk(θ) =
∑

ℓPℓ(cos θ)(2ℓ+ 1)(ηℓe
2iδℓ − 1)/(2ik)

≃ ik
∫ ∞

0 b db J0(bq)h(b, k)

Black sphere: h(b, k) = 1 (b ≤ R); h(b, k) = 0 (b > R)

fk(θ) = ik
∫ R

0 b db J0(bq)

Now J0(x) =
(

1
x
d
dx

)

[xJ1(x)]

so fk(θ) = ik
q2

∫ qR

0 dx d
dx[xJ1(x)] = ikR

q J1(qR)
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By the optical theorem, can write σT = (4π) Im fk(0) =
2πR2 in agreement with previous results

Differential cross section is a diffraction pattern:
dσ
dΩ = |f |2 = k2R2

q2
[J1(qR)]2

Or for small t, dσ
d|t| ≃ πR4

4

(

1 + R2t
4

)

Totem at (7,8) TeV LHC (M. Berretti, Proc. of Diffraction
2014, AIP Conf. Proc. 1654 (2015) 040001): σT(pp) ≃
(98, 102) mb, ⇔ R = (1.25, 1.27) fm [σel ≃ 25 mb]

R2/4 ≃ 10 GeV−2 but measured |t| coeff. ≃ 19 GeV−2

Proton has an “edge”: M. M. Block +, PR D 91, 011501;
JLR, PR D 90, 117902 (2014)
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fk(θ) = ik

∫ ∞
0 b db J0(qb)h(b, l); J0(x) = 1

2π

∫ 2π

0 eiz cosφdφ

With b = |~b|, q = |~q|, ~q ·~b = qb cosφ, d2~q = b db dφ,

can write fk(θ) = ik
2π

∫

d2~b ei~q·
~bh(b, k)

Then dσ
d|t| = π

k2
dσ
dΩ = π

k2
|fk(θ)|2; σel =

∫

d|t| dσd|t| = 1
π

∫

d2~q dσ
d|t|

so one finds σel = 2π
∫

bdb |h(b, k)|2;
σT = 4π

k Im fk(0) = 4π
∫

bdb Re h(b, k)

(M. Block, Physics Reports 436, 71 (2006), Chapter 8)

Let h = 1 (b < R), 0 (R > b+ ∆), interpolate linearly

σT − 2σel = (π∆/3)(2R + ∆) ⇒ ∆ ≃ 1.26 fm at 8 TeV,
near QCD string-breaking distance [JLR, PL B 385, 293
(1996); G. Bali +, PR D 71, 114513 (2005)]



30/42ADDING RESONANCES
Breit-Wigner: T (E) = eiδ sin δ ≃ m0Γ(m)

m2
0
−m2−im0Γ(m)

;

Γ(m) = Γ0

(

ρ(m)
ρ0

)

Bℓ(q(m), q0)
2; Γ0, m0 = nominal

resonance width, mass; Bℓ = ℓ-dependent barrier factor.

Corresponding K operator is K = m0Γ(m)

m2
0
−m2 , i.e., like T

but without the imaginary part in the denominator. One
has T = K(1 − iK)−1 = (1 − iK)−1K: Interpret as
a geometric series in which (1 − iK)−1 describes the
rescattering correction to the real operator K.

Expressing T in terms of a real K operator guarantees
unitarity of S, but this is lost if T = TBW,1 + TBW,2: no
longer expressible in terms of a real K-matrix.

Prescription: Add Breit-Wigner resonances by adding their
respective K-matrices: K = KBW,1 +KBW,2.



31/42COMPARING PRESCRIPTIONS

S-wave ππ scattering with m1 = 0.8 GeV, m2 = 1.2
GeV, Γ1 = Γ2 = 0.2 GeV, points every 20 MeV (blue
below 1 GeV, red above 1 GeV). Adding T -matrices gives
an amplitude outside unitarity circle; adding K-matrices
respects unitarity.



32/42RESONANCE SUMS: INTENSITIES

Sum of two identical resonances gives unequal peak heights
(violating unitarity limit |T |2 ≤ 1) with T = T1 + T2
prescription. Both peaks reach the unitarity limit with
K = K1 +K2 prescription.



33/42DIFFERENT WIDTHS

m = (0.9, 0.98) GeV, Γ = (0.4, 0.04) GeV, every 4 MeV.



34/42DIFFERENT Γ: INTENSITIES

Sum of two resonances with very different widths gives
huge violation of unitarity limit |T |2 ≤ 1 with T = T1 + T2
prescription. Both peaks reach unitarity limit with K =
K1 +K2 prescription.



35/42DALITZ PLOT APPLICATIONS

Three-body decay A → B + C +D: Describe final-state
interactions (pairwise) of B + C, B +D, C +D.

Watson’s Theorem: Final-state phase of each subsystem
is that of elastic scattering in that subsystem.

This can be achieved by multiplying the “bare” matrix
element for the decay by the same correction factor which
converts K to a unitary amplitude: T = K(1 − iK)−1

[Heitler, 1944; Dalitz, RMP 33, 471 (1961)], so Mfi →
Mfi(1 − iKBC)−1(1 − iKBD)−1(1 − iKCD)−1 [Aitchison,
Nucl. Phys. A 189, 417 (1972)].

This is simple as long as B + C, B +D, and C +D are
not “fed” by other inelastic channels, but the K-matrix
should take care of them. There may also be intrinsic
phases between the two-body subsystems and the bachelor
particles not contained in the K-matrix formalism.



36/42HISTORICAL NOTES
S-matrix: Heisenberg [Zeit. Phys. 120, 513 (1943), . . .].

Similar concepts utilized by Tomonaga and Dicke in
microwaves (e.g., M. I. T. Radiation Laboratory Series,
v. 8, Ch. 5, pp. 130-161).

Smith Chart for impedance matching [P. H Smith,
Electronics 12, 29 (1939); 17, 130 (1944)]. Transmission
line characteristic impedance: Z0. For any impedance Z,
define z = Z/Z0 and w = (z−1)/(z+1). Satisfies |w| ≤ 1
since Re(z) ≥ 0. Propagation along line is just a rotation
in the w-plane. This resembles transformation between K
and S = (1 − iK)/(1 + iK) (1 channel).

Transformation noted by Wigner in 1949; he claims to have
learned it from Dicke. His R-matrix is just the K-matrix:

Rss′(E) =
∑

λ
γλsγλs′

Eλ−E



37/42SMITH CHART AND QUANTUM MECHANICS

JLR, Am. J. Phys. 61 (4), 310 (1993); thanks to Dicke

Matrix method in quantum mechanics for region of
constant potential V0 < E, k2 ≡ 2m(E − V0):

Ψ(x) ≡
[

ψ(x)

ψ′(x)

]

; M ≡
[

0 1

−k2 0

]

; dΨ(x)
dx = MΨ(x)

Shift by a: Ψ(x+ a) = exp(Ma)Ψ(x) = TaΨ(x)

where Ta =

[

cos ka k−1 sin ka

−k sin ka cos ka

]

For E < V0 define κ2 ≡ 2m(V0 − E); corresponding shift

operator is Ta =

[

cosh κa κ−1sinh κa

κ sinh κa cosh κa

]



38/42CIRCUIT ANALOGY
Represent local voltage V , current I with

Φ =

[

V

I

]

; (series, par.) impedances Zs,p ⇒ Φ′ = Ts,pΦ

with Tseries ≡
[

1 −Zs
0 1

]

, Tparallel ≡
[

1 0

−1/Zp 1

]

Traveling wave of wavelength λ = 2π/k on a transmission
line of characteristic impedance Z0 : Φ(x+a) = Ta,Z0

Φ(x)

where Ta,Z0
=

[

cos ka iZ0 sin ka

iZ−1
0 sin ka cos ka

]

Load impedance Zℓ at input of transmission line (length
a, characteristic impedance Z0) connected to antenna of
impedance Za: take unit current I = 1 and voltage V = Za
at antenna (x = a) and calculate Zℓ = V (x = 0)/I(x = 0)



39/42LOAD IMPEDANCE

Φ(x=0) =

[

V (x=0)

I(x=0)

]

= T−1
a,Z0

Φ(x = a) = T−1
a,Z0

[

Za
1

]

Zℓ = V (x=0)/I(x=0) = Z0
Za cos ka−iZ0 sin ka
Z0 cos ka−iZa sin ka

yielding Zℓ−Z0

Zℓ+Z0
= e2ikaZa−Z0

Za+Z0

Define normalized impedance z ≡ Z/Z0

and w ≡ (z − 1)/(z + 1); then wℓ = e2ikawa

ka = 2πa/λ is electric length of transmission line

Unit circle w = 1: reactive impedances;
real axis [−1 < w < 1] ⇔ resistances 0 < R <∞
Matching impedances ⇔ rotations in the w plane;
wave propagation looks like effect of S-matrix



40/42SUMMARY
S-matrix and its relatives (T -matrix, K-matrix, . . .) have
a long history in the description of scattering; S relates
“in” states to “out” states

Sℓ(k) = e2iδℓ(k) describes elastic scattering [partial wave ℓ]

Phase shifts go through π/2 at a resonance, where
scattering amplitude fℓ(k) = (S − 1)/(2ik) is maximal

Many interesting results follow from optical analogy;

proton is not totally black but has an “edge”

Adding resonances is best done using K-matrix, where
S = (1 + iK)/(1− iK)

Some simple examples given of one- and two-channel
problems

S-wave behavior particlarly interesting near new thresholds



41/42EXERCISES
Consider the reflectionless many-bound-state potential in
one dimension with S = ΠN

i=1Si and Si = (k + iαj)/(k −
iαj). Calculate the difference in the phase shifts at
zero and infinite momentum k: δ(0) − δ(∞). This is
an illustration of Levinson’s Theorem [N. Levinson, K.
Danske Vidensk. Selsk. Mat-fys. Medd. 25, No. 9 (1949);
see also S.-H. Dong et al., arXiv:quant-ph/9903016].

Consider transmission of a plane wave in one dimension
past a square well of depth −V0 and extent −a ≤ x ≤ a.
This satisfies unitarity by construction, and has multiple
transmission resonances. Is K =

∑

Ki valid?

Use a 2-channel K-matrix to describe the behavior of
S-wave ππ scattering as energy increases through KK̄
threshold [S. M. Flatté et al., Phys. Lett. 38B, 232 (1972);
K. L. Au et al., Phys. Rev. D 35, 1633 (1987)]
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43/42BAUER’S FORMULA
Expand incoming plane wave in terms of Pℓ(cos θ):

eikr cos θ =
∑

ℓ cℓ jℓ(kr)Pℓ(cos θ)

Let s ≡ cos θ and take partial wave projection:
2

2ℓ+1cℓjℓ(kr) =
∫ 1

−1 ds e
ikrs 1

2ℓℓ!
dℓ

dsℓ
(s2 − 1)ℓ

(using Rodriguez’ formula for the Legendre polynomial)

Integrating ℓ times by parts (surface terms = 0),

cℓjℓ(kr) = 2ℓ+1
2ℓ+1ℓ!

(ikr)ℓ
∫ 1

−1 ds (1 − s2)ℓeikrs

Using an integral representation for jℓ(kr), this is just

(2ℓ+ 1)iℓjℓ(kr), i.e., cℓ = (2ℓ+ 1)iℓ



44/42SMITH CHART

This is the w = z−1
z+1 plane; z ≡ Z/Z0

is the normalized impedance

and typically Z0 = 50Ω

Center corresonds to Z=Z0

Unit circle corresponds to

imaginary impedances

(capacitive or reactive)

Read off complex impedances

from grid; propagation along

transm. line = rotation in W -plane


