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1+2->3+4 1+3->2+4
peaks in s from peaks in t from
resonances in (12) resonances in (13)

A(s,t) = > (2 +1)Ai(s)Pi(zs) A(s, t) = 3 (20 + 1) Ay(t) Po(2)
[=0 =0
2t
Z821+S—4m2 =L t—21fm2

to reproduce peaks in t (or s) need to continue the s (or t)
channel p.w. sum outside its domain of convergence



- s-channel

/ zeros from P/’ s

peaks from poles
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Analytical continuation: simple example

O

A(s,t) = A(s, (s, 25)) = Y (20 + 1) Ay(s) Pi(2s)
[=0

s — 4m?
2

|zs| < 1in the s-channel and zs < -1 in the t-channel

t(s,2zs) = —(1 — zs)

well defined for |zs| < 1




for large -zs |

Alzs) = 75 = ()" L+ O0/z)] |

compare with starting point ~__

A(s,t) = A(s, (s, 25)) = » (21 + 1) Ay(s) Pi(2s)
[=0

s — 4m?

2 we derived the large +t behavior !
t « —zs when (t — +00)

t(s,2s) = —(1 — zs)

* there is a pole in the physical t region (“resonance”)

* if a non-integer, tasks as a function of t the amplitude has a
branch point: particle production at lathe t-channel energy

* the leading term at large t is “simple”: it must come from some
specific property of the p.w. series

Exercise: find the large-zs behavior using the Sommerteld-
Watson transform.



Analytical continuation: realistic example

@)

A(Sﬂf) _ Z(Ql n 1)Al Z S Pl Zs) Pl(_Zs)] (**)

[ — as 2
=0
1

a(s) = 5 + s+ iyp(s) ,0(3)5(3) = I'ma(s) (*)

vy~I1,m,
 A1(s) ~ Breit-Wigner of the rho-meson

- Re(a(s)) =1/2 + s : linear Regge trajectory \/1 — 4m2
* Im(a(s)) = is related to resonance widths

- the relation between a (trajectory) and f3 (reS|due) follows from
unitarity: Im A1(s) = 1Ai(s)I2 p(s)

- Resonances with different spins in A4, As, As, ... are related by
poles in | of the function A,

O

l:: —Zg l 1+ Lo o
Exercise:show that ZZS EZ) x (=2,

[ — « SIN T
=0

Exercise:show that (*) follows from unitarity

Exercise:show that (**) has a Breit-Wigner form



- the leading term at large t is “simple”: it must come from some
specific property of the p.w. series -> it comes from right most
singularity of partial waves in the angular momentum plane

= 2b 4 (=2 l+te
Z S ( 8)

[ — o SIN 7Ty
1=0

Regge theory = origin and properties of
singularities of p.w. in the angular momentum
plane

- it is possible (“simple”) to construct models of partial
waves in one channel (e.g. s) which have Regge poles and
produce right asymptotic behavior in another (e.g. t). It is
not easy to do it simultaneously



s-channel p.w. : s-channel resonances

A(s,t) = Z(Ql + 1)A;(s)Pi(s), Ai(s) = Z l _&st)

[ 1=Regge poles

Q: Should you add t-channel resonances
(interference model) ?

A: No. (resonances in t and s are dual not additive)

A finite number of t-channel resonances
will break s-channel analyticity

Lmaa:

> 20+ 1) A () Pi(z) — stmes
[=0

An infinite number of t-channel resonance ->
double counting of A(s,t)

Veneziano model = has simultaneous resonances Iin s ar
channel and proper asymptotic behavior. To do this requil
number of p.w/resonances (why?)



What functions have an infinite
number of poles (resonances) to be
used to represent (model) the
amplitude A(s,t) ?
e,

1
{

3 b/:/

S\
G2
@'

The Gamma function !!!



(—1)™ 1
F ~U Z ~ _n
(2) I'n+1)n+ z

so we want something like

A(s,1) ~ T(—)T(—s)



A(s,t) ~T'(=t)['(—s)

- to connect poles at t (or s) =1,2,3 ... with physical masses use the
Regge trajectory

A(s,t) ~T'(n — a(s))'(n — al(t))

- n,m determine location of first poles, e.g. I'(-a(s)) has, for a(s) =
0.5 + s, the first pole at s=-1/2 i.e. particle with imaginary mass.
But IN'(1-a(s)) has the first pole at s=+1/2 i.e. the rho-meson

- simultaneous poles in s and t (“overlapping channels”) are
unexpected. To remove them use

['(n —a(s))l'(n — a(?))
C'(n+m—a(s) —at

) ithas poles and zeros!

- what is missing is kinematical (spin) and symmetry (e.g. isospin)
factors



Examples:

MMm->TTN

¢ after iIsospin decomposition there are three scalar amplitudes
A(s,t,u), B(s,t,u), C(s,t,u) -> Veneziano

MN->1 N

e there are two scalar amplitudes A(s,t), B(s,t)

Viao->1mn

ethere is one scalar amplitude (*)

Exercise: verify (*)
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w— 3T

v Imter
: String Staee

string of
relativistic
osclllators

3

mediate

A(s,t) =

D(=J(s)I(=J(2))

P(=J(s) = J(?))

QCD, loop
representation,
large-N¢, AdS/
CFT, ...

string




Veneziano amplitude: “compact” expression for the full
amplitude

| D(~a(s))T(~a(t)
A = T0(s) — a)

a(s) =a+ bs

A(s,t) can be written as sum over resonances in ether
channel.

Note: in V-model resonance couplings, B, are fixed! (*)

Br(t) o< (14 a(1))(2+ a(t))--- (k + aft))

Exercise: verify (*)



Vip,A) — Wi(pl)ﬂj(m)ﬂk(m)
5

A(87 ta U) — €ijkCuraBtu (p7 )‘)plljpgpg
X[Anm(s,t) + Anm(s,u) + Ap (L, u)]

Ay o(5.8) = ['(n —ag)l'(n — ay)

C'(n+m—as —az)

leading st 2nd  3rd )

A a(s) == +5

@ ) @ @
K4 .

e o & o e no-double poles
SR correct asymptotic

IMitnzm=1 (%)

S| s> S3 S4 S5 S6 S

Exercise: verify (*)



Resonances couplings, B, should depend on final state

particles: a linear superposition of Veneziano amplitudes can
be used to suppress or enhance individual resonances or
trajectories

M = €.uappiPsps e’ As, t, u)

Re o(s) 4 [(n+m —a(s) —alt))
Re 0(s) =a+bs
5
* even-spin P’s do not
4 ., couple to TT TT and should
; p3(l690) P decouple in J/Y—3 TT
©
| P3(|990) ° coupling of Odd-Spin P’S
9 > O 3 \/\ leepenj of can depend vary
/ . epending on trajectory
| P(77’°)«*’ 3 p(l570) p (2 150)
p(|450) p (|900) S

S| S? S3 S4 S5 S6



How to isolate individual poles ?

nN>m > 1

T(1— a)T(1 — ay)

A = T2 = o — o) has poles at as=1,2,3,...
F(Q — ozS)F(Q — C\ft)
A — =
R 2.1 T3 — as — ) has poles at as=2,3,4,...
S
Use a linear combination of A2+ 4 _ ['(2 — ag)I'(2 — o) B
and Az2 to remove pole at as =2 22 ['(4 — as — ay) nas poles at ds=2,3,4,...
Use a linear combination of A1,  As 1, As2, As 3 have poles at 0s=3,4,5, ...
Az2 ,Az3, toremove pole at as =3,
As1,A12,A43,A44 have poles at as=4,5,6,...

efc.



Anm(s,t) = A(s, t) = Z Crn.mAn.m(s,1)

n>1,n<m<l1

remove all poles but the one at a=1

C1,1 ; _ C1,1
) 2 I'(n—1)

Cn1 = , Cn.m = 0 for m > 2,

2 — Qg — O
(1 —ag)(1 —ay)

./41(3, t) — Cl,l

... but the Regge limit is now lost !

remove all poles between N>a>?2

2 — g — Oy has Regge limitis for s > N
1 —as)(1 — ay)
I'(N+1—a)l'(N+1—ay)

D(N)I'(N +2 — as — ay)

Ai(s,t; N) = c11 (




In the past this was done by choosing an arbitrary set of n,m

and fitting c(n,m) to the data (e.g. Lovelace, Phys. Lett. B28, 265 (1968),Altarelli
Rubinstein, Phys. Rev. 183, 1469 (1969))

The “new’” model does this in a systematic way. In addition it
allows for imaginary non-linear (and complex) trajectories
without introducing “ancestors”

Application of the Veneziano Model in Charmonium Dalitz Plot Analysis

. 9 . 9
Adam P. Szczepaniak’?® and M.R. Pennington?

TL

, 2N — Qe — Q0 .
An(s,t;N) = * TN i~ — ar) !

(n — ag)(n — ay) —
o« ].—‘(;V | 1 QTS)F(xNT -+ 1 — Q“t)
'(N+1-n)I'(N+n+1—as—az)

n: number of Regge trajectories

an,i: determine resonance couplings

N: determines the onset of Regge behavior

X(s), X(t) = Re & + i Im &: with Im & related to resonance widths



Different authors employed the Veneziano model for the analysis of the
at-rest annihilation NN — 3=, using a finite number of Veneziano terms.

® Lovelace?: a single term amplitude,
n=m=1,

as = 0.483 + 0.885s + 0.28iv/s — 4m?=

e Altarelli®: 5 terms with n +m < 3 (to
reproduce the zero at a; + oy ~ 3)

E—- |
(Mer; g e ey icdy

® Gopal*: 5 terms with n +m < 3,
as = 0.483 + 0.885s + iA(s — 4m?)5B,
B<1

c.0 7)) b AT

IMer' o 0B s (Gevict)

2C. Lovelace, Phys. Lett. 25B (1968), 264
3(;. Altarelli, Phys. Rev. 183 (1969), 1469
4G. P. Gopal, Phys. Rev. D 3 (1971), 2262

from A.Celentano



All poles below a = N exceptata=n

2N — 0Ly — O

. — n—1 . _
An(Sa ta N) — a'n,O (n _ as)(n . at) [Hi:1 (anﬂ g Ozt)]

(N +1—a)l'(N+1—ay)
I'(N+1—-—n)I'(N+n+1—a;— a)

at as=n residue is a polynomial in t of order n-1
t (remember to add 1 from the Levi-Civita tensor)

600

A(s,t,u) = €in€uapen(p, \DY DS DY

400 Ay (5, 8) + A (s, 1) + Apom (t, u)]

200

A+ has p(770)
O Ashas p(1700), ps(1690)
As has p”(2150), p3(2250), ps5(2350)
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FIG. 2: Dalitz plot projection of the di-pion mass distribution
from J/v decay. The solid is the result of the fit with three
amplitudes and the dashed line with the amplitude A; alone.
The insert shows the mass region of the ps and its contribution
from the fit with the full set of amplitudes (solid line) as
compared. Absence of the structure at 1.7GeV from the fit
with the A; amplitude is indicated by the dashed line.
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FIG. 3: Dalitz plot projection of the di-pion mass distribution
from v’ decay. The solid is the result of the fit with three
amplitudes and the dashed line is the fit with A; alone.



Bs amplitude: S T T

=

Reggeons/
Resonances In
all 5 channels

Al 1

B

Double-Regge Exchange Limit for the vp —+ K"K p Reaction

M. Shi,’»2:* L.V, Danilkin,? C. Fernindez-Ramirez,2 V. Mathieu, 34
M. R. Pennington,? D. Schott,® and A. P. Szczepaniak® 4

(Joint Physics Analysis Center)

Bs(saB,SA1, 812, 823,8B3) = Bs(—a12, —a41) B4(—a93, —ap3)

X 3F2(aaB — 12 — @23, —xa1, —QB3; —Q12 — QxA1, —(¥23 — (XB3).



172 Reviews oF MopErN Prysics = Aprin 1971 « Pagrr |
| | [ | T T | I
pn —mwiw T w
200 ) |
.[ b v |_gyelace (R0}
gz ~1.0: ¥=1,95
Data: Anninos et al.,Phys Rev
Letters 20,402 (1968)
100 e
1 1 1 | | |
(5] 0.% 1.0 1.5 2.0 2.5 3.0 2.5
(Moss twte )2 (Getv}2

1. 10.3. Tnvariant masg distribution for «*x~ from pn—
! (1968), Theoretical
curves are those of Lovelace (1969b) and Berger (1969a).

itz v,

i

T 1T rrryrrrTyge

s
-
LENE B B i o &

Data taken from Anninos & al,

Kp— 7 n A IN VENEZIANO MODEL

L
$ %0 -x"xA)
b o P - wvtoesd
] -
~
¢ s

170

ol
'
[
)
i
y M) G
N 0 G
04 et
s
w'-
- M) Goy
N - Al L
2 25 ) 4 ) 2 4 s 9 ©

REVIEWS oF MobpERN Puysics « ApriL 1971 « Part I
| I O A O | I L S B
400 7 p—+ 7 w*n AT 6 GeVic — - m"p—» 7 wp AT 6 Gev/e
. —5334 EVENTS | () [ — 3097 EVENTS
(@ | mEVENTS WITH 200 (&) || o VENTS WITH
320 Lyen S 1.0 GeVZ - tpep S 1LOGEVE _
g g |60" -
o - = _
5 2 120
1204+ -
- 2
w - L ]
> w
w >
“ 80
40
(f
w__ — B — —
ol VA i :
40— -
20 { -
(;)v. o 0h'i'1‘ —
4 a [w@ i
* 20 —
Yo - i i
.) ’ L
(@ il T
F(h) — T
20 | -
] A, i ~
’ 44&‘ n‘.l+ il
* * Of 1449 o
1 M B | o
08 16 2.4 08 6 2.4

Mir*w™) IN Gev

pn—pion mass distributions and Legendre polynomial coefficients for xN—x=¥ at 6 GeV/¢ from Crennel ef al. (1968]

Miz~ 2% IN Gev

EVENTS/40 MeV

’ | | i J I I

100

@
o

— wtp—+w*wtn AT 6 Gevic
L (i) — 1195 EVENTS _
= EVENTS WITH
-~ toen S 10 GeV?
— 4

20

- -
»—W‘.ﬁ‘ﬁw—&”‘_ﬂa—
* ’
| 1 ”l t' 1

|
0.8 1.6
Mmtr*) IN Gev

The columns are, from left to right, for  p—xtx"n, x p—a"v"p, xtp—rtatn.



